xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 6a143a7c)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 
25 #define BTF_MAX_NR_TYPES 0x7fffffffU
26 #define BTF_MAX_STR_OFFSET 0x7fffffffU
27 
28 static struct btf_type btf_void;
29 
30 struct btf {
31 	/* raw BTF data in native endianness */
32 	void *raw_data;
33 	/* raw BTF data in non-native endianness */
34 	void *raw_data_swapped;
35 	__u32 raw_size;
36 	/* whether target endianness differs from the native one */
37 	bool swapped_endian;
38 
39 	/*
40 	 * When BTF is loaded from an ELF or raw memory it is stored
41 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
42 	 * point inside that memory region to their respective parts of BTF
43 	 * representation:
44 	 *
45 	 * +--------------------------------+
46 	 * |  Header  |  Types  |  Strings  |
47 	 * +--------------------------------+
48 	 * ^          ^         ^
49 	 * |          |         |
50 	 * hdr        |         |
51 	 * types_data-+         |
52 	 * strs_data------------+
53 	 *
54 	 * If BTF data is later modified, e.g., due to types added or
55 	 * removed, BTF deduplication performed, etc, this contiguous
56 	 * representation is broken up into three independently allocated
57 	 * memory regions to be able to modify them independently.
58 	 * raw_data is nulled out at that point, but can be later allocated
59 	 * and cached again if user calls btf__get_raw_data(), at which point
60 	 * raw_data will contain a contiguous copy of header, types, and
61 	 * strings:
62 	 *
63 	 * +----------+  +---------+  +-----------+
64 	 * |  Header  |  |  Types  |  |  Strings  |
65 	 * +----------+  +---------+  +-----------+
66 	 * ^             ^            ^
67 	 * |             |            |
68 	 * hdr           |            |
69 	 * types_data----+            |
70 	 * strs_data------------------+
71 	 *
72 	 *               +----------+---------+-----------+
73 	 *               |  Header  |  Types  |  Strings  |
74 	 * raw_data----->+----------+---------+-----------+
75 	 */
76 	struct btf_header *hdr;
77 
78 	void *types_data;
79 	size_t types_data_cap; /* used size stored in hdr->type_len */
80 
81 	/* type ID to `struct btf_type *` lookup index
82 	 * type_offs[0] corresponds to the first non-VOID type:
83 	 *   - for base BTF it's type [1];
84 	 *   - for split BTF it's the first non-base BTF type.
85 	 */
86 	__u32 *type_offs;
87 	size_t type_offs_cap;
88 	/* number of types in this BTF instance:
89 	 *   - doesn't include special [0] void type;
90 	 *   - for split BTF counts number of types added on top of base BTF.
91 	 */
92 	__u32 nr_types;
93 	/* if not NULL, points to the base BTF on top of which the current
94 	 * split BTF is based
95 	 */
96 	struct btf *base_btf;
97 	/* BTF type ID of the first type in this BTF instance:
98 	 *   - for base BTF it's equal to 1;
99 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
100 	 */
101 	int start_id;
102 	/* logical string offset of this BTF instance:
103 	 *   - for base BTF it's equal to 0;
104 	 *   - for split BTF it's equal to total size of base BTF's string section size.
105 	 */
106 	int start_str_off;
107 
108 	void *strs_data;
109 	size_t strs_data_cap; /* used size stored in hdr->str_len */
110 
111 	/* lookup index for each unique string in strings section */
112 	struct hashmap *strs_hash;
113 	/* whether strings are already deduplicated */
114 	bool strs_deduped;
115 	/* extra indirection layer to make strings hashmap work with stable
116 	 * string offsets and ability to transparently choose between
117 	 * btf->strs_data or btf_dedup->strs_data as a source of strings.
118 	 * This is used for BTF strings dedup to transfer deduplicated strings
119 	 * data back to struct btf without re-building strings index.
120 	 */
121 	void **strs_data_ptr;
122 
123 	/* BTF object FD, if loaded into kernel */
124 	int fd;
125 
126 	/* Pointer size (in bytes) for a target architecture of this BTF */
127 	int ptr_sz;
128 };
129 
130 static inline __u64 ptr_to_u64(const void *ptr)
131 {
132 	return (__u64) (unsigned long) ptr;
133 }
134 
135 /* Ensure given dynamically allocated memory region pointed to by *data* with
136  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
137  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
138  * are already used. At most *max_cnt* elements can be ever allocated.
139  * If necessary, memory is reallocated and all existing data is copied over,
140  * new pointer to the memory region is stored at *data, new memory region
141  * capacity (in number of elements) is stored in *cap.
142  * On success, memory pointer to the beginning of unused memory is returned.
143  * On error, NULL is returned.
144  */
145 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
146 		  size_t cur_cnt, size_t max_cnt, size_t add_cnt)
147 {
148 	size_t new_cnt;
149 	void *new_data;
150 
151 	if (cur_cnt + add_cnt <= *cap_cnt)
152 		return *data + cur_cnt * elem_sz;
153 
154 	/* requested more than the set limit */
155 	if (cur_cnt + add_cnt > max_cnt)
156 		return NULL;
157 
158 	new_cnt = *cap_cnt;
159 	new_cnt += new_cnt / 4;		  /* expand by 25% */
160 	if (new_cnt < 16)		  /* but at least 16 elements */
161 		new_cnt = 16;
162 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
163 		new_cnt = max_cnt;
164 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
165 		new_cnt = cur_cnt + add_cnt;
166 
167 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
168 	if (!new_data)
169 		return NULL;
170 
171 	/* zero out newly allocated portion of memory */
172 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
173 
174 	*data = new_data;
175 	*cap_cnt = new_cnt;
176 	return new_data + cur_cnt * elem_sz;
177 }
178 
179 /* Ensure given dynamically allocated memory region has enough allocated space
180  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
181  */
182 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
183 {
184 	void *p;
185 
186 	if (need_cnt <= *cap_cnt)
187 		return 0;
188 
189 	p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
190 	if (!p)
191 		return -ENOMEM;
192 
193 	return 0;
194 }
195 
196 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
197 {
198 	__u32 *p;
199 
200 	p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
201 			btf->nr_types, BTF_MAX_NR_TYPES, 1);
202 	if (!p)
203 		return -ENOMEM;
204 
205 	*p = type_off;
206 	return 0;
207 }
208 
209 static void btf_bswap_hdr(struct btf_header *h)
210 {
211 	h->magic = bswap_16(h->magic);
212 	h->hdr_len = bswap_32(h->hdr_len);
213 	h->type_off = bswap_32(h->type_off);
214 	h->type_len = bswap_32(h->type_len);
215 	h->str_off = bswap_32(h->str_off);
216 	h->str_len = bswap_32(h->str_len);
217 }
218 
219 static int btf_parse_hdr(struct btf *btf)
220 {
221 	struct btf_header *hdr = btf->hdr;
222 	__u32 meta_left;
223 
224 	if (btf->raw_size < sizeof(struct btf_header)) {
225 		pr_debug("BTF header not found\n");
226 		return -EINVAL;
227 	}
228 
229 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
230 		btf->swapped_endian = true;
231 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
232 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
233 				bswap_32(hdr->hdr_len));
234 			return -ENOTSUP;
235 		}
236 		btf_bswap_hdr(hdr);
237 	} else if (hdr->magic != BTF_MAGIC) {
238 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
239 		return -EINVAL;
240 	}
241 
242 	meta_left = btf->raw_size - sizeof(*hdr);
243 	if (meta_left < hdr->str_off + hdr->str_len) {
244 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
245 		return -EINVAL;
246 	}
247 
248 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
249 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
250 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
251 		return -EINVAL;
252 	}
253 
254 	if (hdr->type_off % 4) {
255 		pr_debug("BTF type section is not aligned to 4 bytes\n");
256 		return -EINVAL;
257 	}
258 
259 	return 0;
260 }
261 
262 static int btf_parse_str_sec(struct btf *btf)
263 {
264 	const struct btf_header *hdr = btf->hdr;
265 	const char *start = btf->strs_data;
266 	const char *end = start + btf->hdr->str_len;
267 
268 	if (btf->base_btf && hdr->str_len == 0)
269 		return 0;
270 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	if (!btf->base_btf && start[0]) {
275 		pr_debug("Invalid BTF string section\n");
276 		return -EINVAL;
277 	}
278 	return 0;
279 }
280 
281 static int btf_type_size(const struct btf_type *t)
282 {
283 	const int base_size = sizeof(struct btf_type);
284 	__u16 vlen = btf_vlen(t);
285 
286 	switch (btf_kind(t)) {
287 	case BTF_KIND_FWD:
288 	case BTF_KIND_CONST:
289 	case BTF_KIND_VOLATILE:
290 	case BTF_KIND_RESTRICT:
291 	case BTF_KIND_PTR:
292 	case BTF_KIND_TYPEDEF:
293 	case BTF_KIND_FUNC:
294 	case BTF_KIND_FLOAT:
295 		return base_size;
296 	case BTF_KIND_INT:
297 		return base_size + sizeof(__u32);
298 	case BTF_KIND_ENUM:
299 		return base_size + vlen * sizeof(struct btf_enum);
300 	case BTF_KIND_ARRAY:
301 		return base_size + sizeof(struct btf_array);
302 	case BTF_KIND_STRUCT:
303 	case BTF_KIND_UNION:
304 		return base_size + vlen * sizeof(struct btf_member);
305 	case BTF_KIND_FUNC_PROTO:
306 		return base_size + vlen * sizeof(struct btf_param);
307 	case BTF_KIND_VAR:
308 		return base_size + sizeof(struct btf_var);
309 	case BTF_KIND_DATASEC:
310 		return base_size + vlen * sizeof(struct btf_var_secinfo);
311 	default:
312 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
313 		return -EINVAL;
314 	}
315 }
316 
317 static void btf_bswap_type_base(struct btf_type *t)
318 {
319 	t->name_off = bswap_32(t->name_off);
320 	t->info = bswap_32(t->info);
321 	t->type = bswap_32(t->type);
322 }
323 
324 static int btf_bswap_type_rest(struct btf_type *t)
325 {
326 	struct btf_var_secinfo *v;
327 	struct btf_member *m;
328 	struct btf_array *a;
329 	struct btf_param *p;
330 	struct btf_enum *e;
331 	__u16 vlen = btf_vlen(t);
332 	int i;
333 
334 	switch (btf_kind(t)) {
335 	case BTF_KIND_FWD:
336 	case BTF_KIND_CONST:
337 	case BTF_KIND_VOLATILE:
338 	case BTF_KIND_RESTRICT:
339 	case BTF_KIND_PTR:
340 	case BTF_KIND_TYPEDEF:
341 	case BTF_KIND_FUNC:
342 	case BTF_KIND_FLOAT:
343 		return 0;
344 	case BTF_KIND_INT:
345 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
346 		return 0;
347 	case BTF_KIND_ENUM:
348 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
349 			e->name_off = bswap_32(e->name_off);
350 			e->val = bswap_32(e->val);
351 		}
352 		return 0;
353 	case BTF_KIND_ARRAY:
354 		a = btf_array(t);
355 		a->type = bswap_32(a->type);
356 		a->index_type = bswap_32(a->index_type);
357 		a->nelems = bswap_32(a->nelems);
358 		return 0;
359 	case BTF_KIND_STRUCT:
360 	case BTF_KIND_UNION:
361 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
362 			m->name_off = bswap_32(m->name_off);
363 			m->type = bswap_32(m->type);
364 			m->offset = bswap_32(m->offset);
365 		}
366 		return 0;
367 	case BTF_KIND_FUNC_PROTO:
368 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
369 			p->name_off = bswap_32(p->name_off);
370 			p->type = bswap_32(p->type);
371 		}
372 		return 0;
373 	case BTF_KIND_VAR:
374 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
375 		return 0;
376 	case BTF_KIND_DATASEC:
377 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
378 			v->type = bswap_32(v->type);
379 			v->offset = bswap_32(v->offset);
380 			v->size = bswap_32(v->size);
381 		}
382 		return 0;
383 	default:
384 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
385 		return -EINVAL;
386 	}
387 }
388 
389 static int btf_parse_type_sec(struct btf *btf)
390 {
391 	struct btf_header *hdr = btf->hdr;
392 	void *next_type = btf->types_data;
393 	void *end_type = next_type + hdr->type_len;
394 	int err, type_size;
395 
396 	while (next_type + sizeof(struct btf_type) <= end_type) {
397 		if (btf->swapped_endian)
398 			btf_bswap_type_base(next_type);
399 
400 		type_size = btf_type_size(next_type);
401 		if (type_size < 0)
402 			return type_size;
403 		if (next_type + type_size > end_type) {
404 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
405 			return -EINVAL;
406 		}
407 
408 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
409 			return -EINVAL;
410 
411 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
412 		if (err)
413 			return err;
414 
415 		next_type += type_size;
416 		btf->nr_types++;
417 	}
418 
419 	if (next_type != end_type) {
420 		pr_warn("BTF types data is malformed\n");
421 		return -EINVAL;
422 	}
423 
424 	return 0;
425 }
426 
427 __u32 btf__get_nr_types(const struct btf *btf)
428 {
429 	return btf->start_id + btf->nr_types - 1;
430 }
431 
432 const struct btf *btf__base_btf(const struct btf *btf)
433 {
434 	return btf->base_btf;
435 }
436 
437 /* internal helper returning non-const pointer to a type */
438 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
439 {
440 	if (type_id == 0)
441 		return &btf_void;
442 	if (type_id < btf->start_id)
443 		return btf_type_by_id(btf->base_btf, type_id);
444 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
445 }
446 
447 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
448 {
449 	if (type_id >= btf->start_id + btf->nr_types)
450 		return NULL;
451 	return btf_type_by_id((struct btf *)btf, type_id);
452 }
453 
454 static int determine_ptr_size(const struct btf *btf)
455 {
456 	const struct btf_type *t;
457 	const char *name;
458 	int i, n;
459 
460 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
461 		return btf->base_btf->ptr_sz;
462 
463 	n = btf__get_nr_types(btf);
464 	for (i = 1; i <= n; i++) {
465 		t = btf__type_by_id(btf, i);
466 		if (!btf_is_int(t))
467 			continue;
468 
469 		name = btf__name_by_offset(btf, t->name_off);
470 		if (!name)
471 			continue;
472 
473 		if (strcmp(name, "long int") == 0 ||
474 		    strcmp(name, "long unsigned int") == 0) {
475 			if (t->size != 4 && t->size != 8)
476 				continue;
477 			return t->size;
478 		}
479 	}
480 
481 	return -1;
482 }
483 
484 static size_t btf_ptr_sz(const struct btf *btf)
485 {
486 	if (!btf->ptr_sz)
487 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
488 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
489 }
490 
491 /* Return pointer size this BTF instance assumes. The size is heuristically
492  * determined by looking for 'long' or 'unsigned long' integer type and
493  * recording its size in bytes. If BTF type information doesn't have any such
494  * type, this function returns 0. In the latter case, native architecture's
495  * pointer size is assumed, so will be either 4 or 8, depending on
496  * architecture that libbpf was compiled for. It's possible to override
497  * guessed value by using btf__set_pointer_size() API.
498  */
499 size_t btf__pointer_size(const struct btf *btf)
500 {
501 	if (!btf->ptr_sz)
502 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
503 
504 	if (btf->ptr_sz < 0)
505 		/* not enough BTF type info to guess */
506 		return 0;
507 
508 	return btf->ptr_sz;
509 }
510 
511 /* Override or set pointer size in bytes. Only values of 4 and 8 are
512  * supported.
513  */
514 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
515 {
516 	if (ptr_sz != 4 && ptr_sz != 8)
517 		return -EINVAL;
518 	btf->ptr_sz = ptr_sz;
519 	return 0;
520 }
521 
522 static bool is_host_big_endian(void)
523 {
524 #if __BYTE_ORDER == __LITTLE_ENDIAN
525 	return false;
526 #elif __BYTE_ORDER == __BIG_ENDIAN
527 	return true;
528 #else
529 # error "Unrecognized __BYTE_ORDER__"
530 #endif
531 }
532 
533 enum btf_endianness btf__endianness(const struct btf *btf)
534 {
535 	if (is_host_big_endian())
536 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
537 	else
538 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
539 }
540 
541 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
542 {
543 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
544 		return -EINVAL;
545 
546 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
547 	if (!btf->swapped_endian) {
548 		free(btf->raw_data_swapped);
549 		btf->raw_data_swapped = NULL;
550 	}
551 	return 0;
552 }
553 
554 static bool btf_type_is_void(const struct btf_type *t)
555 {
556 	return t == &btf_void || btf_is_fwd(t);
557 }
558 
559 static bool btf_type_is_void_or_null(const struct btf_type *t)
560 {
561 	return !t || btf_type_is_void(t);
562 }
563 
564 #define MAX_RESOLVE_DEPTH 32
565 
566 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
567 {
568 	const struct btf_array *array;
569 	const struct btf_type *t;
570 	__u32 nelems = 1;
571 	__s64 size = -1;
572 	int i;
573 
574 	t = btf__type_by_id(btf, type_id);
575 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
576 	     i++) {
577 		switch (btf_kind(t)) {
578 		case BTF_KIND_INT:
579 		case BTF_KIND_STRUCT:
580 		case BTF_KIND_UNION:
581 		case BTF_KIND_ENUM:
582 		case BTF_KIND_DATASEC:
583 		case BTF_KIND_FLOAT:
584 			size = t->size;
585 			goto done;
586 		case BTF_KIND_PTR:
587 			size = btf_ptr_sz(btf);
588 			goto done;
589 		case BTF_KIND_TYPEDEF:
590 		case BTF_KIND_VOLATILE:
591 		case BTF_KIND_CONST:
592 		case BTF_KIND_RESTRICT:
593 		case BTF_KIND_VAR:
594 			type_id = t->type;
595 			break;
596 		case BTF_KIND_ARRAY:
597 			array = btf_array(t);
598 			if (nelems && array->nelems > UINT32_MAX / nelems)
599 				return -E2BIG;
600 			nelems *= array->nelems;
601 			type_id = array->type;
602 			break;
603 		default:
604 			return -EINVAL;
605 		}
606 
607 		t = btf__type_by_id(btf, type_id);
608 	}
609 
610 done:
611 	if (size < 0)
612 		return -EINVAL;
613 	if (nelems && size > UINT32_MAX / nelems)
614 		return -E2BIG;
615 
616 	return nelems * size;
617 }
618 
619 int btf__align_of(const struct btf *btf, __u32 id)
620 {
621 	const struct btf_type *t = btf__type_by_id(btf, id);
622 	__u16 kind = btf_kind(t);
623 
624 	switch (kind) {
625 	case BTF_KIND_INT:
626 	case BTF_KIND_ENUM:
627 	case BTF_KIND_FLOAT:
628 		return min(btf_ptr_sz(btf), (size_t)t->size);
629 	case BTF_KIND_PTR:
630 		return btf_ptr_sz(btf);
631 	case BTF_KIND_TYPEDEF:
632 	case BTF_KIND_VOLATILE:
633 	case BTF_KIND_CONST:
634 	case BTF_KIND_RESTRICT:
635 		return btf__align_of(btf, t->type);
636 	case BTF_KIND_ARRAY:
637 		return btf__align_of(btf, btf_array(t)->type);
638 	case BTF_KIND_STRUCT:
639 	case BTF_KIND_UNION: {
640 		const struct btf_member *m = btf_members(t);
641 		__u16 vlen = btf_vlen(t);
642 		int i, max_align = 1, align;
643 
644 		for (i = 0; i < vlen; i++, m++) {
645 			align = btf__align_of(btf, m->type);
646 			if (align <= 0)
647 				return align;
648 			max_align = max(max_align, align);
649 		}
650 
651 		return max_align;
652 	}
653 	default:
654 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
655 		return 0;
656 	}
657 }
658 
659 int btf__resolve_type(const struct btf *btf, __u32 type_id)
660 {
661 	const struct btf_type *t;
662 	int depth = 0;
663 
664 	t = btf__type_by_id(btf, type_id);
665 	while (depth < MAX_RESOLVE_DEPTH &&
666 	       !btf_type_is_void_or_null(t) &&
667 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
668 		type_id = t->type;
669 		t = btf__type_by_id(btf, type_id);
670 		depth++;
671 	}
672 
673 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
674 		return -EINVAL;
675 
676 	return type_id;
677 }
678 
679 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
680 {
681 	__u32 i, nr_types = btf__get_nr_types(btf);
682 
683 	if (!strcmp(type_name, "void"))
684 		return 0;
685 
686 	for (i = 1; i <= nr_types; i++) {
687 		const struct btf_type *t = btf__type_by_id(btf, i);
688 		const char *name = btf__name_by_offset(btf, t->name_off);
689 
690 		if (name && !strcmp(type_name, name))
691 			return i;
692 	}
693 
694 	return -ENOENT;
695 }
696 
697 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
698 			     __u32 kind)
699 {
700 	__u32 i, nr_types = btf__get_nr_types(btf);
701 
702 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
703 		return 0;
704 
705 	for (i = 1; i <= nr_types; i++) {
706 		const struct btf_type *t = btf__type_by_id(btf, i);
707 		const char *name;
708 
709 		if (btf_kind(t) != kind)
710 			continue;
711 		name = btf__name_by_offset(btf, t->name_off);
712 		if (name && !strcmp(type_name, name))
713 			return i;
714 	}
715 
716 	return -ENOENT;
717 }
718 
719 static bool btf_is_modifiable(const struct btf *btf)
720 {
721 	return (void *)btf->hdr != btf->raw_data;
722 }
723 
724 void btf__free(struct btf *btf)
725 {
726 	if (IS_ERR_OR_NULL(btf))
727 		return;
728 
729 	if (btf->fd >= 0)
730 		close(btf->fd);
731 
732 	if (btf_is_modifiable(btf)) {
733 		/* if BTF was modified after loading, it will have a split
734 		 * in-memory representation for header, types, and strings
735 		 * sections, so we need to free all of them individually. It
736 		 * might still have a cached contiguous raw data present,
737 		 * which will be unconditionally freed below.
738 		 */
739 		free(btf->hdr);
740 		free(btf->types_data);
741 		free(btf->strs_data);
742 	}
743 	free(btf->raw_data);
744 	free(btf->raw_data_swapped);
745 	free(btf->type_offs);
746 	free(btf);
747 }
748 
749 static struct btf *btf_new_empty(struct btf *base_btf)
750 {
751 	struct btf *btf;
752 
753 	btf = calloc(1, sizeof(*btf));
754 	if (!btf)
755 		return ERR_PTR(-ENOMEM);
756 
757 	btf->nr_types = 0;
758 	btf->start_id = 1;
759 	btf->start_str_off = 0;
760 	btf->fd = -1;
761 	btf->ptr_sz = sizeof(void *);
762 	btf->swapped_endian = false;
763 
764 	if (base_btf) {
765 		btf->base_btf = base_btf;
766 		btf->start_id = btf__get_nr_types(base_btf) + 1;
767 		btf->start_str_off = base_btf->hdr->str_len;
768 	}
769 
770 	/* +1 for empty string at offset 0 */
771 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
772 	btf->raw_data = calloc(1, btf->raw_size);
773 	if (!btf->raw_data) {
774 		free(btf);
775 		return ERR_PTR(-ENOMEM);
776 	}
777 
778 	btf->hdr = btf->raw_data;
779 	btf->hdr->hdr_len = sizeof(struct btf_header);
780 	btf->hdr->magic = BTF_MAGIC;
781 	btf->hdr->version = BTF_VERSION;
782 
783 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
784 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
785 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
786 
787 	return btf;
788 }
789 
790 struct btf *btf__new_empty(void)
791 {
792 	return btf_new_empty(NULL);
793 }
794 
795 struct btf *btf__new_empty_split(struct btf *base_btf)
796 {
797 	return btf_new_empty(base_btf);
798 }
799 
800 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
801 {
802 	struct btf *btf;
803 	int err;
804 
805 	btf = calloc(1, sizeof(struct btf));
806 	if (!btf)
807 		return ERR_PTR(-ENOMEM);
808 
809 	btf->nr_types = 0;
810 	btf->start_id = 1;
811 	btf->start_str_off = 0;
812 
813 	if (base_btf) {
814 		btf->base_btf = base_btf;
815 		btf->start_id = btf__get_nr_types(base_btf) + 1;
816 		btf->start_str_off = base_btf->hdr->str_len;
817 	}
818 
819 	btf->raw_data = malloc(size);
820 	if (!btf->raw_data) {
821 		err = -ENOMEM;
822 		goto done;
823 	}
824 	memcpy(btf->raw_data, data, size);
825 	btf->raw_size = size;
826 
827 	btf->hdr = btf->raw_data;
828 	err = btf_parse_hdr(btf);
829 	if (err)
830 		goto done;
831 
832 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
833 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
834 
835 	err = btf_parse_str_sec(btf);
836 	err = err ?: btf_parse_type_sec(btf);
837 	if (err)
838 		goto done;
839 
840 	btf->fd = -1;
841 
842 done:
843 	if (err) {
844 		btf__free(btf);
845 		return ERR_PTR(err);
846 	}
847 
848 	return btf;
849 }
850 
851 struct btf *btf__new(const void *data, __u32 size)
852 {
853 	return btf_new(data, size, NULL);
854 }
855 
856 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
857 				 struct btf_ext **btf_ext)
858 {
859 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
860 	int err = 0, fd = -1, idx = 0;
861 	struct btf *btf = NULL;
862 	Elf_Scn *scn = NULL;
863 	Elf *elf = NULL;
864 	GElf_Ehdr ehdr;
865 	size_t shstrndx;
866 
867 	if (elf_version(EV_CURRENT) == EV_NONE) {
868 		pr_warn("failed to init libelf for %s\n", path);
869 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
870 	}
871 
872 	fd = open(path, O_RDONLY);
873 	if (fd < 0) {
874 		err = -errno;
875 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
876 		return ERR_PTR(err);
877 	}
878 
879 	err = -LIBBPF_ERRNO__FORMAT;
880 
881 	elf = elf_begin(fd, ELF_C_READ, NULL);
882 	if (!elf) {
883 		pr_warn("failed to open %s as ELF file\n", path);
884 		goto done;
885 	}
886 	if (!gelf_getehdr(elf, &ehdr)) {
887 		pr_warn("failed to get EHDR from %s\n", path);
888 		goto done;
889 	}
890 
891 	if (elf_getshdrstrndx(elf, &shstrndx)) {
892 		pr_warn("failed to get section names section index for %s\n",
893 			path);
894 		goto done;
895 	}
896 
897 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
898 		pr_warn("failed to get e_shstrndx from %s\n", path);
899 		goto done;
900 	}
901 
902 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
903 		GElf_Shdr sh;
904 		char *name;
905 
906 		idx++;
907 		if (gelf_getshdr(scn, &sh) != &sh) {
908 			pr_warn("failed to get section(%d) header from %s\n",
909 				idx, path);
910 			goto done;
911 		}
912 		name = elf_strptr(elf, shstrndx, sh.sh_name);
913 		if (!name) {
914 			pr_warn("failed to get section(%d) name from %s\n",
915 				idx, path);
916 			goto done;
917 		}
918 		if (strcmp(name, BTF_ELF_SEC) == 0) {
919 			btf_data = elf_getdata(scn, 0);
920 			if (!btf_data) {
921 				pr_warn("failed to get section(%d, %s) data from %s\n",
922 					idx, name, path);
923 				goto done;
924 			}
925 			continue;
926 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
927 			btf_ext_data = elf_getdata(scn, 0);
928 			if (!btf_ext_data) {
929 				pr_warn("failed to get section(%d, %s) data from %s\n",
930 					idx, name, path);
931 				goto done;
932 			}
933 			continue;
934 		}
935 	}
936 
937 	err = 0;
938 
939 	if (!btf_data) {
940 		err = -ENOENT;
941 		goto done;
942 	}
943 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
944 	if (IS_ERR(btf))
945 		goto done;
946 
947 	switch (gelf_getclass(elf)) {
948 	case ELFCLASS32:
949 		btf__set_pointer_size(btf, 4);
950 		break;
951 	case ELFCLASS64:
952 		btf__set_pointer_size(btf, 8);
953 		break;
954 	default:
955 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
956 		break;
957 	}
958 
959 	if (btf_ext && btf_ext_data) {
960 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
961 					btf_ext_data->d_size);
962 		if (IS_ERR(*btf_ext))
963 			goto done;
964 	} else if (btf_ext) {
965 		*btf_ext = NULL;
966 	}
967 done:
968 	if (elf)
969 		elf_end(elf);
970 	close(fd);
971 
972 	if (err)
973 		return ERR_PTR(err);
974 	/*
975 	 * btf is always parsed before btf_ext, so no need to clean up
976 	 * btf_ext, if btf loading failed
977 	 */
978 	if (IS_ERR(btf))
979 		return btf;
980 	if (btf_ext && IS_ERR(*btf_ext)) {
981 		btf__free(btf);
982 		err = PTR_ERR(*btf_ext);
983 		return ERR_PTR(err);
984 	}
985 	return btf;
986 }
987 
988 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
989 {
990 	return btf_parse_elf(path, NULL, btf_ext);
991 }
992 
993 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
994 {
995 	return btf_parse_elf(path, base_btf, NULL);
996 }
997 
998 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
999 {
1000 	struct btf *btf = NULL;
1001 	void *data = NULL;
1002 	FILE *f = NULL;
1003 	__u16 magic;
1004 	int err = 0;
1005 	long sz;
1006 
1007 	f = fopen(path, "rb");
1008 	if (!f) {
1009 		err = -errno;
1010 		goto err_out;
1011 	}
1012 
1013 	/* check BTF magic */
1014 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1015 		err = -EIO;
1016 		goto err_out;
1017 	}
1018 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1019 		/* definitely not a raw BTF */
1020 		err = -EPROTO;
1021 		goto err_out;
1022 	}
1023 
1024 	/* get file size */
1025 	if (fseek(f, 0, SEEK_END)) {
1026 		err = -errno;
1027 		goto err_out;
1028 	}
1029 	sz = ftell(f);
1030 	if (sz < 0) {
1031 		err = -errno;
1032 		goto err_out;
1033 	}
1034 	/* rewind to the start */
1035 	if (fseek(f, 0, SEEK_SET)) {
1036 		err = -errno;
1037 		goto err_out;
1038 	}
1039 
1040 	/* pre-alloc memory and read all of BTF data */
1041 	data = malloc(sz);
1042 	if (!data) {
1043 		err = -ENOMEM;
1044 		goto err_out;
1045 	}
1046 	if (fread(data, 1, sz, f) < sz) {
1047 		err = -EIO;
1048 		goto err_out;
1049 	}
1050 
1051 	/* finally parse BTF data */
1052 	btf = btf_new(data, sz, base_btf);
1053 
1054 err_out:
1055 	free(data);
1056 	if (f)
1057 		fclose(f);
1058 	return err ? ERR_PTR(err) : btf;
1059 }
1060 
1061 struct btf *btf__parse_raw(const char *path)
1062 {
1063 	return btf_parse_raw(path, NULL);
1064 }
1065 
1066 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1067 {
1068 	return btf_parse_raw(path, base_btf);
1069 }
1070 
1071 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1072 {
1073 	struct btf *btf;
1074 
1075 	if (btf_ext)
1076 		*btf_ext = NULL;
1077 
1078 	btf = btf_parse_raw(path, base_btf);
1079 	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
1080 		return btf;
1081 
1082 	return btf_parse_elf(path, base_btf, btf_ext);
1083 }
1084 
1085 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1086 {
1087 	return btf_parse(path, NULL, btf_ext);
1088 }
1089 
1090 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1091 {
1092 	return btf_parse(path, base_btf, NULL);
1093 }
1094 
1095 static int compare_vsi_off(const void *_a, const void *_b)
1096 {
1097 	const struct btf_var_secinfo *a = _a;
1098 	const struct btf_var_secinfo *b = _b;
1099 
1100 	return a->offset - b->offset;
1101 }
1102 
1103 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1104 			     struct btf_type *t)
1105 {
1106 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1107 	const char *name = btf__name_by_offset(btf, t->name_off);
1108 	const struct btf_type *t_var;
1109 	struct btf_var_secinfo *vsi;
1110 	const struct btf_var *var;
1111 	int ret;
1112 
1113 	if (!name) {
1114 		pr_debug("No name found in string section for DATASEC kind.\n");
1115 		return -ENOENT;
1116 	}
1117 
1118 	/* .extern datasec size and var offsets were set correctly during
1119 	 * extern collection step, so just skip straight to sorting variables
1120 	 */
1121 	if (t->size)
1122 		goto sort_vars;
1123 
1124 	ret = bpf_object__section_size(obj, name, &size);
1125 	if (ret || !size || (t->size && t->size != size)) {
1126 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1127 		return -ENOENT;
1128 	}
1129 
1130 	t->size = size;
1131 
1132 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1133 		t_var = btf__type_by_id(btf, vsi->type);
1134 		var = btf_var(t_var);
1135 
1136 		if (!btf_is_var(t_var)) {
1137 			pr_debug("Non-VAR type seen in section %s\n", name);
1138 			return -EINVAL;
1139 		}
1140 
1141 		if (var->linkage == BTF_VAR_STATIC)
1142 			continue;
1143 
1144 		name = btf__name_by_offset(btf, t_var->name_off);
1145 		if (!name) {
1146 			pr_debug("No name found in string section for VAR kind\n");
1147 			return -ENOENT;
1148 		}
1149 
1150 		ret = bpf_object__variable_offset(obj, name, &off);
1151 		if (ret) {
1152 			pr_debug("No offset found in symbol table for VAR %s\n",
1153 				 name);
1154 			return -ENOENT;
1155 		}
1156 
1157 		vsi->offset = off;
1158 	}
1159 
1160 sort_vars:
1161 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1162 	return 0;
1163 }
1164 
1165 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1166 {
1167 	int err = 0;
1168 	__u32 i;
1169 
1170 	for (i = 1; i <= btf->nr_types; i++) {
1171 		struct btf_type *t = btf_type_by_id(btf, i);
1172 
1173 		/* Loader needs to fix up some of the things compiler
1174 		 * couldn't get its hands on while emitting BTF. This
1175 		 * is section size and global variable offset. We use
1176 		 * the info from the ELF itself for this purpose.
1177 		 */
1178 		if (btf_is_datasec(t)) {
1179 			err = btf_fixup_datasec(obj, btf, t);
1180 			if (err)
1181 				break;
1182 		}
1183 	}
1184 
1185 	return err;
1186 }
1187 
1188 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1189 
1190 int btf__load(struct btf *btf)
1191 {
1192 	__u32 log_buf_size = 0, raw_size;
1193 	char *log_buf = NULL;
1194 	void *raw_data;
1195 	int err = 0;
1196 
1197 	if (btf->fd >= 0)
1198 		return -EEXIST;
1199 
1200 retry_load:
1201 	if (log_buf_size) {
1202 		log_buf = malloc(log_buf_size);
1203 		if (!log_buf)
1204 			return -ENOMEM;
1205 
1206 		*log_buf = 0;
1207 	}
1208 
1209 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1210 	if (!raw_data) {
1211 		err = -ENOMEM;
1212 		goto done;
1213 	}
1214 	/* cache native raw data representation */
1215 	btf->raw_size = raw_size;
1216 	btf->raw_data = raw_data;
1217 
1218 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1219 	if (btf->fd < 0) {
1220 		if (!log_buf || errno == ENOSPC) {
1221 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1222 					   log_buf_size << 1);
1223 			free(log_buf);
1224 			goto retry_load;
1225 		}
1226 
1227 		err = -errno;
1228 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1229 		if (*log_buf)
1230 			pr_warn("%s\n", log_buf);
1231 		goto done;
1232 	}
1233 
1234 done:
1235 	free(log_buf);
1236 	return err;
1237 }
1238 
1239 int btf__fd(const struct btf *btf)
1240 {
1241 	return btf->fd;
1242 }
1243 
1244 void btf__set_fd(struct btf *btf, int fd)
1245 {
1246 	btf->fd = fd;
1247 }
1248 
1249 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1250 {
1251 	struct btf_header *hdr = btf->hdr;
1252 	struct btf_type *t;
1253 	void *data, *p;
1254 	__u32 data_sz;
1255 	int i;
1256 
1257 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1258 	if (data) {
1259 		*size = btf->raw_size;
1260 		return data;
1261 	}
1262 
1263 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1264 	data = calloc(1, data_sz);
1265 	if (!data)
1266 		return NULL;
1267 	p = data;
1268 
1269 	memcpy(p, hdr, hdr->hdr_len);
1270 	if (swap_endian)
1271 		btf_bswap_hdr(p);
1272 	p += hdr->hdr_len;
1273 
1274 	memcpy(p, btf->types_data, hdr->type_len);
1275 	if (swap_endian) {
1276 		for (i = 0; i < btf->nr_types; i++) {
1277 			t = p + btf->type_offs[i];
1278 			/* btf_bswap_type_rest() relies on native t->info, so
1279 			 * we swap base type info after we swapped all the
1280 			 * additional information
1281 			 */
1282 			if (btf_bswap_type_rest(t))
1283 				goto err_out;
1284 			btf_bswap_type_base(t);
1285 		}
1286 	}
1287 	p += hdr->type_len;
1288 
1289 	memcpy(p, btf->strs_data, hdr->str_len);
1290 	p += hdr->str_len;
1291 
1292 	*size = data_sz;
1293 	return data;
1294 err_out:
1295 	free(data);
1296 	return NULL;
1297 }
1298 
1299 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1300 {
1301 	struct btf *btf = (struct btf *)btf_ro;
1302 	__u32 data_sz;
1303 	void *data;
1304 
1305 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1306 	if (!data)
1307 		return NULL;
1308 
1309 	btf->raw_size = data_sz;
1310 	if (btf->swapped_endian)
1311 		btf->raw_data_swapped = data;
1312 	else
1313 		btf->raw_data = data;
1314 	*size = data_sz;
1315 	return data;
1316 }
1317 
1318 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1319 {
1320 	if (offset < btf->start_str_off)
1321 		return btf__str_by_offset(btf->base_btf, offset);
1322 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1323 		return btf->strs_data + (offset - btf->start_str_off);
1324 	else
1325 		return NULL;
1326 }
1327 
1328 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1329 {
1330 	return btf__str_by_offset(btf, offset);
1331 }
1332 
1333 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1334 {
1335 	struct bpf_btf_info btf_info;
1336 	__u32 len = sizeof(btf_info);
1337 	__u32 last_size;
1338 	struct btf *btf;
1339 	void *ptr;
1340 	int err;
1341 
1342 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1343 	 * let's start with a sane default - 4KiB here - and resize it only if
1344 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1345 	 */
1346 	last_size = 4096;
1347 	ptr = malloc(last_size);
1348 	if (!ptr)
1349 		return ERR_PTR(-ENOMEM);
1350 
1351 	memset(&btf_info, 0, sizeof(btf_info));
1352 	btf_info.btf = ptr_to_u64(ptr);
1353 	btf_info.btf_size = last_size;
1354 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1355 
1356 	if (!err && btf_info.btf_size > last_size) {
1357 		void *temp_ptr;
1358 
1359 		last_size = btf_info.btf_size;
1360 		temp_ptr = realloc(ptr, last_size);
1361 		if (!temp_ptr) {
1362 			btf = ERR_PTR(-ENOMEM);
1363 			goto exit_free;
1364 		}
1365 		ptr = temp_ptr;
1366 
1367 		len = sizeof(btf_info);
1368 		memset(&btf_info, 0, sizeof(btf_info));
1369 		btf_info.btf = ptr_to_u64(ptr);
1370 		btf_info.btf_size = last_size;
1371 
1372 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1373 	}
1374 
1375 	if (err || btf_info.btf_size > last_size) {
1376 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1377 		goto exit_free;
1378 	}
1379 
1380 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1381 
1382 exit_free:
1383 	free(ptr);
1384 	return btf;
1385 }
1386 
1387 int btf__get_from_id(__u32 id, struct btf **btf)
1388 {
1389 	struct btf *res;
1390 	int btf_fd;
1391 
1392 	*btf = NULL;
1393 	btf_fd = bpf_btf_get_fd_by_id(id);
1394 	if (btf_fd < 0)
1395 		return -errno;
1396 
1397 	res = btf_get_from_fd(btf_fd, NULL);
1398 	close(btf_fd);
1399 	if (IS_ERR(res))
1400 		return PTR_ERR(res);
1401 
1402 	*btf = res;
1403 	return 0;
1404 }
1405 
1406 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1407 			 __u32 expected_key_size, __u32 expected_value_size,
1408 			 __u32 *key_type_id, __u32 *value_type_id)
1409 {
1410 	const struct btf_type *container_type;
1411 	const struct btf_member *key, *value;
1412 	const size_t max_name = 256;
1413 	char container_name[max_name];
1414 	__s64 key_size, value_size;
1415 	__s32 container_id;
1416 
1417 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1418 	    max_name) {
1419 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1420 			map_name, map_name);
1421 		return -EINVAL;
1422 	}
1423 
1424 	container_id = btf__find_by_name(btf, container_name);
1425 	if (container_id < 0) {
1426 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1427 			 map_name, container_name);
1428 		return container_id;
1429 	}
1430 
1431 	container_type = btf__type_by_id(btf, container_id);
1432 	if (!container_type) {
1433 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1434 			map_name, container_id);
1435 		return -EINVAL;
1436 	}
1437 
1438 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1439 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1440 			map_name, container_name);
1441 		return -EINVAL;
1442 	}
1443 
1444 	key = btf_members(container_type);
1445 	value = key + 1;
1446 
1447 	key_size = btf__resolve_size(btf, key->type);
1448 	if (key_size < 0) {
1449 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1450 		return key_size;
1451 	}
1452 
1453 	if (expected_key_size != key_size) {
1454 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1455 			map_name, (__u32)key_size, expected_key_size);
1456 		return -EINVAL;
1457 	}
1458 
1459 	value_size = btf__resolve_size(btf, value->type);
1460 	if (value_size < 0) {
1461 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1462 		return value_size;
1463 	}
1464 
1465 	if (expected_value_size != value_size) {
1466 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1467 			map_name, (__u32)value_size, expected_value_size);
1468 		return -EINVAL;
1469 	}
1470 
1471 	*key_type_id = key->type;
1472 	*value_type_id = value->type;
1473 
1474 	return 0;
1475 }
1476 
1477 static size_t strs_hash_fn(const void *key, void *ctx)
1478 {
1479 	const struct btf *btf = ctx;
1480 	const char *strs = *btf->strs_data_ptr;
1481 	const char *str = strs + (long)key;
1482 
1483 	return str_hash(str);
1484 }
1485 
1486 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
1487 {
1488 	const struct btf *btf = ctx;
1489 	const char *strs = *btf->strs_data_ptr;
1490 	const char *str1 = strs + (long)key1;
1491 	const char *str2 = strs + (long)key2;
1492 
1493 	return strcmp(str1, str2) == 0;
1494 }
1495 
1496 static void btf_invalidate_raw_data(struct btf *btf)
1497 {
1498 	if (btf->raw_data) {
1499 		free(btf->raw_data);
1500 		btf->raw_data = NULL;
1501 	}
1502 	if (btf->raw_data_swapped) {
1503 		free(btf->raw_data_swapped);
1504 		btf->raw_data_swapped = NULL;
1505 	}
1506 }
1507 
1508 /* Ensure BTF is ready to be modified (by splitting into a three memory
1509  * regions for header, types, and strings). Also invalidate cached
1510  * raw_data, if any.
1511  */
1512 static int btf_ensure_modifiable(struct btf *btf)
1513 {
1514 	void *hdr, *types, *strs, *strs_end, *s;
1515 	struct hashmap *hash = NULL;
1516 	long off;
1517 	int err;
1518 
1519 	if (btf_is_modifiable(btf)) {
1520 		/* any BTF modification invalidates raw_data */
1521 		btf_invalidate_raw_data(btf);
1522 		return 0;
1523 	}
1524 
1525 	/* split raw data into three memory regions */
1526 	hdr = malloc(btf->hdr->hdr_len);
1527 	types = malloc(btf->hdr->type_len);
1528 	strs = malloc(btf->hdr->str_len);
1529 	if (!hdr || !types || !strs)
1530 		goto err_out;
1531 
1532 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1533 	memcpy(types, btf->types_data, btf->hdr->type_len);
1534 	memcpy(strs, btf->strs_data, btf->hdr->str_len);
1535 
1536 	/* make hashmap below use btf->strs_data as a source of strings */
1537 	btf->strs_data_ptr = &btf->strs_data;
1538 
1539 	/* build lookup index for all strings */
1540 	hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
1541 	if (IS_ERR(hash)) {
1542 		err = PTR_ERR(hash);
1543 		hash = NULL;
1544 		goto err_out;
1545 	}
1546 
1547 	strs_end = strs + btf->hdr->str_len;
1548 	for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
1549 		/* hashmap__add() returns EEXIST if string with the same
1550 		 * content already is in the hash map
1551 		 */
1552 		err = hashmap__add(hash, (void *)off, (void *)off);
1553 		if (err == -EEXIST)
1554 			continue; /* duplicate */
1555 		if (err)
1556 			goto err_out;
1557 	}
1558 
1559 	/* only when everything was successful, update internal state */
1560 	btf->hdr = hdr;
1561 	btf->types_data = types;
1562 	btf->types_data_cap = btf->hdr->type_len;
1563 	btf->strs_data = strs;
1564 	btf->strs_data_cap = btf->hdr->str_len;
1565 	btf->strs_hash = hash;
1566 	/* if BTF was created from scratch, all strings are guaranteed to be
1567 	 * unique and deduplicated
1568 	 */
1569 	if (btf->hdr->str_len == 0)
1570 		btf->strs_deduped = true;
1571 	if (!btf->base_btf && btf->hdr->str_len == 1)
1572 		btf->strs_deduped = true;
1573 
1574 	/* invalidate raw_data representation */
1575 	btf_invalidate_raw_data(btf);
1576 
1577 	return 0;
1578 
1579 err_out:
1580 	hashmap__free(hash);
1581 	free(hdr);
1582 	free(types);
1583 	free(strs);
1584 	return -ENOMEM;
1585 }
1586 
1587 static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
1588 {
1589 	return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
1590 			   btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
1591 }
1592 
1593 /* Find an offset in BTF string section that corresponds to a given string *s*.
1594  * Returns:
1595  *   - >0 offset into string section, if string is found;
1596  *   - -ENOENT, if string is not in the string section;
1597  *   - <0, on any other error.
1598  */
1599 int btf__find_str(struct btf *btf, const char *s)
1600 {
1601 	long old_off, new_off, len;
1602 	void *p;
1603 
1604 	if (btf->base_btf) {
1605 		int ret;
1606 
1607 		ret = btf__find_str(btf->base_btf, s);
1608 		if (ret != -ENOENT)
1609 			return ret;
1610 	}
1611 
1612 	/* BTF needs to be in a modifiable state to build string lookup index */
1613 	if (btf_ensure_modifiable(btf))
1614 		return -ENOMEM;
1615 
1616 	/* see btf__add_str() for why we do this */
1617 	len = strlen(s) + 1;
1618 	p = btf_add_str_mem(btf, len);
1619 	if (!p)
1620 		return -ENOMEM;
1621 
1622 	new_off = btf->hdr->str_len;
1623 	memcpy(p, s, len);
1624 
1625 	if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
1626 		return btf->start_str_off + old_off;
1627 
1628 	return -ENOENT;
1629 }
1630 
1631 /* Add a string s to the BTF string section.
1632  * Returns:
1633  *   - > 0 offset into string section, on success;
1634  *   - < 0, on error.
1635  */
1636 int btf__add_str(struct btf *btf, const char *s)
1637 {
1638 	long old_off, new_off, len;
1639 	void *p;
1640 	int err;
1641 
1642 	if (btf->base_btf) {
1643 		int ret;
1644 
1645 		ret = btf__find_str(btf->base_btf, s);
1646 		if (ret != -ENOENT)
1647 			return ret;
1648 	}
1649 
1650 	if (btf_ensure_modifiable(btf))
1651 		return -ENOMEM;
1652 
1653 	/* Hashmap keys are always offsets within btf->strs_data, so to even
1654 	 * look up some string from the "outside", we need to first append it
1655 	 * at the end, so that it can be addressed with an offset. Luckily,
1656 	 * until btf->hdr->str_len is incremented, that string is just a piece
1657 	 * of garbage for the rest of BTF code, so no harm, no foul. On the
1658 	 * other hand, if the string is unique, it's already appended and
1659 	 * ready to be used, only a simple btf->hdr->str_len increment away.
1660 	 */
1661 	len = strlen(s) + 1;
1662 	p = btf_add_str_mem(btf, len);
1663 	if (!p)
1664 		return -ENOMEM;
1665 
1666 	new_off = btf->hdr->str_len;
1667 	memcpy(p, s, len);
1668 
1669 	/* Now attempt to add the string, but only if the string with the same
1670 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1671 	 * string exists, we'll get its offset in old_off (that's old_key).
1672 	 */
1673 	err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
1674 			      HASHMAP_ADD, (const void **)&old_off, NULL);
1675 	if (err == -EEXIST)
1676 		return btf->start_str_off + old_off; /* duplicated string, return existing offset */
1677 	if (err)
1678 		return err;
1679 
1680 	btf->hdr->str_len += len; /* new unique string, adjust data length */
1681 	return btf->start_str_off + new_off;
1682 }
1683 
1684 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1685 {
1686 	return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1687 			   btf->hdr->type_len, UINT_MAX, add_sz);
1688 }
1689 
1690 static __u32 btf_type_info(int kind, int vlen, int kflag)
1691 {
1692 	return (kflag << 31) | (kind << 24) | vlen;
1693 }
1694 
1695 static void btf_type_inc_vlen(struct btf_type *t)
1696 {
1697 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1698 }
1699 
1700 static int btf_commit_type(struct btf *btf, int data_sz)
1701 {
1702 	int err;
1703 
1704 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1705 	if (err)
1706 		return err;
1707 
1708 	btf->hdr->type_len += data_sz;
1709 	btf->hdr->str_off += data_sz;
1710 	btf->nr_types++;
1711 	return btf->start_id + btf->nr_types - 1;
1712 }
1713 
1714 /*
1715  * Append new BTF_KIND_INT type with:
1716  *   - *name* - non-empty, non-NULL type name;
1717  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1718  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1719  * Returns:
1720  *   - >0, type ID of newly added BTF type;
1721  *   - <0, on error.
1722  */
1723 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1724 {
1725 	struct btf_type *t;
1726 	int sz, name_off;
1727 
1728 	/* non-empty name */
1729 	if (!name || !name[0])
1730 		return -EINVAL;
1731 	/* byte_sz must be power of 2 */
1732 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1733 		return -EINVAL;
1734 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1735 		return -EINVAL;
1736 
1737 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1738 	if (btf_ensure_modifiable(btf))
1739 		return -ENOMEM;
1740 
1741 	sz = sizeof(struct btf_type) + sizeof(int);
1742 	t = btf_add_type_mem(btf, sz);
1743 	if (!t)
1744 		return -ENOMEM;
1745 
1746 	/* if something goes wrong later, we might end up with an extra string,
1747 	 * but that shouldn't be a problem, because BTF can't be constructed
1748 	 * completely anyway and will most probably be just discarded
1749 	 */
1750 	name_off = btf__add_str(btf, name);
1751 	if (name_off < 0)
1752 		return name_off;
1753 
1754 	t->name_off = name_off;
1755 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1756 	t->size = byte_sz;
1757 	/* set INT info, we don't allow setting legacy bit offset/size */
1758 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1759 
1760 	return btf_commit_type(btf, sz);
1761 }
1762 
1763 /*
1764  * Append new BTF_KIND_FLOAT type with:
1765  *   - *name* - non-empty, non-NULL type name;
1766  *   - *sz* - size of the type, in bytes;
1767  * Returns:
1768  *   - >0, type ID of newly added BTF type;
1769  *   - <0, on error.
1770  */
1771 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1772 {
1773 	struct btf_type *t;
1774 	int sz, name_off;
1775 
1776 	/* non-empty name */
1777 	if (!name || !name[0])
1778 		return -EINVAL;
1779 
1780 	/* byte_sz must be one of the explicitly allowed values */
1781 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1782 	    byte_sz != 16)
1783 		return -EINVAL;
1784 
1785 	if (btf_ensure_modifiable(btf))
1786 		return -ENOMEM;
1787 
1788 	sz = sizeof(struct btf_type);
1789 	t = btf_add_type_mem(btf, sz);
1790 	if (!t)
1791 		return -ENOMEM;
1792 
1793 	name_off = btf__add_str(btf, name);
1794 	if (name_off < 0)
1795 		return name_off;
1796 
1797 	t->name_off = name_off;
1798 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1799 	t->size = byte_sz;
1800 
1801 	return btf_commit_type(btf, sz);
1802 }
1803 
1804 /* it's completely legal to append BTF types with type IDs pointing forward to
1805  * types that haven't been appended yet, so we only make sure that id looks
1806  * sane, we can't guarantee that ID will always be valid
1807  */
1808 static int validate_type_id(int id)
1809 {
1810 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1811 		return -EINVAL;
1812 	return 0;
1813 }
1814 
1815 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1816 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1817 {
1818 	struct btf_type *t;
1819 	int sz, name_off = 0;
1820 
1821 	if (validate_type_id(ref_type_id))
1822 		return -EINVAL;
1823 
1824 	if (btf_ensure_modifiable(btf))
1825 		return -ENOMEM;
1826 
1827 	sz = sizeof(struct btf_type);
1828 	t = btf_add_type_mem(btf, sz);
1829 	if (!t)
1830 		return -ENOMEM;
1831 
1832 	if (name && name[0]) {
1833 		name_off = btf__add_str(btf, name);
1834 		if (name_off < 0)
1835 			return name_off;
1836 	}
1837 
1838 	t->name_off = name_off;
1839 	t->info = btf_type_info(kind, 0, 0);
1840 	t->type = ref_type_id;
1841 
1842 	return btf_commit_type(btf, sz);
1843 }
1844 
1845 /*
1846  * Append new BTF_KIND_PTR type with:
1847  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1848  * Returns:
1849  *   - >0, type ID of newly added BTF type;
1850  *   - <0, on error.
1851  */
1852 int btf__add_ptr(struct btf *btf, int ref_type_id)
1853 {
1854 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1855 }
1856 
1857 /*
1858  * Append new BTF_KIND_ARRAY type with:
1859  *   - *index_type_id* - type ID of the type describing array index;
1860  *   - *elem_type_id* - type ID of the type describing array element;
1861  *   - *nr_elems* - the size of the array;
1862  * Returns:
1863  *   - >0, type ID of newly added BTF type;
1864  *   - <0, on error.
1865  */
1866 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1867 {
1868 	struct btf_type *t;
1869 	struct btf_array *a;
1870 	int sz;
1871 
1872 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1873 		return -EINVAL;
1874 
1875 	if (btf_ensure_modifiable(btf))
1876 		return -ENOMEM;
1877 
1878 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1879 	t = btf_add_type_mem(btf, sz);
1880 	if (!t)
1881 		return -ENOMEM;
1882 
1883 	t->name_off = 0;
1884 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1885 	t->size = 0;
1886 
1887 	a = btf_array(t);
1888 	a->type = elem_type_id;
1889 	a->index_type = index_type_id;
1890 	a->nelems = nr_elems;
1891 
1892 	return btf_commit_type(btf, sz);
1893 }
1894 
1895 /* generic STRUCT/UNION append function */
1896 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1897 {
1898 	struct btf_type *t;
1899 	int sz, name_off = 0;
1900 
1901 	if (btf_ensure_modifiable(btf))
1902 		return -ENOMEM;
1903 
1904 	sz = sizeof(struct btf_type);
1905 	t = btf_add_type_mem(btf, sz);
1906 	if (!t)
1907 		return -ENOMEM;
1908 
1909 	if (name && name[0]) {
1910 		name_off = btf__add_str(btf, name);
1911 		if (name_off < 0)
1912 			return name_off;
1913 	}
1914 
1915 	/* start out with vlen=0 and no kflag; this will be adjusted when
1916 	 * adding each member
1917 	 */
1918 	t->name_off = name_off;
1919 	t->info = btf_type_info(kind, 0, 0);
1920 	t->size = bytes_sz;
1921 
1922 	return btf_commit_type(btf, sz);
1923 }
1924 
1925 /*
1926  * Append new BTF_KIND_STRUCT type with:
1927  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1928  *   - *byte_sz* - size of the struct, in bytes;
1929  *
1930  * Struct initially has no fields in it. Fields can be added by
1931  * btf__add_field() right after btf__add_struct() succeeds.
1932  *
1933  * Returns:
1934  *   - >0, type ID of newly added BTF type;
1935  *   - <0, on error.
1936  */
1937 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1938 {
1939 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1940 }
1941 
1942 /*
1943  * Append new BTF_KIND_UNION type with:
1944  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1945  *   - *byte_sz* - size of the union, in bytes;
1946  *
1947  * Union initially has no fields in it. Fields can be added by
1948  * btf__add_field() right after btf__add_union() succeeds. All fields
1949  * should have *bit_offset* of 0.
1950  *
1951  * Returns:
1952  *   - >0, type ID of newly added BTF type;
1953  *   - <0, on error.
1954  */
1955 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1956 {
1957 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1958 }
1959 
1960 static struct btf_type *btf_last_type(struct btf *btf)
1961 {
1962 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1963 }
1964 
1965 /*
1966  * Append new field for the current STRUCT/UNION type with:
1967  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1968  *   - *type_id* - type ID for the type describing field type;
1969  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1970  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1971  * Returns:
1972  *   -  0, on success;
1973  *   - <0, on error.
1974  */
1975 int btf__add_field(struct btf *btf, const char *name, int type_id,
1976 		   __u32 bit_offset, __u32 bit_size)
1977 {
1978 	struct btf_type *t;
1979 	struct btf_member *m;
1980 	bool is_bitfield;
1981 	int sz, name_off = 0;
1982 
1983 	/* last type should be union/struct */
1984 	if (btf->nr_types == 0)
1985 		return -EINVAL;
1986 	t = btf_last_type(btf);
1987 	if (!btf_is_composite(t))
1988 		return -EINVAL;
1989 
1990 	if (validate_type_id(type_id))
1991 		return -EINVAL;
1992 	/* best-effort bit field offset/size enforcement */
1993 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1994 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1995 		return -EINVAL;
1996 
1997 	/* only offset 0 is allowed for unions */
1998 	if (btf_is_union(t) && bit_offset)
1999 		return -EINVAL;
2000 
2001 	/* decompose and invalidate raw data */
2002 	if (btf_ensure_modifiable(btf))
2003 		return -ENOMEM;
2004 
2005 	sz = sizeof(struct btf_member);
2006 	m = btf_add_type_mem(btf, sz);
2007 	if (!m)
2008 		return -ENOMEM;
2009 
2010 	if (name && name[0]) {
2011 		name_off = btf__add_str(btf, name);
2012 		if (name_off < 0)
2013 			return name_off;
2014 	}
2015 
2016 	m->name_off = name_off;
2017 	m->type = type_id;
2018 	m->offset = bit_offset | (bit_size << 24);
2019 
2020 	/* btf_add_type_mem can invalidate t pointer */
2021 	t = btf_last_type(btf);
2022 	/* update parent type's vlen and kflag */
2023 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2024 
2025 	btf->hdr->type_len += sz;
2026 	btf->hdr->str_off += sz;
2027 	return 0;
2028 }
2029 
2030 /*
2031  * Append new BTF_KIND_ENUM type with:
2032  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2033  *   - *byte_sz* - size of the enum, in bytes.
2034  *
2035  * Enum initially has no enum values in it (and corresponds to enum forward
2036  * declaration). Enumerator values can be added by btf__add_enum_value()
2037  * immediately after btf__add_enum() succeeds.
2038  *
2039  * Returns:
2040  *   - >0, type ID of newly added BTF type;
2041  *   - <0, on error.
2042  */
2043 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2044 {
2045 	struct btf_type *t;
2046 	int sz, name_off = 0;
2047 
2048 	/* byte_sz must be power of 2 */
2049 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2050 		return -EINVAL;
2051 
2052 	if (btf_ensure_modifiable(btf))
2053 		return -ENOMEM;
2054 
2055 	sz = sizeof(struct btf_type);
2056 	t = btf_add_type_mem(btf, sz);
2057 	if (!t)
2058 		return -ENOMEM;
2059 
2060 	if (name && name[0]) {
2061 		name_off = btf__add_str(btf, name);
2062 		if (name_off < 0)
2063 			return name_off;
2064 	}
2065 
2066 	/* start out with vlen=0; it will be adjusted when adding enum values */
2067 	t->name_off = name_off;
2068 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2069 	t->size = byte_sz;
2070 
2071 	return btf_commit_type(btf, sz);
2072 }
2073 
2074 /*
2075  * Append new enum value for the current ENUM type with:
2076  *   - *name* - name of the enumerator value, can't be NULL or empty;
2077  *   - *value* - integer value corresponding to enum value *name*;
2078  * Returns:
2079  *   -  0, on success;
2080  *   - <0, on error.
2081  */
2082 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2083 {
2084 	struct btf_type *t;
2085 	struct btf_enum *v;
2086 	int sz, name_off;
2087 
2088 	/* last type should be BTF_KIND_ENUM */
2089 	if (btf->nr_types == 0)
2090 		return -EINVAL;
2091 	t = btf_last_type(btf);
2092 	if (!btf_is_enum(t))
2093 		return -EINVAL;
2094 
2095 	/* non-empty name */
2096 	if (!name || !name[0])
2097 		return -EINVAL;
2098 	if (value < INT_MIN || value > UINT_MAX)
2099 		return -E2BIG;
2100 
2101 	/* decompose and invalidate raw data */
2102 	if (btf_ensure_modifiable(btf))
2103 		return -ENOMEM;
2104 
2105 	sz = sizeof(struct btf_enum);
2106 	v = btf_add_type_mem(btf, sz);
2107 	if (!v)
2108 		return -ENOMEM;
2109 
2110 	name_off = btf__add_str(btf, name);
2111 	if (name_off < 0)
2112 		return name_off;
2113 
2114 	v->name_off = name_off;
2115 	v->val = value;
2116 
2117 	/* update parent type's vlen */
2118 	t = btf_last_type(btf);
2119 	btf_type_inc_vlen(t);
2120 
2121 	btf->hdr->type_len += sz;
2122 	btf->hdr->str_off += sz;
2123 	return 0;
2124 }
2125 
2126 /*
2127  * Append new BTF_KIND_FWD type with:
2128  *   - *name*, non-empty/non-NULL name;
2129  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2130  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2131  * Returns:
2132  *   - >0, type ID of newly added BTF type;
2133  *   - <0, on error.
2134  */
2135 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2136 {
2137 	if (!name || !name[0])
2138 		return -EINVAL;
2139 
2140 	switch (fwd_kind) {
2141 	case BTF_FWD_STRUCT:
2142 	case BTF_FWD_UNION: {
2143 		struct btf_type *t;
2144 		int id;
2145 
2146 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2147 		if (id <= 0)
2148 			return id;
2149 		t = btf_type_by_id(btf, id);
2150 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2151 		return id;
2152 	}
2153 	case BTF_FWD_ENUM:
2154 		/* enum forward in BTF currently is just an enum with no enum
2155 		 * values; we also assume a standard 4-byte size for it
2156 		 */
2157 		return btf__add_enum(btf, name, sizeof(int));
2158 	default:
2159 		return -EINVAL;
2160 	}
2161 }
2162 
2163 /*
2164  * Append new BTF_KING_TYPEDEF type with:
2165  *   - *name*, non-empty/non-NULL name;
2166  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2167  * Returns:
2168  *   - >0, type ID of newly added BTF type;
2169  *   - <0, on error.
2170  */
2171 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2172 {
2173 	if (!name || !name[0])
2174 		return -EINVAL;
2175 
2176 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2177 }
2178 
2179 /*
2180  * Append new BTF_KIND_VOLATILE type with:
2181  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2182  * Returns:
2183  *   - >0, type ID of newly added BTF type;
2184  *   - <0, on error.
2185  */
2186 int btf__add_volatile(struct btf *btf, int ref_type_id)
2187 {
2188 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2189 }
2190 
2191 /*
2192  * Append new BTF_KIND_CONST type with:
2193  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2194  * Returns:
2195  *   - >0, type ID of newly added BTF type;
2196  *   - <0, on error.
2197  */
2198 int btf__add_const(struct btf *btf, int ref_type_id)
2199 {
2200 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2201 }
2202 
2203 /*
2204  * Append new BTF_KIND_RESTRICT type with:
2205  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2206  * Returns:
2207  *   - >0, type ID of newly added BTF type;
2208  *   - <0, on error.
2209  */
2210 int btf__add_restrict(struct btf *btf, int ref_type_id)
2211 {
2212 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2213 }
2214 
2215 /*
2216  * Append new BTF_KIND_FUNC type with:
2217  *   - *name*, non-empty/non-NULL name;
2218  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2219  * Returns:
2220  *   - >0, type ID of newly added BTF type;
2221  *   - <0, on error.
2222  */
2223 int btf__add_func(struct btf *btf, const char *name,
2224 		  enum btf_func_linkage linkage, int proto_type_id)
2225 {
2226 	int id;
2227 
2228 	if (!name || !name[0])
2229 		return -EINVAL;
2230 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2231 	    linkage != BTF_FUNC_EXTERN)
2232 		return -EINVAL;
2233 
2234 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2235 	if (id > 0) {
2236 		struct btf_type *t = btf_type_by_id(btf, id);
2237 
2238 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2239 	}
2240 	return id;
2241 }
2242 
2243 /*
2244  * Append new BTF_KIND_FUNC_PROTO with:
2245  *   - *ret_type_id* - type ID for return result of a function.
2246  *
2247  * Function prototype initially has no arguments, but they can be added by
2248  * btf__add_func_param() one by one, immediately after
2249  * btf__add_func_proto() succeeded.
2250  *
2251  * Returns:
2252  *   - >0, type ID of newly added BTF type;
2253  *   - <0, on error.
2254  */
2255 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2256 {
2257 	struct btf_type *t;
2258 	int sz;
2259 
2260 	if (validate_type_id(ret_type_id))
2261 		return -EINVAL;
2262 
2263 	if (btf_ensure_modifiable(btf))
2264 		return -ENOMEM;
2265 
2266 	sz = sizeof(struct btf_type);
2267 	t = btf_add_type_mem(btf, sz);
2268 	if (!t)
2269 		return -ENOMEM;
2270 
2271 	/* start out with vlen=0; this will be adjusted when adding enum
2272 	 * values, if necessary
2273 	 */
2274 	t->name_off = 0;
2275 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2276 	t->type = ret_type_id;
2277 
2278 	return btf_commit_type(btf, sz);
2279 }
2280 
2281 /*
2282  * Append new function parameter for current FUNC_PROTO type with:
2283  *   - *name* - parameter name, can be NULL or empty;
2284  *   - *type_id* - type ID describing the type of the parameter.
2285  * Returns:
2286  *   -  0, on success;
2287  *   - <0, on error.
2288  */
2289 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2290 {
2291 	struct btf_type *t;
2292 	struct btf_param *p;
2293 	int sz, name_off = 0;
2294 
2295 	if (validate_type_id(type_id))
2296 		return -EINVAL;
2297 
2298 	/* last type should be BTF_KIND_FUNC_PROTO */
2299 	if (btf->nr_types == 0)
2300 		return -EINVAL;
2301 	t = btf_last_type(btf);
2302 	if (!btf_is_func_proto(t))
2303 		return -EINVAL;
2304 
2305 	/* decompose and invalidate raw data */
2306 	if (btf_ensure_modifiable(btf))
2307 		return -ENOMEM;
2308 
2309 	sz = sizeof(struct btf_param);
2310 	p = btf_add_type_mem(btf, sz);
2311 	if (!p)
2312 		return -ENOMEM;
2313 
2314 	if (name && name[0]) {
2315 		name_off = btf__add_str(btf, name);
2316 		if (name_off < 0)
2317 			return name_off;
2318 	}
2319 
2320 	p->name_off = name_off;
2321 	p->type = type_id;
2322 
2323 	/* update parent type's vlen */
2324 	t = btf_last_type(btf);
2325 	btf_type_inc_vlen(t);
2326 
2327 	btf->hdr->type_len += sz;
2328 	btf->hdr->str_off += sz;
2329 	return 0;
2330 }
2331 
2332 /*
2333  * Append new BTF_KIND_VAR type with:
2334  *   - *name* - non-empty/non-NULL name;
2335  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2336  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2337  *   - *type_id* - type ID of the type describing the type of the variable.
2338  * Returns:
2339  *   - >0, type ID of newly added BTF type;
2340  *   - <0, on error.
2341  */
2342 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2343 {
2344 	struct btf_type *t;
2345 	struct btf_var *v;
2346 	int sz, name_off;
2347 
2348 	/* non-empty name */
2349 	if (!name || !name[0])
2350 		return -EINVAL;
2351 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2352 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2353 		return -EINVAL;
2354 	if (validate_type_id(type_id))
2355 		return -EINVAL;
2356 
2357 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2358 	if (btf_ensure_modifiable(btf))
2359 		return -ENOMEM;
2360 
2361 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2362 	t = btf_add_type_mem(btf, sz);
2363 	if (!t)
2364 		return -ENOMEM;
2365 
2366 	name_off = btf__add_str(btf, name);
2367 	if (name_off < 0)
2368 		return name_off;
2369 
2370 	t->name_off = name_off;
2371 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2372 	t->type = type_id;
2373 
2374 	v = btf_var(t);
2375 	v->linkage = linkage;
2376 
2377 	return btf_commit_type(btf, sz);
2378 }
2379 
2380 /*
2381  * Append new BTF_KIND_DATASEC type with:
2382  *   - *name* - non-empty/non-NULL name;
2383  *   - *byte_sz* - data section size, in bytes.
2384  *
2385  * Data section is initially empty. Variables info can be added with
2386  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2387  *
2388  * Returns:
2389  *   - >0, type ID of newly added BTF type;
2390  *   - <0, on error.
2391  */
2392 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2393 {
2394 	struct btf_type *t;
2395 	int sz, name_off;
2396 
2397 	/* non-empty name */
2398 	if (!name || !name[0])
2399 		return -EINVAL;
2400 
2401 	if (btf_ensure_modifiable(btf))
2402 		return -ENOMEM;
2403 
2404 	sz = sizeof(struct btf_type);
2405 	t = btf_add_type_mem(btf, sz);
2406 	if (!t)
2407 		return -ENOMEM;
2408 
2409 	name_off = btf__add_str(btf, name);
2410 	if (name_off < 0)
2411 		return name_off;
2412 
2413 	/* start with vlen=0, which will be update as var_secinfos are added */
2414 	t->name_off = name_off;
2415 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2416 	t->size = byte_sz;
2417 
2418 	return btf_commit_type(btf, sz);
2419 }
2420 
2421 /*
2422  * Append new data section variable information entry for current DATASEC type:
2423  *   - *var_type_id* - type ID, describing type of the variable;
2424  *   - *offset* - variable offset within data section, in bytes;
2425  *   - *byte_sz* - variable size, in bytes.
2426  *
2427  * Returns:
2428  *   -  0, on success;
2429  *   - <0, on error.
2430  */
2431 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2432 {
2433 	struct btf_type *t;
2434 	struct btf_var_secinfo *v;
2435 	int sz;
2436 
2437 	/* last type should be BTF_KIND_DATASEC */
2438 	if (btf->nr_types == 0)
2439 		return -EINVAL;
2440 	t = btf_last_type(btf);
2441 	if (!btf_is_datasec(t))
2442 		return -EINVAL;
2443 
2444 	if (validate_type_id(var_type_id))
2445 		return -EINVAL;
2446 
2447 	/* decompose and invalidate raw data */
2448 	if (btf_ensure_modifiable(btf))
2449 		return -ENOMEM;
2450 
2451 	sz = sizeof(struct btf_var_secinfo);
2452 	v = btf_add_type_mem(btf, sz);
2453 	if (!v)
2454 		return -ENOMEM;
2455 
2456 	v->type = var_type_id;
2457 	v->offset = offset;
2458 	v->size = byte_sz;
2459 
2460 	/* update parent type's vlen */
2461 	t = btf_last_type(btf);
2462 	btf_type_inc_vlen(t);
2463 
2464 	btf->hdr->type_len += sz;
2465 	btf->hdr->str_off += sz;
2466 	return 0;
2467 }
2468 
2469 struct btf_ext_sec_setup_param {
2470 	__u32 off;
2471 	__u32 len;
2472 	__u32 min_rec_size;
2473 	struct btf_ext_info *ext_info;
2474 	const char *desc;
2475 };
2476 
2477 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2478 			      struct btf_ext_sec_setup_param *ext_sec)
2479 {
2480 	const struct btf_ext_info_sec *sinfo;
2481 	struct btf_ext_info *ext_info;
2482 	__u32 info_left, record_size;
2483 	/* The start of the info sec (including the __u32 record_size). */
2484 	void *info;
2485 
2486 	if (ext_sec->len == 0)
2487 		return 0;
2488 
2489 	if (ext_sec->off & 0x03) {
2490 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2491 		     ext_sec->desc);
2492 		return -EINVAL;
2493 	}
2494 
2495 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2496 	info_left = ext_sec->len;
2497 
2498 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2499 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2500 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2501 		return -EINVAL;
2502 	}
2503 
2504 	/* At least a record size */
2505 	if (info_left < sizeof(__u32)) {
2506 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2507 		return -EINVAL;
2508 	}
2509 
2510 	/* The record size needs to meet the minimum standard */
2511 	record_size = *(__u32 *)info;
2512 	if (record_size < ext_sec->min_rec_size ||
2513 	    record_size & 0x03) {
2514 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2515 			 ext_sec->desc, record_size);
2516 		return -EINVAL;
2517 	}
2518 
2519 	sinfo = info + sizeof(__u32);
2520 	info_left -= sizeof(__u32);
2521 
2522 	/* If no records, return failure now so .BTF.ext won't be used. */
2523 	if (!info_left) {
2524 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2525 		return -EINVAL;
2526 	}
2527 
2528 	while (info_left) {
2529 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2530 		__u64 total_record_size;
2531 		__u32 num_records;
2532 
2533 		if (info_left < sec_hdrlen) {
2534 			pr_debug("%s section header is not found in .BTF.ext\n",
2535 			     ext_sec->desc);
2536 			return -EINVAL;
2537 		}
2538 
2539 		num_records = sinfo->num_info;
2540 		if (num_records == 0) {
2541 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2542 			     ext_sec->desc);
2543 			return -EINVAL;
2544 		}
2545 
2546 		total_record_size = sec_hdrlen +
2547 				    (__u64)num_records * record_size;
2548 		if (info_left < total_record_size) {
2549 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2550 			     ext_sec->desc);
2551 			return -EINVAL;
2552 		}
2553 
2554 		info_left -= total_record_size;
2555 		sinfo = (void *)sinfo + total_record_size;
2556 	}
2557 
2558 	ext_info = ext_sec->ext_info;
2559 	ext_info->len = ext_sec->len - sizeof(__u32);
2560 	ext_info->rec_size = record_size;
2561 	ext_info->info = info + sizeof(__u32);
2562 
2563 	return 0;
2564 }
2565 
2566 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2567 {
2568 	struct btf_ext_sec_setup_param param = {
2569 		.off = btf_ext->hdr->func_info_off,
2570 		.len = btf_ext->hdr->func_info_len,
2571 		.min_rec_size = sizeof(struct bpf_func_info_min),
2572 		.ext_info = &btf_ext->func_info,
2573 		.desc = "func_info"
2574 	};
2575 
2576 	return btf_ext_setup_info(btf_ext, &param);
2577 }
2578 
2579 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2580 {
2581 	struct btf_ext_sec_setup_param param = {
2582 		.off = btf_ext->hdr->line_info_off,
2583 		.len = btf_ext->hdr->line_info_len,
2584 		.min_rec_size = sizeof(struct bpf_line_info_min),
2585 		.ext_info = &btf_ext->line_info,
2586 		.desc = "line_info",
2587 	};
2588 
2589 	return btf_ext_setup_info(btf_ext, &param);
2590 }
2591 
2592 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2593 {
2594 	struct btf_ext_sec_setup_param param = {
2595 		.off = btf_ext->hdr->core_relo_off,
2596 		.len = btf_ext->hdr->core_relo_len,
2597 		.min_rec_size = sizeof(struct bpf_core_relo),
2598 		.ext_info = &btf_ext->core_relo_info,
2599 		.desc = "core_relo",
2600 	};
2601 
2602 	return btf_ext_setup_info(btf_ext, &param);
2603 }
2604 
2605 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2606 {
2607 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2608 
2609 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2610 	    data_size < hdr->hdr_len) {
2611 		pr_debug("BTF.ext header not found");
2612 		return -EINVAL;
2613 	}
2614 
2615 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2616 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2617 		return -ENOTSUP;
2618 	} else if (hdr->magic != BTF_MAGIC) {
2619 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2620 		return -EINVAL;
2621 	}
2622 
2623 	if (hdr->version != BTF_VERSION) {
2624 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2625 		return -ENOTSUP;
2626 	}
2627 
2628 	if (hdr->flags) {
2629 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2630 		return -ENOTSUP;
2631 	}
2632 
2633 	if (data_size == hdr->hdr_len) {
2634 		pr_debug("BTF.ext has no data\n");
2635 		return -EINVAL;
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 void btf_ext__free(struct btf_ext *btf_ext)
2642 {
2643 	if (IS_ERR_OR_NULL(btf_ext))
2644 		return;
2645 	free(btf_ext->data);
2646 	free(btf_ext);
2647 }
2648 
2649 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2650 {
2651 	struct btf_ext *btf_ext;
2652 	int err;
2653 
2654 	err = btf_ext_parse_hdr(data, size);
2655 	if (err)
2656 		return ERR_PTR(err);
2657 
2658 	btf_ext = calloc(1, sizeof(struct btf_ext));
2659 	if (!btf_ext)
2660 		return ERR_PTR(-ENOMEM);
2661 
2662 	btf_ext->data_size = size;
2663 	btf_ext->data = malloc(size);
2664 	if (!btf_ext->data) {
2665 		err = -ENOMEM;
2666 		goto done;
2667 	}
2668 	memcpy(btf_ext->data, data, size);
2669 
2670 	if (btf_ext->hdr->hdr_len <
2671 	    offsetofend(struct btf_ext_header, line_info_len))
2672 		goto done;
2673 	err = btf_ext_setup_func_info(btf_ext);
2674 	if (err)
2675 		goto done;
2676 
2677 	err = btf_ext_setup_line_info(btf_ext);
2678 	if (err)
2679 		goto done;
2680 
2681 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2682 		goto done;
2683 	err = btf_ext_setup_core_relos(btf_ext);
2684 	if (err)
2685 		goto done;
2686 
2687 done:
2688 	if (err) {
2689 		btf_ext__free(btf_ext);
2690 		return ERR_PTR(err);
2691 	}
2692 
2693 	return btf_ext;
2694 }
2695 
2696 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2697 {
2698 	*size = btf_ext->data_size;
2699 	return btf_ext->data;
2700 }
2701 
2702 static int btf_ext_reloc_info(const struct btf *btf,
2703 			      const struct btf_ext_info *ext_info,
2704 			      const char *sec_name, __u32 insns_cnt,
2705 			      void **info, __u32 *cnt)
2706 {
2707 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2708 	__u32 i, record_size, existing_len, records_len;
2709 	struct btf_ext_info_sec *sinfo;
2710 	const char *info_sec_name;
2711 	__u64 remain_len;
2712 	void *data;
2713 
2714 	record_size = ext_info->rec_size;
2715 	sinfo = ext_info->info;
2716 	remain_len = ext_info->len;
2717 	while (remain_len > 0) {
2718 		records_len = sinfo->num_info * record_size;
2719 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2720 		if (strcmp(info_sec_name, sec_name)) {
2721 			remain_len -= sec_hdrlen + records_len;
2722 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2723 			continue;
2724 		}
2725 
2726 		existing_len = (*cnt) * record_size;
2727 		data = realloc(*info, existing_len + records_len);
2728 		if (!data)
2729 			return -ENOMEM;
2730 
2731 		memcpy(data + existing_len, sinfo->data, records_len);
2732 		/* adjust insn_off only, the rest data will be passed
2733 		 * to the kernel.
2734 		 */
2735 		for (i = 0; i < sinfo->num_info; i++) {
2736 			__u32 *insn_off;
2737 
2738 			insn_off = data + existing_len + (i * record_size);
2739 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2740 				insns_cnt;
2741 		}
2742 		*info = data;
2743 		*cnt += sinfo->num_info;
2744 		return 0;
2745 	}
2746 
2747 	return -ENOENT;
2748 }
2749 
2750 int btf_ext__reloc_func_info(const struct btf *btf,
2751 			     const struct btf_ext *btf_ext,
2752 			     const char *sec_name, __u32 insns_cnt,
2753 			     void **func_info, __u32 *cnt)
2754 {
2755 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2756 				  insns_cnt, func_info, cnt);
2757 }
2758 
2759 int btf_ext__reloc_line_info(const struct btf *btf,
2760 			     const struct btf_ext *btf_ext,
2761 			     const char *sec_name, __u32 insns_cnt,
2762 			     void **line_info, __u32 *cnt)
2763 {
2764 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2765 				  insns_cnt, line_info, cnt);
2766 }
2767 
2768 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2769 {
2770 	return btf_ext->func_info.rec_size;
2771 }
2772 
2773 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2774 {
2775 	return btf_ext->line_info.rec_size;
2776 }
2777 
2778 struct btf_dedup;
2779 
2780 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2781 				       const struct btf_dedup_opts *opts);
2782 static void btf_dedup_free(struct btf_dedup *d);
2783 static int btf_dedup_prep(struct btf_dedup *d);
2784 static int btf_dedup_strings(struct btf_dedup *d);
2785 static int btf_dedup_prim_types(struct btf_dedup *d);
2786 static int btf_dedup_struct_types(struct btf_dedup *d);
2787 static int btf_dedup_ref_types(struct btf_dedup *d);
2788 static int btf_dedup_compact_types(struct btf_dedup *d);
2789 static int btf_dedup_remap_types(struct btf_dedup *d);
2790 
2791 /*
2792  * Deduplicate BTF types and strings.
2793  *
2794  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2795  * section with all BTF type descriptors and string data. It overwrites that
2796  * memory in-place with deduplicated types and strings without any loss of
2797  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2798  * is provided, all the strings referenced from .BTF.ext section are honored
2799  * and updated to point to the right offsets after deduplication.
2800  *
2801  * If function returns with error, type/string data might be garbled and should
2802  * be discarded.
2803  *
2804  * More verbose and detailed description of both problem btf_dedup is solving,
2805  * as well as solution could be found at:
2806  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2807  *
2808  * Problem description and justification
2809  * =====================================
2810  *
2811  * BTF type information is typically emitted either as a result of conversion
2812  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2813  * unit contains information about a subset of all the types that are used
2814  * in an application. These subsets are frequently overlapping and contain a lot
2815  * of duplicated information when later concatenated together into a single
2816  * binary. This algorithm ensures that each unique type is represented by single
2817  * BTF type descriptor, greatly reducing resulting size of BTF data.
2818  *
2819  * Compilation unit isolation and subsequent duplication of data is not the only
2820  * problem. The same type hierarchy (e.g., struct and all the type that struct
2821  * references) in different compilation units can be represented in BTF to
2822  * various degrees of completeness (or, rather, incompleteness) due to
2823  * struct/union forward declarations.
2824  *
2825  * Let's take a look at an example, that we'll use to better understand the
2826  * problem (and solution). Suppose we have two compilation units, each using
2827  * same `struct S`, but each of them having incomplete type information about
2828  * struct's fields:
2829  *
2830  * // CU #1:
2831  * struct S;
2832  * struct A {
2833  *	int a;
2834  *	struct A* self;
2835  *	struct S* parent;
2836  * };
2837  * struct B;
2838  * struct S {
2839  *	struct A* a_ptr;
2840  *	struct B* b_ptr;
2841  * };
2842  *
2843  * // CU #2:
2844  * struct S;
2845  * struct A;
2846  * struct B {
2847  *	int b;
2848  *	struct B* self;
2849  *	struct S* parent;
2850  * };
2851  * struct S {
2852  *	struct A* a_ptr;
2853  *	struct B* b_ptr;
2854  * };
2855  *
2856  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2857  * more), but will know the complete type information about `struct A`. While
2858  * for CU #2, it will know full type information about `struct B`, but will
2859  * only know about forward declaration of `struct A` (in BTF terms, it will
2860  * have `BTF_KIND_FWD` type descriptor with name `B`).
2861  *
2862  * This compilation unit isolation means that it's possible that there is no
2863  * single CU with complete type information describing structs `S`, `A`, and
2864  * `B`. Also, we might get tons of duplicated and redundant type information.
2865  *
2866  * Additional complication we need to keep in mind comes from the fact that
2867  * types, in general, can form graphs containing cycles, not just DAGs.
2868  *
2869  * While algorithm does deduplication, it also merges and resolves type
2870  * information (unless disabled throught `struct btf_opts`), whenever possible.
2871  * E.g., in the example above with two compilation units having partial type
2872  * information for structs `A` and `B`, the output of algorithm will emit
2873  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2874  * (as well as type information for `int` and pointers), as if they were defined
2875  * in a single compilation unit as:
2876  *
2877  * struct A {
2878  *	int a;
2879  *	struct A* self;
2880  *	struct S* parent;
2881  * };
2882  * struct B {
2883  *	int b;
2884  *	struct B* self;
2885  *	struct S* parent;
2886  * };
2887  * struct S {
2888  *	struct A* a_ptr;
2889  *	struct B* b_ptr;
2890  * };
2891  *
2892  * Algorithm summary
2893  * =================
2894  *
2895  * Algorithm completes its work in 6 separate passes:
2896  *
2897  * 1. Strings deduplication.
2898  * 2. Primitive types deduplication (int, enum, fwd).
2899  * 3. Struct/union types deduplication.
2900  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2901  *    protos, and const/volatile/restrict modifiers).
2902  * 5. Types compaction.
2903  * 6. Types remapping.
2904  *
2905  * Algorithm determines canonical type descriptor, which is a single
2906  * representative type for each truly unique type. This canonical type is the
2907  * one that will go into final deduplicated BTF type information. For
2908  * struct/unions, it is also the type that algorithm will merge additional type
2909  * information into (while resolving FWDs), as it discovers it from data in
2910  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2911  * that type is canonical, or to some other type, if that type is equivalent
2912  * and was chosen as canonical representative. This mapping is stored in
2913  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2914  * FWD type got resolved to.
2915  *
2916  * To facilitate fast discovery of canonical types, we also maintain canonical
2917  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2918  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2919  * that match that signature. With sufficiently good choice of type signature
2920  * hashing function, we can limit number of canonical types for each unique type
2921  * signature to a very small number, allowing to find canonical type for any
2922  * duplicated type very quickly.
2923  *
2924  * Struct/union deduplication is the most critical part and algorithm for
2925  * deduplicating structs/unions is described in greater details in comments for
2926  * `btf_dedup_is_equiv` function.
2927  */
2928 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2929 	       const struct btf_dedup_opts *opts)
2930 {
2931 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2932 	int err;
2933 
2934 	if (IS_ERR(d)) {
2935 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2936 		return -EINVAL;
2937 	}
2938 
2939 	if (btf_ensure_modifiable(btf))
2940 		return -ENOMEM;
2941 
2942 	err = btf_dedup_prep(d);
2943 	if (err) {
2944 		pr_debug("btf_dedup_prep failed:%d\n", err);
2945 		goto done;
2946 	}
2947 	err = btf_dedup_strings(d);
2948 	if (err < 0) {
2949 		pr_debug("btf_dedup_strings failed:%d\n", err);
2950 		goto done;
2951 	}
2952 	err = btf_dedup_prim_types(d);
2953 	if (err < 0) {
2954 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2955 		goto done;
2956 	}
2957 	err = btf_dedup_struct_types(d);
2958 	if (err < 0) {
2959 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2960 		goto done;
2961 	}
2962 	err = btf_dedup_ref_types(d);
2963 	if (err < 0) {
2964 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2965 		goto done;
2966 	}
2967 	err = btf_dedup_compact_types(d);
2968 	if (err < 0) {
2969 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2970 		goto done;
2971 	}
2972 	err = btf_dedup_remap_types(d);
2973 	if (err < 0) {
2974 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2975 		goto done;
2976 	}
2977 
2978 done:
2979 	btf_dedup_free(d);
2980 	return err;
2981 }
2982 
2983 #define BTF_UNPROCESSED_ID ((__u32)-1)
2984 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2985 
2986 struct btf_dedup {
2987 	/* .BTF section to be deduped in-place */
2988 	struct btf *btf;
2989 	/*
2990 	 * Optional .BTF.ext section. When provided, any strings referenced
2991 	 * from it will be taken into account when deduping strings
2992 	 */
2993 	struct btf_ext *btf_ext;
2994 	/*
2995 	 * This is a map from any type's signature hash to a list of possible
2996 	 * canonical representative type candidates. Hash collisions are
2997 	 * ignored, so even types of various kinds can share same list of
2998 	 * candidates, which is fine because we rely on subsequent
2999 	 * btf_xxx_equal() checks to authoritatively verify type equality.
3000 	 */
3001 	struct hashmap *dedup_table;
3002 	/* Canonical types map */
3003 	__u32 *map;
3004 	/* Hypothetical mapping, used during type graph equivalence checks */
3005 	__u32 *hypot_map;
3006 	__u32 *hypot_list;
3007 	size_t hypot_cnt;
3008 	size_t hypot_cap;
3009 	/* Whether hypothetical mapping, if successful, would need to adjust
3010 	 * already canonicalized types (due to a new forward declaration to
3011 	 * concrete type resolution). In such case, during split BTF dedup
3012 	 * candidate type would still be considered as different, because base
3013 	 * BTF is considered to be immutable.
3014 	 */
3015 	bool hypot_adjust_canon;
3016 	/* Various option modifying behavior of algorithm */
3017 	struct btf_dedup_opts opts;
3018 	/* temporary strings deduplication state */
3019 	void *strs_data;
3020 	size_t strs_cap;
3021 	size_t strs_len;
3022 	struct hashmap* strs_hash;
3023 };
3024 
3025 static long hash_combine(long h, long value)
3026 {
3027 	return h * 31 + value;
3028 }
3029 
3030 #define for_each_dedup_cand(d, node, hash) \
3031 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3032 
3033 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3034 {
3035 	return hashmap__append(d->dedup_table,
3036 			       (void *)hash, (void *)(long)type_id);
3037 }
3038 
3039 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3040 				   __u32 from_id, __u32 to_id)
3041 {
3042 	if (d->hypot_cnt == d->hypot_cap) {
3043 		__u32 *new_list;
3044 
3045 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3046 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3047 		if (!new_list)
3048 			return -ENOMEM;
3049 		d->hypot_list = new_list;
3050 	}
3051 	d->hypot_list[d->hypot_cnt++] = from_id;
3052 	d->hypot_map[from_id] = to_id;
3053 	return 0;
3054 }
3055 
3056 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3057 {
3058 	int i;
3059 
3060 	for (i = 0; i < d->hypot_cnt; i++)
3061 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3062 	d->hypot_cnt = 0;
3063 	d->hypot_adjust_canon = false;
3064 }
3065 
3066 static void btf_dedup_free(struct btf_dedup *d)
3067 {
3068 	hashmap__free(d->dedup_table);
3069 	d->dedup_table = NULL;
3070 
3071 	free(d->map);
3072 	d->map = NULL;
3073 
3074 	free(d->hypot_map);
3075 	d->hypot_map = NULL;
3076 
3077 	free(d->hypot_list);
3078 	d->hypot_list = NULL;
3079 
3080 	free(d);
3081 }
3082 
3083 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3084 {
3085 	return (size_t)key;
3086 }
3087 
3088 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3089 {
3090 	return 0;
3091 }
3092 
3093 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3094 {
3095 	return k1 == k2;
3096 }
3097 
3098 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3099 				       const struct btf_dedup_opts *opts)
3100 {
3101 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3102 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3103 	int i, err = 0, type_cnt;
3104 
3105 	if (!d)
3106 		return ERR_PTR(-ENOMEM);
3107 
3108 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3109 	/* dedup_table_size is now used only to force collisions in tests */
3110 	if (opts && opts->dedup_table_size == 1)
3111 		hash_fn = btf_dedup_collision_hash_fn;
3112 
3113 	d->btf = btf;
3114 	d->btf_ext = btf_ext;
3115 
3116 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3117 	if (IS_ERR(d->dedup_table)) {
3118 		err = PTR_ERR(d->dedup_table);
3119 		d->dedup_table = NULL;
3120 		goto done;
3121 	}
3122 
3123 	type_cnt = btf__get_nr_types(btf) + 1;
3124 	d->map = malloc(sizeof(__u32) * type_cnt);
3125 	if (!d->map) {
3126 		err = -ENOMEM;
3127 		goto done;
3128 	}
3129 	/* special BTF "void" type is made canonical immediately */
3130 	d->map[0] = 0;
3131 	for (i = 1; i < type_cnt; i++) {
3132 		struct btf_type *t = btf_type_by_id(d->btf, i);
3133 
3134 		/* VAR and DATASEC are never deduped and are self-canonical */
3135 		if (btf_is_var(t) || btf_is_datasec(t))
3136 			d->map[i] = i;
3137 		else
3138 			d->map[i] = BTF_UNPROCESSED_ID;
3139 	}
3140 
3141 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3142 	if (!d->hypot_map) {
3143 		err = -ENOMEM;
3144 		goto done;
3145 	}
3146 	for (i = 0; i < type_cnt; i++)
3147 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3148 
3149 done:
3150 	if (err) {
3151 		btf_dedup_free(d);
3152 		return ERR_PTR(err);
3153 	}
3154 
3155 	return d;
3156 }
3157 
3158 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
3159 
3160 /*
3161  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3162  * string and pass pointer to it to a provided callback `fn`.
3163  */
3164 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
3165 {
3166 	void *line_data_cur, *line_data_end;
3167 	int i, j, r, rec_size;
3168 	struct btf_type *t;
3169 
3170 	for (i = 0; i < d->btf->nr_types; i++) {
3171 		t = btf_type_by_id(d->btf, d->btf->start_id + i);
3172 		r = fn(&t->name_off, ctx);
3173 		if (r)
3174 			return r;
3175 
3176 		switch (btf_kind(t)) {
3177 		case BTF_KIND_STRUCT:
3178 		case BTF_KIND_UNION: {
3179 			struct btf_member *m = btf_members(t);
3180 			__u16 vlen = btf_vlen(t);
3181 
3182 			for (j = 0; j < vlen; j++) {
3183 				r = fn(&m->name_off, ctx);
3184 				if (r)
3185 					return r;
3186 				m++;
3187 			}
3188 			break;
3189 		}
3190 		case BTF_KIND_ENUM: {
3191 			struct btf_enum *m = btf_enum(t);
3192 			__u16 vlen = btf_vlen(t);
3193 
3194 			for (j = 0; j < vlen; j++) {
3195 				r = fn(&m->name_off, ctx);
3196 				if (r)
3197 					return r;
3198 				m++;
3199 			}
3200 			break;
3201 		}
3202 		case BTF_KIND_FUNC_PROTO: {
3203 			struct btf_param *m = btf_params(t);
3204 			__u16 vlen = btf_vlen(t);
3205 
3206 			for (j = 0; j < vlen; j++) {
3207 				r = fn(&m->name_off, ctx);
3208 				if (r)
3209 					return r;
3210 				m++;
3211 			}
3212 			break;
3213 		}
3214 		default:
3215 			break;
3216 		}
3217 	}
3218 
3219 	if (!d->btf_ext)
3220 		return 0;
3221 
3222 	line_data_cur = d->btf_ext->line_info.info;
3223 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
3224 	rec_size = d->btf_ext->line_info.rec_size;
3225 
3226 	while (line_data_cur < line_data_end) {
3227 		struct btf_ext_info_sec *sec = line_data_cur;
3228 		struct bpf_line_info_min *line_info;
3229 		__u32 num_info = sec->num_info;
3230 
3231 		r = fn(&sec->sec_name_off, ctx);
3232 		if (r)
3233 			return r;
3234 
3235 		line_data_cur += sizeof(struct btf_ext_info_sec);
3236 		for (i = 0; i < num_info; i++) {
3237 			line_info = line_data_cur;
3238 			r = fn(&line_info->file_name_off, ctx);
3239 			if (r)
3240 				return r;
3241 			r = fn(&line_info->line_off, ctx);
3242 			if (r)
3243 				return r;
3244 			line_data_cur += rec_size;
3245 		}
3246 	}
3247 
3248 	return 0;
3249 }
3250 
3251 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3252 {
3253 	struct btf_dedup *d = ctx;
3254 	__u32 str_off = *str_off_ptr;
3255 	long old_off, new_off, len;
3256 	const char *s;
3257 	void *p;
3258 	int err;
3259 
3260 	/* don't touch empty string or string in main BTF */
3261 	if (str_off == 0 || str_off < d->btf->start_str_off)
3262 		return 0;
3263 
3264 	s = btf__str_by_offset(d->btf, str_off);
3265 	if (d->btf->base_btf) {
3266 		err = btf__find_str(d->btf->base_btf, s);
3267 		if (err >= 0) {
3268 			*str_off_ptr = err;
3269 			return 0;
3270 		}
3271 		if (err != -ENOENT)
3272 			return err;
3273 	}
3274 
3275 	len = strlen(s) + 1;
3276 
3277 	new_off = d->strs_len;
3278 	p = btf_add_mem(&d->strs_data, &d->strs_cap, 1, new_off, BTF_MAX_STR_OFFSET, len);
3279 	if (!p)
3280 		return -ENOMEM;
3281 
3282 	memcpy(p, s, len);
3283 
3284 	/* Now attempt to add the string, but only if the string with the same
3285 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
3286 	 * string exists, we'll get its offset in old_off (that's old_key).
3287 	 */
3288 	err = hashmap__insert(d->strs_hash, (void *)new_off, (void *)new_off,
3289 			      HASHMAP_ADD, (const void **)&old_off, NULL);
3290 	if (err == -EEXIST) {
3291 		*str_off_ptr = d->btf->start_str_off + old_off;
3292 	} else if (err) {
3293 		return err;
3294 	} else {
3295 		*str_off_ptr = d->btf->start_str_off + new_off;
3296 		d->strs_len += len;
3297 	}
3298 	return 0;
3299 }
3300 
3301 /*
3302  * Dedup string and filter out those that are not referenced from either .BTF
3303  * or .BTF.ext (if provided) sections.
3304  *
3305  * This is done by building index of all strings in BTF's string section,
3306  * then iterating over all entities that can reference strings (e.g., type
3307  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3308  * strings as used. After that all used strings are deduped and compacted into
3309  * sequential blob of memory and new offsets are calculated. Then all the string
3310  * references are iterated again and rewritten using new offsets.
3311  */
3312 static int btf_dedup_strings(struct btf_dedup *d)
3313 {
3314 	char *s;
3315 	int err;
3316 
3317 	if (d->btf->strs_deduped)
3318 		return 0;
3319 
3320 	/* temporarily switch to use btf_dedup's strs_data for strings for hash
3321 	 * functions; later we'll just transfer hashmap to struct btf as is,
3322 	 * along the strs_data
3323 	 */
3324 	d->btf->strs_data_ptr = &d->strs_data;
3325 
3326 	d->strs_hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, d->btf);
3327 	if (IS_ERR(d->strs_hash)) {
3328 		err = PTR_ERR(d->strs_hash);
3329 		d->strs_hash = NULL;
3330 		goto err_out;
3331 	}
3332 
3333 	if (!d->btf->base_btf) {
3334 		s = btf_add_mem(&d->strs_data, &d->strs_cap, 1, d->strs_len, BTF_MAX_STR_OFFSET, 1);
3335 		if (!s)
3336 			return -ENOMEM;
3337 		/* initial empty string */
3338 		s[0] = 0;
3339 		d->strs_len = 1;
3340 
3341 		/* insert empty string; we won't be looking it up during strings
3342 		 * dedup, but it's good to have it for generic BTF string lookups
3343 		 */
3344 		err = hashmap__insert(d->strs_hash, (void *)0, (void *)0,
3345 				      HASHMAP_ADD, NULL, NULL);
3346 		if (err)
3347 			goto err_out;
3348 	}
3349 
3350 	/* remap string offsets */
3351 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3352 	if (err)
3353 		goto err_out;
3354 
3355 	/* replace BTF string data and hash with deduped ones */
3356 	free(d->btf->strs_data);
3357 	hashmap__free(d->btf->strs_hash);
3358 	d->btf->strs_data = d->strs_data;
3359 	d->btf->strs_data_cap = d->strs_cap;
3360 	d->btf->hdr->str_len = d->strs_len;
3361 	d->btf->strs_hash = d->strs_hash;
3362 	/* now point strs_data_ptr back to btf->strs_data */
3363 	d->btf->strs_data_ptr = &d->btf->strs_data;
3364 
3365 	d->strs_data = d->strs_hash = NULL;
3366 	d->strs_len = d->strs_cap = 0;
3367 	d->btf->strs_deduped = true;
3368 	return 0;
3369 
3370 err_out:
3371 	free(d->strs_data);
3372 	hashmap__free(d->strs_hash);
3373 	d->strs_data = d->strs_hash = NULL;
3374 	d->strs_len = d->strs_cap = 0;
3375 
3376 	/* restore strings pointer for existing d->btf->strs_hash back */
3377 	d->btf->strs_data_ptr = &d->strs_data;
3378 
3379 	return err;
3380 }
3381 
3382 static long btf_hash_common(struct btf_type *t)
3383 {
3384 	long h;
3385 
3386 	h = hash_combine(0, t->name_off);
3387 	h = hash_combine(h, t->info);
3388 	h = hash_combine(h, t->size);
3389 	return h;
3390 }
3391 
3392 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3393 {
3394 	return t1->name_off == t2->name_off &&
3395 	       t1->info == t2->info &&
3396 	       t1->size == t2->size;
3397 }
3398 
3399 /* Calculate type signature hash of INT. */
3400 static long btf_hash_int(struct btf_type *t)
3401 {
3402 	__u32 info = *(__u32 *)(t + 1);
3403 	long h;
3404 
3405 	h = btf_hash_common(t);
3406 	h = hash_combine(h, info);
3407 	return h;
3408 }
3409 
3410 /* Check structural equality of two INTs. */
3411 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3412 {
3413 	__u32 info1, info2;
3414 
3415 	if (!btf_equal_common(t1, t2))
3416 		return false;
3417 	info1 = *(__u32 *)(t1 + 1);
3418 	info2 = *(__u32 *)(t2 + 1);
3419 	return info1 == info2;
3420 }
3421 
3422 /* Calculate type signature hash of ENUM. */
3423 static long btf_hash_enum(struct btf_type *t)
3424 {
3425 	long h;
3426 
3427 	/* don't hash vlen and enum members to support enum fwd resolving */
3428 	h = hash_combine(0, t->name_off);
3429 	h = hash_combine(h, t->info & ~0xffff);
3430 	h = hash_combine(h, t->size);
3431 	return h;
3432 }
3433 
3434 /* Check structural equality of two ENUMs. */
3435 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3436 {
3437 	const struct btf_enum *m1, *m2;
3438 	__u16 vlen;
3439 	int i;
3440 
3441 	if (!btf_equal_common(t1, t2))
3442 		return false;
3443 
3444 	vlen = btf_vlen(t1);
3445 	m1 = btf_enum(t1);
3446 	m2 = btf_enum(t2);
3447 	for (i = 0; i < vlen; i++) {
3448 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3449 			return false;
3450 		m1++;
3451 		m2++;
3452 	}
3453 	return true;
3454 }
3455 
3456 static inline bool btf_is_enum_fwd(struct btf_type *t)
3457 {
3458 	return btf_is_enum(t) && btf_vlen(t) == 0;
3459 }
3460 
3461 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3462 {
3463 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3464 		return btf_equal_enum(t1, t2);
3465 	/* ignore vlen when comparing */
3466 	return t1->name_off == t2->name_off &&
3467 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3468 	       t1->size == t2->size;
3469 }
3470 
3471 /*
3472  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3473  * as referenced type IDs equivalence is established separately during type
3474  * graph equivalence check algorithm.
3475  */
3476 static long btf_hash_struct(struct btf_type *t)
3477 {
3478 	const struct btf_member *member = btf_members(t);
3479 	__u32 vlen = btf_vlen(t);
3480 	long h = btf_hash_common(t);
3481 	int i;
3482 
3483 	for (i = 0; i < vlen; i++) {
3484 		h = hash_combine(h, member->name_off);
3485 		h = hash_combine(h, member->offset);
3486 		/* no hashing of referenced type ID, it can be unresolved yet */
3487 		member++;
3488 	}
3489 	return h;
3490 }
3491 
3492 /*
3493  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3494  * IDs. This check is performed during type graph equivalence check and
3495  * referenced types equivalence is checked separately.
3496  */
3497 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3498 {
3499 	const struct btf_member *m1, *m2;
3500 	__u16 vlen;
3501 	int i;
3502 
3503 	if (!btf_equal_common(t1, t2))
3504 		return false;
3505 
3506 	vlen = btf_vlen(t1);
3507 	m1 = btf_members(t1);
3508 	m2 = btf_members(t2);
3509 	for (i = 0; i < vlen; i++) {
3510 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3511 			return false;
3512 		m1++;
3513 		m2++;
3514 	}
3515 	return true;
3516 }
3517 
3518 /*
3519  * Calculate type signature hash of ARRAY, including referenced type IDs,
3520  * under assumption that they were already resolved to canonical type IDs and
3521  * are not going to change.
3522  */
3523 static long btf_hash_array(struct btf_type *t)
3524 {
3525 	const struct btf_array *info = btf_array(t);
3526 	long h = btf_hash_common(t);
3527 
3528 	h = hash_combine(h, info->type);
3529 	h = hash_combine(h, info->index_type);
3530 	h = hash_combine(h, info->nelems);
3531 	return h;
3532 }
3533 
3534 /*
3535  * Check exact equality of two ARRAYs, taking into account referenced
3536  * type IDs, under assumption that they were already resolved to canonical
3537  * type IDs and are not going to change.
3538  * This function is called during reference types deduplication to compare
3539  * ARRAY to potential canonical representative.
3540  */
3541 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3542 {
3543 	const struct btf_array *info1, *info2;
3544 
3545 	if (!btf_equal_common(t1, t2))
3546 		return false;
3547 
3548 	info1 = btf_array(t1);
3549 	info2 = btf_array(t2);
3550 	return info1->type == info2->type &&
3551 	       info1->index_type == info2->index_type &&
3552 	       info1->nelems == info2->nelems;
3553 }
3554 
3555 /*
3556  * Check structural compatibility of two ARRAYs, ignoring referenced type
3557  * IDs. This check is performed during type graph equivalence check and
3558  * referenced types equivalence is checked separately.
3559  */
3560 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3561 {
3562 	if (!btf_equal_common(t1, t2))
3563 		return false;
3564 
3565 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3566 }
3567 
3568 /*
3569  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3570  * under assumption that they were already resolved to canonical type IDs and
3571  * are not going to change.
3572  */
3573 static long btf_hash_fnproto(struct btf_type *t)
3574 {
3575 	const struct btf_param *member = btf_params(t);
3576 	__u16 vlen = btf_vlen(t);
3577 	long h = btf_hash_common(t);
3578 	int i;
3579 
3580 	for (i = 0; i < vlen; i++) {
3581 		h = hash_combine(h, member->name_off);
3582 		h = hash_combine(h, member->type);
3583 		member++;
3584 	}
3585 	return h;
3586 }
3587 
3588 /*
3589  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3590  * type IDs, under assumption that they were already resolved to canonical
3591  * type IDs and are not going to change.
3592  * This function is called during reference types deduplication to compare
3593  * FUNC_PROTO to potential canonical representative.
3594  */
3595 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3596 {
3597 	const struct btf_param *m1, *m2;
3598 	__u16 vlen;
3599 	int i;
3600 
3601 	if (!btf_equal_common(t1, t2))
3602 		return false;
3603 
3604 	vlen = btf_vlen(t1);
3605 	m1 = btf_params(t1);
3606 	m2 = btf_params(t2);
3607 	for (i = 0; i < vlen; i++) {
3608 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3609 			return false;
3610 		m1++;
3611 		m2++;
3612 	}
3613 	return true;
3614 }
3615 
3616 /*
3617  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3618  * IDs. This check is performed during type graph equivalence check and
3619  * referenced types equivalence is checked separately.
3620  */
3621 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3622 {
3623 	const struct btf_param *m1, *m2;
3624 	__u16 vlen;
3625 	int i;
3626 
3627 	/* skip return type ID */
3628 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3629 		return false;
3630 
3631 	vlen = btf_vlen(t1);
3632 	m1 = btf_params(t1);
3633 	m2 = btf_params(t2);
3634 	for (i = 0; i < vlen; i++) {
3635 		if (m1->name_off != m2->name_off)
3636 			return false;
3637 		m1++;
3638 		m2++;
3639 	}
3640 	return true;
3641 }
3642 
3643 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3644  * types and initializing the rest of the state (canonical type mapping) for
3645  * the fixed base BTF part.
3646  */
3647 static int btf_dedup_prep(struct btf_dedup *d)
3648 {
3649 	struct btf_type *t;
3650 	int type_id;
3651 	long h;
3652 
3653 	if (!d->btf->base_btf)
3654 		return 0;
3655 
3656 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3657 		t = btf_type_by_id(d->btf, type_id);
3658 
3659 		/* all base BTF types are self-canonical by definition */
3660 		d->map[type_id] = type_id;
3661 
3662 		switch (btf_kind(t)) {
3663 		case BTF_KIND_VAR:
3664 		case BTF_KIND_DATASEC:
3665 			/* VAR and DATASEC are never hash/deduplicated */
3666 			continue;
3667 		case BTF_KIND_CONST:
3668 		case BTF_KIND_VOLATILE:
3669 		case BTF_KIND_RESTRICT:
3670 		case BTF_KIND_PTR:
3671 		case BTF_KIND_FWD:
3672 		case BTF_KIND_TYPEDEF:
3673 		case BTF_KIND_FUNC:
3674 		case BTF_KIND_FLOAT:
3675 			h = btf_hash_common(t);
3676 			break;
3677 		case BTF_KIND_INT:
3678 			h = btf_hash_int(t);
3679 			break;
3680 		case BTF_KIND_ENUM:
3681 			h = btf_hash_enum(t);
3682 			break;
3683 		case BTF_KIND_STRUCT:
3684 		case BTF_KIND_UNION:
3685 			h = btf_hash_struct(t);
3686 			break;
3687 		case BTF_KIND_ARRAY:
3688 			h = btf_hash_array(t);
3689 			break;
3690 		case BTF_KIND_FUNC_PROTO:
3691 			h = btf_hash_fnproto(t);
3692 			break;
3693 		default:
3694 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3695 			return -EINVAL;
3696 		}
3697 		if (btf_dedup_table_add(d, h, type_id))
3698 			return -ENOMEM;
3699 	}
3700 
3701 	return 0;
3702 }
3703 
3704 /*
3705  * Deduplicate primitive types, that can't reference other types, by calculating
3706  * their type signature hash and comparing them with any possible canonical
3707  * candidate. If no canonical candidate matches, type itself is marked as
3708  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3709  */
3710 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3711 {
3712 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3713 	struct hashmap_entry *hash_entry;
3714 	struct btf_type *cand;
3715 	/* if we don't find equivalent type, then we are canonical */
3716 	__u32 new_id = type_id;
3717 	__u32 cand_id;
3718 	long h;
3719 
3720 	switch (btf_kind(t)) {
3721 	case BTF_KIND_CONST:
3722 	case BTF_KIND_VOLATILE:
3723 	case BTF_KIND_RESTRICT:
3724 	case BTF_KIND_PTR:
3725 	case BTF_KIND_TYPEDEF:
3726 	case BTF_KIND_ARRAY:
3727 	case BTF_KIND_STRUCT:
3728 	case BTF_KIND_UNION:
3729 	case BTF_KIND_FUNC:
3730 	case BTF_KIND_FUNC_PROTO:
3731 	case BTF_KIND_VAR:
3732 	case BTF_KIND_DATASEC:
3733 		return 0;
3734 
3735 	case BTF_KIND_INT:
3736 		h = btf_hash_int(t);
3737 		for_each_dedup_cand(d, hash_entry, h) {
3738 			cand_id = (__u32)(long)hash_entry->value;
3739 			cand = btf_type_by_id(d->btf, cand_id);
3740 			if (btf_equal_int(t, cand)) {
3741 				new_id = cand_id;
3742 				break;
3743 			}
3744 		}
3745 		break;
3746 
3747 	case BTF_KIND_ENUM:
3748 		h = btf_hash_enum(t);
3749 		for_each_dedup_cand(d, hash_entry, h) {
3750 			cand_id = (__u32)(long)hash_entry->value;
3751 			cand = btf_type_by_id(d->btf, cand_id);
3752 			if (btf_equal_enum(t, cand)) {
3753 				new_id = cand_id;
3754 				break;
3755 			}
3756 			if (d->opts.dont_resolve_fwds)
3757 				continue;
3758 			if (btf_compat_enum(t, cand)) {
3759 				if (btf_is_enum_fwd(t)) {
3760 					/* resolve fwd to full enum */
3761 					new_id = cand_id;
3762 					break;
3763 				}
3764 				/* resolve canonical enum fwd to full enum */
3765 				d->map[cand_id] = type_id;
3766 			}
3767 		}
3768 		break;
3769 
3770 	case BTF_KIND_FWD:
3771 	case BTF_KIND_FLOAT:
3772 		h = btf_hash_common(t);
3773 		for_each_dedup_cand(d, hash_entry, h) {
3774 			cand_id = (__u32)(long)hash_entry->value;
3775 			cand = btf_type_by_id(d->btf, cand_id);
3776 			if (btf_equal_common(t, cand)) {
3777 				new_id = cand_id;
3778 				break;
3779 			}
3780 		}
3781 		break;
3782 
3783 	default:
3784 		return -EINVAL;
3785 	}
3786 
3787 	d->map[type_id] = new_id;
3788 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3789 		return -ENOMEM;
3790 
3791 	return 0;
3792 }
3793 
3794 static int btf_dedup_prim_types(struct btf_dedup *d)
3795 {
3796 	int i, err;
3797 
3798 	for (i = 0; i < d->btf->nr_types; i++) {
3799 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3800 		if (err)
3801 			return err;
3802 	}
3803 	return 0;
3804 }
3805 
3806 /*
3807  * Check whether type is already mapped into canonical one (could be to itself).
3808  */
3809 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3810 {
3811 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3812 }
3813 
3814 /*
3815  * Resolve type ID into its canonical type ID, if any; otherwise return original
3816  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3817  * STRUCT/UNION link and resolve it into canonical type ID as well.
3818  */
3819 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3820 {
3821 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3822 		type_id = d->map[type_id];
3823 	return type_id;
3824 }
3825 
3826 /*
3827  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3828  * type ID.
3829  */
3830 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3831 {
3832 	__u32 orig_type_id = type_id;
3833 
3834 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3835 		return type_id;
3836 
3837 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3838 		type_id = d->map[type_id];
3839 
3840 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3841 		return type_id;
3842 
3843 	return orig_type_id;
3844 }
3845 
3846 
3847 static inline __u16 btf_fwd_kind(struct btf_type *t)
3848 {
3849 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3850 }
3851 
3852 /* Check if given two types are identical ARRAY definitions */
3853 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3854 {
3855 	struct btf_type *t1, *t2;
3856 
3857 	t1 = btf_type_by_id(d->btf, id1);
3858 	t2 = btf_type_by_id(d->btf, id2);
3859 	if (!btf_is_array(t1) || !btf_is_array(t2))
3860 		return 0;
3861 
3862 	return btf_equal_array(t1, t2);
3863 }
3864 
3865 /*
3866  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3867  * call it "candidate graph" in this description for brevity) to a type graph
3868  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3869  * here, though keep in mind that not all types in canonical graph are
3870  * necessarily canonical representatives themselves, some of them might be
3871  * duplicates or its uniqueness might not have been established yet).
3872  * Returns:
3873  *  - >0, if type graphs are equivalent;
3874  *  -  0, if not equivalent;
3875  *  - <0, on error.
3876  *
3877  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3878  * equivalence of BTF types at each step. If at any point BTF types in candidate
3879  * and canonical graphs are not compatible structurally, whole graphs are
3880  * incompatible. If types are structurally equivalent (i.e., all information
3881  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3882  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3883  * If a type references other types, then those referenced types are checked
3884  * for equivalence recursively.
3885  *
3886  * During DFS traversal, if we find that for current `canon_id` type we
3887  * already have some mapping in hypothetical map, we check for two possible
3888  * situations:
3889  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3890  *     happen when type graphs have cycles. In this case we assume those two
3891  *     types are equivalent.
3892  *   - `canon_id` is mapped to different type. This is contradiction in our
3893  *     hypothetical mapping, because same graph in canonical graph corresponds
3894  *     to two different types in candidate graph, which for equivalent type
3895  *     graphs shouldn't happen. This condition terminates equivalence check
3896  *     with negative result.
3897  *
3898  * If type graphs traversal exhausts types to check and find no contradiction,
3899  * then type graphs are equivalent.
3900  *
3901  * When checking types for equivalence, there is one special case: FWD types.
3902  * If FWD type resolution is allowed and one of the types (either from canonical
3903  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3904  * flag) and their names match, hypothetical mapping is updated to point from
3905  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3906  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3907  *
3908  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3909  * if there are two exactly named (or anonymous) structs/unions that are
3910  * compatible structurally, one of which has FWD field, while other is concrete
3911  * STRUCT/UNION, but according to C sources they are different structs/unions
3912  * that are referencing different types with the same name. This is extremely
3913  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3914  * this logic is causing problems.
3915  *
3916  * Doing FWD resolution means that both candidate and/or canonical graphs can
3917  * consists of portions of the graph that come from multiple compilation units.
3918  * This is due to the fact that types within single compilation unit are always
3919  * deduplicated and FWDs are already resolved, if referenced struct/union
3920  * definiton is available. So, if we had unresolved FWD and found corresponding
3921  * STRUCT/UNION, they will be from different compilation units. This
3922  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3923  * type graph will likely have at least two different BTF types that describe
3924  * same type (e.g., most probably there will be two different BTF types for the
3925  * same 'int' primitive type) and could even have "overlapping" parts of type
3926  * graph that describe same subset of types.
3927  *
3928  * This in turn means that our assumption that each type in canonical graph
3929  * must correspond to exactly one type in candidate graph might not hold
3930  * anymore and will make it harder to detect contradictions using hypothetical
3931  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3932  * resolution only in canonical graph. FWDs in candidate graphs are never
3933  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3934  * that can occur:
3935  *   - Both types in canonical and candidate graphs are FWDs. If they are
3936  *     structurally equivalent, then they can either be both resolved to the
3937  *     same STRUCT/UNION or not resolved at all. In both cases they are
3938  *     equivalent and there is no need to resolve FWD on candidate side.
3939  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3940  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3941  *   - Type in canonical graph is FWD, while type in candidate is concrete
3942  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3943  *     unit, so there is exactly one BTF type for each unique C type. After
3944  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3945  *     in canonical graph mapping to single BTF type in candidate graph, but
3946  *     because hypothetical mapping maps from canonical to candidate types, it's
3947  *     alright, and we still maintain the property of having single `canon_id`
3948  *     mapping to single `cand_id` (there could be two different `canon_id`
3949  *     mapped to the same `cand_id`, but it's not contradictory).
3950  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3951  *     graph is FWD. In this case we are just going to check compatibility of
3952  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3953  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3954  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3955  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3956  *     canonical graph.
3957  */
3958 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3959 			      __u32 canon_id)
3960 {
3961 	struct btf_type *cand_type;
3962 	struct btf_type *canon_type;
3963 	__u32 hypot_type_id;
3964 	__u16 cand_kind;
3965 	__u16 canon_kind;
3966 	int i, eq;
3967 
3968 	/* if both resolve to the same canonical, they must be equivalent */
3969 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3970 		return 1;
3971 
3972 	canon_id = resolve_fwd_id(d, canon_id);
3973 
3974 	hypot_type_id = d->hypot_map[canon_id];
3975 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3976 		/* In some cases compiler will generate different DWARF types
3977 		 * for *identical* array type definitions and use them for
3978 		 * different fields within the *same* struct. This breaks type
3979 		 * equivalence check, which makes an assumption that candidate
3980 		 * types sub-graph has a consistent and deduped-by-compiler
3981 		 * types within a single CU. So work around that by explicitly
3982 		 * allowing identical array types here.
3983 		 */
3984 		return hypot_type_id == cand_id ||
3985 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3986 	}
3987 
3988 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3989 		return -ENOMEM;
3990 
3991 	cand_type = btf_type_by_id(d->btf, cand_id);
3992 	canon_type = btf_type_by_id(d->btf, canon_id);
3993 	cand_kind = btf_kind(cand_type);
3994 	canon_kind = btf_kind(canon_type);
3995 
3996 	if (cand_type->name_off != canon_type->name_off)
3997 		return 0;
3998 
3999 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4000 	if (!d->opts.dont_resolve_fwds
4001 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4002 	    && cand_kind != canon_kind) {
4003 		__u16 real_kind;
4004 		__u16 fwd_kind;
4005 
4006 		if (cand_kind == BTF_KIND_FWD) {
4007 			real_kind = canon_kind;
4008 			fwd_kind = btf_fwd_kind(cand_type);
4009 		} else {
4010 			real_kind = cand_kind;
4011 			fwd_kind = btf_fwd_kind(canon_type);
4012 			/* we'd need to resolve base FWD to STRUCT/UNION */
4013 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4014 				d->hypot_adjust_canon = true;
4015 		}
4016 		return fwd_kind == real_kind;
4017 	}
4018 
4019 	if (cand_kind != canon_kind)
4020 		return 0;
4021 
4022 	switch (cand_kind) {
4023 	case BTF_KIND_INT:
4024 		return btf_equal_int(cand_type, canon_type);
4025 
4026 	case BTF_KIND_ENUM:
4027 		if (d->opts.dont_resolve_fwds)
4028 			return btf_equal_enum(cand_type, canon_type);
4029 		else
4030 			return btf_compat_enum(cand_type, canon_type);
4031 
4032 	case BTF_KIND_FWD:
4033 	case BTF_KIND_FLOAT:
4034 		return btf_equal_common(cand_type, canon_type);
4035 
4036 	case BTF_KIND_CONST:
4037 	case BTF_KIND_VOLATILE:
4038 	case BTF_KIND_RESTRICT:
4039 	case BTF_KIND_PTR:
4040 	case BTF_KIND_TYPEDEF:
4041 	case BTF_KIND_FUNC:
4042 		if (cand_type->info != canon_type->info)
4043 			return 0;
4044 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4045 
4046 	case BTF_KIND_ARRAY: {
4047 		const struct btf_array *cand_arr, *canon_arr;
4048 
4049 		if (!btf_compat_array(cand_type, canon_type))
4050 			return 0;
4051 		cand_arr = btf_array(cand_type);
4052 		canon_arr = btf_array(canon_type);
4053 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4054 		if (eq <= 0)
4055 			return eq;
4056 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4057 	}
4058 
4059 	case BTF_KIND_STRUCT:
4060 	case BTF_KIND_UNION: {
4061 		const struct btf_member *cand_m, *canon_m;
4062 		__u16 vlen;
4063 
4064 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4065 			return 0;
4066 		vlen = btf_vlen(cand_type);
4067 		cand_m = btf_members(cand_type);
4068 		canon_m = btf_members(canon_type);
4069 		for (i = 0; i < vlen; i++) {
4070 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4071 			if (eq <= 0)
4072 				return eq;
4073 			cand_m++;
4074 			canon_m++;
4075 		}
4076 
4077 		return 1;
4078 	}
4079 
4080 	case BTF_KIND_FUNC_PROTO: {
4081 		const struct btf_param *cand_p, *canon_p;
4082 		__u16 vlen;
4083 
4084 		if (!btf_compat_fnproto(cand_type, canon_type))
4085 			return 0;
4086 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4087 		if (eq <= 0)
4088 			return eq;
4089 		vlen = btf_vlen(cand_type);
4090 		cand_p = btf_params(cand_type);
4091 		canon_p = btf_params(canon_type);
4092 		for (i = 0; i < vlen; i++) {
4093 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4094 			if (eq <= 0)
4095 				return eq;
4096 			cand_p++;
4097 			canon_p++;
4098 		}
4099 		return 1;
4100 	}
4101 
4102 	default:
4103 		return -EINVAL;
4104 	}
4105 	return 0;
4106 }
4107 
4108 /*
4109  * Use hypothetical mapping, produced by successful type graph equivalence
4110  * check, to augment existing struct/union canonical mapping, where possible.
4111  *
4112  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4113  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4114  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4115  * we are recording the mapping anyway. As opposed to carefulness required
4116  * for struct/union correspondence mapping (described below), for FWD resolution
4117  * it's not important, as by the time that FWD type (reference type) will be
4118  * deduplicated all structs/unions will be deduped already anyway.
4119  *
4120  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4121  * not required for correctness. It needs to be done carefully to ensure that
4122  * struct/union from candidate's type graph is not mapped into corresponding
4123  * struct/union from canonical type graph that itself hasn't been resolved into
4124  * canonical representative. The only guarantee we have is that canonical
4125  * struct/union was determined as canonical and that won't change. But any
4126  * types referenced through that struct/union fields could have been not yet
4127  * resolved, so in case like that it's too early to establish any kind of
4128  * correspondence between structs/unions.
4129  *
4130  * No canonical correspondence is derived for primitive types (they are already
4131  * deduplicated completely already anyway) or reference types (they rely on
4132  * stability of struct/union canonical relationship for equivalence checks).
4133  */
4134 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4135 {
4136 	__u32 canon_type_id, targ_type_id;
4137 	__u16 t_kind, c_kind;
4138 	__u32 t_id, c_id;
4139 	int i;
4140 
4141 	for (i = 0; i < d->hypot_cnt; i++) {
4142 		canon_type_id = d->hypot_list[i];
4143 		targ_type_id = d->hypot_map[canon_type_id];
4144 		t_id = resolve_type_id(d, targ_type_id);
4145 		c_id = resolve_type_id(d, canon_type_id);
4146 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4147 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4148 		/*
4149 		 * Resolve FWD into STRUCT/UNION.
4150 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4151 		 * mapped to canonical representative (as opposed to
4152 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4153 		 * eventually that struct is going to be mapped and all resolved
4154 		 * FWDs will automatically resolve to correct canonical
4155 		 * representative. This will happen before ref type deduping,
4156 		 * which critically depends on stability of these mapping. This
4157 		 * stability is not a requirement for STRUCT/UNION equivalence
4158 		 * checks, though.
4159 		 */
4160 
4161 		/* if it's the split BTF case, we still need to point base FWD
4162 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4163 		 * will be resolved against base FWD. If we don't point base
4164 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4165 		 * FWDs in split BTF won't be correctly resolved to a proper
4166 		 * STRUCT/UNION.
4167 		 */
4168 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4169 			d->map[c_id] = t_id;
4170 
4171 		/* if graph equivalence determined that we'd need to adjust
4172 		 * base canonical types, then we need to only point base FWDs
4173 		 * to STRUCTs/UNIONs and do no more modifications. For all
4174 		 * other purposes the type graphs were not equivalent.
4175 		 */
4176 		if (d->hypot_adjust_canon)
4177 			continue;
4178 
4179 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4180 			d->map[t_id] = c_id;
4181 
4182 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4183 		    c_kind != BTF_KIND_FWD &&
4184 		    is_type_mapped(d, c_id) &&
4185 		    !is_type_mapped(d, t_id)) {
4186 			/*
4187 			 * as a perf optimization, we can map struct/union
4188 			 * that's part of type graph we just verified for
4189 			 * equivalence. We can do that for struct/union that has
4190 			 * canonical representative only, though.
4191 			 */
4192 			d->map[t_id] = c_id;
4193 		}
4194 	}
4195 }
4196 
4197 /*
4198  * Deduplicate struct/union types.
4199  *
4200  * For each struct/union type its type signature hash is calculated, taking
4201  * into account type's name, size, number, order and names of fields, but
4202  * ignoring type ID's referenced from fields, because they might not be deduped
4203  * completely until after reference types deduplication phase. This type hash
4204  * is used to iterate over all potential canonical types, sharing same hash.
4205  * For each canonical candidate we check whether type graphs that they form
4206  * (through referenced types in fields and so on) are equivalent using algorithm
4207  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4208  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4209  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4210  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4211  * potentially map other structs/unions to their canonical representatives,
4212  * if such relationship hasn't yet been established. This speeds up algorithm
4213  * by eliminating some of the duplicate work.
4214  *
4215  * If no matching canonical representative was found, struct/union is marked
4216  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4217  * for further look ups.
4218  */
4219 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4220 {
4221 	struct btf_type *cand_type, *t;
4222 	struct hashmap_entry *hash_entry;
4223 	/* if we don't find equivalent type, then we are canonical */
4224 	__u32 new_id = type_id;
4225 	__u16 kind;
4226 	long h;
4227 
4228 	/* already deduped or is in process of deduping (loop detected) */
4229 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4230 		return 0;
4231 
4232 	t = btf_type_by_id(d->btf, type_id);
4233 	kind = btf_kind(t);
4234 
4235 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4236 		return 0;
4237 
4238 	h = btf_hash_struct(t);
4239 	for_each_dedup_cand(d, hash_entry, h) {
4240 		__u32 cand_id = (__u32)(long)hash_entry->value;
4241 		int eq;
4242 
4243 		/*
4244 		 * Even though btf_dedup_is_equiv() checks for
4245 		 * btf_shallow_equal_struct() internally when checking two
4246 		 * structs (unions) for equivalence, we need to guard here
4247 		 * from picking matching FWD type as a dedup candidate.
4248 		 * This can happen due to hash collision. In such case just
4249 		 * relying on btf_dedup_is_equiv() would lead to potentially
4250 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4251 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4252 		 */
4253 		cand_type = btf_type_by_id(d->btf, cand_id);
4254 		if (!btf_shallow_equal_struct(t, cand_type))
4255 			continue;
4256 
4257 		btf_dedup_clear_hypot_map(d);
4258 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4259 		if (eq < 0)
4260 			return eq;
4261 		if (!eq)
4262 			continue;
4263 		btf_dedup_merge_hypot_map(d);
4264 		if (d->hypot_adjust_canon) /* not really equivalent */
4265 			continue;
4266 		new_id = cand_id;
4267 		break;
4268 	}
4269 
4270 	d->map[type_id] = new_id;
4271 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4272 		return -ENOMEM;
4273 
4274 	return 0;
4275 }
4276 
4277 static int btf_dedup_struct_types(struct btf_dedup *d)
4278 {
4279 	int i, err;
4280 
4281 	for (i = 0; i < d->btf->nr_types; i++) {
4282 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4283 		if (err)
4284 			return err;
4285 	}
4286 	return 0;
4287 }
4288 
4289 /*
4290  * Deduplicate reference type.
4291  *
4292  * Once all primitive and struct/union types got deduplicated, we can easily
4293  * deduplicate all other (reference) BTF types. This is done in two steps:
4294  *
4295  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4296  * resolution can be done either immediately for primitive or struct/union types
4297  * (because they were deduped in previous two phases) or recursively for
4298  * reference types. Recursion will always terminate at either primitive or
4299  * struct/union type, at which point we can "unwind" chain of reference types
4300  * one by one. There is no danger of encountering cycles because in C type
4301  * system the only way to form type cycle is through struct/union, so any chain
4302  * of reference types, even those taking part in a type cycle, will inevitably
4303  * reach struct/union at some point.
4304  *
4305  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4306  * becomes "stable", in the sense that no further deduplication will cause
4307  * any changes to it. With that, it's now possible to calculate type's signature
4308  * hash (this time taking into account referenced type IDs) and loop over all
4309  * potential canonical representatives. If no match was found, current type
4310  * will become canonical representative of itself and will be added into
4311  * btf_dedup->dedup_table as another possible canonical representative.
4312  */
4313 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4314 {
4315 	struct hashmap_entry *hash_entry;
4316 	__u32 new_id = type_id, cand_id;
4317 	struct btf_type *t, *cand;
4318 	/* if we don't find equivalent type, then we are representative type */
4319 	int ref_type_id;
4320 	long h;
4321 
4322 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4323 		return -ELOOP;
4324 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4325 		return resolve_type_id(d, type_id);
4326 
4327 	t = btf_type_by_id(d->btf, type_id);
4328 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4329 
4330 	switch (btf_kind(t)) {
4331 	case BTF_KIND_CONST:
4332 	case BTF_KIND_VOLATILE:
4333 	case BTF_KIND_RESTRICT:
4334 	case BTF_KIND_PTR:
4335 	case BTF_KIND_TYPEDEF:
4336 	case BTF_KIND_FUNC:
4337 		ref_type_id = btf_dedup_ref_type(d, t->type);
4338 		if (ref_type_id < 0)
4339 			return ref_type_id;
4340 		t->type = ref_type_id;
4341 
4342 		h = btf_hash_common(t);
4343 		for_each_dedup_cand(d, hash_entry, h) {
4344 			cand_id = (__u32)(long)hash_entry->value;
4345 			cand = btf_type_by_id(d->btf, cand_id);
4346 			if (btf_equal_common(t, cand)) {
4347 				new_id = cand_id;
4348 				break;
4349 			}
4350 		}
4351 		break;
4352 
4353 	case BTF_KIND_ARRAY: {
4354 		struct btf_array *info = btf_array(t);
4355 
4356 		ref_type_id = btf_dedup_ref_type(d, info->type);
4357 		if (ref_type_id < 0)
4358 			return ref_type_id;
4359 		info->type = ref_type_id;
4360 
4361 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4362 		if (ref_type_id < 0)
4363 			return ref_type_id;
4364 		info->index_type = ref_type_id;
4365 
4366 		h = btf_hash_array(t);
4367 		for_each_dedup_cand(d, hash_entry, h) {
4368 			cand_id = (__u32)(long)hash_entry->value;
4369 			cand = btf_type_by_id(d->btf, cand_id);
4370 			if (btf_equal_array(t, cand)) {
4371 				new_id = cand_id;
4372 				break;
4373 			}
4374 		}
4375 		break;
4376 	}
4377 
4378 	case BTF_KIND_FUNC_PROTO: {
4379 		struct btf_param *param;
4380 		__u16 vlen;
4381 		int i;
4382 
4383 		ref_type_id = btf_dedup_ref_type(d, t->type);
4384 		if (ref_type_id < 0)
4385 			return ref_type_id;
4386 		t->type = ref_type_id;
4387 
4388 		vlen = btf_vlen(t);
4389 		param = btf_params(t);
4390 		for (i = 0; i < vlen; i++) {
4391 			ref_type_id = btf_dedup_ref_type(d, param->type);
4392 			if (ref_type_id < 0)
4393 				return ref_type_id;
4394 			param->type = ref_type_id;
4395 			param++;
4396 		}
4397 
4398 		h = btf_hash_fnproto(t);
4399 		for_each_dedup_cand(d, hash_entry, h) {
4400 			cand_id = (__u32)(long)hash_entry->value;
4401 			cand = btf_type_by_id(d->btf, cand_id);
4402 			if (btf_equal_fnproto(t, cand)) {
4403 				new_id = cand_id;
4404 				break;
4405 			}
4406 		}
4407 		break;
4408 	}
4409 
4410 	default:
4411 		return -EINVAL;
4412 	}
4413 
4414 	d->map[type_id] = new_id;
4415 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4416 		return -ENOMEM;
4417 
4418 	return new_id;
4419 }
4420 
4421 static int btf_dedup_ref_types(struct btf_dedup *d)
4422 {
4423 	int i, err;
4424 
4425 	for (i = 0; i < d->btf->nr_types; i++) {
4426 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4427 		if (err < 0)
4428 			return err;
4429 	}
4430 	/* we won't need d->dedup_table anymore */
4431 	hashmap__free(d->dedup_table);
4432 	d->dedup_table = NULL;
4433 	return 0;
4434 }
4435 
4436 /*
4437  * Compact types.
4438  *
4439  * After we established for each type its corresponding canonical representative
4440  * type, we now can eliminate types that are not canonical and leave only
4441  * canonical ones layed out sequentially in memory by copying them over
4442  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4443  * a map from original type ID to a new compacted type ID, which will be used
4444  * during next phase to "fix up" type IDs, referenced from struct/union and
4445  * reference types.
4446  */
4447 static int btf_dedup_compact_types(struct btf_dedup *d)
4448 {
4449 	__u32 *new_offs;
4450 	__u32 next_type_id = d->btf->start_id;
4451 	const struct btf_type *t;
4452 	void *p;
4453 	int i, id, len;
4454 
4455 	/* we are going to reuse hypot_map to store compaction remapping */
4456 	d->hypot_map[0] = 0;
4457 	/* base BTF types are not renumbered */
4458 	for (id = 1; id < d->btf->start_id; id++)
4459 		d->hypot_map[id] = id;
4460 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4461 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4462 
4463 	p = d->btf->types_data;
4464 
4465 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4466 		if (d->map[id] != id)
4467 			continue;
4468 
4469 		t = btf__type_by_id(d->btf, id);
4470 		len = btf_type_size(t);
4471 		if (len < 0)
4472 			return len;
4473 
4474 		memmove(p, t, len);
4475 		d->hypot_map[id] = next_type_id;
4476 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4477 		p += len;
4478 		next_type_id++;
4479 	}
4480 
4481 	/* shrink struct btf's internal types index and update btf_header */
4482 	d->btf->nr_types = next_type_id - d->btf->start_id;
4483 	d->btf->type_offs_cap = d->btf->nr_types;
4484 	d->btf->hdr->type_len = p - d->btf->types_data;
4485 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4486 				       sizeof(*new_offs));
4487 	if (d->btf->type_offs_cap && !new_offs)
4488 		return -ENOMEM;
4489 	d->btf->type_offs = new_offs;
4490 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4491 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4492 	return 0;
4493 }
4494 
4495 /*
4496  * Figure out final (deduplicated and compacted) type ID for provided original
4497  * `type_id` by first resolving it into corresponding canonical type ID and
4498  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4499  * which is populated during compaction phase.
4500  */
4501 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
4502 {
4503 	__u32 resolved_type_id, new_type_id;
4504 
4505 	resolved_type_id = resolve_type_id(d, type_id);
4506 	new_type_id = d->hypot_map[resolved_type_id];
4507 	if (new_type_id > BTF_MAX_NR_TYPES)
4508 		return -EINVAL;
4509 	return new_type_id;
4510 }
4511 
4512 /*
4513  * Remap referenced type IDs into deduped type IDs.
4514  *
4515  * After BTF types are deduplicated and compacted, their final type IDs may
4516  * differ from original ones. The map from original to a corresponding
4517  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4518  * compaction phase. During remapping phase we are rewriting all type IDs
4519  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4520  * their final deduped type IDs.
4521  */
4522 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
4523 {
4524 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4525 	int i, r;
4526 
4527 	switch (btf_kind(t)) {
4528 	case BTF_KIND_INT:
4529 	case BTF_KIND_ENUM:
4530 	case BTF_KIND_FLOAT:
4531 		break;
4532 
4533 	case BTF_KIND_FWD:
4534 	case BTF_KIND_CONST:
4535 	case BTF_KIND_VOLATILE:
4536 	case BTF_KIND_RESTRICT:
4537 	case BTF_KIND_PTR:
4538 	case BTF_KIND_TYPEDEF:
4539 	case BTF_KIND_FUNC:
4540 	case BTF_KIND_VAR:
4541 		r = btf_dedup_remap_type_id(d, t->type);
4542 		if (r < 0)
4543 			return r;
4544 		t->type = r;
4545 		break;
4546 
4547 	case BTF_KIND_ARRAY: {
4548 		struct btf_array *arr_info = btf_array(t);
4549 
4550 		r = btf_dedup_remap_type_id(d, arr_info->type);
4551 		if (r < 0)
4552 			return r;
4553 		arr_info->type = r;
4554 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
4555 		if (r < 0)
4556 			return r;
4557 		arr_info->index_type = r;
4558 		break;
4559 	}
4560 
4561 	case BTF_KIND_STRUCT:
4562 	case BTF_KIND_UNION: {
4563 		struct btf_member *member = btf_members(t);
4564 		__u16 vlen = btf_vlen(t);
4565 
4566 		for (i = 0; i < vlen; i++) {
4567 			r = btf_dedup_remap_type_id(d, member->type);
4568 			if (r < 0)
4569 				return r;
4570 			member->type = r;
4571 			member++;
4572 		}
4573 		break;
4574 	}
4575 
4576 	case BTF_KIND_FUNC_PROTO: {
4577 		struct btf_param *param = btf_params(t);
4578 		__u16 vlen = btf_vlen(t);
4579 
4580 		r = btf_dedup_remap_type_id(d, t->type);
4581 		if (r < 0)
4582 			return r;
4583 		t->type = r;
4584 
4585 		for (i = 0; i < vlen; i++) {
4586 			r = btf_dedup_remap_type_id(d, param->type);
4587 			if (r < 0)
4588 				return r;
4589 			param->type = r;
4590 			param++;
4591 		}
4592 		break;
4593 	}
4594 
4595 	case BTF_KIND_DATASEC: {
4596 		struct btf_var_secinfo *var = btf_var_secinfos(t);
4597 		__u16 vlen = btf_vlen(t);
4598 
4599 		for (i = 0; i < vlen; i++) {
4600 			r = btf_dedup_remap_type_id(d, var->type);
4601 			if (r < 0)
4602 				return r;
4603 			var->type = r;
4604 			var++;
4605 		}
4606 		break;
4607 	}
4608 
4609 	default:
4610 		return -EINVAL;
4611 	}
4612 
4613 	return 0;
4614 }
4615 
4616 static int btf_dedup_remap_types(struct btf_dedup *d)
4617 {
4618 	int i, r;
4619 
4620 	for (i = 0; i < d->btf->nr_types; i++) {
4621 		r = btf_dedup_remap_type(d, d->btf->start_id + i);
4622 		if (r < 0)
4623 			return r;
4624 	}
4625 	return 0;
4626 }
4627 
4628 /*
4629  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4630  * data out of it to use for target BTF.
4631  */
4632 struct btf *libbpf_find_kernel_btf(void)
4633 {
4634 	struct {
4635 		const char *path_fmt;
4636 		bool raw_btf;
4637 	} locations[] = {
4638 		/* try canonical vmlinux BTF through sysfs first */
4639 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4640 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4641 		{ "/boot/vmlinux-%1$s" },
4642 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4643 		{ "/lib/modules/%1$s/build/vmlinux" },
4644 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4645 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4646 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4647 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4648 	};
4649 	char path[PATH_MAX + 1];
4650 	struct utsname buf;
4651 	struct btf *btf;
4652 	int i;
4653 
4654 	uname(&buf);
4655 
4656 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4657 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4658 
4659 		if (access(path, R_OK))
4660 			continue;
4661 
4662 		if (locations[i].raw_btf)
4663 			btf = btf__parse_raw(path);
4664 		else
4665 			btf = btf__parse_elf(path, NULL);
4666 
4667 		pr_debug("loading kernel BTF '%s': %ld\n",
4668 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4669 		if (IS_ERR(btf))
4670 			continue;
4671 
4672 		return btf;
4673 	}
4674 
4675 	pr_warn("failed to find valid kernel BTF\n");
4676 	return ERR_PTR(-ESRCH);
4677 }
4678