1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 return base_size; 303 case BTF_KIND_INT: 304 return base_size + sizeof(__u32); 305 case BTF_KIND_ENUM: 306 return base_size + vlen * sizeof(struct btf_enum); 307 case BTF_KIND_ARRAY: 308 return base_size + sizeof(struct btf_array); 309 case BTF_KIND_STRUCT: 310 case BTF_KIND_UNION: 311 return base_size + vlen * sizeof(struct btf_member); 312 case BTF_KIND_FUNC_PROTO: 313 return base_size + vlen * sizeof(struct btf_param); 314 case BTF_KIND_VAR: 315 return base_size + sizeof(struct btf_var); 316 case BTF_KIND_DATASEC: 317 return base_size + vlen * sizeof(struct btf_var_secinfo); 318 case BTF_KIND_DECL_TAG: 319 return base_size + sizeof(struct btf_decl_tag); 320 default: 321 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 322 return -EINVAL; 323 } 324 } 325 326 static void btf_bswap_type_base(struct btf_type *t) 327 { 328 t->name_off = bswap_32(t->name_off); 329 t->info = bswap_32(t->info); 330 t->type = bswap_32(t->type); 331 } 332 333 static int btf_bswap_type_rest(struct btf_type *t) 334 { 335 struct btf_var_secinfo *v; 336 struct btf_member *m; 337 struct btf_array *a; 338 struct btf_param *p; 339 struct btf_enum *e; 340 __u16 vlen = btf_vlen(t); 341 int i; 342 343 switch (btf_kind(t)) { 344 case BTF_KIND_FWD: 345 case BTF_KIND_CONST: 346 case BTF_KIND_VOLATILE: 347 case BTF_KIND_RESTRICT: 348 case BTF_KIND_PTR: 349 case BTF_KIND_TYPEDEF: 350 case BTF_KIND_FUNC: 351 case BTF_KIND_FLOAT: 352 return 0; 353 case BTF_KIND_INT: 354 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 355 return 0; 356 case BTF_KIND_ENUM: 357 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 358 e->name_off = bswap_32(e->name_off); 359 e->val = bswap_32(e->val); 360 } 361 return 0; 362 case BTF_KIND_ARRAY: 363 a = btf_array(t); 364 a->type = bswap_32(a->type); 365 a->index_type = bswap_32(a->index_type); 366 a->nelems = bswap_32(a->nelems); 367 return 0; 368 case BTF_KIND_STRUCT: 369 case BTF_KIND_UNION: 370 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 371 m->name_off = bswap_32(m->name_off); 372 m->type = bswap_32(m->type); 373 m->offset = bswap_32(m->offset); 374 } 375 return 0; 376 case BTF_KIND_FUNC_PROTO: 377 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 378 p->name_off = bswap_32(p->name_off); 379 p->type = bswap_32(p->type); 380 } 381 return 0; 382 case BTF_KIND_VAR: 383 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 384 return 0; 385 case BTF_KIND_DATASEC: 386 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 387 v->type = bswap_32(v->type); 388 v->offset = bswap_32(v->offset); 389 v->size = bswap_32(v->size); 390 } 391 return 0; 392 case BTF_KIND_DECL_TAG: 393 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 394 return 0; 395 default: 396 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 397 return -EINVAL; 398 } 399 } 400 401 static int btf_parse_type_sec(struct btf *btf) 402 { 403 struct btf_header *hdr = btf->hdr; 404 void *next_type = btf->types_data; 405 void *end_type = next_type + hdr->type_len; 406 int err, type_size; 407 408 while (next_type + sizeof(struct btf_type) <= end_type) { 409 if (btf->swapped_endian) 410 btf_bswap_type_base(next_type); 411 412 type_size = btf_type_size(next_type); 413 if (type_size < 0) 414 return type_size; 415 if (next_type + type_size > end_type) { 416 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 417 return -EINVAL; 418 } 419 420 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 421 return -EINVAL; 422 423 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 424 if (err) 425 return err; 426 427 next_type += type_size; 428 btf->nr_types++; 429 } 430 431 if (next_type != end_type) { 432 pr_warn("BTF types data is malformed\n"); 433 return -EINVAL; 434 } 435 436 return 0; 437 } 438 439 __u32 btf__get_nr_types(const struct btf *btf) 440 { 441 return btf->start_id + btf->nr_types - 1; 442 } 443 444 __u32 btf__type_cnt(const struct btf *btf) 445 { 446 return btf->start_id + btf->nr_types; 447 } 448 449 const struct btf *btf__base_btf(const struct btf *btf) 450 { 451 return btf->base_btf; 452 } 453 454 /* internal helper returning non-const pointer to a type */ 455 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 456 { 457 if (type_id == 0) 458 return &btf_void; 459 if (type_id < btf->start_id) 460 return btf_type_by_id(btf->base_btf, type_id); 461 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 462 } 463 464 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 465 { 466 if (type_id >= btf->start_id + btf->nr_types) 467 return errno = EINVAL, NULL; 468 return btf_type_by_id((struct btf *)btf, type_id); 469 } 470 471 static int determine_ptr_size(const struct btf *btf) 472 { 473 const struct btf_type *t; 474 const char *name; 475 int i, n; 476 477 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 478 return btf->base_btf->ptr_sz; 479 480 n = btf__type_cnt(btf); 481 for (i = 1; i < n; i++) { 482 t = btf__type_by_id(btf, i); 483 if (!btf_is_int(t)) 484 continue; 485 486 name = btf__name_by_offset(btf, t->name_off); 487 if (!name) 488 continue; 489 490 if (strcmp(name, "long int") == 0 || 491 strcmp(name, "long unsigned int") == 0) { 492 if (t->size != 4 && t->size != 8) 493 continue; 494 return t->size; 495 } 496 } 497 498 return -1; 499 } 500 501 static size_t btf_ptr_sz(const struct btf *btf) 502 { 503 if (!btf->ptr_sz) 504 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 505 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 506 } 507 508 /* Return pointer size this BTF instance assumes. The size is heuristically 509 * determined by looking for 'long' or 'unsigned long' integer type and 510 * recording its size in bytes. If BTF type information doesn't have any such 511 * type, this function returns 0. In the latter case, native architecture's 512 * pointer size is assumed, so will be either 4 or 8, depending on 513 * architecture that libbpf was compiled for. It's possible to override 514 * guessed value by using btf__set_pointer_size() API. 515 */ 516 size_t btf__pointer_size(const struct btf *btf) 517 { 518 if (!btf->ptr_sz) 519 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 520 521 if (btf->ptr_sz < 0) 522 /* not enough BTF type info to guess */ 523 return 0; 524 525 return btf->ptr_sz; 526 } 527 528 /* Override or set pointer size in bytes. Only values of 4 and 8 are 529 * supported. 530 */ 531 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 532 { 533 if (ptr_sz != 4 && ptr_sz != 8) 534 return libbpf_err(-EINVAL); 535 btf->ptr_sz = ptr_sz; 536 return 0; 537 } 538 539 static bool is_host_big_endian(void) 540 { 541 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 542 return false; 543 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 544 return true; 545 #else 546 # error "Unrecognized __BYTE_ORDER__" 547 #endif 548 } 549 550 enum btf_endianness btf__endianness(const struct btf *btf) 551 { 552 if (is_host_big_endian()) 553 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 554 else 555 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 556 } 557 558 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 559 { 560 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 561 return libbpf_err(-EINVAL); 562 563 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 564 if (!btf->swapped_endian) { 565 free(btf->raw_data_swapped); 566 btf->raw_data_swapped = NULL; 567 } 568 return 0; 569 } 570 571 static bool btf_type_is_void(const struct btf_type *t) 572 { 573 return t == &btf_void || btf_is_fwd(t); 574 } 575 576 static bool btf_type_is_void_or_null(const struct btf_type *t) 577 { 578 return !t || btf_type_is_void(t); 579 } 580 581 #define MAX_RESOLVE_DEPTH 32 582 583 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 584 { 585 const struct btf_array *array; 586 const struct btf_type *t; 587 __u32 nelems = 1; 588 __s64 size = -1; 589 int i; 590 591 t = btf__type_by_id(btf, type_id); 592 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 593 switch (btf_kind(t)) { 594 case BTF_KIND_INT: 595 case BTF_KIND_STRUCT: 596 case BTF_KIND_UNION: 597 case BTF_KIND_ENUM: 598 case BTF_KIND_DATASEC: 599 case BTF_KIND_FLOAT: 600 size = t->size; 601 goto done; 602 case BTF_KIND_PTR: 603 size = btf_ptr_sz(btf); 604 goto done; 605 case BTF_KIND_TYPEDEF: 606 case BTF_KIND_VOLATILE: 607 case BTF_KIND_CONST: 608 case BTF_KIND_RESTRICT: 609 case BTF_KIND_VAR: 610 case BTF_KIND_DECL_TAG: 611 type_id = t->type; 612 break; 613 case BTF_KIND_ARRAY: 614 array = btf_array(t); 615 if (nelems && array->nelems > UINT32_MAX / nelems) 616 return libbpf_err(-E2BIG); 617 nelems *= array->nelems; 618 type_id = array->type; 619 break; 620 default: 621 return libbpf_err(-EINVAL); 622 } 623 624 t = btf__type_by_id(btf, type_id); 625 } 626 627 done: 628 if (size < 0) 629 return libbpf_err(-EINVAL); 630 if (nelems && size > UINT32_MAX / nelems) 631 return libbpf_err(-E2BIG); 632 633 return nelems * size; 634 } 635 636 int btf__align_of(const struct btf *btf, __u32 id) 637 { 638 const struct btf_type *t = btf__type_by_id(btf, id); 639 __u16 kind = btf_kind(t); 640 641 switch (kind) { 642 case BTF_KIND_INT: 643 case BTF_KIND_ENUM: 644 case BTF_KIND_FLOAT: 645 return min(btf_ptr_sz(btf), (size_t)t->size); 646 case BTF_KIND_PTR: 647 return btf_ptr_sz(btf); 648 case BTF_KIND_TYPEDEF: 649 case BTF_KIND_VOLATILE: 650 case BTF_KIND_CONST: 651 case BTF_KIND_RESTRICT: 652 return btf__align_of(btf, t->type); 653 case BTF_KIND_ARRAY: 654 return btf__align_of(btf, btf_array(t)->type); 655 case BTF_KIND_STRUCT: 656 case BTF_KIND_UNION: { 657 const struct btf_member *m = btf_members(t); 658 __u16 vlen = btf_vlen(t); 659 int i, max_align = 1, align; 660 661 for (i = 0; i < vlen; i++, m++) { 662 align = btf__align_of(btf, m->type); 663 if (align <= 0) 664 return libbpf_err(align); 665 max_align = max(max_align, align); 666 } 667 668 return max_align; 669 } 670 default: 671 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 672 return errno = EINVAL, 0; 673 } 674 } 675 676 int btf__resolve_type(const struct btf *btf, __u32 type_id) 677 { 678 const struct btf_type *t; 679 int depth = 0; 680 681 t = btf__type_by_id(btf, type_id); 682 while (depth < MAX_RESOLVE_DEPTH && 683 !btf_type_is_void_or_null(t) && 684 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 685 type_id = t->type; 686 t = btf__type_by_id(btf, type_id); 687 depth++; 688 } 689 690 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 691 return libbpf_err(-EINVAL); 692 693 return type_id; 694 } 695 696 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 697 { 698 __u32 i, nr_types = btf__type_cnt(btf); 699 700 if (!strcmp(type_name, "void")) 701 return 0; 702 703 for (i = 1; i < nr_types; i++) { 704 const struct btf_type *t = btf__type_by_id(btf, i); 705 const char *name = btf__name_by_offset(btf, t->name_off); 706 707 if (name && !strcmp(type_name, name)) 708 return i; 709 } 710 711 return libbpf_err(-ENOENT); 712 } 713 714 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 715 const char *type_name, __u32 kind) 716 { 717 __u32 i, nr_types = btf__type_cnt(btf); 718 719 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 720 return 0; 721 722 for (i = start_id; i < nr_types; i++) { 723 const struct btf_type *t = btf__type_by_id(btf, i); 724 const char *name; 725 726 if (btf_kind(t) != kind) 727 continue; 728 name = btf__name_by_offset(btf, t->name_off); 729 if (name && !strcmp(type_name, name)) 730 return i; 731 } 732 733 return libbpf_err(-ENOENT); 734 } 735 736 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 737 __u32 kind) 738 { 739 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 740 } 741 742 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 743 __u32 kind) 744 { 745 return btf_find_by_name_kind(btf, 1, type_name, kind); 746 } 747 748 static bool btf_is_modifiable(const struct btf *btf) 749 { 750 return (void *)btf->hdr != btf->raw_data; 751 } 752 753 void btf__free(struct btf *btf) 754 { 755 if (IS_ERR_OR_NULL(btf)) 756 return; 757 758 if (btf->fd >= 0) 759 close(btf->fd); 760 761 if (btf_is_modifiable(btf)) { 762 /* if BTF was modified after loading, it will have a split 763 * in-memory representation for header, types, and strings 764 * sections, so we need to free all of them individually. It 765 * might still have a cached contiguous raw data present, 766 * which will be unconditionally freed below. 767 */ 768 free(btf->hdr); 769 free(btf->types_data); 770 strset__free(btf->strs_set); 771 } 772 free(btf->raw_data); 773 free(btf->raw_data_swapped); 774 free(btf->type_offs); 775 free(btf); 776 } 777 778 static struct btf *btf_new_empty(struct btf *base_btf) 779 { 780 struct btf *btf; 781 782 btf = calloc(1, sizeof(*btf)); 783 if (!btf) 784 return ERR_PTR(-ENOMEM); 785 786 btf->nr_types = 0; 787 btf->start_id = 1; 788 btf->start_str_off = 0; 789 btf->fd = -1; 790 btf->ptr_sz = sizeof(void *); 791 btf->swapped_endian = false; 792 793 if (base_btf) { 794 btf->base_btf = base_btf; 795 btf->start_id = btf__type_cnt(base_btf); 796 btf->start_str_off = base_btf->hdr->str_len; 797 } 798 799 /* +1 for empty string at offset 0 */ 800 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 801 btf->raw_data = calloc(1, btf->raw_size); 802 if (!btf->raw_data) { 803 free(btf); 804 return ERR_PTR(-ENOMEM); 805 } 806 807 btf->hdr = btf->raw_data; 808 btf->hdr->hdr_len = sizeof(struct btf_header); 809 btf->hdr->magic = BTF_MAGIC; 810 btf->hdr->version = BTF_VERSION; 811 812 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 813 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 814 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 815 816 return btf; 817 } 818 819 struct btf *btf__new_empty(void) 820 { 821 return libbpf_ptr(btf_new_empty(NULL)); 822 } 823 824 struct btf *btf__new_empty_split(struct btf *base_btf) 825 { 826 return libbpf_ptr(btf_new_empty(base_btf)); 827 } 828 829 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 830 { 831 struct btf *btf; 832 int err; 833 834 btf = calloc(1, sizeof(struct btf)); 835 if (!btf) 836 return ERR_PTR(-ENOMEM); 837 838 btf->nr_types = 0; 839 btf->start_id = 1; 840 btf->start_str_off = 0; 841 btf->fd = -1; 842 843 if (base_btf) { 844 btf->base_btf = base_btf; 845 btf->start_id = btf__type_cnt(base_btf); 846 btf->start_str_off = base_btf->hdr->str_len; 847 } 848 849 btf->raw_data = malloc(size); 850 if (!btf->raw_data) { 851 err = -ENOMEM; 852 goto done; 853 } 854 memcpy(btf->raw_data, data, size); 855 btf->raw_size = size; 856 857 btf->hdr = btf->raw_data; 858 err = btf_parse_hdr(btf); 859 if (err) 860 goto done; 861 862 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 863 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 864 865 err = btf_parse_str_sec(btf); 866 err = err ?: btf_parse_type_sec(btf); 867 if (err) 868 goto done; 869 870 done: 871 if (err) { 872 btf__free(btf); 873 return ERR_PTR(err); 874 } 875 876 return btf; 877 } 878 879 struct btf *btf__new(const void *data, __u32 size) 880 { 881 return libbpf_ptr(btf_new(data, size, NULL)); 882 } 883 884 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 885 struct btf_ext **btf_ext) 886 { 887 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 888 int err = 0, fd = -1, idx = 0; 889 struct btf *btf = NULL; 890 Elf_Scn *scn = NULL; 891 Elf *elf = NULL; 892 GElf_Ehdr ehdr; 893 size_t shstrndx; 894 895 if (elf_version(EV_CURRENT) == EV_NONE) { 896 pr_warn("failed to init libelf for %s\n", path); 897 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 898 } 899 900 fd = open(path, O_RDONLY | O_CLOEXEC); 901 if (fd < 0) { 902 err = -errno; 903 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 904 return ERR_PTR(err); 905 } 906 907 err = -LIBBPF_ERRNO__FORMAT; 908 909 elf = elf_begin(fd, ELF_C_READ, NULL); 910 if (!elf) { 911 pr_warn("failed to open %s as ELF file\n", path); 912 goto done; 913 } 914 if (!gelf_getehdr(elf, &ehdr)) { 915 pr_warn("failed to get EHDR from %s\n", path); 916 goto done; 917 } 918 919 if (elf_getshdrstrndx(elf, &shstrndx)) { 920 pr_warn("failed to get section names section index for %s\n", 921 path); 922 goto done; 923 } 924 925 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 926 pr_warn("failed to get e_shstrndx from %s\n", path); 927 goto done; 928 } 929 930 while ((scn = elf_nextscn(elf, scn)) != NULL) { 931 GElf_Shdr sh; 932 char *name; 933 934 idx++; 935 if (gelf_getshdr(scn, &sh) != &sh) { 936 pr_warn("failed to get section(%d) header from %s\n", 937 idx, path); 938 goto done; 939 } 940 name = elf_strptr(elf, shstrndx, sh.sh_name); 941 if (!name) { 942 pr_warn("failed to get section(%d) name from %s\n", 943 idx, path); 944 goto done; 945 } 946 if (strcmp(name, BTF_ELF_SEC) == 0) { 947 btf_data = elf_getdata(scn, 0); 948 if (!btf_data) { 949 pr_warn("failed to get section(%d, %s) data from %s\n", 950 idx, name, path); 951 goto done; 952 } 953 continue; 954 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 955 btf_ext_data = elf_getdata(scn, 0); 956 if (!btf_ext_data) { 957 pr_warn("failed to get section(%d, %s) data from %s\n", 958 idx, name, path); 959 goto done; 960 } 961 continue; 962 } 963 } 964 965 err = 0; 966 967 if (!btf_data) { 968 err = -ENOENT; 969 goto done; 970 } 971 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 972 err = libbpf_get_error(btf); 973 if (err) 974 goto done; 975 976 switch (gelf_getclass(elf)) { 977 case ELFCLASS32: 978 btf__set_pointer_size(btf, 4); 979 break; 980 case ELFCLASS64: 981 btf__set_pointer_size(btf, 8); 982 break; 983 default: 984 pr_warn("failed to get ELF class (bitness) for %s\n", path); 985 break; 986 } 987 988 if (btf_ext && btf_ext_data) { 989 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 990 err = libbpf_get_error(*btf_ext); 991 if (err) 992 goto done; 993 } else if (btf_ext) { 994 *btf_ext = NULL; 995 } 996 done: 997 if (elf) 998 elf_end(elf); 999 close(fd); 1000 1001 if (!err) 1002 return btf; 1003 1004 if (btf_ext) 1005 btf_ext__free(*btf_ext); 1006 btf__free(btf); 1007 1008 return ERR_PTR(err); 1009 } 1010 1011 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1012 { 1013 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1014 } 1015 1016 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1017 { 1018 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1019 } 1020 1021 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1022 { 1023 struct btf *btf = NULL; 1024 void *data = NULL; 1025 FILE *f = NULL; 1026 __u16 magic; 1027 int err = 0; 1028 long sz; 1029 1030 f = fopen(path, "rb"); 1031 if (!f) { 1032 err = -errno; 1033 goto err_out; 1034 } 1035 1036 /* check BTF magic */ 1037 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1038 err = -EIO; 1039 goto err_out; 1040 } 1041 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1042 /* definitely not a raw BTF */ 1043 err = -EPROTO; 1044 goto err_out; 1045 } 1046 1047 /* get file size */ 1048 if (fseek(f, 0, SEEK_END)) { 1049 err = -errno; 1050 goto err_out; 1051 } 1052 sz = ftell(f); 1053 if (sz < 0) { 1054 err = -errno; 1055 goto err_out; 1056 } 1057 /* rewind to the start */ 1058 if (fseek(f, 0, SEEK_SET)) { 1059 err = -errno; 1060 goto err_out; 1061 } 1062 1063 /* pre-alloc memory and read all of BTF data */ 1064 data = malloc(sz); 1065 if (!data) { 1066 err = -ENOMEM; 1067 goto err_out; 1068 } 1069 if (fread(data, 1, sz, f) < sz) { 1070 err = -EIO; 1071 goto err_out; 1072 } 1073 1074 /* finally parse BTF data */ 1075 btf = btf_new(data, sz, base_btf); 1076 1077 err_out: 1078 free(data); 1079 if (f) 1080 fclose(f); 1081 return err ? ERR_PTR(err) : btf; 1082 } 1083 1084 struct btf *btf__parse_raw(const char *path) 1085 { 1086 return libbpf_ptr(btf_parse_raw(path, NULL)); 1087 } 1088 1089 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1090 { 1091 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1092 } 1093 1094 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1095 { 1096 struct btf *btf; 1097 int err; 1098 1099 if (btf_ext) 1100 *btf_ext = NULL; 1101 1102 btf = btf_parse_raw(path, base_btf); 1103 err = libbpf_get_error(btf); 1104 if (!err) 1105 return btf; 1106 if (err != -EPROTO) 1107 return ERR_PTR(err); 1108 return btf_parse_elf(path, base_btf, btf_ext); 1109 } 1110 1111 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1112 { 1113 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1114 } 1115 1116 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1117 { 1118 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1119 } 1120 1121 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1122 1123 int btf__load_into_kernel(struct btf *btf) 1124 { 1125 __u32 log_buf_size = 0, raw_size; 1126 char *log_buf = NULL; 1127 void *raw_data; 1128 int err = 0; 1129 1130 if (btf->fd >= 0) 1131 return libbpf_err(-EEXIST); 1132 1133 retry_load: 1134 if (log_buf_size) { 1135 log_buf = malloc(log_buf_size); 1136 if (!log_buf) 1137 return libbpf_err(-ENOMEM); 1138 1139 *log_buf = 0; 1140 } 1141 1142 raw_data = btf_get_raw_data(btf, &raw_size, false); 1143 if (!raw_data) { 1144 err = -ENOMEM; 1145 goto done; 1146 } 1147 /* cache native raw data representation */ 1148 btf->raw_size = raw_size; 1149 btf->raw_data = raw_data; 1150 1151 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1152 if (btf->fd < 0) { 1153 if (!log_buf || errno == ENOSPC) { 1154 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1155 log_buf_size << 1); 1156 free(log_buf); 1157 goto retry_load; 1158 } 1159 1160 err = -errno; 1161 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1162 if (*log_buf) 1163 pr_warn("%s\n", log_buf); 1164 goto done; 1165 } 1166 1167 done: 1168 free(log_buf); 1169 return libbpf_err(err); 1170 } 1171 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel"))); 1172 1173 int btf__fd(const struct btf *btf) 1174 { 1175 return btf->fd; 1176 } 1177 1178 void btf__set_fd(struct btf *btf, int fd) 1179 { 1180 btf->fd = fd; 1181 } 1182 1183 static const void *btf_strs_data(const struct btf *btf) 1184 { 1185 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1186 } 1187 1188 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1189 { 1190 struct btf_header *hdr = btf->hdr; 1191 struct btf_type *t; 1192 void *data, *p; 1193 __u32 data_sz; 1194 int i; 1195 1196 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1197 if (data) { 1198 *size = btf->raw_size; 1199 return data; 1200 } 1201 1202 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1203 data = calloc(1, data_sz); 1204 if (!data) 1205 return NULL; 1206 p = data; 1207 1208 memcpy(p, hdr, hdr->hdr_len); 1209 if (swap_endian) 1210 btf_bswap_hdr(p); 1211 p += hdr->hdr_len; 1212 1213 memcpy(p, btf->types_data, hdr->type_len); 1214 if (swap_endian) { 1215 for (i = 0; i < btf->nr_types; i++) { 1216 t = p + btf->type_offs[i]; 1217 /* btf_bswap_type_rest() relies on native t->info, so 1218 * we swap base type info after we swapped all the 1219 * additional information 1220 */ 1221 if (btf_bswap_type_rest(t)) 1222 goto err_out; 1223 btf_bswap_type_base(t); 1224 } 1225 } 1226 p += hdr->type_len; 1227 1228 memcpy(p, btf_strs_data(btf), hdr->str_len); 1229 p += hdr->str_len; 1230 1231 *size = data_sz; 1232 return data; 1233 err_out: 1234 free(data); 1235 return NULL; 1236 } 1237 1238 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1239 { 1240 struct btf *btf = (struct btf *)btf_ro; 1241 __u32 data_sz; 1242 void *data; 1243 1244 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1245 if (!data) 1246 return errno = ENOMEM, NULL; 1247 1248 btf->raw_size = data_sz; 1249 if (btf->swapped_endian) 1250 btf->raw_data_swapped = data; 1251 else 1252 btf->raw_data = data; 1253 *size = data_sz; 1254 return data; 1255 } 1256 1257 __attribute__((alias("btf__raw_data"))) 1258 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1259 1260 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1261 { 1262 if (offset < btf->start_str_off) 1263 return btf__str_by_offset(btf->base_btf, offset); 1264 else if (offset - btf->start_str_off < btf->hdr->str_len) 1265 return btf_strs_data(btf) + (offset - btf->start_str_off); 1266 else 1267 return errno = EINVAL, NULL; 1268 } 1269 1270 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1271 { 1272 return btf__str_by_offset(btf, offset); 1273 } 1274 1275 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1276 { 1277 struct bpf_btf_info btf_info; 1278 __u32 len = sizeof(btf_info); 1279 __u32 last_size; 1280 struct btf *btf; 1281 void *ptr; 1282 int err; 1283 1284 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1285 * let's start with a sane default - 4KiB here - and resize it only if 1286 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1287 */ 1288 last_size = 4096; 1289 ptr = malloc(last_size); 1290 if (!ptr) 1291 return ERR_PTR(-ENOMEM); 1292 1293 memset(&btf_info, 0, sizeof(btf_info)); 1294 btf_info.btf = ptr_to_u64(ptr); 1295 btf_info.btf_size = last_size; 1296 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1297 1298 if (!err && btf_info.btf_size > last_size) { 1299 void *temp_ptr; 1300 1301 last_size = btf_info.btf_size; 1302 temp_ptr = realloc(ptr, last_size); 1303 if (!temp_ptr) { 1304 btf = ERR_PTR(-ENOMEM); 1305 goto exit_free; 1306 } 1307 ptr = temp_ptr; 1308 1309 len = sizeof(btf_info); 1310 memset(&btf_info, 0, sizeof(btf_info)); 1311 btf_info.btf = ptr_to_u64(ptr); 1312 btf_info.btf_size = last_size; 1313 1314 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1315 } 1316 1317 if (err || btf_info.btf_size > last_size) { 1318 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1319 goto exit_free; 1320 } 1321 1322 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1323 1324 exit_free: 1325 free(ptr); 1326 return btf; 1327 } 1328 1329 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1330 { 1331 struct btf *btf; 1332 int btf_fd; 1333 1334 btf_fd = bpf_btf_get_fd_by_id(id); 1335 if (btf_fd < 0) 1336 return libbpf_err_ptr(-errno); 1337 1338 btf = btf_get_from_fd(btf_fd, base_btf); 1339 close(btf_fd); 1340 1341 return libbpf_ptr(btf); 1342 } 1343 1344 struct btf *btf__load_from_kernel_by_id(__u32 id) 1345 { 1346 return btf__load_from_kernel_by_id_split(id, NULL); 1347 } 1348 1349 int btf__get_from_id(__u32 id, struct btf **btf) 1350 { 1351 struct btf *res; 1352 int err; 1353 1354 *btf = NULL; 1355 res = btf__load_from_kernel_by_id(id); 1356 err = libbpf_get_error(res); 1357 1358 if (err) 1359 return libbpf_err(err); 1360 1361 *btf = res; 1362 return 0; 1363 } 1364 1365 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1366 __u32 expected_key_size, __u32 expected_value_size, 1367 __u32 *key_type_id, __u32 *value_type_id) 1368 { 1369 const struct btf_type *container_type; 1370 const struct btf_member *key, *value; 1371 const size_t max_name = 256; 1372 char container_name[max_name]; 1373 __s64 key_size, value_size; 1374 __s32 container_id; 1375 1376 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1377 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1378 map_name, map_name); 1379 return libbpf_err(-EINVAL); 1380 } 1381 1382 container_id = btf__find_by_name(btf, container_name); 1383 if (container_id < 0) { 1384 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1385 map_name, container_name); 1386 return libbpf_err(container_id); 1387 } 1388 1389 container_type = btf__type_by_id(btf, container_id); 1390 if (!container_type) { 1391 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1392 map_name, container_id); 1393 return libbpf_err(-EINVAL); 1394 } 1395 1396 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1397 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1398 map_name, container_name); 1399 return libbpf_err(-EINVAL); 1400 } 1401 1402 key = btf_members(container_type); 1403 value = key + 1; 1404 1405 key_size = btf__resolve_size(btf, key->type); 1406 if (key_size < 0) { 1407 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1408 return libbpf_err(key_size); 1409 } 1410 1411 if (expected_key_size != key_size) { 1412 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1413 map_name, (__u32)key_size, expected_key_size); 1414 return libbpf_err(-EINVAL); 1415 } 1416 1417 value_size = btf__resolve_size(btf, value->type); 1418 if (value_size < 0) { 1419 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1420 return libbpf_err(value_size); 1421 } 1422 1423 if (expected_value_size != value_size) { 1424 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1425 map_name, (__u32)value_size, expected_value_size); 1426 return libbpf_err(-EINVAL); 1427 } 1428 1429 *key_type_id = key->type; 1430 *value_type_id = value->type; 1431 1432 return 0; 1433 } 1434 1435 static void btf_invalidate_raw_data(struct btf *btf) 1436 { 1437 if (btf->raw_data) { 1438 free(btf->raw_data); 1439 btf->raw_data = NULL; 1440 } 1441 if (btf->raw_data_swapped) { 1442 free(btf->raw_data_swapped); 1443 btf->raw_data_swapped = NULL; 1444 } 1445 } 1446 1447 /* Ensure BTF is ready to be modified (by splitting into a three memory 1448 * regions for header, types, and strings). Also invalidate cached 1449 * raw_data, if any. 1450 */ 1451 static int btf_ensure_modifiable(struct btf *btf) 1452 { 1453 void *hdr, *types; 1454 struct strset *set = NULL; 1455 int err = -ENOMEM; 1456 1457 if (btf_is_modifiable(btf)) { 1458 /* any BTF modification invalidates raw_data */ 1459 btf_invalidate_raw_data(btf); 1460 return 0; 1461 } 1462 1463 /* split raw data into three memory regions */ 1464 hdr = malloc(btf->hdr->hdr_len); 1465 types = malloc(btf->hdr->type_len); 1466 if (!hdr || !types) 1467 goto err_out; 1468 1469 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1470 memcpy(types, btf->types_data, btf->hdr->type_len); 1471 1472 /* build lookup index for all strings */ 1473 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1474 if (IS_ERR(set)) { 1475 err = PTR_ERR(set); 1476 goto err_out; 1477 } 1478 1479 /* only when everything was successful, update internal state */ 1480 btf->hdr = hdr; 1481 btf->types_data = types; 1482 btf->types_data_cap = btf->hdr->type_len; 1483 btf->strs_data = NULL; 1484 btf->strs_set = set; 1485 /* if BTF was created from scratch, all strings are guaranteed to be 1486 * unique and deduplicated 1487 */ 1488 if (btf->hdr->str_len == 0) 1489 btf->strs_deduped = true; 1490 if (!btf->base_btf && btf->hdr->str_len == 1) 1491 btf->strs_deduped = true; 1492 1493 /* invalidate raw_data representation */ 1494 btf_invalidate_raw_data(btf); 1495 1496 return 0; 1497 1498 err_out: 1499 strset__free(set); 1500 free(hdr); 1501 free(types); 1502 return err; 1503 } 1504 1505 /* Find an offset in BTF string section that corresponds to a given string *s*. 1506 * Returns: 1507 * - >0 offset into string section, if string is found; 1508 * - -ENOENT, if string is not in the string section; 1509 * - <0, on any other error. 1510 */ 1511 int btf__find_str(struct btf *btf, const char *s) 1512 { 1513 int off; 1514 1515 if (btf->base_btf) { 1516 off = btf__find_str(btf->base_btf, s); 1517 if (off != -ENOENT) 1518 return off; 1519 } 1520 1521 /* BTF needs to be in a modifiable state to build string lookup index */ 1522 if (btf_ensure_modifiable(btf)) 1523 return libbpf_err(-ENOMEM); 1524 1525 off = strset__find_str(btf->strs_set, s); 1526 if (off < 0) 1527 return libbpf_err(off); 1528 1529 return btf->start_str_off + off; 1530 } 1531 1532 /* Add a string s to the BTF string section. 1533 * Returns: 1534 * - > 0 offset into string section, on success; 1535 * - < 0, on error. 1536 */ 1537 int btf__add_str(struct btf *btf, const char *s) 1538 { 1539 int off; 1540 1541 if (btf->base_btf) { 1542 off = btf__find_str(btf->base_btf, s); 1543 if (off != -ENOENT) 1544 return off; 1545 } 1546 1547 if (btf_ensure_modifiable(btf)) 1548 return libbpf_err(-ENOMEM); 1549 1550 off = strset__add_str(btf->strs_set, s); 1551 if (off < 0) 1552 return libbpf_err(off); 1553 1554 btf->hdr->str_len = strset__data_size(btf->strs_set); 1555 1556 return btf->start_str_off + off; 1557 } 1558 1559 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1560 { 1561 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1562 btf->hdr->type_len, UINT_MAX, add_sz); 1563 } 1564 1565 static void btf_type_inc_vlen(struct btf_type *t) 1566 { 1567 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1568 } 1569 1570 static int btf_commit_type(struct btf *btf, int data_sz) 1571 { 1572 int err; 1573 1574 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1575 if (err) 1576 return libbpf_err(err); 1577 1578 btf->hdr->type_len += data_sz; 1579 btf->hdr->str_off += data_sz; 1580 btf->nr_types++; 1581 return btf->start_id + btf->nr_types - 1; 1582 } 1583 1584 struct btf_pipe { 1585 const struct btf *src; 1586 struct btf *dst; 1587 }; 1588 1589 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1590 { 1591 struct btf_pipe *p = ctx; 1592 int off; 1593 1594 if (!*str_off) /* nothing to do for empty strings */ 1595 return 0; 1596 1597 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1598 if (off < 0) 1599 return off; 1600 1601 *str_off = off; 1602 return 0; 1603 } 1604 1605 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1606 { 1607 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1608 struct btf_type *t; 1609 int sz, err; 1610 1611 sz = btf_type_size(src_type); 1612 if (sz < 0) 1613 return libbpf_err(sz); 1614 1615 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1616 if (btf_ensure_modifiable(btf)) 1617 return libbpf_err(-ENOMEM); 1618 1619 t = btf_add_type_mem(btf, sz); 1620 if (!t) 1621 return libbpf_err(-ENOMEM); 1622 1623 memcpy(t, src_type, sz); 1624 1625 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1626 if (err) 1627 return libbpf_err(err); 1628 1629 return btf_commit_type(btf, sz); 1630 } 1631 1632 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1633 { 1634 struct btf *btf = ctx; 1635 1636 if (!*type_id) /* nothing to do for VOID references */ 1637 return 0; 1638 1639 /* we haven't updated btf's type count yet, so 1640 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1641 * add to all newly added BTF types 1642 */ 1643 *type_id += btf->start_id + btf->nr_types - 1; 1644 return 0; 1645 } 1646 1647 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1648 { 1649 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1650 int data_sz, sz, cnt, i, err, old_strs_len; 1651 __u32 *off; 1652 void *t; 1653 1654 /* appending split BTF isn't supported yet */ 1655 if (src_btf->base_btf) 1656 return libbpf_err(-ENOTSUP); 1657 1658 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1659 if (btf_ensure_modifiable(btf)) 1660 return libbpf_err(-ENOMEM); 1661 1662 /* remember original strings section size if we have to roll back 1663 * partial strings section changes 1664 */ 1665 old_strs_len = btf->hdr->str_len; 1666 1667 data_sz = src_btf->hdr->type_len; 1668 cnt = btf__type_cnt(src_btf) - 1; 1669 1670 /* pre-allocate enough memory for new types */ 1671 t = btf_add_type_mem(btf, data_sz); 1672 if (!t) 1673 return libbpf_err(-ENOMEM); 1674 1675 /* pre-allocate enough memory for type offset index for new types */ 1676 off = btf_add_type_offs_mem(btf, cnt); 1677 if (!off) 1678 return libbpf_err(-ENOMEM); 1679 1680 /* bulk copy types data for all types from src_btf */ 1681 memcpy(t, src_btf->types_data, data_sz); 1682 1683 for (i = 0; i < cnt; i++) { 1684 sz = btf_type_size(t); 1685 if (sz < 0) { 1686 /* unlikely, has to be corrupted src_btf */ 1687 err = sz; 1688 goto err_out; 1689 } 1690 1691 /* fill out type ID to type offset mapping for lookups by type ID */ 1692 *off = t - btf->types_data; 1693 1694 /* add, dedup, and remap strings referenced by this BTF type */ 1695 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1696 if (err) 1697 goto err_out; 1698 1699 /* remap all type IDs referenced from this BTF type */ 1700 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1701 if (err) 1702 goto err_out; 1703 1704 /* go to next type data and type offset index entry */ 1705 t += sz; 1706 off++; 1707 } 1708 1709 /* Up until now any of the copied type data was effectively invisible, 1710 * so if we exited early before this point due to error, BTF would be 1711 * effectively unmodified. There would be extra internal memory 1712 * pre-allocated, but it would not be available for querying. But now 1713 * that we've copied and rewritten all the data successfully, we can 1714 * update type count and various internal offsets and sizes to 1715 * "commit" the changes and made them visible to the outside world. 1716 */ 1717 btf->hdr->type_len += data_sz; 1718 btf->hdr->str_off += data_sz; 1719 btf->nr_types += cnt; 1720 1721 /* return type ID of the first added BTF type */ 1722 return btf->start_id + btf->nr_types - cnt; 1723 err_out: 1724 /* zero out preallocated memory as if it was just allocated with 1725 * libbpf_add_mem() 1726 */ 1727 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1728 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1729 1730 /* and now restore original strings section size; types data size 1731 * wasn't modified, so doesn't need restoring, see big comment above */ 1732 btf->hdr->str_len = old_strs_len; 1733 1734 return libbpf_err(err); 1735 } 1736 1737 /* 1738 * Append new BTF_KIND_INT type with: 1739 * - *name* - non-empty, non-NULL type name; 1740 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1741 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1742 * Returns: 1743 * - >0, type ID of newly added BTF type; 1744 * - <0, on error. 1745 */ 1746 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1747 { 1748 struct btf_type *t; 1749 int sz, name_off; 1750 1751 /* non-empty name */ 1752 if (!name || !name[0]) 1753 return libbpf_err(-EINVAL); 1754 /* byte_sz must be power of 2 */ 1755 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1756 return libbpf_err(-EINVAL); 1757 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1758 return libbpf_err(-EINVAL); 1759 1760 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1761 if (btf_ensure_modifiable(btf)) 1762 return libbpf_err(-ENOMEM); 1763 1764 sz = sizeof(struct btf_type) + sizeof(int); 1765 t = btf_add_type_mem(btf, sz); 1766 if (!t) 1767 return libbpf_err(-ENOMEM); 1768 1769 /* if something goes wrong later, we might end up with an extra string, 1770 * but that shouldn't be a problem, because BTF can't be constructed 1771 * completely anyway and will most probably be just discarded 1772 */ 1773 name_off = btf__add_str(btf, name); 1774 if (name_off < 0) 1775 return name_off; 1776 1777 t->name_off = name_off; 1778 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1779 t->size = byte_sz; 1780 /* set INT info, we don't allow setting legacy bit offset/size */ 1781 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1782 1783 return btf_commit_type(btf, sz); 1784 } 1785 1786 /* 1787 * Append new BTF_KIND_FLOAT type with: 1788 * - *name* - non-empty, non-NULL type name; 1789 * - *sz* - size of the type, in bytes; 1790 * Returns: 1791 * - >0, type ID of newly added BTF type; 1792 * - <0, on error. 1793 */ 1794 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1795 { 1796 struct btf_type *t; 1797 int sz, name_off; 1798 1799 /* non-empty name */ 1800 if (!name || !name[0]) 1801 return libbpf_err(-EINVAL); 1802 1803 /* byte_sz must be one of the explicitly allowed values */ 1804 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1805 byte_sz != 16) 1806 return libbpf_err(-EINVAL); 1807 1808 if (btf_ensure_modifiable(btf)) 1809 return libbpf_err(-ENOMEM); 1810 1811 sz = sizeof(struct btf_type); 1812 t = btf_add_type_mem(btf, sz); 1813 if (!t) 1814 return libbpf_err(-ENOMEM); 1815 1816 name_off = btf__add_str(btf, name); 1817 if (name_off < 0) 1818 return name_off; 1819 1820 t->name_off = name_off; 1821 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1822 t->size = byte_sz; 1823 1824 return btf_commit_type(btf, sz); 1825 } 1826 1827 /* it's completely legal to append BTF types with type IDs pointing forward to 1828 * types that haven't been appended yet, so we only make sure that id looks 1829 * sane, we can't guarantee that ID will always be valid 1830 */ 1831 static int validate_type_id(int id) 1832 { 1833 if (id < 0 || id > BTF_MAX_NR_TYPES) 1834 return -EINVAL; 1835 return 0; 1836 } 1837 1838 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1839 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1840 { 1841 struct btf_type *t; 1842 int sz, name_off = 0; 1843 1844 if (validate_type_id(ref_type_id)) 1845 return libbpf_err(-EINVAL); 1846 1847 if (btf_ensure_modifiable(btf)) 1848 return libbpf_err(-ENOMEM); 1849 1850 sz = sizeof(struct btf_type); 1851 t = btf_add_type_mem(btf, sz); 1852 if (!t) 1853 return libbpf_err(-ENOMEM); 1854 1855 if (name && name[0]) { 1856 name_off = btf__add_str(btf, name); 1857 if (name_off < 0) 1858 return name_off; 1859 } 1860 1861 t->name_off = name_off; 1862 t->info = btf_type_info(kind, 0, 0); 1863 t->type = ref_type_id; 1864 1865 return btf_commit_type(btf, sz); 1866 } 1867 1868 /* 1869 * Append new BTF_KIND_PTR type with: 1870 * - *ref_type_id* - referenced type ID, it might not exist yet; 1871 * Returns: 1872 * - >0, type ID of newly added BTF type; 1873 * - <0, on error. 1874 */ 1875 int btf__add_ptr(struct btf *btf, int ref_type_id) 1876 { 1877 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1878 } 1879 1880 /* 1881 * Append new BTF_KIND_ARRAY type with: 1882 * - *index_type_id* - type ID of the type describing array index; 1883 * - *elem_type_id* - type ID of the type describing array element; 1884 * - *nr_elems* - the size of the array; 1885 * Returns: 1886 * - >0, type ID of newly added BTF type; 1887 * - <0, on error. 1888 */ 1889 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1890 { 1891 struct btf_type *t; 1892 struct btf_array *a; 1893 int sz; 1894 1895 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1896 return libbpf_err(-EINVAL); 1897 1898 if (btf_ensure_modifiable(btf)) 1899 return libbpf_err(-ENOMEM); 1900 1901 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1902 t = btf_add_type_mem(btf, sz); 1903 if (!t) 1904 return libbpf_err(-ENOMEM); 1905 1906 t->name_off = 0; 1907 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1908 t->size = 0; 1909 1910 a = btf_array(t); 1911 a->type = elem_type_id; 1912 a->index_type = index_type_id; 1913 a->nelems = nr_elems; 1914 1915 return btf_commit_type(btf, sz); 1916 } 1917 1918 /* generic STRUCT/UNION append function */ 1919 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1920 { 1921 struct btf_type *t; 1922 int sz, name_off = 0; 1923 1924 if (btf_ensure_modifiable(btf)) 1925 return libbpf_err(-ENOMEM); 1926 1927 sz = sizeof(struct btf_type); 1928 t = btf_add_type_mem(btf, sz); 1929 if (!t) 1930 return libbpf_err(-ENOMEM); 1931 1932 if (name && name[0]) { 1933 name_off = btf__add_str(btf, name); 1934 if (name_off < 0) 1935 return name_off; 1936 } 1937 1938 /* start out with vlen=0 and no kflag; this will be adjusted when 1939 * adding each member 1940 */ 1941 t->name_off = name_off; 1942 t->info = btf_type_info(kind, 0, 0); 1943 t->size = bytes_sz; 1944 1945 return btf_commit_type(btf, sz); 1946 } 1947 1948 /* 1949 * Append new BTF_KIND_STRUCT type with: 1950 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1951 * - *byte_sz* - size of the struct, in bytes; 1952 * 1953 * Struct initially has no fields in it. Fields can be added by 1954 * btf__add_field() right after btf__add_struct() succeeds. 1955 * 1956 * Returns: 1957 * - >0, type ID of newly added BTF type; 1958 * - <0, on error. 1959 */ 1960 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1961 { 1962 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1963 } 1964 1965 /* 1966 * Append new BTF_KIND_UNION type with: 1967 * - *name* - name of the union, can be NULL or empty for anonymous union; 1968 * - *byte_sz* - size of the union, in bytes; 1969 * 1970 * Union initially has no fields in it. Fields can be added by 1971 * btf__add_field() right after btf__add_union() succeeds. All fields 1972 * should have *bit_offset* of 0. 1973 * 1974 * Returns: 1975 * - >0, type ID of newly added BTF type; 1976 * - <0, on error. 1977 */ 1978 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1979 { 1980 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1981 } 1982 1983 static struct btf_type *btf_last_type(struct btf *btf) 1984 { 1985 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 1986 } 1987 1988 /* 1989 * Append new field for the current STRUCT/UNION type with: 1990 * - *name* - name of the field, can be NULL or empty for anonymous field; 1991 * - *type_id* - type ID for the type describing field type; 1992 * - *bit_offset* - bit offset of the start of the field within struct/union; 1993 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1994 * Returns: 1995 * - 0, on success; 1996 * - <0, on error. 1997 */ 1998 int btf__add_field(struct btf *btf, const char *name, int type_id, 1999 __u32 bit_offset, __u32 bit_size) 2000 { 2001 struct btf_type *t; 2002 struct btf_member *m; 2003 bool is_bitfield; 2004 int sz, name_off = 0; 2005 2006 /* last type should be union/struct */ 2007 if (btf->nr_types == 0) 2008 return libbpf_err(-EINVAL); 2009 t = btf_last_type(btf); 2010 if (!btf_is_composite(t)) 2011 return libbpf_err(-EINVAL); 2012 2013 if (validate_type_id(type_id)) 2014 return libbpf_err(-EINVAL); 2015 /* best-effort bit field offset/size enforcement */ 2016 is_bitfield = bit_size || (bit_offset % 8 != 0); 2017 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2018 return libbpf_err(-EINVAL); 2019 2020 /* only offset 0 is allowed for unions */ 2021 if (btf_is_union(t) && bit_offset) 2022 return libbpf_err(-EINVAL); 2023 2024 /* decompose and invalidate raw data */ 2025 if (btf_ensure_modifiable(btf)) 2026 return libbpf_err(-ENOMEM); 2027 2028 sz = sizeof(struct btf_member); 2029 m = btf_add_type_mem(btf, sz); 2030 if (!m) 2031 return libbpf_err(-ENOMEM); 2032 2033 if (name && name[0]) { 2034 name_off = btf__add_str(btf, name); 2035 if (name_off < 0) 2036 return name_off; 2037 } 2038 2039 m->name_off = name_off; 2040 m->type = type_id; 2041 m->offset = bit_offset | (bit_size << 24); 2042 2043 /* btf_add_type_mem can invalidate t pointer */ 2044 t = btf_last_type(btf); 2045 /* update parent type's vlen and kflag */ 2046 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2047 2048 btf->hdr->type_len += sz; 2049 btf->hdr->str_off += sz; 2050 return 0; 2051 } 2052 2053 /* 2054 * Append new BTF_KIND_ENUM type with: 2055 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2056 * - *byte_sz* - size of the enum, in bytes. 2057 * 2058 * Enum initially has no enum values in it (and corresponds to enum forward 2059 * declaration). Enumerator values can be added by btf__add_enum_value() 2060 * immediately after btf__add_enum() succeeds. 2061 * 2062 * Returns: 2063 * - >0, type ID of newly added BTF type; 2064 * - <0, on error. 2065 */ 2066 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2067 { 2068 struct btf_type *t; 2069 int sz, name_off = 0; 2070 2071 /* byte_sz must be power of 2 */ 2072 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2073 return libbpf_err(-EINVAL); 2074 2075 if (btf_ensure_modifiable(btf)) 2076 return libbpf_err(-ENOMEM); 2077 2078 sz = sizeof(struct btf_type); 2079 t = btf_add_type_mem(btf, sz); 2080 if (!t) 2081 return libbpf_err(-ENOMEM); 2082 2083 if (name && name[0]) { 2084 name_off = btf__add_str(btf, name); 2085 if (name_off < 0) 2086 return name_off; 2087 } 2088 2089 /* start out with vlen=0; it will be adjusted when adding enum values */ 2090 t->name_off = name_off; 2091 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2092 t->size = byte_sz; 2093 2094 return btf_commit_type(btf, sz); 2095 } 2096 2097 /* 2098 * Append new enum value for the current ENUM type with: 2099 * - *name* - name of the enumerator value, can't be NULL or empty; 2100 * - *value* - integer value corresponding to enum value *name*; 2101 * Returns: 2102 * - 0, on success; 2103 * - <0, on error. 2104 */ 2105 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2106 { 2107 struct btf_type *t; 2108 struct btf_enum *v; 2109 int sz, name_off; 2110 2111 /* last type should be BTF_KIND_ENUM */ 2112 if (btf->nr_types == 0) 2113 return libbpf_err(-EINVAL); 2114 t = btf_last_type(btf); 2115 if (!btf_is_enum(t)) 2116 return libbpf_err(-EINVAL); 2117 2118 /* non-empty name */ 2119 if (!name || !name[0]) 2120 return libbpf_err(-EINVAL); 2121 if (value < INT_MIN || value > UINT_MAX) 2122 return libbpf_err(-E2BIG); 2123 2124 /* decompose and invalidate raw data */ 2125 if (btf_ensure_modifiable(btf)) 2126 return libbpf_err(-ENOMEM); 2127 2128 sz = sizeof(struct btf_enum); 2129 v = btf_add_type_mem(btf, sz); 2130 if (!v) 2131 return libbpf_err(-ENOMEM); 2132 2133 name_off = btf__add_str(btf, name); 2134 if (name_off < 0) 2135 return name_off; 2136 2137 v->name_off = name_off; 2138 v->val = value; 2139 2140 /* update parent type's vlen */ 2141 t = btf_last_type(btf); 2142 btf_type_inc_vlen(t); 2143 2144 btf->hdr->type_len += sz; 2145 btf->hdr->str_off += sz; 2146 return 0; 2147 } 2148 2149 /* 2150 * Append new BTF_KIND_FWD type with: 2151 * - *name*, non-empty/non-NULL name; 2152 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2153 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2154 * Returns: 2155 * - >0, type ID of newly added BTF type; 2156 * - <0, on error. 2157 */ 2158 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2159 { 2160 if (!name || !name[0]) 2161 return libbpf_err(-EINVAL); 2162 2163 switch (fwd_kind) { 2164 case BTF_FWD_STRUCT: 2165 case BTF_FWD_UNION: { 2166 struct btf_type *t; 2167 int id; 2168 2169 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2170 if (id <= 0) 2171 return id; 2172 t = btf_type_by_id(btf, id); 2173 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2174 return id; 2175 } 2176 case BTF_FWD_ENUM: 2177 /* enum forward in BTF currently is just an enum with no enum 2178 * values; we also assume a standard 4-byte size for it 2179 */ 2180 return btf__add_enum(btf, name, sizeof(int)); 2181 default: 2182 return libbpf_err(-EINVAL); 2183 } 2184 } 2185 2186 /* 2187 * Append new BTF_KING_TYPEDEF type with: 2188 * - *name*, non-empty/non-NULL name; 2189 * - *ref_type_id* - referenced type ID, it might not exist yet; 2190 * Returns: 2191 * - >0, type ID of newly added BTF type; 2192 * - <0, on error. 2193 */ 2194 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2195 { 2196 if (!name || !name[0]) 2197 return libbpf_err(-EINVAL); 2198 2199 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2200 } 2201 2202 /* 2203 * Append new BTF_KIND_VOLATILE type with: 2204 * - *ref_type_id* - referenced type ID, it might not exist yet; 2205 * Returns: 2206 * - >0, type ID of newly added BTF type; 2207 * - <0, on error. 2208 */ 2209 int btf__add_volatile(struct btf *btf, int ref_type_id) 2210 { 2211 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2212 } 2213 2214 /* 2215 * Append new BTF_KIND_CONST type with: 2216 * - *ref_type_id* - referenced type ID, it might not exist yet; 2217 * Returns: 2218 * - >0, type ID of newly added BTF type; 2219 * - <0, on error. 2220 */ 2221 int btf__add_const(struct btf *btf, int ref_type_id) 2222 { 2223 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2224 } 2225 2226 /* 2227 * Append new BTF_KIND_RESTRICT type with: 2228 * - *ref_type_id* - referenced type ID, it might not exist yet; 2229 * Returns: 2230 * - >0, type ID of newly added BTF type; 2231 * - <0, on error. 2232 */ 2233 int btf__add_restrict(struct btf *btf, int ref_type_id) 2234 { 2235 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2236 } 2237 2238 /* 2239 * Append new BTF_KIND_FUNC type with: 2240 * - *name*, non-empty/non-NULL name; 2241 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2242 * Returns: 2243 * - >0, type ID of newly added BTF type; 2244 * - <0, on error. 2245 */ 2246 int btf__add_func(struct btf *btf, const char *name, 2247 enum btf_func_linkage linkage, int proto_type_id) 2248 { 2249 int id; 2250 2251 if (!name || !name[0]) 2252 return libbpf_err(-EINVAL); 2253 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2254 linkage != BTF_FUNC_EXTERN) 2255 return libbpf_err(-EINVAL); 2256 2257 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2258 if (id > 0) { 2259 struct btf_type *t = btf_type_by_id(btf, id); 2260 2261 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2262 } 2263 return libbpf_err(id); 2264 } 2265 2266 /* 2267 * Append new BTF_KIND_FUNC_PROTO with: 2268 * - *ret_type_id* - type ID for return result of a function. 2269 * 2270 * Function prototype initially has no arguments, but they can be added by 2271 * btf__add_func_param() one by one, immediately after 2272 * btf__add_func_proto() succeeded. 2273 * 2274 * Returns: 2275 * - >0, type ID of newly added BTF type; 2276 * - <0, on error. 2277 */ 2278 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2279 { 2280 struct btf_type *t; 2281 int sz; 2282 2283 if (validate_type_id(ret_type_id)) 2284 return libbpf_err(-EINVAL); 2285 2286 if (btf_ensure_modifiable(btf)) 2287 return libbpf_err(-ENOMEM); 2288 2289 sz = sizeof(struct btf_type); 2290 t = btf_add_type_mem(btf, sz); 2291 if (!t) 2292 return libbpf_err(-ENOMEM); 2293 2294 /* start out with vlen=0; this will be adjusted when adding enum 2295 * values, if necessary 2296 */ 2297 t->name_off = 0; 2298 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2299 t->type = ret_type_id; 2300 2301 return btf_commit_type(btf, sz); 2302 } 2303 2304 /* 2305 * Append new function parameter for current FUNC_PROTO type with: 2306 * - *name* - parameter name, can be NULL or empty; 2307 * - *type_id* - type ID describing the type of the parameter. 2308 * Returns: 2309 * - 0, on success; 2310 * - <0, on error. 2311 */ 2312 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2313 { 2314 struct btf_type *t; 2315 struct btf_param *p; 2316 int sz, name_off = 0; 2317 2318 if (validate_type_id(type_id)) 2319 return libbpf_err(-EINVAL); 2320 2321 /* last type should be BTF_KIND_FUNC_PROTO */ 2322 if (btf->nr_types == 0) 2323 return libbpf_err(-EINVAL); 2324 t = btf_last_type(btf); 2325 if (!btf_is_func_proto(t)) 2326 return libbpf_err(-EINVAL); 2327 2328 /* decompose and invalidate raw data */ 2329 if (btf_ensure_modifiable(btf)) 2330 return libbpf_err(-ENOMEM); 2331 2332 sz = sizeof(struct btf_param); 2333 p = btf_add_type_mem(btf, sz); 2334 if (!p) 2335 return libbpf_err(-ENOMEM); 2336 2337 if (name && name[0]) { 2338 name_off = btf__add_str(btf, name); 2339 if (name_off < 0) 2340 return name_off; 2341 } 2342 2343 p->name_off = name_off; 2344 p->type = type_id; 2345 2346 /* update parent type's vlen */ 2347 t = btf_last_type(btf); 2348 btf_type_inc_vlen(t); 2349 2350 btf->hdr->type_len += sz; 2351 btf->hdr->str_off += sz; 2352 return 0; 2353 } 2354 2355 /* 2356 * Append new BTF_KIND_VAR type with: 2357 * - *name* - non-empty/non-NULL name; 2358 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2359 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2360 * - *type_id* - type ID of the type describing the type of the variable. 2361 * Returns: 2362 * - >0, type ID of newly added BTF type; 2363 * - <0, on error. 2364 */ 2365 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2366 { 2367 struct btf_type *t; 2368 struct btf_var *v; 2369 int sz, name_off; 2370 2371 /* non-empty name */ 2372 if (!name || !name[0]) 2373 return libbpf_err(-EINVAL); 2374 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2375 linkage != BTF_VAR_GLOBAL_EXTERN) 2376 return libbpf_err(-EINVAL); 2377 if (validate_type_id(type_id)) 2378 return libbpf_err(-EINVAL); 2379 2380 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2381 if (btf_ensure_modifiable(btf)) 2382 return libbpf_err(-ENOMEM); 2383 2384 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2385 t = btf_add_type_mem(btf, sz); 2386 if (!t) 2387 return libbpf_err(-ENOMEM); 2388 2389 name_off = btf__add_str(btf, name); 2390 if (name_off < 0) 2391 return name_off; 2392 2393 t->name_off = name_off; 2394 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2395 t->type = type_id; 2396 2397 v = btf_var(t); 2398 v->linkage = linkage; 2399 2400 return btf_commit_type(btf, sz); 2401 } 2402 2403 /* 2404 * Append new BTF_KIND_DATASEC type with: 2405 * - *name* - non-empty/non-NULL name; 2406 * - *byte_sz* - data section size, in bytes. 2407 * 2408 * Data section is initially empty. Variables info can be added with 2409 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2410 * 2411 * Returns: 2412 * - >0, type ID of newly added BTF type; 2413 * - <0, on error. 2414 */ 2415 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2416 { 2417 struct btf_type *t; 2418 int sz, name_off; 2419 2420 /* non-empty name */ 2421 if (!name || !name[0]) 2422 return libbpf_err(-EINVAL); 2423 2424 if (btf_ensure_modifiable(btf)) 2425 return libbpf_err(-ENOMEM); 2426 2427 sz = sizeof(struct btf_type); 2428 t = btf_add_type_mem(btf, sz); 2429 if (!t) 2430 return libbpf_err(-ENOMEM); 2431 2432 name_off = btf__add_str(btf, name); 2433 if (name_off < 0) 2434 return name_off; 2435 2436 /* start with vlen=0, which will be update as var_secinfos are added */ 2437 t->name_off = name_off; 2438 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2439 t->size = byte_sz; 2440 2441 return btf_commit_type(btf, sz); 2442 } 2443 2444 /* 2445 * Append new data section variable information entry for current DATASEC type: 2446 * - *var_type_id* - type ID, describing type of the variable; 2447 * - *offset* - variable offset within data section, in bytes; 2448 * - *byte_sz* - variable size, in bytes. 2449 * 2450 * Returns: 2451 * - 0, on success; 2452 * - <0, on error. 2453 */ 2454 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2455 { 2456 struct btf_type *t; 2457 struct btf_var_secinfo *v; 2458 int sz; 2459 2460 /* last type should be BTF_KIND_DATASEC */ 2461 if (btf->nr_types == 0) 2462 return libbpf_err(-EINVAL); 2463 t = btf_last_type(btf); 2464 if (!btf_is_datasec(t)) 2465 return libbpf_err(-EINVAL); 2466 2467 if (validate_type_id(var_type_id)) 2468 return libbpf_err(-EINVAL); 2469 2470 /* decompose and invalidate raw data */ 2471 if (btf_ensure_modifiable(btf)) 2472 return libbpf_err(-ENOMEM); 2473 2474 sz = sizeof(struct btf_var_secinfo); 2475 v = btf_add_type_mem(btf, sz); 2476 if (!v) 2477 return libbpf_err(-ENOMEM); 2478 2479 v->type = var_type_id; 2480 v->offset = offset; 2481 v->size = byte_sz; 2482 2483 /* update parent type's vlen */ 2484 t = btf_last_type(btf); 2485 btf_type_inc_vlen(t); 2486 2487 btf->hdr->type_len += sz; 2488 btf->hdr->str_off += sz; 2489 return 0; 2490 } 2491 2492 /* 2493 * Append new BTF_KIND_DECL_TAG type with: 2494 * - *value* - non-empty/non-NULL string; 2495 * - *ref_type_id* - referenced type ID, it might not exist yet; 2496 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2497 * member or function argument index; 2498 * Returns: 2499 * - >0, type ID of newly added BTF type; 2500 * - <0, on error. 2501 */ 2502 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2503 int component_idx) 2504 { 2505 struct btf_type *t; 2506 int sz, value_off; 2507 2508 if (!value || !value[0] || component_idx < -1) 2509 return libbpf_err(-EINVAL); 2510 2511 if (validate_type_id(ref_type_id)) 2512 return libbpf_err(-EINVAL); 2513 2514 if (btf_ensure_modifiable(btf)) 2515 return libbpf_err(-ENOMEM); 2516 2517 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2518 t = btf_add_type_mem(btf, sz); 2519 if (!t) 2520 return libbpf_err(-ENOMEM); 2521 2522 value_off = btf__add_str(btf, value); 2523 if (value_off < 0) 2524 return value_off; 2525 2526 t->name_off = value_off; 2527 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2528 t->type = ref_type_id; 2529 btf_decl_tag(t)->component_idx = component_idx; 2530 2531 return btf_commit_type(btf, sz); 2532 } 2533 2534 struct btf_ext_sec_setup_param { 2535 __u32 off; 2536 __u32 len; 2537 __u32 min_rec_size; 2538 struct btf_ext_info *ext_info; 2539 const char *desc; 2540 }; 2541 2542 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2543 struct btf_ext_sec_setup_param *ext_sec) 2544 { 2545 const struct btf_ext_info_sec *sinfo; 2546 struct btf_ext_info *ext_info; 2547 __u32 info_left, record_size; 2548 /* The start of the info sec (including the __u32 record_size). */ 2549 void *info; 2550 2551 if (ext_sec->len == 0) 2552 return 0; 2553 2554 if (ext_sec->off & 0x03) { 2555 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2556 ext_sec->desc); 2557 return -EINVAL; 2558 } 2559 2560 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2561 info_left = ext_sec->len; 2562 2563 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2564 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2565 ext_sec->desc, ext_sec->off, ext_sec->len); 2566 return -EINVAL; 2567 } 2568 2569 /* At least a record size */ 2570 if (info_left < sizeof(__u32)) { 2571 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2572 return -EINVAL; 2573 } 2574 2575 /* The record size needs to meet the minimum standard */ 2576 record_size = *(__u32 *)info; 2577 if (record_size < ext_sec->min_rec_size || 2578 record_size & 0x03) { 2579 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2580 ext_sec->desc, record_size); 2581 return -EINVAL; 2582 } 2583 2584 sinfo = info + sizeof(__u32); 2585 info_left -= sizeof(__u32); 2586 2587 /* If no records, return failure now so .BTF.ext won't be used. */ 2588 if (!info_left) { 2589 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2590 return -EINVAL; 2591 } 2592 2593 while (info_left) { 2594 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2595 __u64 total_record_size; 2596 __u32 num_records; 2597 2598 if (info_left < sec_hdrlen) { 2599 pr_debug("%s section header is not found in .BTF.ext\n", 2600 ext_sec->desc); 2601 return -EINVAL; 2602 } 2603 2604 num_records = sinfo->num_info; 2605 if (num_records == 0) { 2606 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2607 ext_sec->desc); 2608 return -EINVAL; 2609 } 2610 2611 total_record_size = sec_hdrlen + 2612 (__u64)num_records * record_size; 2613 if (info_left < total_record_size) { 2614 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2615 ext_sec->desc); 2616 return -EINVAL; 2617 } 2618 2619 info_left -= total_record_size; 2620 sinfo = (void *)sinfo + total_record_size; 2621 } 2622 2623 ext_info = ext_sec->ext_info; 2624 ext_info->len = ext_sec->len - sizeof(__u32); 2625 ext_info->rec_size = record_size; 2626 ext_info->info = info + sizeof(__u32); 2627 2628 return 0; 2629 } 2630 2631 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2632 { 2633 struct btf_ext_sec_setup_param param = { 2634 .off = btf_ext->hdr->func_info_off, 2635 .len = btf_ext->hdr->func_info_len, 2636 .min_rec_size = sizeof(struct bpf_func_info_min), 2637 .ext_info = &btf_ext->func_info, 2638 .desc = "func_info" 2639 }; 2640 2641 return btf_ext_setup_info(btf_ext, ¶m); 2642 } 2643 2644 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2645 { 2646 struct btf_ext_sec_setup_param param = { 2647 .off = btf_ext->hdr->line_info_off, 2648 .len = btf_ext->hdr->line_info_len, 2649 .min_rec_size = sizeof(struct bpf_line_info_min), 2650 .ext_info = &btf_ext->line_info, 2651 .desc = "line_info", 2652 }; 2653 2654 return btf_ext_setup_info(btf_ext, ¶m); 2655 } 2656 2657 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2658 { 2659 struct btf_ext_sec_setup_param param = { 2660 .off = btf_ext->hdr->core_relo_off, 2661 .len = btf_ext->hdr->core_relo_len, 2662 .min_rec_size = sizeof(struct bpf_core_relo), 2663 .ext_info = &btf_ext->core_relo_info, 2664 .desc = "core_relo", 2665 }; 2666 2667 return btf_ext_setup_info(btf_ext, ¶m); 2668 } 2669 2670 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2671 { 2672 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2673 2674 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2675 data_size < hdr->hdr_len) { 2676 pr_debug("BTF.ext header not found"); 2677 return -EINVAL; 2678 } 2679 2680 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2681 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2682 return -ENOTSUP; 2683 } else if (hdr->magic != BTF_MAGIC) { 2684 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2685 return -EINVAL; 2686 } 2687 2688 if (hdr->version != BTF_VERSION) { 2689 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2690 return -ENOTSUP; 2691 } 2692 2693 if (hdr->flags) { 2694 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2695 return -ENOTSUP; 2696 } 2697 2698 if (data_size == hdr->hdr_len) { 2699 pr_debug("BTF.ext has no data\n"); 2700 return -EINVAL; 2701 } 2702 2703 return 0; 2704 } 2705 2706 void btf_ext__free(struct btf_ext *btf_ext) 2707 { 2708 if (IS_ERR_OR_NULL(btf_ext)) 2709 return; 2710 free(btf_ext->data); 2711 free(btf_ext); 2712 } 2713 2714 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2715 { 2716 struct btf_ext *btf_ext; 2717 int err; 2718 2719 err = btf_ext_parse_hdr(data, size); 2720 if (err) 2721 return libbpf_err_ptr(err); 2722 2723 btf_ext = calloc(1, sizeof(struct btf_ext)); 2724 if (!btf_ext) 2725 return libbpf_err_ptr(-ENOMEM); 2726 2727 btf_ext->data_size = size; 2728 btf_ext->data = malloc(size); 2729 if (!btf_ext->data) { 2730 err = -ENOMEM; 2731 goto done; 2732 } 2733 memcpy(btf_ext->data, data, size); 2734 2735 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2736 err = -EINVAL; 2737 goto done; 2738 } 2739 2740 err = btf_ext_setup_func_info(btf_ext); 2741 if (err) 2742 goto done; 2743 2744 err = btf_ext_setup_line_info(btf_ext); 2745 if (err) 2746 goto done; 2747 2748 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2749 err = -EINVAL; 2750 goto done; 2751 } 2752 2753 err = btf_ext_setup_core_relos(btf_ext); 2754 if (err) 2755 goto done; 2756 2757 done: 2758 if (err) { 2759 btf_ext__free(btf_ext); 2760 return libbpf_err_ptr(err); 2761 } 2762 2763 return btf_ext; 2764 } 2765 2766 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2767 { 2768 *size = btf_ext->data_size; 2769 return btf_ext->data; 2770 } 2771 2772 static int btf_ext_reloc_info(const struct btf *btf, 2773 const struct btf_ext_info *ext_info, 2774 const char *sec_name, __u32 insns_cnt, 2775 void **info, __u32 *cnt) 2776 { 2777 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2778 __u32 i, record_size, existing_len, records_len; 2779 struct btf_ext_info_sec *sinfo; 2780 const char *info_sec_name; 2781 __u64 remain_len; 2782 void *data; 2783 2784 record_size = ext_info->rec_size; 2785 sinfo = ext_info->info; 2786 remain_len = ext_info->len; 2787 while (remain_len > 0) { 2788 records_len = sinfo->num_info * record_size; 2789 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2790 if (strcmp(info_sec_name, sec_name)) { 2791 remain_len -= sec_hdrlen + records_len; 2792 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2793 continue; 2794 } 2795 2796 existing_len = (*cnt) * record_size; 2797 data = realloc(*info, existing_len + records_len); 2798 if (!data) 2799 return libbpf_err(-ENOMEM); 2800 2801 memcpy(data + existing_len, sinfo->data, records_len); 2802 /* adjust insn_off only, the rest data will be passed 2803 * to the kernel. 2804 */ 2805 for (i = 0; i < sinfo->num_info; i++) { 2806 __u32 *insn_off; 2807 2808 insn_off = data + existing_len + (i * record_size); 2809 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2810 } 2811 *info = data; 2812 *cnt += sinfo->num_info; 2813 return 0; 2814 } 2815 2816 return libbpf_err(-ENOENT); 2817 } 2818 2819 int btf_ext__reloc_func_info(const struct btf *btf, 2820 const struct btf_ext *btf_ext, 2821 const char *sec_name, __u32 insns_cnt, 2822 void **func_info, __u32 *cnt) 2823 { 2824 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2825 insns_cnt, func_info, cnt); 2826 } 2827 2828 int btf_ext__reloc_line_info(const struct btf *btf, 2829 const struct btf_ext *btf_ext, 2830 const char *sec_name, __u32 insns_cnt, 2831 void **line_info, __u32 *cnt) 2832 { 2833 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2834 insns_cnt, line_info, cnt); 2835 } 2836 2837 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2838 { 2839 return btf_ext->func_info.rec_size; 2840 } 2841 2842 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2843 { 2844 return btf_ext->line_info.rec_size; 2845 } 2846 2847 struct btf_dedup; 2848 2849 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2850 const struct btf_dedup_opts *opts); 2851 static void btf_dedup_free(struct btf_dedup *d); 2852 static int btf_dedup_prep(struct btf_dedup *d); 2853 static int btf_dedup_strings(struct btf_dedup *d); 2854 static int btf_dedup_prim_types(struct btf_dedup *d); 2855 static int btf_dedup_struct_types(struct btf_dedup *d); 2856 static int btf_dedup_ref_types(struct btf_dedup *d); 2857 static int btf_dedup_compact_types(struct btf_dedup *d); 2858 static int btf_dedup_remap_types(struct btf_dedup *d); 2859 2860 /* 2861 * Deduplicate BTF types and strings. 2862 * 2863 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2864 * section with all BTF type descriptors and string data. It overwrites that 2865 * memory in-place with deduplicated types and strings without any loss of 2866 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2867 * is provided, all the strings referenced from .BTF.ext section are honored 2868 * and updated to point to the right offsets after deduplication. 2869 * 2870 * If function returns with error, type/string data might be garbled and should 2871 * be discarded. 2872 * 2873 * More verbose and detailed description of both problem btf_dedup is solving, 2874 * as well as solution could be found at: 2875 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2876 * 2877 * Problem description and justification 2878 * ===================================== 2879 * 2880 * BTF type information is typically emitted either as a result of conversion 2881 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2882 * unit contains information about a subset of all the types that are used 2883 * in an application. These subsets are frequently overlapping and contain a lot 2884 * of duplicated information when later concatenated together into a single 2885 * binary. This algorithm ensures that each unique type is represented by single 2886 * BTF type descriptor, greatly reducing resulting size of BTF data. 2887 * 2888 * Compilation unit isolation and subsequent duplication of data is not the only 2889 * problem. The same type hierarchy (e.g., struct and all the type that struct 2890 * references) in different compilation units can be represented in BTF to 2891 * various degrees of completeness (or, rather, incompleteness) due to 2892 * struct/union forward declarations. 2893 * 2894 * Let's take a look at an example, that we'll use to better understand the 2895 * problem (and solution). Suppose we have two compilation units, each using 2896 * same `struct S`, but each of them having incomplete type information about 2897 * struct's fields: 2898 * 2899 * // CU #1: 2900 * struct S; 2901 * struct A { 2902 * int a; 2903 * struct A* self; 2904 * struct S* parent; 2905 * }; 2906 * struct B; 2907 * struct S { 2908 * struct A* a_ptr; 2909 * struct B* b_ptr; 2910 * }; 2911 * 2912 * // CU #2: 2913 * struct S; 2914 * struct A; 2915 * struct B { 2916 * int b; 2917 * struct B* self; 2918 * struct S* parent; 2919 * }; 2920 * struct S { 2921 * struct A* a_ptr; 2922 * struct B* b_ptr; 2923 * }; 2924 * 2925 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2926 * more), but will know the complete type information about `struct A`. While 2927 * for CU #2, it will know full type information about `struct B`, but will 2928 * only know about forward declaration of `struct A` (in BTF terms, it will 2929 * have `BTF_KIND_FWD` type descriptor with name `B`). 2930 * 2931 * This compilation unit isolation means that it's possible that there is no 2932 * single CU with complete type information describing structs `S`, `A`, and 2933 * `B`. Also, we might get tons of duplicated and redundant type information. 2934 * 2935 * Additional complication we need to keep in mind comes from the fact that 2936 * types, in general, can form graphs containing cycles, not just DAGs. 2937 * 2938 * While algorithm does deduplication, it also merges and resolves type 2939 * information (unless disabled throught `struct btf_opts`), whenever possible. 2940 * E.g., in the example above with two compilation units having partial type 2941 * information for structs `A` and `B`, the output of algorithm will emit 2942 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2943 * (as well as type information for `int` and pointers), as if they were defined 2944 * in a single compilation unit as: 2945 * 2946 * struct A { 2947 * int a; 2948 * struct A* self; 2949 * struct S* parent; 2950 * }; 2951 * struct B { 2952 * int b; 2953 * struct B* self; 2954 * struct S* parent; 2955 * }; 2956 * struct S { 2957 * struct A* a_ptr; 2958 * struct B* b_ptr; 2959 * }; 2960 * 2961 * Algorithm summary 2962 * ================= 2963 * 2964 * Algorithm completes its work in 6 separate passes: 2965 * 2966 * 1. Strings deduplication. 2967 * 2. Primitive types deduplication (int, enum, fwd). 2968 * 3. Struct/union types deduplication. 2969 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2970 * protos, and const/volatile/restrict modifiers). 2971 * 5. Types compaction. 2972 * 6. Types remapping. 2973 * 2974 * Algorithm determines canonical type descriptor, which is a single 2975 * representative type for each truly unique type. This canonical type is the 2976 * one that will go into final deduplicated BTF type information. For 2977 * struct/unions, it is also the type that algorithm will merge additional type 2978 * information into (while resolving FWDs), as it discovers it from data in 2979 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2980 * that type is canonical, or to some other type, if that type is equivalent 2981 * and was chosen as canonical representative. This mapping is stored in 2982 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2983 * FWD type got resolved to. 2984 * 2985 * To facilitate fast discovery of canonical types, we also maintain canonical 2986 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2987 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2988 * that match that signature. With sufficiently good choice of type signature 2989 * hashing function, we can limit number of canonical types for each unique type 2990 * signature to a very small number, allowing to find canonical type for any 2991 * duplicated type very quickly. 2992 * 2993 * Struct/union deduplication is the most critical part and algorithm for 2994 * deduplicating structs/unions is described in greater details in comments for 2995 * `btf_dedup_is_equiv` function. 2996 */ 2997 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2998 const struct btf_dedup_opts *opts) 2999 { 3000 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 3001 int err; 3002 3003 if (IS_ERR(d)) { 3004 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3005 return libbpf_err(-EINVAL); 3006 } 3007 3008 if (btf_ensure_modifiable(btf)) { 3009 err = -ENOMEM; 3010 goto done; 3011 } 3012 3013 err = btf_dedup_prep(d); 3014 if (err) { 3015 pr_debug("btf_dedup_prep failed:%d\n", err); 3016 goto done; 3017 } 3018 err = btf_dedup_strings(d); 3019 if (err < 0) { 3020 pr_debug("btf_dedup_strings failed:%d\n", err); 3021 goto done; 3022 } 3023 err = btf_dedup_prim_types(d); 3024 if (err < 0) { 3025 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3026 goto done; 3027 } 3028 err = btf_dedup_struct_types(d); 3029 if (err < 0) { 3030 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3031 goto done; 3032 } 3033 err = btf_dedup_ref_types(d); 3034 if (err < 0) { 3035 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3036 goto done; 3037 } 3038 err = btf_dedup_compact_types(d); 3039 if (err < 0) { 3040 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3041 goto done; 3042 } 3043 err = btf_dedup_remap_types(d); 3044 if (err < 0) { 3045 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3046 goto done; 3047 } 3048 3049 done: 3050 btf_dedup_free(d); 3051 return libbpf_err(err); 3052 } 3053 3054 #define BTF_UNPROCESSED_ID ((__u32)-1) 3055 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3056 3057 struct btf_dedup { 3058 /* .BTF section to be deduped in-place */ 3059 struct btf *btf; 3060 /* 3061 * Optional .BTF.ext section. When provided, any strings referenced 3062 * from it will be taken into account when deduping strings 3063 */ 3064 struct btf_ext *btf_ext; 3065 /* 3066 * This is a map from any type's signature hash to a list of possible 3067 * canonical representative type candidates. Hash collisions are 3068 * ignored, so even types of various kinds can share same list of 3069 * candidates, which is fine because we rely on subsequent 3070 * btf_xxx_equal() checks to authoritatively verify type equality. 3071 */ 3072 struct hashmap *dedup_table; 3073 /* Canonical types map */ 3074 __u32 *map; 3075 /* Hypothetical mapping, used during type graph equivalence checks */ 3076 __u32 *hypot_map; 3077 __u32 *hypot_list; 3078 size_t hypot_cnt; 3079 size_t hypot_cap; 3080 /* Whether hypothetical mapping, if successful, would need to adjust 3081 * already canonicalized types (due to a new forward declaration to 3082 * concrete type resolution). In such case, during split BTF dedup 3083 * candidate type would still be considered as different, because base 3084 * BTF is considered to be immutable. 3085 */ 3086 bool hypot_adjust_canon; 3087 /* Various option modifying behavior of algorithm */ 3088 struct btf_dedup_opts opts; 3089 /* temporary strings deduplication state */ 3090 struct strset *strs_set; 3091 }; 3092 3093 static long hash_combine(long h, long value) 3094 { 3095 return h * 31 + value; 3096 } 3097 3098 #define for_each_dedup_cand(d, node, hash) \ 3099 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 3100 3101 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3102 { 3103 return hashmap__append(d->dedup_table, 3104 (void *)hash, (void *)(long)type_id); 3105 } 3106 3107 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3108 __u32 from_id, __u32 to_id) 3109 { 3110 if (d->hypot_cnt == d->hypot_cap) { 3111 __u32 *new_list; 3112 3113 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3114 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3115 if (!new_list) 3116 return -ENOMEM; 3117 d->hypot_list = new_list; 3118 } 3119 d->hypot_list[d->hypot_cnt++] = from_id; 3120 d->hypot_map[from_id] = to_id; 3121 return 0; 3122 } 3123 3124 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3125 { 3126 int i; 3127 3128 for (i = 0; i < d->hypot_cnt; i++) 3129 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3130 d->hypot_cnt = 0; 3131 d->hypot_adjust_canon = false; 3132 } 3133 3134 static void btf_dedup_free(struct btf_dedup *d) 3135 { 3136 hashmap__free(d->dedup_table); 3137 d->dedup_table = NULL; 3138 3139 free(d->map); 3140 d->map = NULL; 3141 3142 free(d->hypot_map); 3143 d->hypot_map = NULL; 3144 3145 free(d->hypot_list); 3146 d->hypot_list = NULL; 3147 3148 free(d); 3149 } 3150 3151 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3152 { 3153 return (size_t)key; 3154 } 3155 3156 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3157 { 3158 return 0; 3159 } 3160 3161 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3162 { 3163 return k1 == k2; 3164 } 3165 3166 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3167 const struct btf_dedup_opts *opts) 3168 { 3169 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3170 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3171 int i, err = 0, type_cnt; 3172 3173 if (!d) 3174 return ERR_PTR(-ENOMEM); 3175 3176 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3177 /* dedup_table_size is now used only to force collisions in tests */ 3178 if (opts && opts->dedup_table_size == 1) 3179 hash_fn = btf_dedup_collision_hash_fn; 3180 3181 d->btf = btf; 3182 d->btf_ext = btf_ext; 3183 3184 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3185 if (IS_ERR(d->dedup_table)) { 3186 err = PTR_ERR(d->dedup_table); 3187 d->dedup_table = NULL; 3188 goto done; 3189 } 3190 3191 type_cnt = btf__type_cnt(btf); 3192 d->map = malloc(sizeof(__u32) * type_cnt); 3193 if (!d->map) { 3194 err = -ENOMEM; 3195 goto done; 3196 } 3197 /* special BTF "void" type is made canonical immediately */ 3198 d->map[0] = 0; 3199 for (i = 1; i < type_cnt; i++) { 3200 struct btf_type *t = btf_type_by_id(d->btf, i); 3201 3202 /* VAR and DATASEC are never deduped and are self-canonical */ 3203 if (btf_is_var(t) || btf_is_datasec(t)) 3204 d->map[i] = i; 3205 else 3206 d->map[i] = BTF_UNPROCESSED_ID; 3207 } 3208 3209 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3210 if (!d->hypot_map) { 3211 err = -ENOMEM; 3212 goto done; 3213 } 3214 for (i = 0; i < type_cnt; i++) 3215 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3216 3217 done: 3218 if (err) { 3219 btf_dedup_free(d); 3220 return ERR_PTR(err); 3221 } 3222 3223 return d; 3224 } 3225 3226 /* 3227 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3228 * string and pass pointer to it to a provided callback `fn`. 3229 */ 3230 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3231 { 3232 int i, r; 3233 3234 for (i = 0; i < d->btf->nr_types; i++) { 3235 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3236 3237 r = btf_type_visit_str_offs(t, fn, ctx); 3238 if (r) 3239 return r; 3240 } 3241 3242 if (!d->btf_ext) 3243 return 0; 3244 3245 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3246 if (r) 3247 return r; 3248 3249 return 0; 3250 } 3251 3252 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3253 { 3254 struct btf_dedup *d = ctx; 3255 __u32 str_off = *str_off_ptr; 3256 const char *s; 3257 int off, err; 3258 3259 /* don't touch empty string or string in main BTF */ 3260 if (str_off == 0 || str_off < d->btf->start_str_off) 3261 return 0; 3262 3263 s = btf__str_by_offset(d->btf, str_off); 3264 if (d->btf->base_btf) { 3265 err = btf__find_str(d->btf->base_btf, s); 3266 if (err >= 0) { 3267 *str_off_ptr = err; 3268 return 0; 3269 } 3270 if (err != -ENOENT) 3271 return err; 3272 } 3273 3274 off = strset__add_str(d->strs_set, s); 3275 if (off < 0) 3276 return off; 3277 3278 *str_off_ptr = d->btf->start_str_off + off; 3279 return 0; 3280 } 3281 3282 /* 3283 * Dedup string and filter out those that are not referenced from either .BTF 3284 * or .BTF.ext (if provided) sections. 3285 * 3286 * This is done by building index of all strings in BTF's string section, 3287 * then iterating over all entities that can reference strings (e.g., type 3288 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3289 * strings as used. After that all used strings are deduped and compacted into 3290 * sequential blob of memory and new offsets are calculated. Then all the string 3291 * references are iterated again and rewritten using new offsets. 3292 */ 3293 static int btf_dedup_strings(struct btf_dedup *d) 3294 { 3295 int err; 3296 3297 if (d->btf->strs_deduped) 3298 return 0; 3299 3300 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3301 if (IS_ERR(d->strs_set)) { 3302 err = PTR_ERR(d->strs_set); 3303 goto err_out; 3304 } 3305 3306 if (!d->btf->base_btf) { 3307 /* insert empty string; we won't be looking it up during strings 3308 * dedup, but it's good to have it for generic BTF string lookups 3309 */ 3310 err = strset__add_str(d->strs_set, ""); 3311 if (err < 0) 3312 goto err_out; 3313 } 3314 3315 /* remap string offsets */ 3316 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3317 if (err) 3318 goto err_out; 3319 3320 /* replace BTF string data and hash with deduped ones */ 3321 strset__free(d->btf->strs_set); 3322 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3323 d->btf->strs_set = d->strs_set; 3324 d->strs_set = NULL; 3325 d->btf->strs_deduped = true; 3326 return 0; 3327 3328 err_out: 3329 strset__free(d->strs_set); 3330 d->strs_set = NULL; 3331 3332 return err; 3333 } 3334 3335 static long btf_hash_common(struct btf_type *t) 3336 { 3337 long h; 3338 3339 h = hash_combine(0, t->name_off); 3340 h = hash_combine(h, t->info); 3341 h = hash_combine(h, t->size); 3342 return h; 3343 } 3344 3345 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3346 { 3347 return t1->name_off == t2->name_off && 3348 t1->info == t2->info && 3349 t1->size == t2->size; 3350 } 3351 3352 /* Calculate type signature hash of INT or TAG. */ 3353 static long btf_hash_int_decl_tag(struct btf_type *t) 3354 { 3355 __u32 info = *(__u32 *)(t + 1); 3356 long h; 3357 3358 h = btf_hash_common(t); 3359 h = hash_combine(h, info); 3360 return h; 3361 } 3362 3363 /* Check structural equality of two INTs or TAGs. */ 3364 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3365 { 3366 __u32 info1, info2; 3367 3368 if (!btf_equal_common(t1, t2)) 3369 return false; 3370 info1 = *(__u32 *)(t1 + 1); 3371 info2 = *(__u32 *)(t2 + 1); 3372 return info1 == info2; 3373 } 3374 3375 /* Calculate type signature hash of ENUM. */ 3376 static long btf_hash_enum(struct btf_type *t) 3377 { 3378 long h; 3379 3380 /* don't hash vlen and enum members to support enum fwd resolving */ 3381 h = hash_combine(0, t->name_off); 3382 h = hash_combine(h, t->info & ~0xffff); 3383 h = hash_combine(h, t->size); 3384 return h; 3385 } 3386 3387 /* Check structural equality of two ENUMs. */ 3388 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3389 { 3390 const struct btf_enum *m1, *m2; 3391 __u16 vlen; 3392 int i; 3393 3394 if (!btf_equal_common(t1, t2)) 3395 return false; 3396 3397 vlen = btf_vlen(t1); 3398 m1 = btf_enum(t1); 3399 m2 = btf_enum(t2); 3400 for (i = 0; i < vlen; i++) { 3401 if (m1->name_off != m2->name_off || m1->val != m2->val) 3402 return false; 3403 m1++; 3404 m2++; 3405 } 3406 return true; 3407 } 3408 3409 static inline bool btf_is_enum_fwd(struct btf_type *t) 3410 { 3411 return btf_is_enum(t) && btf_vlen(t) == 0; 3412 } 3413 3414 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3415 { 3416 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3417 return btf_equal_enum(t1, t2); 3418 /* ignore vlen when comparing */ 3419 return t1->name_off == t2->name_off && 3420 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3421 t1->size == t2->size; 3422 } 3423 3424 /* 3425 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3426 * as referenced type IDs equivalence is established separately during type 3427 * graph equivalence check algorithm. 3428 */ 3429 static long btf_hash_struct(struct btf_type *t) 3430 { 3431 const struct btf_member *member = btf_members(t); 3432 __u32 vlen = btf_vlen(t); 3433 long h = btf_hash_common(t); 3434 int i; 3435 3436 for (i = 0; i < vlen; i++) { 3437 h = hash_combine(h, member->name_off); 3438 h = hash_combine(h, member->offset); 3439 /* no hashing of referenced type ID, it can be unresolved yet */ 3440 member++; 3441 } 3442 return h; 3443 } 3444 3445 /* 3446 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3447 * IDs. This check is performed during type graph equivalence check and 3448 * referenced types equivalence is checked separately. 3449 */ 3450 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3451 { 3452 const struct btf_member *m1, *m2; 3453 __u16 vlen; 3454 int i; 3455 3456 if (!btf_equal_common(t1, t2)) 3457 return false; 3458 3459 vlen = btf_vlen(t1); 3460 m1 = btf_members(t1); 3461 m2 = btf_members(t2); 3462 for (i = 0; i < vlen; i++) { 3463 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3464 return false; 3465 m1++; 3466 m2++; 3467 } 3468 return true; 3469 } 3470 3471 /* 3472 * Calculate type signature hash of ARRAY, including referenced type IDs, 3473 * under assumption that they were already resolved to canonical type IDs and 3474 * are not going to change. 3475 */ 3476 static long btf_hash_array(struct btf_type *t) 3477 { 3478 const struct btf_array *info = btf_array(t); 3479 long h = btf_hash_common(t); 3480 3481 h = hash_combine(h, info->type); 3482 h = hash_combine(h, info->index_type); 3483 h = hash_combine(h, info->nelems); 3484 return h; 3485 } 3486 3487 /* 3488 * Check exact equality of two ARRAYs, taking into account referenced 3489 * type IDs, under assumption that they were already resolved to canonical 3490 * type IDs and are not going to change. 3491 * This function is called during reference types deduplication to compare 3492 * ARRAY to potential canonical representative. 3493 */ 3494 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3495 { 3496 const struct btf_array *info1, *info2; 3497 3498 if (!btf_equal_common(t1, t2)) 3499 return false; 3500 3501 info1 = btf_array(t1); 3502 info2 = btf_array(t2); 3503 return info1->type == info2->type && 3504 info1->index_type == info2->index_type && 3505 info1->nelems == info2->nelems; 3506 } 3507 3508 /* 3509 * Check structural compatibility of two ARRAYs, ignoring referenced type 3510 * IDs. This check is performed during type graph equivalence check and 3511 * referenced types equivalence is checked separately. 3512 */ 3513 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3514 { 3515 if (!btf_equal_common(t1, t2)) 3516 return false; 3517 3518 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3519 } 3520 3521 /* 3522 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3523 * under assumption that they were already resolved to canonical type IDs and 3524 * are not going to change. 3525 */ 3526 static long btf_hash_fnproto(struct btf_type *t) 3527 { 3528 const struct btf_param *member = btf_params(t); 3529 __u16 vlen = btf_vlen(t); 3530 long h = btf_hash_common(t); 3531 int i; 3532 3533 for (i = 0; i < vlen; i++) { 3534 h = hash_combine(h, member->name_off); 3535 h = hash_combine(h, member->type); 3536 member++; 3537 } 3538 return h; 3539 } 3540 3541 /* 3542 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3543 * type IDs, under assumption that they were already resolved to canonical 3544 * type IDs and are not going to change. 3545 * This function is called during reference types deduplication to compare 3546 * FUNC_PROTO to potential canonical representative. 3547 */ 3548 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3549 { 3550 const struct btf_param *m1, *m2; 3551 __u16 vlen; 3552 int i; 3553 3554 if (!btf_equal_common(t1, t2)) 3555 return false; 3556 3557 vlen = btf_vlen(t1); 3558 m1 = btf_params(t1); 3559 m2 = btf_params(t2); 3560 for (i = 0; i < vlen; i++) { 3561 if (m1->name_off != m2->name_off || m1->type != m2->type) 3562 return false; 3563 m1++; 3564 m2++; 3565 } 3566 return true; 3567 } 3568 3569 /* 3570 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3571 * IDs. This check is performed during type graph equivalence check and 3572 * referenced types equivalence is checked separately. 3573 */ 3574 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3575 { 3576 const struct btf_param *m1, *m2; 3577 __u16 vlen; 3578 int i; 3579 3580 /* skip return type ID */ 3581 if (t1->name_off != t2->name_off || t1->info != t2->info) 3582 return false; 3583 3584 vlen = btf_vlen(t1); 3585 m1 = btf_params(t1); 3586 m2 = btf_params(t2); 3587 for (i = 0; i < vlen; i++) { 3588 if (m1->name_off != m2->name_off) 3589 return false; 3590 m1++; 3591 m2++; 3592 } 3593 return true; 3594 } 3595 3596 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3597 * types and initializing the rest of the state (canonical type mapping) for 3598 * the fixed base BTF part. 3599 */ 3600 static int btf_dedup_prep(struct btf_dedup *d) 3601 { 3602 struct btf_type *t; 3603 int type_id; 3604 long h; 3605 3606 if (!d->btf->base_btf) 3607 return 0; 3608 3609 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3610 t = btf_type_by_id(d->btf, type_id); 3611 3612 /* all base BTF types are self-canonical by definition */ 3613 d->map[type_id] = type_id; 3614 3615 switch (btf_kind(t)) { 3616 case BTF_KIND_VAR: 3617 case BTF_KIND_DATASEC: 3618 /* VAR and DATASEC are never hash/deduplicated */ 3619 continue; 3620 case BTF_KIND_CONST: 3621 case BTF_KIND_VOLATILE: 3622 case BTF_KIND_RESTRICT: 3623 case BTF_KIND_PTR: 3624 case BTF_KIND_FWD: 3625 case BTF_KIND_TYPEDEF: 3626 case BTF_KIND_FUNC: 3627 case BTF_KIND_FLOAT: 3628 h = btf_hash_common(t); 3629 break; 3630 case BTF_KIND_INT: 3631 case BTF_KIND_DECL_TAG: 3632 h = btf_hash_int_decl_tag(t); 3633 break; 3634 case BTF_KIND_ENUM: 3635 h = btf_hash_enum(t); 3636 break; 3637 case BTF_KIND_STRUCT: 3638 case BTF_KIND_UNION: 3639 h = btf_hash_struct(t); 3640 break; 3641 case BTF_KIND_ARRAY: 3642 h = btf_hash_array(t); 3643 break; 3644 case BTF_KIND_FUNC_PROTO: 3645 h = btf_hash_fnproto(t); 3646 break; 3647 default: 3648 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3649 return -EINVAL; 3650 } 3651 if (btf_dedup_table_add(d, h, type_id)) 3652 return -ENOMEM; 3653 } 3654 3655 return 0; 3656 } 3657 3658 /* 3659 * Deduplicate primitive types, that can't reference other types, by calculating 3660 * their type signature hash and comparing them with any possible canonical 3661 * candidate. If no canonical candidate matches, type itself is marked as 3662 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3663 */ 3664 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3665 { 3666 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3667 struct hashmap_entry *hash_entry; 3668 struct btf_type *cand; 3669 /* if we don't find equivalent type, then we are canonical */ 3670 __u32 new_id = type_id; 3671 __u32 cand_id; 3672 long h; 3673 3674 switch (btf_kind(t)) { 3675 case BTF_KIND_CONST: 3676 case BTF_KIND_VOLATILE: 3677 case BTF_KIND_RESTRICT: 3678 case BTF_KIND_PTR: 3679 case BTF_KIND_TYPEDEF: 3680 case BTF_KIND_ARRAY: 3681 case BTF_KIND_STRUCT: 3682 case BTF_KIND_UNION: 3683 case BTF_KIND_FUNC: 3684 case BTF_KIND_FUNC_PROTO: 3685 case BTF_KIND_VAR: 3686 case BTF_KIND_DATASEC: 3687 case BTF_KIND_DECL_TAG: 3688 return 0; 3689 3690 case BTF_KIND_INT: 3691 h = btf_hash_int_decl_tag(t); 3692 for_each_dedup_cand(d, hash_entry, h) { 3693 cand_id = (__u32)(long)hash_entry->value; 3694 cand = btf_type_by_id(d->btf, cand_id); 3695 if (btf_equal_int_tag(t, cand)) { 3696 new_id = cand_id; 3697 break; 3698 } 3699 } 3700 break; 3701 3702 case BTF_KIND_ENUM: 3703 h = btf_hash_enum(t); 3704 for_each_dedup_cand(d, hash_entry, h) { 3705 cand_id = (__u32)(long)hash_entry->value; 3706 cand = btf_type_by_id(d->btf, cand_id); 3707 if (btf_equal_enum(t, cand)) { 3708 new_id = cand_id; 3709 break; 3710 } 3711 if (d->opts.dont_resolve_fwds) 3712 continue; 3713 if (btf_compat_enum(t, cand)) { 3714 if (btf_is_enum_fwd(t)) { 3715 /* resolve fwd to full enum */ 3716 new_id = cand_id; 3717 break; 3718 } 3719 /* resolve canonical enum fwd to full enum */ 3720 d->map[cand_id] = type_id; 3721 } 3722 } 3723 break; 3724 3725 case BTF_KIND_FWD: 3726 case BTF_KIND_FLOAT: 3727 h = btf_hash_common(t); 3728 for_each_dedup_cand(d, hash_entry, h) { 3729 cand_id = (__u32)(long)hash_entry->value; 3730 cand = btf_type_by_id(d->btf, cand_id); 3731 if (btf_equal_common(t, cand)) { 3732 new_id = cand_id; 3733 break; 3734 } 3735 } 3736 break; 3737 3738 default: 3739 return -EINVAL; 3740 } 3741 3742 d->map[type_id] = new_id; 3743 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3744 return -ENOMEM; 3745 3746 return 0; 3747 } 3748 3749 static int btf_dedup_prim_types(struct btf_dedup *d) 3750 { 3751 int i, err; 3752 3753 for (i = 0; i < d->btf->nr_types; i++) { 3754 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3755 if (err) 3756 return err; 3757 } 3758 return 0; 3759 } 3760 3761 /* 3762 * Check whether type is already mapped into canonical one (could be to itself). 3763 */ 3764 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3765 { 3766 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3767 } 3768 3769 /* 3770 * Resolve type ID into its canonical type ID, if any; otherwise return original 3771 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3772 * STRUCT/UNION link and resolve it into canonical type ID as well. 3773 */ 3774 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3775 { 3776 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3777 type_id = d->map[type_id]; 3778 return type_id; 3779 } 3780 3781 /* 3782 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3783 * type ID. 3784 */ 3785 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3786 { 3787 __u32 orig_type_id = type_id; 3788 3789 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3790 return type_id; 3791 3792 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3793 type_id = d->map[type_id]; 3794 3795 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3796 return type_id; 3797 3798 return orig_type_id; 3799 } 3800 3801 3802 static inline __u16 btf_fwd_kind(struct btf_type *t) 3803 { 3804 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3805 } 3806 3807 /* Check if given two types are identical ARRAY definitions */ 3808 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3809 { 3810 struct btf_type *t1, *t2; 3811 3812 t1 = btf_type_by_id(d->btf, id1); 3813 t2 = btf_type_by_id(d->btf, id2); 3814 if (!btf_is_array(t1) || !btf_is_array(t2)) 3815 return 0; 3816 3817 return btf_equal_array(t1, t2); 3818 } 3819 3820 /* 3821 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3822 * call it "candidate graph" in this description for brevity) to a type graph 3823 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3824 * here, though keep in mind that not all types in canonical graph are 3825 * necessarily canonical representatives themselves, some of them might be 3826 * duplicates or its uniqueness might not have been established yet). 3827 * Returns: 3828 * - >0, if type graphs are equivalent; 3829 * - 0, if not equivalent; 3830 * - <0, on error. 3831 * 3832 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3833 * equivalence of BTF types at each step. If at any point BTF types in candidate 3834 * and canonical graphs are not compatible structurally, whole graphs are 3835 * incompatible. If types are structurally equivalent (i.e., all information 3836 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3837 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3838 * If a type references other types, then those referenced types are checked 3839 * for equivalence recursively. 3840 * 3841 * During DFS traversal, if we find that for current `canon_id` type we 3842 * already have some mapping in hypothetical map, we check for two possible 3843 * situations: 3844 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3845 * happen when type graphs have cycles. In this case we assume those two 3846 * types are equivalent. 3847 * - `canon_id` is mapped to different type. This is contradiction in our 3848 * hypothetical mapping, because same graph in canonical graph corresponds 3849 * to two different types in candidate graph, which for equivalent type 3850 * graphs shouldn't happen. This condition terminates equivalence check 3851 * with negative result. 3852 * 3853 * If type graphs traversal exhausts types to check and find no contradiction, 3854 * then type graphs are equivalent. 3855 * 3856 * When checking types for equivalence, there is one special case: FWD types. 3857 * If FWD type resolution is allowed and one of the types (either from canonical 3858 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3859 * flag) and their names match, hypothetical mapping is updated to point from 3860 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3861 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3862 * 3863 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3864 * if there are two exactly named (or anonymous) structs/unions that are 3865 * compatible structurally, one of which has FWD field, while other is concrete 3866 * STRUCT/UNION, but according to C sources they are different structs/unions 3867 * that are referencing different types with the same name. This is extremely 3868 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3869 * this logic is causing problems. 3870 * 3871 * Doing FWD resolution means that both candidate and/or canonical graphs can 3872 * consists of portions of the graph that come from multiple compilation units. 3873 * This is due to the fact that types within single compilation unit are always 3874 * deduplicated and FWDs are already resolved, if referenced struct/union 3875 * definiton is available. So, if we had unresolved FWD and found corresponding 3876 * STRUCT/UNION, they will be from different compilation units. This 3877 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3878 * type graph will likely have at least two different BTF types that describe 3879 * same type (e.g., most probably there will be two different BTF types for the 3880 * same 'int' primitive type) and could even have "overlapping" parts of type 3881 * graph that describe same subset of types. 3882 * 3883 * This in turn means that our assumption that each type in canonical graph 3884 * must correspond to exactly one type in candidate graph might not hold 3885 * anymore and will make it harder to detect contradictions using hypothetical 3886 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3887 * resolution only in canonical graph. FWDs in candidate graphs are never 3888 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3889 * that can occur: 3890 * - Both types in canonical and candidate graphs are FWDs. If they are 3891 * structurally equivalent, then they can either be both resolved to the 3892 * same STRUCT/UNION or not resolved at all. In both cases they are 3893 * equivalent and there is no need to resolve FWD on candidate side. 3894 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3895 * so nothing to resolve as well, algorithm will check equivalence anyway. 3896 * - Type in canonical graph is FWD, while type in candidate is concrete 3897 * STRUCT/UNION. In this case candidate graph comes from single compilation 3898 * unit, so there is exactly one BTF type for each unique C type. After 3899 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3900 * in canonical graph mapping to single BTF type in candidate graph, but 3901 * because hypothetical mapping maps from canonical to candidate types, it's 3902 * alright, and we still maintain the property of having single `canon_id` 3903 * mapping to single `cand_id` (there could be two different `canon_id` 3904 * mapped to the same `cand_id`, but it's not contradictory). 3905 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3906 * graph is FWD. In this case we are just going to check compatibility of 3907 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3908 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3909 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3910 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3911 * canonical graph. 3912 */ 3913 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3914 __u32 canon_id) 3915 { 3916 struct btf_type *cand_type; 3917 struct btf_type *canon_type; 3918 __u32 hypot_type_id; 3919 __u16 cand_kind; 3920 __u16 canon_kind; 3921 int i, eq; 3922 3923 /* if both resolve to the same canonical, they must be equivalent */ 3924 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3925 return 1; 3926 3927 canon_id = resolve_fwd_id(d, canon_id); 3928 3929 hypot_type_id = d->hypot_map[canon_id]; 3930 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3931 /* In some cases compiler will generate different DWARF types 3932 * for *identical* array type definitions and use them for 3933 * different fields within the *same* struct. This breaks type 3934 * equivalence check, which makes an assumption that candidate 3935 * types sub-graph has a consistent and deduped-by-compiler 3936 * types within a single CU. So work around that by explicitly 3937 * allowing identical array types here. 3938 */ 3939 return hypot_type_id == cand_id || 3940 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3941 } 3942 3943 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3944 return -ENOMEM; 3945 3946 cand_type = btf_type_by_id(d->btf, cand_id); 3947 canon_type = btf_type_by_id(d->btf, canon_id); 3948 cand_kind = btf_kind(cand_type); 3949 canon_kind = btf_kind(canon_type); 3950 3951 if (cand_type->name_off != canon_type->name_off) 3952 return 0; 3953 3954 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3955 if (!d->opts.dont_resolve_fwds 3956 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3957 && cand_kind != canon_kind) { 3958 __u16 real_kind; 3959 __u16 fwd_kind; 3960 3961 if (cand_kind == BTF_KIND_FWD) { 3962 real_kind = canon_kind; 3963 fwd_kind = btf_fwd_kind(cand_type); 3964 } else { 3965 real_kind = cand_kind; 3966 fwd_kind = btf_fwd_kind(canon_type); 3967 /* we'd need to resolve base FWD to STRUCT/UNION */ 3968 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3969 d->hypot_adjust_canon = true; 3970 } 3971 return fwd_kind == real_kind; 3972 } 3973 3974 if (cand_kind != canon_kind) 3975 return 0; 3976 3977 switch (cand_kind) { 3978 case BTF_KIND_INT: 3979 return btf_equal_int_tag(cand_type, canon_type); 3980 3981 case BTF_KIND_ENUM: 3982 if (d->opts.dont_resolve_fwds) 3983 return btf_equal_enum(cand_type, canon_type); 3984 else 3985 return btf_compat_enum(cand_type, canon_type); 3986 3987 case BTF_KIND_FWD: 3988 case BTF_KIND_FLOAT: 3989 return btf_equal_common(cand_type, canon_type); 3990 3991 case BTF_KIND_CONST: 3992 case BTF_KIND_VOLATILE: 3993 case BTF_KIND_RESTRICT: 3994 case BTF_KIND_PTR: 3995 case BTF_KIND_TYPEDEF: 3996 case BTF_KIND_FUNC: 3997 if (cand_type->info != canon_type->info) 3998 return 0; 3999 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4000 4001 case BTF_KIND_ARRAY: { 4002 const struct btf_array *cand_arr, *canon_arr; 4003 4004 if (!btf_compat_array(cand_type, canon_type)) 4005 return 0; 4006 cand_arr = btf_array(cand_type); 4007 canon_arr = btf_array(canon_type); 4008 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4009 if (eq <= 0) 4010 return eq; 4011 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4012 } 4013 4014 case BTF_KIND_STRUCT: 4015 case BTF_KIND_UNION: { 4016 const struct btf_member *cand_m, *canon_m; 4017 __u16 vlen; 4018 4019 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4020 return 0; 4021 vlen = btf_vlen(cand_type); 4022 cand_m = btf_members(cand_type); 4023 canon_m = btf_members(canon_type); 4024 for (i = 0; i < vlen; i++) { 4025 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4026 if (eq <= 0) 4027 return eq; 4028 cand_m++; 4029 canon_m++; 4030 } 4031 4032 return 1; 4033 } 4034 4035 case BTF_KIND_FUNC_PROTO: { 4036 const struct btf_param *cand_p, *canon_p; 4037 __u16 vlen; 4038 4039 if (!btf_compat_fnproto(cand_type, canon_type)) 4040 return 0; 4041 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4042 if (eq <= 0) 4043 return eq; 4044 vlen = btf_vlen(cand_type); 4045 cand_p = btf_params(cand_type); 4046 canon_p = btf_params(canon_type); 4047 for (i = 0; i < vlen; i++) { 4048 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4049 if (eq <= 0) 4050 return eq; 4051 cand_p++; 4052 canon_p++; 4053 } 4054 return 1; 4055 } 4056 4057 default: 4058 return -EINVAL; 4059 } 4060 return 0; 4061 } 4062 4063 /* 4064 * Use hypothetical mapping, produced by successful type graph equivalence 4065 * check, to augment existing struct/union canonical mapping, where possible. 4066 * 4067 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4068 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4069 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4070 * we are recording the mapping anyway. As opposed to carefulness required 4071 * for struct/union correspondence mapping (described below), for FWD resolution 4072 * it's not important, as by the time that FWD type (reference type) will be 4073 * deduplicated all structs/unions will be deduped already anyway. 4074 * 4075 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4076 * not required for correctness. It needs to be done carefully to ensure that 4077 * struct/union from candidate's type graph is not mapped into corresponding 4078 * struct/union from canonical type graph that itself hasn't been resolved into 4079 * canonical representative. The only guarantee we have is that canonical 4080 * struct/union was determined as canonical and that won't change. But any 4081 * types referenced through that struct/union fields could have been not yet 4082 * resolved, so in case like that it's too early to establish any kind of 4083 * correspondence between structs/unions. 4084 * 4085 * No canonical correspondence is derived for primitive types (they are already 4086 * deduplicated completely already anyway) or reference types (they rely on 4087 * stability of struct/union canonical relationship for equivalence checks). 4088 */ 4089 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4090 { 4091 __u32 canon_type_id, targ_type_id; 4092 __u16 t_kind, c_kind; 4093 __u32 t_id, c_id; 4094 int i; 4095 4096 for (i = 0; i < d->hypot_cnt; i++) { 4097 canon_type_id = d->hypot_list[i]; 4098 targ_type_id = d->hypot_map[canon_type_id]; 4099 t_id = resolve_type_id(d, targ_type_id); 4100 c_id = resolve_type_id(d, canon_type_id); 4101 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4102 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4103 /* 4104 * Resolve FWD into STRUCT/UNION. 4105 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4106 * mapped to canonical representative (as opposed to 4107 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4108 * eventually that struct is going to be mapped and all resolved 4109 * FWDs will automatically resolve to correct canonical 4110 * representative. This will happen before ref type deduping, 4111 * which critically depends on stability of these mapping. This 4112 * stability is not a requirement for STRUCT/UNION equivalence 4113 * checks, though. 4114 */ 4115 4116 /* if it's the split BTF case, we still need to point base FWD 4117 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4118 * will be resolved against base FWD. If we don't point base 4119 * canonical FWD to the resolved STRUCT/UNION, then all the 4120 * FWDs in split BTF won't be correctly resolved to a proper 4121 * STRUCT/UNION. 4122 */ 4123 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4124 d->map[c_id] = t_id; 4125 4126 /* if graph equivalence determined that we'd need to adjust 4127 * base canonical types, then we need to only point base FWDs 4128 * to STRUCTs/UNIONs and do no more modifications. For all 4129 * other purposes the type graphs were not equivalent. 4130 */ 4131 if (d->hypot_adjust_canon) 4132 continue; 4133 4134 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4135 d->map[t_id] = c_id; 4136 4137 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4138 c_kind != BTF_KIND_FWD && 4139 is_type_mapped(d, c_id) && 4140 !is_type_mapped(d, t_id)) { 4141 /* 4142 * as a perf optimization, we can map struct/union 4143 * that's part of type graph we just verified for 4144 * equivalence. We can do that for struct/union that has 4145 * canonical representative only, though. 4146 */ 4147 d->map[t_id] = c_id; 4148 } 4149 } 4150 } 4151 4152 /* 4153 * Deduplicate struct/union types. 4154 * 4155 * For each struct/union type its type signature hash is calculated, taking 4156 * into account type's name, size, number, order and names of fields, but 4157 * ignoring type ID's referenced from fields, because they might not be deduped 4158 * completely until after reference types deduplication phase. This type hash 4159 * is used to iterate over all potential canonical types, sharing same hash. 4160 * For each canonical candidate we check whether type graphs that they form 4161 * (through referenced types in fields and so on) are equivalent using algorithm 4162 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4163 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4164 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4165 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4166 * potentially map other structs/unions to their canonical representatives, 4167 * if such relationship hasn't yet been established. This speeds up algorithm 4168 * by eliminating some of the duplicate work. 4169 * 4170 * If no matching canonical representative was found, struct/union is marked 4171 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4172 * for further look ups. 4173 */ 4174 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4175 { 4176 struct btf_type *cand_type, *t; 4177 struct hashmap_entry *hash_entry; 4178 /* if we don't find equivalent type, then we are canonical */ 4179 __u32 new_id = type_id; 4180 __u16 kind; 4181 long h; 4182 4183 /* already deduped or is in process of deduping (loop detected) */ 4184 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4185 return 0; 4186 4187 t = btf_type_by_id(d->btf, type_id); 4188 kind = btf_kind(t); 4189 4190 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4191 return 0; 4192 4193 h = btf_hash_struct(t); 4194 for_each_dedup_cand(d, hash_entry, h) { 4195 __u32 cand_id = (__u32)(long)hash_entry->value; 4196 int eq; 4197 4198 /* 4199 * Even though btf_dedup_is_equiv() checks for 4200 * btf_shallow_equal_struct() internally when checking two 4201 * structs (unions) for equivalence, we need to guard here 4202 * from picking matching FWD type as a dedup candidate. 4203 * This can happen due to hash collision. In such case just 4204 * relying on btf_dedup_is_equiv() would lead to potentially 4205 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4206 * FWD and compatible STRUCT/UNION are considered equivalent. 4207 */ 4208 cand_type = btf_type_by_id(d->btf, cand_id); 4209 if (!btf_shallow_equal_struct(t, cand_type)) 4210 continue; 4211 4212 btf_dedup_clear_hypot_map(d); 4213 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4214 if (eq < 0) 4215 return eq; 4216 if (!eq) 4217 continue; 4218 btf_dedup_merge_hypot_map(d); 4219 if (d->hypot_adjust_canon) /* not really equivalent */ 4220 continue; 4221 new_id = cand_id; 4222 break; 4223 } 4224 4225 d->map[type_id] = new_id; 4226 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4227 return -ENOMEM; 4228 4229 return 0; 4230 } 4231 4232 static int btf_dedup_struct_types(struct btf_dedup *d) 4233 { 4234 int i, err; 4235 4236 for (i = 0; i < d->btf->nr_types; i++) { 4237 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4238 if (err) 4239 return err; 4240 } 4241 return 0; 4242 } 4243 4244 /* 4245 * Deduplicate reference type. 4246 * 4247 * Once all primitive and struct/union types got deduplicated, we can easily 4248 * deduplicate all other (reference) BTF types. This is done in two steps: 4249 * 4250 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4251 * resolution can be done either immediately for primitive or struct/union types 4252 * (because they were deduped in previous two phases) or recursively for 4253 * reference types. Recursion will always terminate at either primitive or 4254 * struct/union type, at which point we can "unwind" chain of reference types 4255 * one by one. There is no danger of encountering cycles because in C type 4256 * system the only way to form type cycle is through struct/union, so any chain 4257 * of reference types, even those taking part in a type cycle, will inevitably 4258 * reach struct/union at some point. 4259 * 4260 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4261 * becomes "stable", in the sense that no further deduplication will cause 4262 * any changes to it. With that, it's now possible to calculate type's signature 4263 * hash (this time taking into account referenced type IDs) and loop over all 4264 * potential canonical representatives. If no match was found, current type 4265 * will become canonical representative of itself and will be added into 4266 * btf_dedup->dedup_table as another possible canonical representative. 4267 */ 4268 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4269 { 4270 struct hashmap_entry *hash_entry; 4271 __u32 new_id = type_id, cand_id; 4272 struct btf_type *t, *cand; 4273 /* if we don't find equivalent type, then we are representative type */ 4274 int ref_type_id; 4275 long h; 4276 4277 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4278 return -ELOOP; 4279 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4280 return resolve_type_id(d, type_id); 4281 4282 t = btf_type_by_id(d->btf, type_id); 4283 d->map[type_id] = BTF_IN_PROGRESS_ID; 4284 4285 switch (btf_kind(t)) { 4286 case BTF_KIND_CONST: 4287 case BTF_KIND_VOLATILE: 4288 case BTF_KIND_RESTRICT: 4289 case BTF_KIND_PTR: 4290 case BTF_KIND_TYPEDEF: 4291 case BTF_KIND_FUNC: 4292 ref_type_id = btf_dedup_ref_type(d, t->type); 4293 if (ref_type_id < 0) 4294 return ref_type_id; 4295 t->type = ref_type_id; 4296 4297 h = btf_hash_common(t); 4298 for_each_dedup_cand(d, hash_entry, h) { 4299 cand_id = (__u32)(long)hash_entry->value; 4300 cand = btf_type_by_id(d->btf, cand_id); 4301 if (btf_equal_common(t, cand)) { 4302 new_id = cand_id; 4303 break; 4304 } 4305 } 4306 break; 4307 4308 case BTF_KIND_DECL_TAG: 4309 ref_type_id = btf_dedup_ref_type(d, t->type); 4310 if (ref_type_id < 0) 4311 return ref_type_id; 4312 t->type = ref_type_id; 4313 4314 h = btf_hash_int_decl_tag(t); 4315 for_each_dedup_cand(d, hash_entry, h) { 4316 cand_id = (__u32)(long)hash_entry->value; 4317 cand = btf_type_by_id(d->btf, cand_id); 4318 if (btf_equal_int_tag(t, cand)) { 4319 new_id = cand_id; 4320 break; 4321 } 4322 } 4323 break; 4324 4325 case BTF_KIND_ARRAY: { 4326 struct btf_array *info = btf_array(t); 4327 4328 ref_type_id = btf_dedup_ref_type(d, info->type); 4329 if (ref_type_id < 0) 4330 return ref_type_id; 4331 info->type = ref_type_id; 4332 4333 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4334 if (ref_type_id < 0) 4335 return ref_type_id; 4336 info->index_type = ref_type_id; 4337 4338 h = btf_hash_array(t); 4339 for_each_dedup_cand(d, hash_entry, h) { 4340 cand_id = (__u32)(long)hash_entry->value; 4341 cand = btf_type_by_id(d->btf, cand_id); 4342 if (btf_equal_array(t, cand)) { 4343 new_id = cand_id; 4344 break; 4345 } 4346 } 4347 break; 4348 } 4349 4350 case BTF_KIND_FUNC_PROTO: { 4351 struct btf_param *param; 4352 __u16 vlen; 4353 int i; 4354 4355 ref_type_id = btf_dedup_ref_type(d, t->type); 4356 if (ref_type_id < 0) 4357 return ref_type_id; 4358 t->type = ref_type_id; 4359 4360 vlen = btf_vlen(t); 4361 param = btf_params(t); 4362 for (i = 0; i < vlen; i++) { 4363 ref_type_id = btf_dedup_ref_type(d, param->type); 4364 if (ref_type_id < 0) 4365 return ref_type_id; 4366 param->type = ref_type_id; 4367 param++; 4368 } 4369 4370 h = btf_hash_fnproto(t); 4371 for_each_dedup_cand(d, hash_entry, h) { 4372 cand_id = (__u32)(long)hash_entry->value; 4373 cand = btf_type_by_id(d->btf, cand_id); 4374 if (btf_equal_fnproto(t, cand)) { 4375 new_id = cand_id; 4376 break; 4377 } 4378 } 4379 break; 4380 } 4381 4382 default: 4383 return -EINVAL; 4384 } 4385 4386 d->map[type_id] = new_id; 4387 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4388 return -ENOMEM; 4389 4390 return new_id; 4391 } 4392 4393 static int btf_dedup_ref_types(struct btf_dedup *d) 4394 { 4395 int i, err; 4396 4397 for (i = 0; i < d->btf->nr_types; i++) { 4398 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4399 if (err < 0) 4400 return err; 4401 } 4402 /* we won't need d->dedup_table anymore */ 4403 hashmap__free(d->dedup_table); 4404 d->dedup_table = NULL; 4405 return 0; 4406 } 4407 4408 /* 4409 * Compact types. 4410 * 4411 * After we established for each type its corresponding canonical representative 4412 * type, we now can eliminate types that are not canonical and leave only 4413 * canonical ones layed out sequentially in memory by copying them over 4414 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4415 * a map from original type ID to a new compacted type ID, which will be used 4416 * during next phase to "fix up" type IDs, referenced from struct/union and 4417 * reference types. 4418 */ 4419 static int btf_dedup_compact_types(struct btf_dedup *d) 4420 { 4421 __u32 *new_offs; 4422 __u32 next_type_id = d->btf->start_id; 4423 const struct btf_type *t; 4424 void *p; 4425 int i, id, len; 4426 4427 /* we are going to reuse hypot_map to store compaction remapping */ 4428 d->hypot_map[0] = 0; 4429 /* base BTF types are not renumbered */ 4430 for (id = 1; id < d->btf->start_id; id++) 4431 d->hypot_map[id] = id; 4432 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4433 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4434 4435 p = d->btf->types_data; 4436 4437 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4438 if (d->map[id] != id) 4439 continue; 4440 4441 t = btf__type_by_id(d->btf, id); 4442 len = btf_type_size(t); 4443 if (len < 0) 4444 return len; 4445 4446 memmove(p, t, len); 4447 d->hypot_map[id] = next_type_id; 4448 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4449 p += len; 4450 next_type_id++; 4451 } 4452 4453 /* shrink struct btf's internal types index and update btf_header */ 4454 d->btf->nr_types = next_type_id - d->btf->start_id; 4455 d->btf->type_offs_cap = d->btf->nr_types; 4456 d->btf->hdr->type_len = p - d->btf->types_data; 4457 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4458 sizeof(*new_offs)); 4459 if (d->btf->type_offs_cap && !new_offs) 4460 return -ENOMEM; 4461 d->btf->type_offs = new_offs; 4462 d->btf->hdr->str_off = d->btf->hdr->type_len; 4463 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4464 return 0; 4465 } 4466 4467 /* 4468 * Figure out final (deduplicated and compacted) type ID for provided original 4469 * `type_id` by first resolving it into corresponding canonical type ID and 4470 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4471 * which is populated during compaction phase. 4472 */ 4473 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4474 { 4475 struct btf_dedup *d = ctx; 4476 __u32 resolved_type_id, new_type_id; 4477 4478 resolved_type_id = resolve_type_id(d, *type_id); 4479 new_type_id = d->hypot_map[resolved_type_id]; 4480 if (new_type_id > BTF_MAX_NR_TYPES) 4481 return -EINVAL; 4482 4483 *type_id = new_type_id; 4484 return 0; 4485 } 4486 4487 /* 4488 * Remap referenced type IDs into deduped type IDs. 4489 * 4490 * After BTF types are deduplicated and compacted, their final type IDs may 4491 * differ from original ones. The map from original to a corresponding 4492 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4493 * compaction phase. During remapping phase we are rewriting all type IDs 4494 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4495 * their final deduped type IDs. 4496 */ 4497 static int btf_dedup_remap_types(struct btf_dedup *d) 4498 { 4499 int i, r; 4500 4501 for (i = 0; i < d->btf->nr_types; i++) { 4502 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4503 4504 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4505 if (r) 4506 return r; 4507 } 4508 4509 if (!d->btf_ext) 4510 return 0; 4511 4512 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4513 if (r) 4514 return r; 4515 4516 return 0; 4517 } 4518 4519 /* 4520 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4521 * data out of it to use for target BTF. 4522 */ 4523 struct btf *btf__load_vmlinux_btf(void) 4524 { 4525 struct { 4526 const char *path_fmt; 4527 bool raw_btf; 4528 } locations[] = { 4529 /* try canonical vmlinux BTF through sysfs first */ 4530 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4531 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4532 { "/boot/vmlinux-%1$s" }, 4533 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4534 { "/lib/modules/%1$s/build/vmlinux" }, 4535 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4536 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4537 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4538 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4539 }; 4540 char path[PATH_MAX + 1]; 4541 struct utsname buf; 4542 struct btf *btf; 4543 int i, err; 4544 4545 uname(&buf); 4546 4547 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4548 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4549 4550 if (access(path, R_OK)) 4551 continue; 4552 4553 if (locations[i].raw_btf) 4554 btf = btf__parse_raw(path); 4555 else 4556 btf = btf__parse_elf(path, NULL); 4557 err = libbpf_get_error(btf); 4558 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4559 if (err) 4560 continue; 4561 4562 return btf; 4563 } 4564 4565 pr_warn("failed to find valid kernel BTF\n"); 4566 return libbpf_err_ptr(-ESRCH); 4567 } 4568 4569 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4570 4571 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4572 { 4573 char path[80]; 4574 4575 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4576 return btf__parse_split(path, vmlinux_btf); 4577 } 4578 4579 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4580 { 4581 int i, n, err; 4582 4583 switch (btf_kind(t)) { 4584 case BTF_KIND_INT: 4585 case BTF_KIND_FLOAT: 4586 case BTF_KIND_ENUM: 4587 return 0; 4588 4589 case BTF_KIND_FWD: 4590 case BTF_KIND_CONST: 4591 case BTF_KIND_VOLATILE: 4592 case BTF_KIND_RESTRICT: 4593 case BTF_KIND_PTR: 4594 case BTF_KIND_TYPEDEF: 4595 case BTF_KIND_FUNC: 4596 case BTF_KIND_VAR: 4597 case BTF_KIND_DECL_TAG: 4598 return visit(&t->type, ctx); 4599 4600 case BTF_KIND_ARRAY: { 4601 struct btf_array *a = btf_array(t); 4602 4603 err = visit(&a->type, ctx); 4604 err = err ?: visit(&a->index_type, ctx); 4605 return err; 4606 } 4607 4608 case BTF_KIND_STRUCT: 4609 case BTF_KIND_UNION: { 4610 struct btf_member *m = btf_members(t); 4611 4612 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4613 err = visit(&m->type, ctx); 4614 if (err) 4615 return err; 4616 } 4617 return 0; 4618 } 4619 4620 case BTF_KIND_FUNC_PROTO: { 4621 struct btf_param *m = btf_params(t); 4622 4623 err = visit(&t->type, ctx); 4624 if (err) 4625 return err; 4626 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4627 err = visit(&m->type, ctx); 4628 if (err) 4629 return err; 4630 } 4631 return 0; 4632 } 4633 4634 case BTF_KIND_DATASEC: { 4635 struct btf_var_secinfo *m = btf_var_secinfos(t); 4636 4637 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4638 err = visit(&m->type, ctx); 4639 if (err) 4640 return err; 4641 } 4642 return 0; 4643 } 4644 4645 default: 4646 return -EINVAL; 4647 } 4648 } 4649 4650 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4651 { 4652 int i, n, err; 4653 4654 err = visit(&t->name_off, ctx); 4655 if (err) 4656 return err; 4657 4658 switch (btf_kind(t)) { 4659 case BTF_KIND_STRUCT: 4660 case BTF_KIND_UNION: { 4661 struct btf_member *m = btf_members(t); 4662 4663 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4664 err = visit(&m->name_off, ctx); 4665 if (err) 4666 return err; 4667 } 4668 break; 4669 } 4670 case BTF_KIND_ENUM: { 4671 struct btf_enum *m = btf_enum(t); 4672 4673 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4674 err = visit(&m->name_off, ctx); 4675 if (err) 4676 return err; 4677 } 4678 break; 4679 } 4680 case BTF_KIND_FUNC_PROTO: { 4681 struct btf_param *m = btf_params(t); 4682 4683 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4684 err = visit(&m->name_off, ctx); 4685 if (err) 4686 return err; 4687 } 4688 break; 4689 } 4690 default: 4691 break; 4692 } 4693 4694 return 0; 4695 } 4696 4697 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4698 { 4699 const struct btf_ext_info *seg; 4700 struct btf_ext_info_sec *sec; 4701 int i, err; 4702 4703 seg = &btf_ext->func_info; 4704 for_each_btf_ext_sec(seg, sec) { 4705 struct bpf_func_info_min *rec; 4706 4707 for_each_btf_ext_rec(seg, sec, i, rec) { 4708 err = visit(&rec->type_id, ctx); 4709 if (err < 0) 4710 return err; 4711 } 4712 } 4713 4714 seg = &btf_ext->core_relo_info; 4715 for_each_btf_ext_sec(seg, sec) { 4716 struct bpf_core_relo *rec; 4717 4718 for_each_btf_ext_rec(seg, sec, i, rec) { 4719 err = visit(&rec->type_id, ctx); 4720 if (err < 0) 4721 return err; 4722 } 4723 } 4724 4725 return 0; 4726 } 4727 4728 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4729 { 4730 const struct btf_ext_info *seg; 4731 struct btf_ext_info_sec *sec; 4732 int i, err; 4733 4734 seg = &btf_ext->func_info; 4735 for_each_btf_ext_sec(seg, sec) { 4736 err = visit(&sec->sec_name_off, ctx); 4737 if (err) 4738 return err; 4739 } 4740 4741 seg = &btf_ext->line_info; 4742 for_each_btf_ext_sec(seg, sec) { 4743 struct bpf_line_info_min *rec; 4744 4745 err = visit(&sec->sec_name_off, ctx); 4746 if (err) 4747 return err; 4748 4749 for_each_btf_ext_rec(seg, sec, i, rec) { 4750 err = visit(&rec->file_name_off, ctx); 4751 if (err) 4752 return err; 4753 err = visit(&rec->line_off, ctx); 4754 if (err) 4755 return err; 4756 } 4757 } 4758 4759 seg = &btf_ext->core_relo_info; 4760 for_each_btf_ext_sec(seg, sec) { 4761 struct bpf_core_relo *rec; 4762 4763 err = visit(&sec->sec_name_off, ctx); 4764 if (err) 4765 return err; 4766 4767 for_each_btf_ext_rec(seg, sec, i, rec) { 4768 err = visit(&rec->access_str_off, ctx); 4769 if (err) 4770 return err; 4771 } 4772 } 4773 4774 return 0; 4775 } 4776