xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 23966841)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <fcntl.h>
8 #include <unistd.h>
9 #include <errno.h>
10 #include <linux/err.h>
11 #include <linux/btf.h>
12 #include <gelf.h>
13 #include "btf.h"
14 #include "bpf.h"
15 #include "libbpf.h"
16 #include "libbpf_internal.h"
17 #include "hashmap.h"
18 
19 #define BTF_MAX_NR_TYPES 0x7fffffff
20 #define BTF_MAX_STR_OFFSET 0x7fffffff
21 
22 #define IS_MODIFIER(k) (((k) == BTF_KIND_TYPEDEF) || \
23 		((k) == BTF_KIND_VOLATILE) || \
24 		((k) == BTF_KIND_CONST) || \
25 		((k) == BTF_KIND_RESTRICT))
26 
27 #define IS_VAR(k) ((k) == BTF_KIND_VAR)
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	union {
33 		struct btf_header *hdr;
34 		void *data;
35 	};
36 	struct btf_type **types;
37 	const char *strings;
38 	void *nohdr_data;
39 	__u32 nr_types;
40 	__u32 types_size;
41 	__u32 data_size;
42 	int fd;
43 };
44 
45 struct btf_ext_info {
46 	/*
47 	 * info points to the individual info section (e.g. func_info and
48 	 * line_info) from the .BTF.ext. It does not include the __u32 rec_size.
49 	 */
50 	void *info;
51 	__u32 rec_size;
52 	__u32 len;
53 };
54 
55 struct btf_ext {
56 	union {
57 		struct btf_ext_header *hdr;
58 		void *data;
59 	};
60 	struct btf_ext_info func_info;
61 	struct btf_ext_info line_info;
62 	__u32 data_size;
63 };
64 
65 struct btf_ext_info_sec {
66 	__u32	sec_name_off;
67 	__u32	num_info;
68 	/* Followed by num_info * record_size number of bytes */
69 	__u8	data[0];
70 };
71 
72 /* The minimum bpf_func_info checked by the loader */
73 struct bpf_func_info_min {
74 	__u32   insn_off;
75 	__u32   type_id;
76 };
77 
78 /* The minimum bpf_line_info checked by the loader */
79 struct bpf_line_info_min {
80 	__u32	insn_off;
81 	__u32	file_name_off;
82 	__u32	line_off;
83 	__u32	line_col;
84 };
85 
86 static inline __u64 ptr_to_u64(const void *ptr)
87 {
88 	return (__u64) (unsigned long) ptr;
89 }
90 
91 static int btf_add_type(struct btf *btf, struct btf_type *t)
92 {
93 	if (btf->types_size - btf->nr_types < 2) {
94 		struct btf_type **new_types;
95 		__u32 expand_by, new_size;
96 
97 		if (btf->types_size == BTF_MAX_NR_TYPES)
98 			return -E2BIG;
99 
100 		expand_by = max(btf->types_size >> 2, 16);
101 		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
102 
103 		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
104 		if (!new_types)
105 			return -ENOMEM;
106 
107 		if (btf->nr_types == 0)
108 			new_types[0] = &btf_void;
109 
110 		btf->types = new_types;
111 		btf->types_size = new_size;
112 	}
113 
114 	btf->types[++(btf->nr_types)] = t;
115 
116 	return 0;
117 }
118 
119 static int btf_parse_hdr(struct btf *btf)
120 {
121 	const struct btf_header *hdr = btf->hdr;
122 	__u32 meta_left;
123 
124 	if (btf->data_size < sizeof(struct btf_header)) {
125 		pr_debug("BTF header not found\n");
126 		return -EINVAL;
127 	}
128 
129 	if (hdr->magic != BTF_MAGIC) {
130 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
131 		return -EINVAL;
132 	}
133 
134 	if (hdr->version != BTF_VERSION) {
135 		pr_debug("Unsupported BTF version:%u\n", hdr->version);
136 		return -ENOTSUP;
137 	}
138 
139 	if (hdr->flags) {
140 		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
141 		return -ENOTSUP;
142 	}
143 
144 	meta_left = btf->data_size - sizeof(*hdr);
145 	if (!meta_left) {
146 		pr_debug("BTF has no data\n");
147 		return -EINVAL;
148 	}
149 
150 	if (meta_left < hdr->type_off) {
151 		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
152 		return -EINVAL;
153 	}
154 
155 	if (meta_left < hdr->str_off) {
156 		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
157 		return -EINVAL;
158 	}
159 
160 	if (hdr->type_off >= hdr->str_off) {
161 		pr_debug("BTF type section offset >= string section offset. No type?\n");
162 		return -EINVAL;
163 	}
164 
165 	if (hdr->type_off & 0x02) {
166 		pr_debug("BTF type section is not aligned to 4 bytes\n");
167 		return -EINVAL;
168 	}
169 
170 	btf->nohdr_data = btf->hdr + 1;
171 
172 	return 0;
173 }
174 
175 static int btf_parse_str_sec(struct btf *btf)
176 {
177 	const struct btf_header *hdr = btf->hdr;
178 	const char *start = btf->nohdr_data + hdr->str_off;
179 	const char *end = start + btf->hdr->str_len;
180 
181 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
182 	    start[0] || end[-1]) {
183 		pr_debug("Invalid BTF string section\n");
184 		return -EINVAL;
185 	}
186 
187 	btf->strings = start;
188 
189 	return 0;
190 }
191 
192 static int btf_type_size(struct btf_type *t)
193 {
194 	int base_size = sizeof(struct btf_type);
195 	__u16 vlen = BTF_INFO_VLEN(t->info);
196 
197 	switch (BTF_INFO_KIND(t->info)) {
198 	case BTF_KIND_FWD:
199 	case BTF_KIND_CONST:
200 	case BTF_KIND_VOLATILE:
201 	case BTF_KIND_RESTRICT:
202 	case BTF_KIND_PTR:
203 	case BTF_KIND_TYPEDEF:
204 	case BTF_KIND_FUNC:
205 		return base_size;
206 	case BTF_KIND_INT:
207 		return base_size + sizeof(__u32);
208 	case BTF_KIND_ENUM:
209 		return base_size + vlen * sizeof(struct btf_enum);
210 	case BTF_KIND_ARRAY:
211 		return base_size + sizeof(struct btf_array);
212 	case BTF_KIND_STRUCT:
213 	case BTF_KIND_UNION:
214 		return base_size + vlen * sizeof(struct btf_member);
215 	case BTF_KIND_FUNC_PROTO:
216 		return base_size + vlen * sizeof(struct btf_param);
217 	case BTF_KIND_VAR:
218 		return base_size + sizeof(struct btf_var);
219 	case BTF_KIND_DATASEC:
220 		return base_size + vlen * sizeof(struct btf_var_secinfo);
221 	default:
222 		pr_debug("Unsupported BTF_KIND:%u\n", BTF_INFO_KIND(t->info));
223 		return -EINVAL;
224 	}
225 }
226 
227 static int btf_parse_type_sec(struct btf *btf)
228 {
229 	struct btf_header *hdr = btf->hdr;
230 	void *nohdr_data = btf->nohdr_data;
231 	void *next_type = nohdr_data + hdr->type_off;
232 	void *end_type = nohdr_data + hdr->str_off;
233 
234 	while (next_type < end_type) {
235 		struct btf_type *t = next_type;
236 		int type_size;
237 		int err;
238 
239 		type_size = btf_type_size(t);
240 		if (type_size < 0)
241 			return type_size;
242 		next_type += type_size;
243 		err = btf_add_type(btf, t);
244 		if (err)
245 			return err;
246 	}
247 
248 	return 0;
249 }
250 
251 __u32 btf__get_nr_types(const struct btf *btf)
252 {
253 	return btf->nr_types;
254 }
255 
256 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
257 {
258 	if (type_id > btf->nr_types)
259 		return NULL;
260 
261 	return btf->types[type_id];
262 }
263 
264 static bool btf_type_is_void(const struct btf_type *t)
265 {
266 	return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
267 }
268 
269 static bool btf_type_is_void_or_null(const struct btf_type *t)
270 {
271 	return !t || btf_type_is_void(t);
272 }
273 
274 #define MAX_RESOLVE_DEPTH 32
275 
276 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
277 {
278 	const struct btf_array *array;
279 	const struct btf_type *t;
280 	__u32 nelems = 1;
281 	__s64 size = -1;
282 	int i;
283 
284 	t = btf__type_by_id(btf, type_id);
285 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
286 	     i++) {
287 		switch (BTF_INFO_KIND(t->info)) {
288 		case BTF_KIND_INT:
289 		case BTF_KIND_STRUCT:
290 		case BTF_KIND_UNION:
291 		case BTF_KIND_ENUM:
292 		case BTF_KIND_DATASEC:
293 			size = t->size;
294 			goto done;
295 		case BTF_KIND_PTR:
296 			size = sizeof(void *);
297 			goto done;
298 		case BTF_KIND_TYPEDEF:
299 		case BTF_KIND_VOLATILE:
300 		case BTF_KIND_CONST:
301 		case BTF_KIND_RESTRICT:
302 		case BTF_KIND_VAR:
303 			type_id = t->type;
304 			break;
305 		case BTF_KIND_ARRAY:
306 			array = (const struct btf_array *)(t + 1);
307 			if (nelems && array->nelems > UINT32_MAX / nelems)
308 				return -E2BIG;
309 			nelems *= array->nelems;
310 			type_id = array->type;
311 			break;
312 		default:
313 			return -EINVAL;
314 		}
315 
316 		t = btf__type_by_id(btf, type_id);
317 	}
318 
319 	if (size < 0)
320 		return -EINVAL;
321 
322 done:
323 	if (nelems && size > UINT32_MAX / nelems)
324 		return -E2BIG;
325 
326 	return nelems * size;
327 }
328 
329 int btf__resolve_type(const struct btf *btf, __u32 type_id)
330 {
331 	const struct btf_type *t;
332 	int depth = 0;
333 
334 	t = btf__type_by_id(btf, type_id);
335 	while (depth < MAX_RESOLVE_DEPTH &&
336 	       !btf_type_is_void_or_null(t) &&
337 	       (IS_MODIFIER(BTF_INFO_KIND(t->info)) ||
338 		IS_VAR(BTF_INFO_KIND(t->info)))) {
339 		type_id = t->type;
340 		t = btf__type_by_id(btf, type_id);
341 		depth++;
342 	}
343 
344 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
345 		return -EINVAL;
346 
347 	return type_id;
348 }
349 
350 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
351 {
352 	__u32 i;
353 
354 	if (!strcmp(type_name, "void"))
355 		return 0;
356 
357 	for (i = 1; i <= btf->nr_types; i++) {
358 		const struct btf_type *t = btf->types[i];
359 		const char *name = btf__name_by_offset(btf, t->name_off);
360 
361 		if (name && !strcmp(type_name, name))
362 			return i;
363 	}
364 
365 	return -ENOENT;
366 }
367 
368 void btf__free(struct btf *btf)
369 {
370 	if (!btf)
371 		return;
372 
373 	if (btf->fd != -1)
374 		close(btf->fd);
375 
376 	free(btf->data);
377 	free(btf->types);
378 	free(btf);
379 }
380 
381 struct btf *btf__new(__u8 *data, __u32 size)
382 {
383 	struct btf *btf;
384 	int err;
385 
386 	btf = calloc(1, sizeof(struct btf));
387 	if (!btf)
388 		return ERR_PTR(-ENOMEM);
389 
390 	btf->fd = -1;
391 
392 	btf->data = malloc(size);
393 	if (!btf->data) {
394 		err = -ENOMEM;
395 		goto done;
396 	}
397 
398 	memcpy(btf->data, data, size);
399 	btf->data_size = size;
400 
401 	err = btf_parse_hdr(btf);
402 	if (err)
403 		goto done;
404 
405 	err = btf_parse_str_sec(btf);
406 	if (err)
407 		goto done;
408 
409 	err = btf_parse_type_sec(btf);
410 
411 done:
412 	if (err) {
413 		btf__free(btf);
414 		return ERR_PTR(err);
415 	}
416 
417 	return btf;
418 }
419 
420 static bool btf_check_endianness(const GElf_Ehdr *ehdr)
421 {
422 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
423 	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
424 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
425 	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
426 #else
427 # error "Unrecognized __BYTE_ORDER__"
428 #endif
429 }
430 
431 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
432 {
433 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
434 	int err = 0, fd = -1, idx = 0;
435 	struct btf *btf = NULL;
436 	Elf_Scn *scn = NULL;
437 	Elf *elf = NULL;
438 	GElf_Ehdr ehdr;
439 
440 	if (elf_version(EV_CURRENT) == EV_NONE) {
441 		pr_warning("failed to init libelf for %s\n", path);
442 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
443 	}
444 
445 	fd = open(path, O_RDONLY);
446 	if (fd < 0) {
447 		err = -errno;
448 		pr_warning("failed to open %s: %s\n", path, strerror(errno));
449 		return ERR_PTR(err);
450 	}
451 
452 	err = -LIBBPF_ERRNO__FORMAT;
453 
454 	elf = elf_begin(fd, ELF_C_READ, NULL);
455 	if (!elf) {
456 		pr_warning("failed to open %s as ELF file\n", path);
457 		goto done;
458 	}
459 	if (!gelf_getehdr(elf, &ehdr)) {
460 		pr_warning("failed to get EHDR from %s\n", path);
461 		goto done;
462 	}
463 	if (!btf_check_endianness(&ehdr)) {
464 		pr_warning("non-native ELF endianness is not supported\n");
465 		goto done;
466 	}
467 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
468 		pr_warning("failed to get e_shstrndx from %s\n", path);
469 		goto done;
470 	}
471 
472 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
473 		GElf_Shdr sh;
474 		char *name;
475 
476 		idx++;
477 		if (gelf_getshdr(scn, &sh) != &sh) {
478 			pr_warning("failed to get section(%d) header from %s\n",
479 				   idx, path);
480 			goto done;
481 		}
482 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
483 		if (!name) {
484 			pr_warning("failed to get section(%d) name from %s\n",
485 				   idx, path);
486 			goto done;
487 		}
488 		if (strcmp(name, BTF_ELF_SEC) == 0) {
489 			btf_data = elf_getdata(scn, 0);
490 			if (!btf_data) {
491 				pr_warning("failed to get section(%d, %s) data from %s\n",
492 					   idx, name, path);
493 				goto done;
494 			}
495 			continue;
496 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
497 			btf_ext_data = elf_getdata(scn, 0);
498 			if (!btf_ext_data) {
499 				pr_warning("failed to get section(%d, %s) data from %s\n",
500 					   idx, name, path);
501 				goto done;
502 			}
503 			continue;
504 		}
505 	}
506 
507 	err = 0;
508 
509 	if (!btf_data) {
510 		err = -ENOENT;
511 		goto done;
512 	}
513 	btf = btf__new(btf_data->d_buf, btf_data->d_size);
514 	if (IS_ERR(btf))
515 		goto done;
516 
517 	if (btf_ext && btf_ext_data) {
518 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
519 					btf_ext_data->d_size);
520 		if (IS_ERR(*btf_ext))
521 			goto done;
522 	} else if (btf_ext) {
523 		*btf_ext = NULL;
524 	}
525 done:
526 	if (elf)
527 		elf_end(elf);
528 	close(fd);
529 
530 	if (err)
531 		return ERR_PTR(err);
532 	/*
533 	 * btf is always parsed before btf_ext, so no need to clean up
534 	 * btf_ext, if btf loading failed
535 	 */
536 	if (IS_ERR(btf))
537 		return btf;
538 	if (btf_ext && IS_ERR(*btf_ext)) {
539 		btf__free(btf);
540 		err = PTR_ERR(*btf_ext);
541 		return ERR_PTR(err);
542 	}
543 	return btf;
544 }
545 
546 static int compare_vsi_off(const void *_a, const void *_b)
547 {
548 	const struct btf_var_secinfo *a = _a;
549 	const struct btf_var_secinfo *b = _b;
550 
551 	return a->offset - b->offset;
552 }
553 
554 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
555 			     struct btf_type *t)
556 {
557 	__u32 size = 0, off = 0, i, vars = BTF_INFO_VLEN(t->info);
558 	const char *name = btf__name_by_offset(btf, t->name_off);
559 	const struct btf_type *t_var;
560 	struct btf_var_secinfo *vsi;
561 	struct btf_var *var;
562 	int ret;
563 
564 	if (!name) {
565 		pr_debug("No name found in string section for DATASEC kind.\n");
566 		return -ENOENT;
567 	}
568 
569 	ret = bpf_object__section_size(obj, name, &size);
570 	if (ret || !size || (t->size && t->size != size)) {
571 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
572 		return -ENOENT;
573 	}
574 
575 	t->size = size;
576 
577 	for (i = 0, vsi = (struct btf_var_secinfo *)(t + 1);
578 	     i < vars; i++, vsi++) {
579 		t_var = btf__type_by_id(btf, vsi->type);
580 		var = (struct btf_var *)(t_var + 1);
581 
582 		if (BTF_INFO_KIND(t_var->info) != BTF_KIND_VAR) {
583 			pr_debug("Non-VAR type seen in section %s\n", name);
584 			return -EINVAL;
585 		}
586 
587 		if (var->linkage == BTF_VAR_STATIC)
588 			continue;
589 
590 		name = btf__name_by_offset(btf, t_var->name_off);
591 		if (!name) {
592 			pr_debug("No name found in string section for VAR kind\n");
593 			return -ENOENT;
594 		}
595 
596 		ret = bpf_object__variable_offset(obj, name, &off);
597 		if (ret) {
598 			pr_debug("No offset found in symbol table for VAR %s\n", name);
599 			return -ENOENT;
600 		}
601 
602 		vsi->offset = off;
603 	}
604 
605 	qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off);
606 	return 0;
607 }
608 
609 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
610 {
611 	int err = 0;
612 	__u32 i;
613 
614 	for (i = 1; i <= btf->nr_types; i++) {
615 		struct btf_type *t = btf->types[i];
616 
617 		/* Loader needs to fix up some of the things compiler
618 		 * couldn't get its hands on while emitting BTF. This
619 		 * is section size and global variable offset. We use
620 		 * the info from the ELF itself for this purpose.
621 		 */
622 		if (BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC) {
623 			err = btf_fixup_datasec(obj, btf, t);
624 			if (err)
625 				break;
626 		}
627 	}
628 
629 	return err;
630 }
631 
632 int btf__load(struct btf *btf)
633 {
634 	__u32 log_buf_size = BPF_LOG_BUF_SIZE;
635 	char *log_buf = NULL;
636 	int err = 0;
637 
638 	if (btf->fd >= 0)
639 		return -EEXIST;
640 
641 	log_buf = malloc(log_buf_size);
642 	if (!log_buf)
643 		return -ENOMEM;
644 
645 	*log_buf = 0;
646 
647 	btf->fd = bpf_load_btf(btf->data, btf->data_size,
648 			       log_buf, log_buf_size, false);
649 	if (btf->fd < 0) {
650 		err = -errno;
651 		pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno);
652 		if (*log_buf)
653 			pr_warning("%s\n", log_buf);
654 		goto done;
655 	}
656 
657 done:
658 	free(log_buf);
659 	return err;
660 }
661 
662 int btf__fd(const struct btf *btf)
663 {
664 	return btf->fd;
665 }
666 
667 const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
668 {
669 	*size = btf->data_size;
670 	return btf->data;
671 }
672 
673 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
674 {
675 	if (offset < btf->hdr->str_len)
676 		return &btf->strings[offset];
677 	else
678 		return NULL;
679 }
680 
681 int btf__get_from_id(__u32 id, struct btf **btf)
682 {
683 	struct bpf_btf_info btf_info = { 0 };
684 	__u32 len = sizeof(btf_info);
685 	__u32 last_size;
686 	int btf_fd;
687 	void *ptr;
688 	int err;
689 
690 	err = 0;
691 	*btf = NULL;
692 	btf_fd = bpf_btf_get_fd_by_id(id);
693 	if (btf_fd < 0)
694 		return 0;
695 
696 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
697 	 * let's start with a sane default - 4KiB here - and resize it only if
698 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
699 	 */
700 	btf_info.btf_size = 4096;
701 	last_size = btf_info.btf_size;
702 	ptr = malloc(last_size);
703 	if (!ptr) {
704 		err = -ENOMEM;
705 		goto exit_free;
706 	}
707 
708 	memset(ptr, 0, last_size);
709 	btf_info.btf = ptr_to_u64(ptr);
710 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
711 
712 	if (!err && btf_info.btf_size > last_size) {
713 		void *temp_ptr;
714 
715 		last_size = btf_info.btf_size;
716 		temp_ptr = realloc(ptr, last_size);
717 		if (!temp_ptr) {
718 			err = -ENOMEM;
719 			goto exit_free;
720 		}
721 		ptr = temp_ptr;
722 		memset(ptr, 0, last_size);
723 		btf_info.btf = ptr_to_u64(ptr);
724 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
725 	}
726 
727 	if (err || btf_info.btf_size > last_size) {
728 		err = errno;
729 		goto exit_free;
730 	}
731 
732 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
733 	if (IS_ERR(*btf)) {
734 		err = PTR_ERR(*btf);
735 		*btf = NULL;
736 	}
737 
738 exit_free:
739 	close(btf_fd);
740 	free(ptr);
741 
742 	return err;
743 }
744 
745 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
746 			 __u32 expected_key_size, __u32 expected_value_size,
747 			 __u32 *key_type_id, __u32 *value_type_id)
748 {
749 	const struct btf_type *container_type;
750 	const struct btf_member *key, *value;
751 	const size_t max_name = 256;
752 	char container_name[max_name];
753 	__s64 key_size, value_size;
754 	__s32 container_id;
755 
756 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
757 	    max_name) {
758 		pr_warning("map:%s length of '____btf_map_%s' is too long\n",
759 			   map_name, map_name);
760 		return -EINVAL;
761 	}
762 
763 	container_id = btf__find_by_name(btf, container_name);
764 	if (container_id < 0) {
765 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
766 			 map_name, container_name);
767 		return container_id;
768 	}
769 
770 	container_type = btf__type_by_id(btf, container_id);
771 	if (!container_type) {
772 		pr_warning("map:%s cannot find BTF type for container_id:%u\n",
773 			   map_name, container_id);
774 		return -EINVAL;
775 	}
776 
777 	if (BTF_INFO_KIND(container_type->info) != BTF_KIND_STRUCT ||
778 	    BTF_INFO_VLEN(container_type->info) < 2) {
779 		pr_warning("map:%s container_name:%s is an invalid container struct\n",
780 			   map_name, container_name);
781 		return -EINVAL;
782 	}
783 
784 	key = (struct btf_member *)(container_type + 1);
785 	value = key + 1;
786 
787 	key_size = btf__resolve_size(btf, key->type);
788 	if (key_size < 0) {
789 		pr_warning("map:%s invalid BTF key_type_size\n", map_name);
790 		return key_size;
791 	}
792 
793 	if (expected_key_size != key_size) {
794 		pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
795 			   map_name, (__u32)key_size, expected_key_size);
796 		return -EINVAL;
797 	}
798 
799 	value_size = btf__resolve_size(btf, value->type);
800 	if (value_size < 0) {
801 		pr_warning("map:%s invalid BTF value_type_size\n", map_name);
802 		return value_size;
803 	}
804 
805 	if (expected_value_size != value_size) {
806 		pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
807 			   map_name, (__u32)value_size, expected_value_size);
808 		return -EINVAL;
809 	}
810 
811 	*key_type_id = key->type;
812 	*value_type_id = value->type;
813 
814 	return 0;
815 }
816 
817 struct btf_ext_sec_setup_param {
818 	__u32 off;
819 	__u32 len;
820 	__u32 min_rec_size;
821 	struct btf_ext_info *ext_info;
822 	const char *desc;
823 };
824 
825 static int btf_ext_setup_info(struct btf_ext *btf_ext,
826 			      struct btf_ext_sec_setup_param *ext_sec)
827 {
828 	const struct btf_ext_info_sec *sinfo;
829 	struct btf_ext_info *ext_info;
830 	__u32 info_left, record_size;
831 	/* The start of the info sec (including the __u32 record_size). */
832 	void *info;
833 
834 	if (ext_sec->off & 0x03) {
835 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
836 		     ext_sec->desc);
837 		return -EINVAL;
838 	}
839 
840 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
841 	info_left = ext_sec->len;
842 
843 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
844 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
845 			 ext_sec->desc, ext_sec->off, ext_sec->len);
846 		return -EINVAL;
847 	}
848 
849 	/* At least a record size */
850 	if (info_left < sizeof(__u32)) {
851 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
852 		return -EINVAL;
853 	}
854 
855 	/* The record size needs to meet the minimum standard */
856 	record_size = *(__u32 *)info;
857 	if (record_size < ext_sec->min_rec_size ||
858 	    record_size & 0x03) {
859 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
860 			 ext_sec->desc, record_size);
861 		return -EINVAL;
862 	}
863 
864 	sinfo = info + sizeof(__u32);
865 	info_left -= sizeof(__u32);
866 
867 	/* If no records, return failure now so .BTF.ext won't be used. */
868 	if (!info_left) {
869 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
870 		return -EINVAL;
871 	}
872 
873 	while (info_left) {
874 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
875 		__u64 total_record_size;
876 		__u32 num_records;
877 
878 		if (info_left < sec_hdrlen) {
879 			pr_debug("%s section header is not found in .BTF.ext\n",
880 			     ext_sec->desc);
881 			return -EINVAL;
882 		}
883 
884 		num_records = sinfo->num_info;
885 		if (num_records == 0) {
886 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
887 			     ext_sec->desc);
888 			return -EINVAL;
889 		}
890 
891 		total_record_size = sec_hdrlen +
892 				    (__u64)num_records * record_size;
893 		if (info_left < total_record_size) {
894 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
895 			     ext_sec->desc);
896 			return -EINVAL;
897 		}
898 
899 		info_left -= total_record_size;
900 		sinfo = (void *)sinfo + total_record_size;
901 	}
902 
903 	ext_info = ext_sec->ext_info;
904 	ext_info->len = ext_sec->len - sizeof(__u32);
905 	ext_info->rec_size = record_size;
906 	ext_info->info = info + sizeof(__u32);
907 
908 	return 0;
909 }
910 
911 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
912 {
913 	struct btf_ext_sec_setup_param param = {
914 		.off = btf_ext->hdr->func_info_off,
915 		.len = btf_ext->hdr->func_info_len,
916 		.min_rec_size = sizeof(struct bpf_func_info_min),
917 		.ext_info = &btf_ext->func_info,
918 		.desc = "func_info"
919 	};
920 
921 	return btf_ext_setup_info(btf_ext, &param);
922 }
923 
924 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
925 {
926 	struct btf_ext_sec_setup_param param = {
927 		.off = btf_ext->hdr->line_info_off,
928 		.len = btf_ext->hdr->line_info_len,
929 		.min_rec_size = sizeof(struct bpf_line_info_min),
930 		.ext_info = &btf_ext->line_info,
931 		.desc = "line_info",
932 	};
933 
934 	return btf_ext_setup_info(btf_ext, &param);
935 }
936 
937 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
938 {
939 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
940 
941 	if (data_size < offsetof(struct btf_ext_header, func_info_off) ||
942 	    data_size < hdr->hdr_len) {
943 		pr_debug("BTF.ext header not found");
944 		return -EINVAL;
945 	}
946 
947 	if (hdr->magic != BTF_MAGIC) {
948 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
949 		return -EINVAL;
950 	}
951 
952 	if (hdr->version != BTF_VERSION) {
953 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
954 		return -ENOTSUP;
955 	}
956 
957 	if (hdr->flags) {
958 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
959 		return -ENOTSUP;
960 	}
961 
962 	if (data_size == hdr->hdr_len) {
963 		pr_debug("BTF.ext has no data\n");
964 		return -EINVAL;
965 	}
966 
967 	return 0;
968 }
969 
970 void btf_ext__free(struct btf_ext *btf_ext)
971 {
972 	if (!btf_ext)
973 		return;
974 	free(btf_ext->data);
975 	free(btf_ext);
976 }
977 
978 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
979 {
980 	struct btf_ext *btf_ext;
981 	int err;
982 
983 	err = btf_ext_parse_hdr(data, size);
984 	if (err)
985 		return ERR_PTR(err);
986 
987 	btf_ext = calloc(1, sizeof(struct btf_ext));
988 	if (!btf_ext)
989 		return ERR_PTR(-ENOMEM);
990 
991 	btf_ext->data_size = size;
992 	btf_ext->data = malloc(size);
993 	if (!btf_ext->data) {
994 		err = -ENOMEM;
995 		goto done;
996 	}
997 	memcpy(btf_ext->data, data, size);
998 
999 	err = btf_ext_setup_func_info(btf_ext);
1000 	if (err)
1001 		goto done;
1002 
1003 	err = btf_ext_setup_line_info(btf_ext);
1004 	if (err)
1005 		goto done;
1006 
1007 done:
1008 	if (err) {
1009 		btf_ext__free(btf_ext);
1010 		return ERR_PTR(err);
1011 	}
1012 
1013 	return btf_ext;
1014 }
1015 
1016 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1017 {
1018 	*size = btf_ext->data_size;
1019 	return btf_ext->data;
1020 }
1021 
1022 static int btf_ext_reloc_info(const struct btf *btf,
1023 			      const struct btf_ext_info *ext_info,
1024 			      const char *sec_name, __u32 insns_cnt,
1025 			      void **info, __u32 *cnt)
1026 {
1027 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1028 	__u32 i, record_size, existing_len, records_len;
1029 	struct btf_ext_info_sec *sinfo;
1030 	const char *info_sec_name;
1031 	__u64 remain_len;
1032 	void *data;
1033 
1034 	record_size = ext_info->rec_size;
1035 	sinfo = ext_info->info;
1036 	remain_len = ext_info->len;
1037 	while (remain_len > 0) {
1038 		records_len = sinfo->num_info * record_size;
1039 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1040 		if (strcmp(info_sec_name, sec_name)) {
1041 			remain_len -= sec_hdrlen + records_len;
1042 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1043 			continue;
1044 		}
1045 
1046 		existing_len = (*cnt) * record_size;
1047 		data = realloc(*info, existing_len + records_len);
1048 		if (!data)
1049 			return -ENOMEM;
1050 
1051 		memcpy(data + existing_len, sinfo->data, records_len);
1052 		/* adjust insn_off only, the rest data will be passed
1053 		 * to the kernel.
1054 		 */
1055 		for (i = 0; i < sinfo->num_info; i++) {
1056 			__u32 *insn_off;
1057 
1058 			insn_off = data + existing_len + (i * record_size);
1059 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1060 				insns_cnt;
1061 		}
1062 		*info = data;
1063 		*cnt += sinfo->num_info;
1064 		return 0;
1065 	}
1066 
1067 	return -ENOENT;
1068 }
1069 
1070 int btf_ext__reloc_func_info(const struct btf *btf,
1071 			     const struct btf_ext *btf_ext,
1072 			     const char *sec_name, __u32 insns_cnt,
1073 			     void **func_info, __u32 *cnt)
1074 {
1075 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1076 				  insns_cnt, func_info, cnt);
1077 }
1078 
1079 int btf_ext__reloc_line_info(const struct btf *btf,
1080 			     const struct btf_ext *btf_ext,
1081 			     const char *sec_name, __u32 insns_cnt,
1082 			     void **line_info, __u32 *cnt)
1083 {
1084 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1085 				  insns_cnt, line_info, cnt);
1086 }
1087 
1088 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1089 {
1090 	return btf_ext->func_info.rec_size;
1091 }
1092 
1093 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1094 {
1095 	return btf_ext->line_info.rec_size;
1096 }
1097 
1098 struct btf_dedup;
1099 
1100 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1101 				       const struct btf_dedup_opts *opts);
1102 static void btf_dedup_free(struct btf_dedup *d);
1103 static int btf_dedup_strings(struct btf_dedup *d);
1104 static int btf_dedup_prim_types(struct btf_dedup *d);
1105 static int btf_dedup_struct_types(struct btf_dedup *d);
1106 static int btf_dedup_ref_types(struct btf_dedup *d);
1107 static int btf_dedup_compact_types(struct btf_dedup *d);
1108 static int btf_dedup_remap_types(struct btf_dedup *d);
1109 
1110 /*
1111  * Deduplicate BTF types and strings.
1112  *
1113  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1114  * section with all BTF type descriptors and string data. It overwrites that
1115  * memory in-place with deduplicated types and strings without any loss of
1116  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1117  * is provided, all the strings referenced from .BTF.ext section are honored
1118  * and updated to point to the right offsets after deduplication.
1119  *
1120  * If function returns with error, type/string data might be garbled and should
1121  * be discarded.
1122  *
1123  * More verbose and detailed description of both problem btf_dedup is solving,
1124  * as well as solution could be found at:
1125  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1126  *
1127  * Problem description and justification
1128  * =====================================
1129  *
1130  * BTF type information is typically emitted either as a result of conversion
1131  * from DWARF to BTF or directly by compiler. In both cases, each compilation
1132  * unit contains information about a subset of all the types that are used
1133  * in an application. These subsets are frequently overlapping and contain a lot
1134  * of duplicated information when later concatenated together into a single
1135  * binary. This algorithm ensures that each unique type is represented by single
1136  * BTF type descriptor, greatly reducing resulting size of BTF data.
1137  *
1138  * Compilation unit isolation and subsequent duplication of data is not the only
1139  * problem. The same type hierarchy (e.g., struct and all the type that struct
1140  * references) in different compilation units can be represented in BTF to
1141  * various degrees of completeness (or, rather, incompleteness) due to
1142  * struct/union forward declarations.
1143  *
1144  * Let's take a look at an example, that we'll use to better understand the
1145  * problem (and solution). Suppose we have two compilation units, each using
1146  * same `struct S`, but each of them having incomplete type information about
1147  * struct's fields:
1148  *
1149  * // CU #1:
1150  * struct S;
1151  * struct A {
1152  *	int a;
1153  *	struct A* self;
1154  *	struct S* parent;
1155  * };
1156  * struct B;
1157  * struct S {
1158  *	struct A* a_ptr;
1159  *	struct B* b_ptr;
1160  * };
1161  *
1162  * // CU #2:
1163  * struct S;
1164  * struct A;
1165  * struct B {
1166  *	int b;
1167  *	struct B* self;
1168  *	struct S* parent;
1169  * };
1170  * struct S {
1171  *	struct A* a_ptr;
1172  *	struct B* b_ptr;
1173  * };
1174  *
1175  * In case of CU #1, BTF data will know only that `struct B` exist (but no
1176  * more), but will know the complete type information about `struct A`. While
1177  * for CU #2, it will know full type information about `struct B`, but will
1178  * only know about forward declaration of `struct A` (in BTF terms, it will
1179  * have `BTF_KIND_FWD` type descriptor with name `B`).
1180  *
1181  * This compilation unit isolation means that it's possible that there is no
1182  * single CU with complete type information describing structs `S`, `A`, and
1183  * `B`. Also, we might get tons of duplicated and redundant type information.
1184  *
1185  * Additional complication we need to keep in mind comes from the fact that
1186  * types, in general, can form graphs containing cycles, not just DAGs.
1187  *
1188  * While algorithm does deduplication, it also merges and resolves type
1189  * information (unless disabled throught `struct btf_opts`), whenever possible.
1190  * E.g., in the example above with two compilation units having partial type
1191  * information for structs `A` and `B`, the output of algorithm will emit
1192  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1193  * (as well as type information for `int` and pointers), as if they were defined
1194  * in a single compilation unit as:
1195  *
1196  * struct A {
1197  *	int a;
1198  *	struct A* self;
1199  *	struct S* parent;
1200  * };
1201  * struct B {
1202  *	int b;
1203  *	struct B* self;
1204  *	struct S* parent;
1205  * };
1206  * struct S {
1207  *	struct A* a_ptr;
1208  *	struct B* b_ptr;
1209  * };
1210  *
1211  * Algorithm summary
1212  * =================
1213  *
1214  * Algorithm completes its work in 6 separate passes:
1215  *
1216  * 1. Strings deduplication.
1217  * 2. Primitive types deduplication (int, enum, fwd).
1218  * 3. Struct/union types deduplication.
1219  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1220  *    protos, and const/volatile/restrict modifiers).
1221  * 5. Types compaction.
1222  * 6. Types remapping.
1223  *
1224  * Algorithm determines canonical type descriptor, which is a single
1225  * representative type for each truly unique type. This canonical type is the
1226  * one that will go into final deduplicated BTF type information. For
1227  * struct/unions, it is also the type that algorithm will merge additional type
1228  * information into (while resolving FWDs), as it discovers it from data in
1229  * other CUs. Each input BTF type eventually gets either mapped to itself, if
1230  * that type is canonical, or to some other type, if that type is equivalent
1231  * and was chosen as canonical representative. This mapping is stored in
1232  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1233  * FWD type got resolved to.
1234  *
1235  * To facilitate fast discovery of canonical types, we also maintain canonical
1236  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1237  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1238  * that match that signature. With sufficiently good choice of type signature
1239  * hashing function, we can limit number of canonical types for each unique type
1240  * signature to a very small number, allowing to find canonical type for any
1241  * duplicated type very quickly.
1242  *
1243  * Struct/union deduplication is the most critical part and algorithm for
1244  * deduplicating structs/unions is described in greater details in comments for
1245  * `btf_dedup_is_equiv` function.
1246  */
1247 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1248 	       const struct btf_dedup_opts *opts)
1249 {
1250 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1251 	int err;
1252 
1253 	if (IS_ERR(d)) {
1254 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1255 		return -EINVAL;
1256 	}
1257 
1258 	err = btf_dedup_strings(d);
1259 	if (err < 0) {
1260 		pr_debug("btf_dedup_strings failed:%d\n", err);
1261 		goto done;
1262 	}
1263 	err = btf_dedup_prim_types(d);
1264 	if (err < 0) {
1265 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1266 		goto done;
1267 	}
1268 	err = btf_dedup_struct_types(d);
1269 	if (err < 0) {
1270 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1271 		goto done;
1272 	}
1273 	err = btf_dedup_ref_types(d);
1274 	if (err < 0) {
1275 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1276 		goto done;
1277 	}
1278 	err = btf_dedup_compact_types(d);
1279 	if (err < 0) {
1280 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1281 		goto done;
1282 	}
1283 	err = btf_dedup_remap_types(d);
1284 	if (err < 0) {
1285 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1286 		goto done;
1287 	}
1288 
1289 done:
1290 	btf_dedup_free(d);
1291 	return err;
1292 }
1293 
1294 #define BTF_UNPROCESSED_ID ((__u32)-1)
1295 #define BTF_IN_PROGRESS_ID ((__u32)-2)
1296 
1297 struct btf_dedup {
1298 	/* .BTF section to be deduped in-place */
1299 	struct btf *btf;
1300 	/*
1301 	 * Optional .BTF.ext section. When provided, any strings referenced
1302 	 * from it will be taken into account when deduping strings
1303 	 */
1304 	struct btf_ext *btf_ext;
1305 	/*
1306 	 * This is a map from any type's signature hash to a list of possible
1307 	 * canonical representative type candidates. Hash collisions are
1308 	 * ignored, so even types of various kinds can share same list of
1309 	 * candidates, which is fine because we rely on subsequent
1310 	 * btf_xxx_equal() checks to authoritatively verify type equality.
1311 	 */
1312 	struct hashmap *dedup_table;
1313 	/* Canonical types map */
1314 	__u32 *map;
1315 	/* Hypothetical mapping, used during type graph equivalence checks */
1316 	__u32 *hypot_map;
1317 	__u32 *hypot_list;
1318 	size_t hypot_cnt;
1319 	size_t hypot_cap;
1320 	/* Various option modifying behavior of algorithm */
1321 	struct btf_dedup_opts opts;
1322 };
1323 
1324 struct btf_str_ptr {
1325 	const char *str;
1326 	__u32 new_off;
1327 	bool used;
1328 };
1329 
1330 struct btf_str_ptrs {
1331 	struct btf_str_ptr *ptrs;
1332 	const char *data;
1333 	__u32 cnt;
1334 	__u32 cap;
1335 };
1336 
1337 static long hash_combine(long h, long value)
1338 {
1339 	return h * 31 + value;
1340 }
1341 
1342 #define for_each_dedup_cand(d, node, hash) \
1343 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1344 
1345 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1346 {
1347 	return hashmap__append(d->dedup_table,
1348 			       (void *)hash, (void *)(long)type_id);
1349 }
1350 
1351 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1352 				   __u32 from_id, __u32 to_id)
1353 {
1354 	if (d->hypot_cnt == d->hypot_cap) {
1355 		__u32 *new_list;
1356 
1357 		d->hypot_cap += max(16, d->hypot_cap / 2);
1358 		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1359 		if (!new_list)
1360 			return -ENOMEM;
1361 		d->hypot_list = new_list;
1362 	}
1363 	d->hypot_list[d->hypot_cnt++] = from_id;
1364 	d->hypot_map[from_id] = to_id;
1365 	return 0;
1366 }
1367 
1368 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1369 {
1370 	int i;
1371 
1372 	for (i = 0; i < d->hypot_cnt; i++)
1373 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1374 	d->hypot_cnt = 0;
1375 }
1376 
1377 static void btf_dedup_free(struct btf_dedup *d)
1378 {
1379 	hashmap__free(d->dedup_table);
1380 	d->dedup_table = NULL;
1381 
1382 	free(d->map);
1383 	d->map = NULL;
1384 
1385 	free(d->hypot_map);
1386 	d->hypot_map = NULL;
1387 
1388 	free(d->hypot_list);
1389 	d->hypot_list = NULL;
1390 
1391 	free(d);
1392 }
1393 
1394 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1395 {
1396 	return (size_t)key;
1397 }
1398 
1399 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1400 {
1401 	return 0;
1402 }
1403 
1404 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1405 {
1406 	return k1 == k2;
1407 }
1408 
1409 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1410 				       const struct btf_dedup_opts *opts)
1411 {
1412 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1413 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1414 	int i, err = 0;
1415 
1416 	if (!d)
1417 		return ERR_PTR(-ENOMEM);
1418 
1419 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1420 	/* dedup_table_size is now used only to force collisions in tests */
1421 	if (opts && opts->dedup_table_size == 1)
1422 		hash_fn = btf_dedup_collision_hash_fn;
1423 
1424 	d->btf = btf;
1425 	d->btf_ext = btf_ext;
1426 
1427 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1428 	if (IS_ERR(d->dedup_table)) {
1429 		err = PTR_ERR(d->dedup_table);
1430 		d->dedup_table = NULL;
1431 		goto done;
1432 	}
1433 
1434 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1435 	if (!d->map) {
1436 		err = -ENOMEM;
1437 		goto done;
1438 	}
1439 	/* special BTF "void" type is made canonical immediately */
1440 	d->map[0] = 0;
1441 	for (i = 1; i <= btf->nr_types; i++) {
1442 		struct btf_type *t = d->btf->types[i];
1443 		__u16 kind = BTF_INFO_KIND(t->info);
1444 
1445 		/* VAR and DATASEC are never deduped and are self-canonical */
1446 		if (kind == BTF_KIND_VAR || kind == BTF_KIND_DATASEC)
1447 			d->map[i] = i;
1448 		else
1449 			d->map[i] = BTF_UNPROCESSED_ID;
1450 	}
1451 
1452 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1453 	if (!d->hypot_map) {
1454 		err = -ENOMEM;
1455 		goto done;
1456 	}
1457 	for (i = 0; i <= btf->nr_types; i++)
1458 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1459 
1460 done:
1461 	if (err) {
1462 		btf_dedup_free(d);
1463 		return ERR_PTR(err);
1464 	}
1465 
1466 	return d;
1467 }
1468 
1469 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1470 
1471 /*
1472  * Iterate over all possible places in .BTF and .BTF.ext that can reference
1473  * string and pass pointer to it to a provided callback `fn`.
1474  */
1475 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1476 {
1477 	void *line_data_cur, *line_data_end;
1478 	int i, j, r, rec_size;
1479 	struct btf_type *t;
1480 
1481 	for (i = 1; i <= d->btf->nr_types; i++) {
1482 		t = d->btf->types[i];
1483 		r = fn(&t->name_off, ctx);
1484 		if (r)
1485 			return r;
1486 
1487 		switch (BTF_INFO_KIND(t->info)) {
1488 		case BTF_KIND_STRUCT:
1489 		case BTF_KIND_UNION: {
1490 			struct btf_member *m = (struct btf_member *)(t + 1);
1491 			__u16 vlen = BTF_INFO_VLEN(t->info);
1492 
1493 			for (j = 0; j < vlen; j++) {
1494 				r = fn(&m->name_off, ctx);
1495 				if (r)
1496 					return r;
1497 				m++;
1498 			}
1499 			break;
1500 		}
1501 		case BTF_KIND_ENUM: {
1502 			struct btf_enum *m = (struct btf_enum *)(t + 1);
1503 			__u16 vlen = BTF_INFO_VLEN(t->info);
1504 
1505 			for (j = 0; j < vlen; j++) {
1506 				r = fn(&m->name_off, ctx);
1507 				if (r)
1508 					return r;
1509 				m++;
1510 			}
1511 			break;
1512 		}
1513 		case BTF_KIND_FUNC_PROTO: {
1514 			struct btf_param *m = (struct btf_param *)(t + 1);
1515 			__u16 vlen = BTF_INFO_VLEN(t->info);
1516 
1517 			for (j = 0; j < vlen; j++) {
1518 				r = fn(&m->name_off, ctx);
1519 				if (r)
1520 					return r;
1521 				m++;
1522 			}
1523 			break;
1524 		}
1525 		default:
1526 			break;
1527 		}
1528 	}
1529 
1530 	if (!d->btf_ext)
1531 		return 0;
1532 
1533 	line_data_cur = d->btf_ext->line_info.info;
1534 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1535 	rec_size = d->btf_ext->line_info.rec_size;
1536 
1537 	while (line_data_cur < line_data_end) {
1538 		struct btf_ext_info_sec *sec = line_data_cur;
1539 		struct bpf_line_info_min *line_info;
1540 		__u32 num_info = sec->num_info;
1541 
1542 		r = fn(&sec->sec_name_off, ctx);
1543 		if (r)
1544 			return r;
1545 
1546 		line_data_cur += sizeof(struct btf_ext_info_sec);
1547 		for (i = 0; i < num_info; i++) {
1548 			line_info = line_data_cur;
1549 			r = fn(&line_info->file_name_off, ctx);
1550 			if (r)
1551 				return r;
1552 			r = fn(&line_info->line_off, ctx);
1553 			if (r)
1554 				return r;
1555 			line_data_cur += rec_size;
1556 		}
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 static int str_sort_by_content(const void *a1, const void *a2)
1563 {
1564 	const struct btf_str_ptr *p1 = a1;
1565 	const struct btf_str_ptr *p2 = a2;
1566 
1567 	return strcmp(p1->str, p2->str);
1568 }
1569 
1570 static int str_sort_by_offset(const void *a1, const void *a2)
1571 {
1572 	const struct btf_str_ptr *p1 = a1;
1573 	const struct btf_str_ptr *p2 = a2;
1574 
1575 	if (p1->str != p2->str)
1576 		return p1->str < p2->str ? -1 : 1;
1577 	return 0;
1578 }
1579 
1580 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1581 {
1582 	const struct btf_str_ptr *p = pelem;
1583 
1584 	if (str_ptr != p->str)
1585 		return (const char *)str_ptr < p->str ? -1 : 1;
1586 	return 0;
1587 }
1588 
1589 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1590 {
1591 	struct btf_str_ptrs *strs;
1592 	struct btf_str_ptr *s;
1593 
1594 	if (*str_off_ptr == 0)
1595 		return 0;
1596 
1597 	strs = ctx;
1598 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1599 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1600 	if (!s)
1601 		return -EINVAL;
1602 	s->used = true;
1603 	return 0;
1604 }
1605 
1606 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1607 {
1608 	struct btf_str_ptrs *strs;
1609 	struct btf_str_ptr *s;
1610 
1611 	if (*str_off_ptr == 0)
1612 		return 0;
1613 
1614 	strs = ctx;
1615 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1616 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1617 	if (!s)
1618 		return -EINVAL;
1619 	*str_off_ptr = s->new_off;
1620 	return 0;
1621 }
1622 
1623 /*
1624  * Dedup string and filter out those that are not referenced from either .BTF
1625  * or .BTF.ext (if provided) sections.
1626  *
1627  * This is done by building index of all strings in BTF's string section,
1628  * then iterating over all entities that can reference strings (e.g., type
1629  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1630  * strings as used. After that all used strings are deduped and compacted into
1631  * sequential blob of memory and new offsets are calculated. Then all the string
1632  * references are iterated again and rewritten using new offsets.
1633  */
1634 static int btf_dedup_strings(struct btf_dedup *d)
1635 {
1636 	const struct btf_header *hdr = d->btf->hdr;
1637 	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1638 	char *end = start + d->btf->hdr->str_len;
1639 	char *p = start, *tmp_strs = NULL;
1640 	struct btf_str_ptrs strs = {
1641 		.cnt = 0,
1642 		.cap = 0,
1643 		.ptrs = NULL,
1644 		.data = start,
1645 	};
1646 	int i, j, err = 0, grp_idx;
1647 	bool grp_used;
1648 
1649 	/* build index of all strings */
1650 	while (p < end) {
1651 		if (strs.cnt + 1 > strs.cap) {
1652 			struct btf_str_ptr *new_ptrs;
1653 
1654 			strs.cap += max(strs.cnt / 2, 16);
1655 			new_ptrs = realloc(strs.ptrs,
1656 					   sizeof(strs.ptrs[0]) * strs.cap);
1657 			if (!new_ptrs) {
1658 				err = -ENOMEM;
1659 				goto done;
1660 			}
1661 			strs.ptrs = new_ptrs;
1662 		}
1663 
1664 		strs.ptrs[strs.cnt].str = p;
1665 		strs.ptrs[strs.cnt].used = false;
1666 
1667 		p += strlen(p) + 1;
1668 		strs.cnt++;
1669 	}
1670 
1671 	/* temporary storage for deduplicated strings */
1672 	tmp_strs = malloc(d->btf->hdr->str_len);
1673 	if (!tmp_strs) {
1674 		err = -ENOMEM;
1675 		goto done;
1676 	}
1677 
1678 	/* mark all used strings */
1679 	strs.ptrs[0].used = true;
1680 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1681 	if (err)
1682 		goto done;
1683 
1684 	/* sort strings by context, so that we can identify duplicates */
1685 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1686 
1687 	/*
1688 	 * iterate groups of equal strings and if any instance in a group was
1689 	 * referenced, emit single instance and remember new offset
1690 	 */
1691 	p = tmp_strs;
1692 	grp_idx = 0;
1693 	grp_used = strs.ptrs[0].used;
1694 	/* iterate past end to avoid code duplication after loop */
1695 	for (i = 1; i <= strs.cnt; i++) {
1696 		/*
1697 		 * when i == strs.cnt, we want to skip string comparison and go
1698 		 * straight to handling last group of strings (otherwise we'd
1699 		 * need to handle last group after the loop w/ duplicated code)
1700 		 */
1701 		if (i < strs.cnt &&
1702 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1703 			grp_used = grp_used || strs.ptrs[i].used;
1704 			continue;
1705 		}
1706 
1707 		/*
1708 		 * this check would have been required after the loop to handle
1709 		 * last group of strings, but due to <= condition in a loop
1710 		 * we avoid that duplication
1711 		 */
1712 		if (grp_used) {
1713 			int new_off = p - tmp_strs;
1714 			__u32 len = strlen(strs.ptrs[grp_idx].str);
1715 
1716 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1717 			for (j = grp_idx; j < i; j++)
1718 				strs.ptrs[j].new_off = new_off;
1719 			p += len + 1;
1720 		}
1721 
1722 		if (i < strs.cnt) {
1723 			grp_idx = i;
1724 			grp_used = strs.ptrs[i].used;
1725 		}
1726 	}
1727 
1728 	/* replace original strings with deduped ones */
1729 	d->btf->hdr->str_len = p - tmp_strs;
1730 	memmove(start, tmp_strs, d->btf->hdr->str_len);
1731 	end = start + d->btf->hdr->str_len;
1732 
1733 	/* restore original order for further binary search lookups */
1734 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1735 
1736 	/* remap string offsets */
1737 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1738 	if (err)
1739 		goto done;
1740 
1741 	d->btf->hdr->str_len = end - start;
1742 
1743 done:
1744 	free(tmp_strs);
1745 	free(strs.ptrs);
1746 	return err;
1747 }
1748 
1749 static long btf_hash_common(struct btf_type *t)
1750 {
1751 	long h;
1752 
1753 	h = hash_combine(0, t->name_off);
1754 	h = hash_combine(h, t->info);
1755 	h = hash_combine(h, t->size);
1756 	return h;
1757 }
1758 
1759 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1760 {
1761 	return t1->name_off == t2->name_off &&
1762 	       t1->info == t2->info &&
1763 	       t1->size == t2->size;
1764 }
1765 
1766 /* Calculate type signature hash of INT. */
1767 static long btf_hash_int(struct btf_type *t)
1768 {
1769 	__u32 info = *(__u32 *)(t + 1);
1770 	long h;
1771 
1772 	h = btf_hash_common(t);
1773 	h = hash_combine(h, info);
1774 	return h;
1775 }
1776 
1777 /* Check structural equality of two INTs. */
1778 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1779 {
1780 	__u32 info1, info2;
1781 
1782 	if (!btf_equal_common(t1, t2))
1783 		return false;
1784 	info1 = *(__u32 *)(t1 + 1);
1785 	info2 = *(__u32 *)(t2 + 1);
1786 	return info1 == info2;
1787 }
1788 
1789 /* Calculate type signature hash of ENUM. */
1790 static long btf_hash_enum(struct btf_type *t)
1791 {
1792 	long h;
1793 
1794 	/* don't hash vlen and enum members to support enum fwd resolving */
1795 	h = hash_combine(0, t->name_off);
1796 	h = hash_combine(h, t->info & ~0xffff);
1797 	h = hash_combine(h, t->size);
1798 	return h;
1799 }
1800 
1801 /* Check structural equality of two ENUMs. */
1802 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1803 {
1804 	struct btf_enum *m1, *m2;
1805 	__u16 vlen;
1806 	int i;
1807 
1808 	if (!btf_equal_common(t1, t2))
1809 		return false;
1810 
1811 	vlen = BTF_INFO_VLEN(t1->info);
1812 	m1 = (struct btf_enum *)(t1 + 1);
1813 	m2 = (struct btf_enum *)(t2 + 1);
1814 	for (i = 0; i < vlen; i++) {
1815 		if (m1->name_off != m2->name_off || m1->val != m2->val)
1816 			return false;
1817 		m1++;
1818 		m2++;
1819 	}
1820 	return true;
1821 }
1822 
1823 static inline bool btf_is_enum_fwd(struct btf_type *t)
1824 {
1825 	return BTF_INFO_KIND(t->info) == BTF_KIND_ENUM &&
1826 	       BTF_INFO_VLEN(t->info) == 0;
1827 }
1828 
1829 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1830 {
1831 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1832 		return btf_equal_enum(t1, t2);
1833 	/* ignore vlen when comparing */
1834 	return t1->name_off == t2->name_off &&
1835 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1836 	       t1->size == t2->size;
1837 }
1838 
1839 /*
1840  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1841  * as referenced type IDs equivalence is established separately during type
1842  * graph equivalence check algorithm.
1843  */
1844 static long btf_hash_struct(struct btf_type *t)
1845 {
1846 	struct btf_member *member = (struct btf_member *)(t + 1);
1847 	__u32 vlen = BTF_INFO_VLEN(t->info);
1848 	long h = btf_hash_common(t);
1849 	int i;
1850 
1851 	for (i = 0; i < vlen; i++) {
1852 		h = hash_combine(h, member->name_off);
1853 		h = hash_combine(h, member->offset);
1854 		/* no hashing of referenced type ID, it can be unresolved yet */
1855 		member++;
1856 	}
1857 	return h;
1858 }
1859 
1860 /*
1861  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1862  * IDs. This check is performed during type graph equivalence check and
1863  * referenced types equivalence is checked separately.
1864  */
1865 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1866 {
1867 	struct btf_member *m1, *m2;
1868 	__u16 vlen;
1869 	int i;
1870 
1871 	if (!btf_equal_common(t1, t2))
1872 		return false;
1873 
1874 	vlen = BTF_INFO_VLEN(t1->info);
1875 	m1 = (struct btf_member *)(t1 + 1);
1876 	m2 = (struct btf_member *)(t2 + 1);
1877 	for (i = 0; i < vlen; i++) {
1878 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1879 			return false;
1880 		m1++;
1881 		m2++;
1882 	}
1883 	return true;
1884 }
1885 
1886 /*
1887  * Calculate type signature hash of ARRAY, including referenced type IDs,
1888  * under assumption that they were already resolved to canonical type IDs and
1889  * are not going to change.
1890  */
1891 static long btf_hash_array(struct btf_type *t)
1892 {
1893 	struct btf_array *info = (struct btf_array *)(t + 1);
1894 	long h = btf_hash_common(t);
1895 
1896 	h = hash_combine(h, info->type);
1897 	h = hash_combine(h, info->index_type);
1898 	h = hash_combine(h, info->nelems);
1899 	return h;
1900 }
1901 
1902 /*
1903  * Check exact equality of two ARRAYs, taking into account referenced
1904  * type IDs, under assumption that they were already resolved to canonical
1905  * type IDs and are not going to change.
1906  * This function is called during reference types deduplication to compare
1907  * ARRAY to potential canonical representative.
1908  */
1909 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1910 {
1911 	struct btf_array *info1, *info2;
1912 
1913 	if (!btf_equal_common(t1, t2))
1914 		return false;
1915 
1916 	info1 = (struct btf_array *)(t1 + 1);
1917 	info2 = (struct btf_array *)(t2 + 1);
1918 	return info1->type == info2->type &&
1919 	       info1->index_type == info2->index_type &&
1920 	       info1->nelems == info2->nelems;
1921 }
1922 
1923 /*
1924  * Check structural compatibility of two ARRAYs, ignoring referenced type
1925  * IDs. This check is performed during type graph equivalence check and
1926  * referenced types equivalence is checked separately.
1927  */
1928 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1929 {
1930 	struct btf_array *info1, *info2;
1931 
1932 	if (!btf_equal_common(t1, t2))
1933 		return false;
1934 
1935 	info1 = (struct btf_array *)(t1 + 1);
1936 	info2 = (struct btf_array *)(t2 + 1);
1937 	return info1->nelems == info2->nelems;
1938 }
1939 
1940 /*
1941  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1942  * under assumption that they were already resolved to canonical type IDs and
1943  * are not going to change.
1944  */
1945 static long btf_hash_fnproto(struct btf_type *t)
1946 {
1947 	struct btf_param *member = (struct btf_param *)(t + 1);
1948 	__u16 vlen = BTF_INFO_VLEN(t->info);
1949 	long h = btf_hash_common(t);
1950 	int i;
1951 
1952 	for (i = 0; i < vlen; i++) {
1953 		h = hash_combine(h, member->name_off);
1954 		h = hash_combine(h, member->type);
1955 		member++;
1956 	}
1957 	return h;
1958 }
1959 
1960 /*
1961  * Check exact equality of two FUNC_PROTOs, taking into account referenced
1962  * type IDs, under assumption that they were already resolved to canonical
1963  * type IDs and are not going to change.
1964  * This function is called during reference types deduplication to compare
1965  * FUNC_PROTO to potential canonical representative.
1966  */
1967 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
1968 {
1969 	struct btf_param *m1, *m2;
1970 	__u16 vlen;
1971 	int i;
1972 
1973 	if (!btf_equal_common(t1, t2))
1974 		return false;
1975 
1976 	vlen = BTF_INFO_VLEN(t1->info);
1977 	m1 = (struct btf_param *)(t1 + 1);
1978 	m2 = (struct btf_param *)(t2 + 1);
1979 	for (i = 0; i < vlen; i++) {
1980 		if (m1->name_off != m2->name_off || m1->type != m2->type)
1981 			return false;
1982 		m1++;
1983 		m2++;
1984 	}
1985 	return true;
1986 }
1987 
1988 /*
1989  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1990  * IDs. This check is performed during type graph equivalence check and
1991  * referenced types equivalence is checked separately.
1992  */
1993 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
1994 {
1995 	struct btf_param *m1, *m2;
1996 	__u16 vlen;
1997 	int i;
1998 
1999 	/* skip return type ID */
2000 	if (t1->name_off != t2->name_off || t1->info != t2->info)
2001 		return false;
2002 
2003 	vlen = BTF_INFO_VLEN(t1->info);
2004 	m1 = (struct btf_param *)(t1 + 1);
2005 	m2 = (struct btf_param *)(t2 + 1);
2006 	for (i = 0; i < vlen; i++) {
2007 		if (m1->name_off != m2->name_off)
2008 			return false;
2009 		m1++;
2010 		m2++;
2011 	}
2012 	return true;
2013 }
2014 
2015 /*
2016  * Deduplicate primitive types, that can't reference other types, by calculating
2017  * their type signature hash and comparing them with any possible canonical
2018  * candidate. If no canonical candidate matches, type itself is marked as
2019  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2020  */
2021 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2022 {
2023 	struct btf_type *t = d->btf->types[type_id];
2024 	struct hashmap_entry *hash_entry;
2025 	struct btf_type *cand;
2026 	/* if we don't find equivalent type, then we are canonical */
2027 	__u32 new_id = type_id;
2028 	__u32 cand_id;
2029 	long h;
2030 
2031 	switch (BTF_INFO_KIND(t->info)) {
2032 	case BTF_KIND_CONST:
2033 	case BTF_KIND_VOLATILE:
2034 	case BTF_KIND_RESTRICT:
2035 	case BTF_KIND_PTR:
2036 	case BTF_KIND_TYPEDEF:
2037 	case BTF_KIND_ARRAY:
2038 	case BTF_KIND_STRUCT:
2039 	case BTF_KIND_UNION:
2040 	case BTF_KIND_FUNC:
2041 	case BTF_KIND_FUNC_PROTO:
2042 	case BTF_KIND_VAR:
2043 	case BTF_KIND_DATASEC:
2044 		return 0;
2045 
2046 	case BTF_KIND_INT:
2047 		h = btf_hash_int(t);
2048 		for_each_dedup_cand(d, hash_entry, h) {
2049 			cand_id = (__u32)(long)hash_entry->value;
2050 			cand = d->btf->types[cand_id];
2051 			if (btf_equal_int(t, cand)) {
2052 				new_id = cand_id;
2053 				break;
2054 			}
2055 		}
2056 		break;
2057 
2058 	case BTF_KIND_ENUM:
2059 		h = btf_hash_enum(t);
2060 		for_each_dedup_cand(d, hash_entry, h) {
2061 			cand_id = (__u32)(long)hash_entry->value;
2062 			cand = d->btf->types[cand_id];
2063 			if (btf_equal_enum(t, cand)) {
2064 				new_id = cand_id;
2065 				break;
2066 			}
2067 			if (d->opts.dont_resolve_fwds)
2068 				continue;
2069 			if (btf_compat_enum(t, cand)) {
2070 				if (btf_is_enum_fwd(t)) {
2071 					/* resolve fwd to full enum */
2072 					new_id = cand_id;
2073 					break;
2074 				}
2075 				/* resolve canonical enum fwd to full enum */
2076 				d->map[cand_id] = type_id;
2077 			}
2078 		}
2079 		break;
2080 
2081 	case BTF_KIND_FWD:
2082 		h = btf_hash_common(t);
2083 		for_each_dedup_cand(d, hash_entry, h) {
2084 			cand_id = (__u32)(long)hash_entry->value;
2085 			cand = d->btf->types[cand_id];
2086 			if (btf_equal_common(t, cand)) {
2087 				new_id = cand_id;
2088 				break;
2089 			}
2090 		}
2091 		break;
2092 
2093 	default:
2094 		return -EINVAL;
2095 	}
2096 
2097 	d->map[type_id] = new_id;
2098 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2099 		return -ENOMEM;
2100 
2101 	return 0;
2102 }
2103 
2104 static int btf_dedup_prim_types(struct btf_dedup *d)
2105 {
2106 	int i, err;
2107 
2108 	for (i = 1; i <= d->btf->nr_types; i++) {
2109 		err = btf_dedup_prim_type(d, i);
2110 		if (err)
2111 			return err;
2112 	}
2113 	return 0;
2114 }
2115 
2116 /*
2117  * Check whether type is already mapped into canonical one (could be to itself).
2118  */
2119 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2120 {
2121 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2122 }
2123 
2124 /*
2125  * Resolve type ID into its canonical type ID, if any; otherwise return original
2126  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2127  * STRUCT/UNION link and resolve it into canonical type ID as well.
2128  */
2129 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2130 {
2131 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2132 		type_id = d->map[type_id];
2133 	return type_id;
2134 }
2135 
2136 /*
2137  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2138  * type ID.
2139  */
2140 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2141 {
2142 	__u32 orig_type_id = type_id;
2143 
2144 	if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
2145 		return type_id;
2146 
2147 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2148 		type_id = d->map[type_id];
2149 
2150 	if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
2151 		return type_id;
2152 
2153 	return orig_type_id;
2154 }
2155 
2156 
2157 static inline __u16 btf_fwd_kind(struct btf_type *t)
2158 {
2159 	return BTF_INFO_KFLAG(t->info) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2160 }
2161 
2162 /*
2163  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2164  * call it "candidate graph" in this description for brevity) to a type graph
2165  * formed by (potential) canonical struct/union ("canonical graph" for brevity
2166  * here, though keep in mind that not all types in canonical graph are
2167  * necessarily canonical representatives themselves, some of them might be
2168  * duplicates or its uniqueness might not have been established yet).
2169  * Returns:
2170  *  - >0, if type graphs are equivalent;
2171  *  -  0, if not equivalent;
2172  *  - <0, on error.
2173  *
2174  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2175  * equivalence of BTF types at each step. If at any point BTF types in candidate
2176  * and canonical graphs are not compatible structurally, whole graphs are
2177  * incompatible. If types are structurally equivalent (i.e., all information
2178  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2179  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2180  * If a type references other types, then those referenced types are checked
2181  * for equivalence recursively.
2182  *
2183  * During DFS traversal, if we find that for current `canon_id` type we
2184  * already have some mapping in hypothetical map, we check for two possible
2185  * situations:
2186  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2187  *     happen when type graphs have cycles. In this case we assume those two
2188  *     types are equivalent.
2189  *   - `canon_id` is mapped to different type. This is contradiction in our
2190  *     hypothetical mapping, because same graph in canonical graph corresponds
2191  *     to two different types in candidate graph, which for equivalent type
2192  *     graphs shouldn't happen. This condition terminates equivalence check
2193  *     with negative result.
2194  *
2195  * If type graphs traversal exhausts types to check and find no contradiction,
2196  * then type graphs are equivalent.
2197  *
2198  * When checking types for equivalence, there is one special case: FWD types.
2199  * If FWD type resolution is allowed and one of the types (either from canonical
2200  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2201  * flag) and their names match, hypothetical mapping is updated to point from
2202  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2203  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2204  *
2205  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2206  * if there are two exactly named (or anonymous) structs/unions that are
2207  * compatible structurally, one of which has FWD field, while other is concrete
2208  * STRUCT/UNION, but according to C sources they are different structs/unions
2209  * that are referencing different types with the same name. This is extremely
2210  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2211  * this logic is causing problems.
2212  *
2213  * Doing FWD resolution means that both candidate and/or canonical graphs can
2214  * consists of portions of the graph that come from multiple compilation units.
2215  * This is due to the fact that types within single compilation unit are always
2216  * deduplicated and FWDs are already resolved, if referenced struct/union
2217  * definiton is available. So, if we had unresolved FWD and found corresponding
2218  * STRUCT/UNION, they will be from different compilation units. This
2219  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2220  * type graph will likely have at least two different BTF types that describe
2221  * same type (e.g., most probably there will be two different BTF types for the
2222  * same 'int' primitive type) and could even have "overlapping" parts of type
2223  * graph that describe same subset of types.
2224  *
2225  * This in turn means that our assumption that each type in canonical graph
2226  * must correspond to exactly one type in candidate graph might not hold
2227  * anymore and will make it harder to detect contradictions using hypothetical
2228  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2229  * resolution only in canonical graph. FWDs in candidate graphs are never
2230  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2231  * that can occur:
2232  *   - Both types in canonical and candidate graphs are FWDs. If they are
2233  *     structurally equivalent, then they can either be both resolved to the
2234  *     same STRUCT/UNION or not resolved at all. In both cases they are
2235  *     equivalent and there is no need to resolve FWD on candidate side.
2236  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2237  *     so nothing to resolve as well, algorithm will check equivalence anyway.
2238  *   - Type in canonical graph is FWD, while type in candidate is concrete
2239  *     STRUCT/UNION. In this case candidate graph comes from single compilation
2240  *     unit, so there is exactly one BTF type for each unique C type. After
2241  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2242  *     in canonical graph mapping to single BTF type in candidate graph, but
2243  *     because hypothetical mapping maps from canonical to candidate types, it's
2244  *     alright, and we still maintain the property of having single `canon_id`
2245  *     mapping to single `cand_id` (there could be two different `canon_id`
2246  *     mapped to the same `cand_id`, but it's not contradictory).
2247  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2248  *     graph is FWD. In this case we are just going to check compatibility of
2249  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2250  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2251  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2252  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2253  *     canonical graph.
2254  */
2255 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2256 			      __u32 canon_id)
2257 {
2258 	struct btf_type *cand_type;
2259 	struct btf_type *canon_type;
2260 	__u32 hypot_type_id;
2261 	__u16 cand_kind;
2262 	__u16 canon_kind;
2263 	int i, eq;
2264 
2265 	/* if both resolve to the same canonical, they must be equivalent */
2266 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2267 		return 1;
2268 
2269 	canon_id = resolve_fwd_id(d, canon_id);
2270 
2271 	hypot_type_id = d->hypot_map[canon_id];
2272 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2273 		return hypot_type_id == cand_id;
2274 
2275 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2276 		return -ENOMEM;
2277 
2278 	cand_type = d->btf->types[cand_id];
2279 	canon_type = d->btf->types[canon_id];
2280 	cand_kind = BTF_INFO_KIND(cand_type->info);
2281 	canon_kind = BTF_INFO_KIND(canon_type->info);
2282 
2283 	if (cand_type->name_off != canon_type->name_off)
2284 		return 0;
2285 
2286 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2287 	if (!d->opts.dont_resolve_fwds
2288 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2289 	    && cand_kind != canon_kind) {
2290 		__u16 real_kind;
2291 		__u16 fwd_kind;
2292 
2293 		if (cand_kind == BTF_KIND_FWD) {
2294 			real_kind = canon_kind;
2295 			fwd_kind = btf_fwd_kind(cand_type);
2296 		} else {
2297 			real_kind = cand_kind;
2298 			fwd_kind = btf_fwd_kind(canon_type);
2299 		}
2300 		return fwd_kind == real_kind;
2301 	}
2302 
2303 	if (cand_kind != canon_kind)
2304 		return 0;
2305 
2306 	switch (cand_kind) {
2307 	case BTF_KIND_INT:
2308 		return btf_equal_int(cand_type, canon_type);
2309 
2310 	case BTF_KIND_ENUM:
2311 		if (d->opts.dont_resolve_fwds)
2312 			return btf_equal_enum(cand_type, canon_type);
2313 		else
2314 			return btf_compat_enum(cand_type, canon_type);
2315 
2316 	case BTF_KIND_FWD:
2317 		return btf_equal_common(cand_type, canon_type);
2318 
2319 	case BTF_KIND_CONST:
2320 	case BTF_KIND_VOLATILE:
2321 	case BTF_KIND_RESTRICT:
2322 	case BTF_KIND_PTR:
2323 	case BTF_KIND_TYPEDEF:
2324 	case BTF_KIND_FUNC:
2325 		if (cand_type->info != canon_type->info)
2326 			return 0;
2327 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2328 
2329 	case BTF_KIND_ARRAY: {
2330 		struct btf_array *cand_arr, *canon_arr;
2331 
2332 		if (!btf_compat_array(cand_type, canon_type))
2333 			return 0;
2334 		cand_arr = (struct btf_array *)(cand_type + 1);
2335 		canon_arr = (struct btf_array *)(canon_type + 1);
2336 		eq = btf_dedup_is_equiv(d,
2337 			cand_arr->index_type, canon_arr->index_type);
2338 		if (eq <= 0)
2339 			return eq;
2340 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2341 	}
2342 
2343 	case BTF_KIND_STRUCT:
2344 	case BTF_KIND_UNION: {
2345 		struct btf_member *cand_m, *canon_m;
2346 		__u16 vlen;
2347 
2348 		if (!btf_shallow_equal_struct(cand_type, canon_type))
2349 			return 0;
2350 		vlen = BTF_INFO_VLEN(cand_type->info);
2351 		cand_m = (struct btf_member *)(cand_type + 1);
2352 		canon_m = (struct btf_member *)(canon_type + 1);
2353 		for (i = 0; i < vlen; i++) {
2354 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2355 			if (eq <= 0)
2356 				return eq;
2357 			cand_m++;
2358 			canon_m++;
2359 		}
2360 
2361 		return 1;
2362 	}
2363 
2364 	case BTF_KIND_FUNC_PROTO: {
2365 		struct btf_param *cand_p, *canon_p;
2366 		__u16 vlen;
2367 
2368 		if (!btf_compat_fnproto(cand_type, canon_type))
2369 			return 0;
2370 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2371 		if (eq <= 0)
2372 			return eq;
2373 		vlen = BTF_INFO_VLEN(cand_type->info);
2374 		cand_p = (struct btf_param *)(cand_type + 1);
2375 		canon_p = (struct btf_param *)(canon_type + 1);
2376 		for (i = 0; i < vlen; i++) {
2377 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2378 			if (eq <= 0)
2379 				return eq;
2380 			cand_p++;
2381 			canon_p++;
2382 		}
2383 		return 1;
2384 	}
2385 
2386 	default:
2387 		return -EINVAL;
2388 	}
2389 	return 0;
2390 }
2391 
2392 /*
2393  * Use hypothetical mapping, produced by successful type graph equivalence
2394  * check, to augment existing struct/union canonical mapping, where possible.
2395  *
2396  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2397  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2398  * it doesn't matter if FWD type was part of canonical graph or candidate one,
2399  * we are recording the mapping anyway. As opposed to carefulness required
2400  * for struct/union correspondence mapping (described below), for FWD resolution
2401  * it's not important, as by the time that FWD type (reference type) will be
2402  * deduplicated all structs/unions will be deduped already anyway.
2403  *
2404  * Recording STRUCT/UNION mapping is purely a performance optimization and is
2405  * not required for correctness. It needs to be done carefully to ensure that
2406  * struct/union from candidate's type graph is not mapped into corresponding
2407  * struct/union from canonical type graph that itself hasn't been resolved into
2408  * canonical representative. The only guarantee we have is that canonical
2409  * struct/union was determined as canonical and that won't change. But any
2410  * types referenced through that struct/union fields could have been not yet
2411  * resolved, so in case like that it's too early to establish any kind of
2412  * correspondence between structs/unions.
2413  *
2414  * No canonical correspondence is derived for primitive types (they are already
2415  * deduplicated completely already anyway) or reference types (they rely on
2416  * stability of struct/union canonical relationship for equivalence checks).
2417  */
2418 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2419 {
2420 	__u32 cand_type_id, targ_type_id;
2421 	__u16 t_kind, c_kind;
2422 	__u32 t_id, c_id;
2423 	int i;
2424 
2425 	for (i = 0; i < d->hypot_cnt; i++) {
2426 		cand_type_id = d->hypot_list[i];
2427 		targ_type_id = d->hypot_map[cand_type_id];
2428 		t_id = resolve_type_id(d, targ_type_id);
2429 		c_id = resolve_type_id(d, cand_type_id);
2430 		t_kind = BTF_INFO_KIND(d->btf->types[t_id]->info);
2431 		c_kind = BTF_INFO_KIND(d->btf->types[c_id]->info);
2432 		/*
2433 		 * Resolve FWD into STRUCT/UNION.
2434 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2435 		 * mapped to canonical representative (as opposed to
2436 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2437 		 * eventually that struct is going to be mapped and all resolved
2438 		 * FWDs will automatically resolve to correct canonical
2439 		 * representative. This will happen before ref type deduping,
2440 		 * which critically depends on stability of these mapping. This
2441 		 * stability is not a requirement for STRUCT/UNION equivalence
2442 		 * checks, though.
2443 		 */
2444 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2445 			d->map[c_id] = t_id;
2446 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2447 			d->map[t_id] = c_id;
2448 
2449 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2450 		    c_kind != BTF_KIND_FWD &&
2451 		    is_type_mapped(d, c_id) &&
2452 		    !is_type_mapped(d, t_id)) {
2453 			/*
2454 			 * as a perf optimization, we can map struct/union
2455 			 * that's part of type graph we just verified for
2456 			 * equivalence. We can do that for struct/union that has
2457 			 * canonical representative only, though.
2458 			 */
2459 			d->map[t_id] = c_id;
2460 		}
2461 	}
2462 }
2463 
2464 /*
2465  * Deduplicate struct/union types.
2466  *
2467  * For each struct/union type its type signature hash is calculated, taking
2468  * into account type's name, size, number, order and names of fields, but
2469  * ignoring type ID's referenced from fields, because they might not be deduped
2470  * completely until after reference types deduplication phase. This type hash
2471  * is used to iterate over all potential canonical types, sharing same hash.
2472  * For each canonical candidate we check whether type graphs that they form
2473  * (through referenced types in fields and so on) are equivalent using algorithm
2474  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2475  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2476  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2477  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2478  * potentially map other structs/unions to their canonical representatives,
2479  * if such relationship hasn't yet been established. This speeds up algorithm
2480  * by eliminating some of the duplicate work.
2481  *
2482  * If no matching canonical representative was found, struct/union is marked
2483  * as canonical for itself and is added into btf_dedup->dedup_table hash map
2484  * for further look ups.
2485  */
2486 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2487 {
2488 	struct btf_type *cand_type, *t;
2489 	struct hashmap_entry *hash_entry;
2490 	/* if we don't find equivalent type, then we are canonical */
2491 	__u32 new_id = type_id;
2492 	__u16 kind;
2493 	long h;
2494 
2495 	/* already deduped or is in process of deduping (loop detected) */
2496 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2497 		return 0;
2498 
2499 	t = d->btf->types[type_id];
2500 	kind = BTF_INFO_KIND(t->info);
2501 
2502 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2503 		return 0;
2504 
2505 	h = btf_hash_struct(t);
2506 	for_each_dedup_cand(d, hash_entry, h) {
2507 		__u32 cand_id = (__u32)(long)hash_entry->value;
2508 		int eq;
2509 
2510 		/*
2511 		 * Even though btf_dedup_is_equiv() checks for
2512 		 * btf_shallow_equal_struct() internally when checking two
2513 		 * structs (unions) for equivalence, we need to guard here
2514 		 * from picking matching FWD type as a dedup candidate.
2515 		 * This can happen due to hash collision. In such case just
2516 		 * relying on btf_dedup_is_equiv() would lead to potentially
2517 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2518 		 * FWD and compatible STRUCT/UNION are considered equivalent.
2519 		 */
2520 		cand_type = d->btf->types[cand_id];
2521 		if (!btf_shallow_equal_struct(t, cand_type))
2522 			continue;
2523 
2524 		btf_dedup_clear_hypot_map(d);
2525 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2526 		if (eq < 0)
2527 			return eq;
2528 		if (!eq)
2529 			continue;
2530 		new_id = cand_id;
2531 		btf_dedup_merge_hypot_map(d);
2532 		break;
2533 	}
2534 
2535 	d->map[type_id] = new_id;
2536 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2537 		return -ENOMEM;
2538 
2539 	return 0;
2540 }
2541 
2542 static int btf_dedup_struct_types(struct btf_dedup *d)
2543 {
2544 	int i, err;
2545 
2546 	for (i = 1; i <= d->btf->nr_types; i++) {
2547 		err = btf_dedup_struct_type(d, i);
2548 		if (err)
2549 			return err;
2550 	}
2551 	return 0;
2552 }
2553 
2554 /*
2555  * Deduplicate reference type.
2556  *
2557  * Once all primitive and struct/union types got deduplicated, we can easily
2558  * deduplicate all other (reference) BTF types. This is done in two steps:
2559  *
2560  * 1. Resolve all referenced type IDs into their canonical type IDs. This
2561  * resolution can be done either immediately for primitive or struct/union types
2562  * (because they were deduped in previous two phases) or recursively for
2563  * reference types. Recursion will always terminate at either primitive or
2564  * struct/union type, at which point we can "unwind" chain of reference types
2565  * one by one. There is no danger of encountering cycles because in C type
2566  * system the only way to form type cycle is through struct/union, so any chain
2567  * of reference types, even those taking part in a type cycle, will inevitably
2568  * reach struct/union at some point.
2569  *
2570  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2571  * becomes "stable", in the sense that no further deduplication will cause
2572  * any changes to it. With that, it's now possible to calculate type's signature
2573  * hash (this time taking into account referenced type IDs) and loop over all
2574  * potential canonical representatives. If no match was found, current type
2575  * will become canonical representative of itself and will be added into
2576  * btf_dedup->dedup_table as another possible canonical representative.
2577  */
2578 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2579 {
2580 	struct hashmap_entry *hash_entry;
2581 	__u32 new_id = type_id, cand_id;
2582 	struct btf_type *t, *cand;
2583 	/* if we don't find equivalent type, then we are representative type */
2584 	int ref_type_id;
2585 	long h;
2586 
2587 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2588 		return -ELOOP;
2589 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2590 		return resolve_type_id(d, type_id);
2591 
2592 	t = d->btf->types[type_id];
2593 	d->map[type_id] = BTF_IN_PROGRESS_ID;
2594 
2595 	switch (BTF_INFO_KIND(t->info)) {
2596 	case BTF_KIND_CONST:
2597 	case BTF_KIND_VOLATILE:
2598 	case BTF_KIND_RESTRICT:
2599 	case BTF_KIND_PTR:
2600 	case BTF_KIND_TYPEDEF:
2601 	case BTF_KIND_FUNC:
2602 		ref_type_id = btf_dedup_ref_type(d, t->type);
2603 		if (ref_type_id < 0)
2604 			return ref_type_id;
2605 		t->type = ref_type_id;
2606 
2607 		h = btf_hash_common(t);
2608 		for_each_dedup_cand(d, hash_entry, h) {
2609 			cand_id = (__u32)(long)hash_entry->value;
2610 			cand = d->btf->types[cand_id];
2611 			if (btf_equal_common(t, cand)) {
2612 				new_id = cand_id;
2613 				break;
2614 			}
2615 		}
2616 		break;
2617 
2618 	case BTF_KIND_ARRAY: {
2619 		struct btf_array *info = (struct btf_array *)(t + 1);
2620 
2621 		ref_type_id = btf_dedup_ref_type(d, info->type);
2622 		if (ref_type_id < 0)
2623 			return ref_type_id;
2624 		info->type = ref_type_id;
2625 
2626 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2627 		if (ref_type_id < 0)
2628 			return ref_type_id;
2629 		info->index_type = ref_type_id;
2630 
2631 		h = btf_hash_array(t);
2632 		for_each_dedup_cand(d, hash_entry, h) {
2633 			cand_id = (__u32)(long)hash_entry->value;
2634 			cand = d->btf->types[cand_id];
2635 			if (btf_equal_array(t, cand)) {
2636 				new_id = cand_id;
2637 				break;
2638 			}
2639 		}
2640 		break;
2641 	}
2642 
2643 	case BTF_KIND_FUNC_PROTO: {
2644 		struct btf_param *param;
2645 		__u16 vlen;
2646 		int i;
2647 
2648 		ref_type_id = btf_dedup_ref_type(d, t->type);
2649 		if (ref_type_id < 0)
2650 			return ref_type_id;
2651 		t->type = ref_type_id;
2652 
2653 		vlen = BTF_INFO_VLEN(t->info);
2654 		param = (struct btf_param *)(t + 1);
2655 		for (i = 0; i < vlen; i++) {
2656 			ref_type_id = btf_dedup_ref_type(d, param->type);
2657 			if (ref_type_id < 0)
2658 				return ref_type_id;
2659 			param->type = ref_type_id;
2660 			param++;
2661 		}
2662 
2663 		h = btf_hash_fnproto(t);
2664 		for_each_dedup_cand(d, hash_entry, h) {
2665 			cand_id = (__u32)(long)hash_entry->value;
2666 			cand = d->btf->types[cand_id];
2667 			if (btf_equal_fnproto(t, cand)) {
2668 				new_id = cand_id;
2669 				break;
2670 			}
2671 		}
2672 		break;
2673 	}
2674 
2675 	default:
2676 		return -EINVAL;
2677 	}
2678 
2679 	d->map[type_id] = new_id;
2680 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2681 		return -ENOMEM;
2682 
2683 	return new_id;
2684 }
2685 
2686 static int btf_dedup_ref_types(struct btf_dedup *d)
2687 {
2688 	int i, err;
2689 
2690 	for (i = 1; i <= d->btf->nr_types; i++) {
2691 		err = btf_dedup_ref_type(d, i);
2692 		if (err < 0)
2693 			return err;
2694 	}
2695 	/* we won't need d->dedup_table anymore */
2696 	hashmap__free(d->dedup_table);
2697 	d->dedup_table = NULL;
2698 	return 0;
2699 }
2700 
2701 /*
2702  * Compact types.
2703  *
2704  * After we established for each type its corresponding canonical representative
2705  * type, we now can eliminate types that are not canonical and leave only
2706  * canonical ones layed out sequentially in memory by copying them over
2707  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2708  * a map from original type ID to a new compacted type ID, which will be used
2709  * during next phase to "fix up" type IDs, referenced from struct/union and
2710  * reference types.
2711  */
2712 static int btf_dedup_compact_types(struct btf_dedup *d)
2713 {
2714 	struct btf_type **new_types;
2715 	__u32 next_type_id = 1;
2716 	char *types_start, *p;
2717 	int i, len;
2718 
2719 	/* we are going to reuse hypot_map to store compaction remapping */
2720 	d->hypot_map[0] = 0;
2721 	for (i = 1; i <= d->btf->nr_types; i++)
2722 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2723 
2724 	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2725 	p = types_start;
2726 
2727 	for (i = 1; i <= d->btf->nr_types; i++) {
2728 		if (d->map[i] != i)
2729 			continue;
2730 
2731 		len = btf_type_size(d->btf->types[i]);
2732 		if (len < 0)
2733 			return len;
2734 
2735 		memmove(p, d->btf->types[i], len);
2736 		d->hypot_map[i] = next_type_id;
2737 		d->btf->types[next_type_id] = (struct btf_type *)p;
2738 		p += len;
2739 		next_type_id++;
2740 	}
2741 
2742 	/* shrink struct btf's internal types index and update btf_header */
2743 	d->btf->nr_types = next_type_id - 1;
2744 	d->btf->types_size = d->btf->nr_types;
2745 	d->btf->hdr->type_len = p - types_start;
2746 	new_types = realloc(d->btf->types,
2747 			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2748 	if (!new_types)
2749 		return -ENOMEM;
2750 	d->btf->types = new_types;
2751 
2752 	/* make sure string section follows type information without gaps */
2753 	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2754 	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2755 	d->btf->strings = p;
2756 	p += d->btf->hdr->str_len;
2757 
2758 	d->btf->data_size = p - (char *)d->btf->data;
2759 	return 0;
2760 }
2761 
2762 /*
2763  * Figure out final (deduplicated and compacted) type ID for provided original
2764  * `type_id` by first resolving it into corresponding canonical type ID and
2765  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2766  * which is populated during compaction phase.
2767  */
2768 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2769 {
2770 	__u32 resolved_type_id, new_type_id;
2771 
2772 	resolved_type_id = resolve_type_id(d, type_id);
2773 	new_type_id = d->hypot_map[resolved_type_id];
2774 	if (new_type_id > BTF_MAX_NR_TYPES)
2775 		return -EINVAL;
2776 	return new_type_id;
2777 }
2778 
2779 /*
2780  * Remap referenced type IDs into deduped type IDs.
2781  *
2782  * After BTF types are deduplicated and compacted, their final type IDs may
2783  * differ from original ones. The map from original to a corresponding
2784  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2785  * compaction phase. During remapping phase we are rewriting all type IDs
2786  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2787  * their final deduped type IDs.
2788  */
2789 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2790 {
2791 	struct btf_type *t = d->btf->types[type_id];
2792 	int i, r;
2793 
2794 	switch (BTF_INFO_KIND(t->info)) {
2795 	case BTF_KIND_INT:
2796 	case BTF_KIND_ENUM:
2797 		break;
2798 
2799 	case BTF_KIND_FWD:
2800 	case BTF_KIND_CONST:
2801 	case BTF_KIND_VOLATILE:
2802 	case BTF_KIND_RESTRICT:
2803 	case BTF_KIND_PTR:
2804 	case BTF_KIND_TYPEDEF:
2805 	case BTF_KIND_FUNC:
2806 	case BTF_KIND_VAR:
2807 		r = btf_dedup_remap_type_id(d, t->type);
2808 		if (r < 0)
2809 			return r;
2810 		t->type = r;
2811 		break;
2812 
2813 	case BTF_KIND_ARRAY: {
2814 		struct btf_array *arr_info = (struct btf_array *)(t + 1);
2815 
2816 		r = btf_dedup_remap_type_id(d, arr_info->type);
2817 		if (r < 0)
2818 			return r;
2819 		arr_info->type = r;
2820 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2821 		if (r < 0)
2822 			return r;
2823 		arr_info->index_type = r;
2824 		break;
2825 	}
2826 
2827 	case BTF_KIND_STRUCT:
2828 	case BTF_KIND_UNION: {
2829 		struct btf_member *member = (struct btf_member *)(t + 1);
2830 		__u16 vlen = BTF_INFO_VLEN(t->info);
2831 
2832 		for (i = 0; i < vlen; i++) {
2833 			r = btf_dedup_remap_type_id(d, member->type);
2834 			if (r < 0)
2835 				return r;
2836 			member->type = r;
2837 			member++;
2838 		}
2839 		break;
2840 	}
2841 
2842 	case BTF_KIND_FUNC_PROTO: {
2843 		struct btf_param *param = (struct btf_param *)(t + 1);
2844 		__u16 vlen = BTF_INFO_VLEN(t->info);
2845 
2846 		r = btf_dedup_remap_type_id(d, t->type);
2847 		if (r < 0)
2848 			return r;
2849 		t->type = r;
2850 
2851 		for (i = 0; i < vlen; i++) {
2852 			r = btf_dedup_remap_type_id(d, param->type);
2853 			if (r < 0)
2854 				return r;
2855 			param->type = r;
2856 			param++;
2857 		}
2858 		break;
2859 	}
2860 
2861 	case BTF_KIND_DATASEC: {
2862 		struct btf_var_secinfo *var = (struct btf_var_secinfo *)(t + 1);
2863 		__u16 vlen = BTF_INFO_VLEN(t->info);
2864 
2865 		for (i = 0; i < vlen; i++) {
2866 			r = btf_dedup_remap_type_id(d, var->type);
2867 			if (r < 0)
2868 				return r;
2869 			var->type = r;
2870 			var++;
2871 		}
2872 		break;
2873 	}
2874 
2875 	default:
2876 		return -EINVAL;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 static int btf_dedup_remap_types(struct btf_dedup *d)
2883 {
2884 	int i, r;
2885 
2886 	for (i = 1; i <= d->btf->nr_types; i++) {
2887 		r = btf_dedup_remap_type(d, i);
2888 		if (r < 0)
2889 			return r;
2890 	}
2891 	return 0;
2892 }
2893