xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 15e3ae36)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <endian.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <errno.h>
11 #include <sys/utsname.h>
12 #include <sys/param.h>
13 #include <sys/stat.h>
14 #include <linux/kernel.h>
15 #include <linux/err.h>
16 #include <linux/btf.h>
17 #include <gelf.h>
18 #include "btf.h"
19 #include "bpf.h"
20 #include "libbpf.h"
21 #include "libbpf_internal.h"
22 #include "hashmap.h"
23 
24 /* make sure libbpf doesn't use kernel-only integer typedefs */
25 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
26 
27 #define BTF_MAX_NR_TYPES 0x7fffffffU
28 #define BTF_MAX_STR_OFFSET 0x7fffffffU
29 
30 static struct btf_type btf_void;
31 
32 struct btf {
33 	union {
34 		struct btf_header *hdr;
35 		void *data;
36 	};
37 	struct btf_type **types;
38 	const char *strings;
39 	void *nohdr_data;
40 	__u32 nr_types;
41 	__u32 types_size;
42 	__u32 data_size;
43 	int fd;
44 };
45 
46 static inline __u64 ptr_to_u64(const void *ptr)
47 {
48 	return (__u64) (unsigned long) ptr;
49 }
50 
51 static int btf_add_type(struct btf *btf, struct btf_type *t)
52 {
53 	if (btf->types_size - btf->nr_types < 2) {
54 		struct btf_type **new_types;
55 		__u32 expand_by, new_size;
56 
57 		if (btf->types_size == BTF_MAX_NR_TYPES)
58 			return -E2BIG;
59 
60 		expand_by = max(btf->types_size >> 2, 16U);
61 		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
62 
63 		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
64 		if (!new_types)
65 			return -ENOMEM;
66 
67 		if (btf->nr_types == 0)
68 			new_types[0] = &btf_void;
69 
70 		btf->types = new_types;
71 		btf->types_size = new_size;
72 	}
73 
74 	btf->types[++(btf->nr_types)] = t;
75 
76 	return 0;
77 }
78 
79 static int btf_parse_hdr(struct btf *btf)
80 {
81 	const struct btf_header *hdr = btf->hdr;
82 	__u32 meta_left;
83 
84 	if (btf->data_size < sizeof(struct btf_header)) {
85 		pr_debug("BTF header not found\n");
86 		return -EINVAL;
87 	}
88 
89 	if (hdr->magic != BTF_MAGIC) {
90 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
91 		return -EINVAL;
92 	}
93 
94 	if (hdr->version != BTF_VERSION) {
95 		pr_debug("Unsupported BTF version:%u\n", hdr->version);
96 		return -ENOTSUP;
97 	}
98 
99 	if (hdr->flags) {
100 		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
101 		return -ENOTSUP;
102 	}
103 
104 	meta_left = btf->data_size - sizeof(*hdr);
105 	if (!meta_left) {
106 		pr_debug("BTF has no data\n");
107 		return -EINVAL;
108 	}
109 
110 	if (meta_left < hdr->type_off) {
111 		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
112 		return -EINVAL;
113 	}
114 
115 	if (meta_left < hdr->str_off) {
116 		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
117 		return -EINVAL;
118 	}
119 
120 	if (hdr->type_off >= hdr->str_off) {
121 		pr_debug("BTF type section offset >= string section offset. No type?\n");
122 		return -EINVAL;
123 	}
124 
125 	if (hdr->type_off & 0x02) {
126 		pr_debug("BTF type section is not aligned to 4 bytes\n");
127 		return -EINVAL;
128 	}
129 
130 	btf->nohdr_data = btf->hdr + 1;
131 
132 	return 0;
133 }
134 
135 static int btf_parse_str_sec(struct btf *btf)
136 {
137 	const struct btf_header *hdr = btf->hdr;
138 	const char *start = btf->nohdr_data + hdr->str_off;
139 	const char *end = start + btf->hdr->str_len;
140 
141 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
142 	    start[0] || end[-1]) {
143 		pr_debug("Invalid BTF string section\n");
144 		return -EINVAL;
145 	}
146 
147 	btf->strings = start;
148 
149 	return 0;
150 }
151 
152 static int btf_type_size(struct btf_type *t)
153 {
154 	int base_size = sizeof(struct btf_type);
155 	__u16 vlen = btf_vlen(t);
156 
157 	switch (btf_kind(t)) {
158 	case BTF_KIND_FWD:
159 	case BTF_KIND_CONST:
160 	case BTF_KIND_VOLATILE:
161 	case BTF_KIND_RESTRICT:
162 	case BTF_KIND_PTR:
163 	case BTF_KIND_TYPEDEF:
164 	case BTF_KIND_FUNC:
165 		return base_size;
166 	case BTF_KIND_INT:
167 		return base_size + sizeof(__u32);
168 	case BTF_KIND_ENUM:
169 		return base_size + vlen * sizeof(struct btf_enum);
170 	case BTF_KIND_ARRAY:
171 		return base_size + sizeof(struct btf_array);
172 	case BTF_KIND_STRUCT:
173 	case BTF_KIND_UNION:
174 		return base_size + vlen * sizeof(struct btf_member);
175 	case BTF_KIND_FUNC_PROTO:
176 		return base_size + vlen * sizeof(struct btf_param);
177 	case BTF_KIND_VAR:
178 		return base_size + sizeof(struct btf_var);
179 	case BTF_KIND_DATASEC:
180 		return base_size + vlen * sizeof(struct btf_var_secinfo);
181 	default:
182 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
183 		return -EINVAL;
184 	}
185 }
186 
187 static int btf_parse_type_sec(struct btf *btf)
188 {
189 	struct btf_header *hdr = btf->hdr;
190 	void *nohdr_data = btf->nohdr_data;
191 	void *next_type = nohdr_data + hdr->type_off;
192 	void *end_type = nohdr_data + hdr->str_off;
193 
194 	while (next_type < end_type) {
195 		struct btf_type *t = next_type;
196 		int type_size;
197 		int err;
198 
199 		type_size = btf_type_size(t);
200 		if (type_size < 0)
201 			return type_size;
202 		next_type += type_size;
203 		err = btf_add_type(btf, t);
204 		if (err)
205 			return err;
206 	}
207 
208 	return 0;
209 }
210 
211 __u32 btf__get_nr_types(const struct btf *btf)
212 {
213 	return btf->nr_types;
214 }
215 
216 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
217 {
218 	if (type_id > btf->nr_types)
219 		return NULL;
220 
221 	return btf->types[type_id];
222 }
223 
224 static bool btf_type_is_void(const struct btf_type *t)
225 {
226 	return t == &btf_void || btf_is_fwd(t);
227 }
228 
229 static bool btf_type_is_void_or_null(const struct btf_type *t)
230 {
231 	return !t || btf_type_is_void(t);
232 }
233 
234 #define MAX_RESOLVE_DEPTH 32
235 
236 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
237 {
238 	const struct btf_array *array;
239 	const struct btf_type *t;
240 	__u32 nelems = 1;
241 	__s64 size = -1;
242 	int i;
243 
244 	t = btf__type_by_id(btf, type_id);
245 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
246 	     i++) {
247 		switch (btf_kind(t)) {
248 		case BTF_KIND_INT:
249 		case BTF_KIND_STRUCT:
250 		case BTF_KIND_UNION:
251 		case BTF_KIND_ENUM:
252 		case BTF_KIND_DATASEC:
253 			size = t->size;
254 			goto done;
255 		case BTF_KIND_PTR:
256 			size = sizeof(void *);
257 			goto done;
258 		case BTF_KIND_TYPEDEF:
259 		case BTF_KIND_VOLATILE:
260 		case BTF_KIND_CONST:
261 		case BTF_KIND_RESTRICT:
262 		case BTF_KIND_VAR:
263 			type_id = t->type;
264 			break;
265 		case BTF_KIND_ARRAY:
266 			array = btf_array(t);
267 			if (nelems && array->nelems > UINT32_MAX / nelems)
268 				return -E2BIG;
269 			nelems *= array->nelems;
270 			type_id = array->type;
271 			break;
272 		default:
273 			return -EINVAL;
274 		}
275 
276 		t = btf__type_by_id(btf, type_id);
277 	}
278 
279 done:
280 	if (size < 0)
281 		return -EINVAL;
282 	if (nelems && size > UINT32_MAX / nelems)
283 		return -E2BIG;
284 
285 	return nelems * size;
286 }
287 
288 int btf__align_of(const struct btf *btf, __u32 id)
289 {
290 	const struct btf_type *t = btf__type_by_id(btf, id);
291 	__u16 kind = btf_kind(t);
292 
293 	switch (kind) {
294 	case BTF_KIND_INT:
295 	case BTF_KIND_ENUM:
296 		return min(sizeof(void *), (size_t)t->size);
297 	case BTF_KIND_PTR:
298 		return sizeof(void *);
299 	case BTF_KIND_TYPEDEF:
300 	case BTF_KIND_VOLATILE:
301 	case BTF_KIND_CONST:
302 	case BTF_KIND_RESTRICT:
303 		return btf__align_of(btf, t->type);
304 	case BTF_KIND_ARRAY:
305 		return btf__align_of(btf, btf_array(t)->type);
306 	case BTF_KIND_STRUCT:
307 	case BTF_KIND_UNION: {
308 		const struct btf_member *m = btf_members(t);
309 		__u16 vlen = btf_vlen(t);
310 		int i, max_align = 1, align;
311 
312 		for (i = 0; i < vlen; i++, m++) {
313 			align = btf__align_of(btf, m->type);
314 			if (align <= 0)
315 				return align;
316 			max_align = max(max_align, align);
317 		}
318 
319 		return max_align;
320 	}
321 	default:
322 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
323 		return 0;
324 	}
325 }
326 
327 int btf__resolve_type(const struct btf *btf, __u32 type_id)
328 {
329 	const struct btf_type *t;
330 	int depth = 0;
331 
332 	t = btf__type_by_id(btf, type_id);
333 	while (depth < MAX_RESOLVE_DEPTH &&
334 	       !btf_type_is_void_or_null(t) &&
335 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
336 		type_id = t->type;
337 		t = btf__type_by_id(btf, type_id);
338 		depth++;
339 	}
340 
341 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
342 		return -EINVAL;
343 
344 	return type_id;
345 }
346 
347 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
348 {
349 	__u32 i;
350 
351 	if (!strcmp(type_name, "void"))
352 		return 0;
353 
354 	for (i = 1; i <= btf->nr_types; i++) {
355 		const struct btf_type *t = btf->types[i];
356 		const char *name = btf__name_by_offset(btf, t->name_off);
357 
358 		if (name && !strcmp(type_name, name))
359 			return i;
360 	}
361 
362 	return -ENOENT;
363 }
364 
365 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
366 			     __u32 kind)
367 {
368 	__u32 i;
369 
370 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
371 		return 0;
372 
373 	for (i = 1; i <= btf->nr_types; i++) {
374 		const struct btf_type *t = btf->types[i];
375 		const char *name;
376 
377 		if (btf_kind(t) != kind)
378 			continue;
379 		name = btf__name_by_offset(btf, t->name_off);
380 		if (name && !strcmp(type_name, name))
381 			return i;
382 	}
383 
384 	return -ENOENT;
385 }
386 
387 void btf__free(struct btf *btf)
388 {
389 	if (!btf)
390 		return;
391 
392 	if (btf->fd != -1)
393 		close(btf->fd);
394 
395 	free(btf->data);
396 	free(btf->types);
397 	free(btf);
398 }
399 
400 struct btf *btf__new(__u8 *data, __u32 size)
401 {
402 	struct btf *btf;
403 	int err;
404 
405 	btf = calloc(1, sizeof(struct btf));
406 	if (!btf)
407 		return ERR_PTR(-ENOMEM);
408 
409 	btf->fd = -1;
410 
411 	btf->data = malloc(size);
412 	if (!btf->data) {
413 		err = -ENOMEM;
414 		goto done;
415 	}
416 
417 	memcpy(btf->data, data, size);
418 	btf->data_size = size;
419 
420 	err = btf_parse_hdr(btf);
421 	if (err)
422 		goto done;
423 
424 	err = btf_parse_str_sec(btf);
425 	if (err)
426 		goto done;
427 
428 	err = btf_parse_type_sec(btf);
429 
430 done:
431 	if (err) {
432 		btf__free(btf);
433 		return ERR_PTR(err);
434 	}
435 
436 	return btf;
437 }
438 
439 static bool btf_check_endianness(const GElf_Ehdr *ehdr)
440 {
441 #if __BYTE_ORDER == __LITTLE_ENDIAN
442 	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
443 #elif __BYTE_ORDER == __BIG_ENDIAN
444 	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
445 #else
446 # error "Unrecognized __BYTE_ORDER__"
447 #endif
448 }
449 
450 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
451 {
452 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
453 	int err = 0, fd = -1, idx = 0;
454 	struct btf *btf = NULL;
455 	Elf_Scn *scn = NULL;
456 	Elf *elf = NULL;
457 	GElf_Ehdr ehdr;
458 
459 	if (elf_version(EV_CURRENT) == EV_NONE) {
460 		pr_warn("failed to init libelf for %s\n", path);
461 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
462 	}
463 
464 	fd = open(path, O_RDONLY);
465 	if (fd < 0) {
466 		err = -errno;
467 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
468 		return ERR_PTR(err);
469 	}
470 
471 	err = -LIBBPF_ERRNO__FORMAT;
472 
473 	elf = elf_begin(fd, ELF_C_READ, NULL);
474 	if (!elf) {
475 		pr_warn("failed to open %s as ELF file\n", path);
476 		goto done;
477 	}
478 	if (!gelf_getehdr(elf, &ehdr)) {
479 		pr_warn("failed to get EHDR from %s\n", path);
480 		goto done;
481 	}
482 	if (!btf_check_endianness(&ehdr)) {
483 		pr_warn("non-native ELF endianness is not supported\n");
484 		goto done;
485 	}
486 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
487 		pr_warn("failed to get e_shstrndx from %s\n", path);
488 		goto done;
489 	}
490 
491 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
492 		GElf_Shdr sh;
493 		char *name;
494 
495 		idx++;
496 		if (gelf_getshdr(scn, &sh) != &sh) {
497 			pr_warn("failed to get section(%d) header from %s\n",
498 				idx, path);
499 			goto done;
500 		}
501 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
502 		if (!name) {
503 			pr_warn("failed to get section(%d) name from %s\n",
504 				idx, path);
505 			goto done;
506 		}
507 		if (strcmp(name, BTF_ELF_SEC) == 0) {
508 			btf_data = elf_getdata(scn, 0);
509 			if (!btf_data) {
510 				pr_warn("failed to get section(%d, %s) data from %s\n",
511 					idx, name, path);
512 				goto done;
513 			}
514 			continue;
515 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
516 			btf_ext_data = elf_getdata(scn, 0);
517 			if (!btf_ext_data) {
518 				pr_warn("failed to get section(%d, %s) data from %s\n",
519 					idx, name, path);
520 				goto done;
521 			}
522 			continue;
523 		}
524 	}
525 
526 	err = 0;
527 
528 	if (!btf_data) {
529 		err = -ENOENT;
530 		goto done;
531 	}
532 	btf = btf__new(btf_data->d_buf, btf_data->d_size);
533 	if (IS_ERR(btf))
534 		goto done;
535 
536 	if (btf_ext && btf_ext_data) {
537 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
538 					btf_ext_data->d_size);
539 		if (IS_ERR(*btf_ext))
540 			goto done;
541 	} else if (btf_ext) {
542 		*btf_ext = NULL;
543 	}
544 done:
545 	if (elf)
546 		elf_end(elf);
547 	close(fd);
548 
549 	if (err)
550 		return ERR_PTR(err);
551 	/*
552 	 * btf is always parsed before btf_ext, so no need to clean up
553 	 * btf_ext, if btf loading failed
554 	 */
555 	if (IS_ERR(btf))
556 		return btf;
557 	if (btf_ext && IS_ERR(*btf_ext)) {
558 		btf__free(btf);
559 		err = PTR_ERR(*btf_ext);
560 		return ERR_PTR(err);
561 	}
562 	return btf;
563 }
564 
565 static int compare_vsi_off(const void *_a, const void *_b)
566 {
567 	const struct btf_var_secinfo *a = _a;
568 	const struct btf_var_secinfo *b = _b;
569 
570 	return a->offset - b->offset;
571 }
572 
573 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
574 			     struct btf_type *t)
575 {
576 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
577 	const char *name = btf__name_by_offset(btf, t->name_off);
578 	const struct btf_type *t_var;
579 	struct btf_var_secinfo *vsi;
580 	const struct btf_var *var;
581 	int ret;
582 
583 	if (!name) {
584 		pr_debug("No name found in string section for DATASEC kind.\n");
585 		return -ENOENT;
586 	}
587 
588 	/* .extern datasec size and var offsets were set correctly during
589 	 * extern collection step, so just skip straight to sorting variables
590 	 */
591 	if (t->size)
592 		goto sort_vars;
593 
594 	ret = bpf_object__section_size(obj, name, &size);
595 	if (ret || !size || (t->size && t->size != size)) {
596 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
597 		return -ENOENT;
598 	}
599 
600 	t->size = size;
601 
602 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
603 		t_var = btf__type_by_id(btf, vsi->type);
604 		var = btf_var(t_var);
605 
606 		if (!btf_is_var(t_var)) {
607 			pr_debug("Non-VAR type seen in section %s\n", name);
608 			return -EINVAL;
609 		}
610 
611 		if (var->linkage == BTF_VAR_STATIC)
612 			continue;
613 
614 		name = btf__name_by_offset(btf, t_var->name_off);
615 		if (!name) {
616 			pr_debug("No name found in string section for VAR kind\n");
617 			return -ENOENT;
618 		}
619 
620 		ret = bpf_object__variable_offset(obj, name, &off);
621 		if (ret) {
622 			pr_debug("No offset found in symbol table for VAR %s\n",
623 				 name);
624 			return -ENOENT;
625 		}
626 
627 		vsi->offset = off;
628 	}
629 
630 sort_vars:
631 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
632 	return 0;
633 }
634 
635 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
636 {
637 	int err = 0;
638 	__u32 i;
639 
640 	for (i = 1; i <= btf->nr_types; i++) {
641 		struct btf_type *t = btf->types[i];
642 
643 		/* Loader needs to fix up some of the things compiler
644 		 * couldn't get its hands on while emitting BTF. This
645 		 * is section size and global variable offset. We use
646 		 * the info from the ELF itself for this purpose.
647 		 */
648 		if (btf_is_datasec(t)) {
649 			err = btf_fixup_datasec(obj, btf, t);
650 			if (err)
651 				break;
652 		}
653 	}
654 
655 	return err;
656 }
657 
658 int btf__load(struct btf *btf)
659 {
660 	__u32 log_buf_size = 0;
661 	char *log_buf = NULL;
662 	int err = 0;
663 
664 	if (btf->fd >= 0)
665 		return -EEXIST;
666 
667 retry_load:
668 	if (log_buf_size) {
669 		log_buf = malloc(log_buf_size);
670 		if (!log_buf)
671 			return -ENOMEM;
672 
673 		*log_buf = 0;
674 	}
675 
676 	btf->fd = bpf_load_btf(btf->data, btf->data_size,
677 			       log_buf, log_buf_size, false);
678 	if (btf->fd < 0) {
679 		if (!log_buf || errno == ENOSPC) {
680 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
681 					   log_buf_size << 1);
682 			free(log_buf);
683 			goto retry_load;
684 		}
685 
686 		err = -errno;
687 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
688 		if (*log_buf)
689 			pr_warn("%s\n", log_buf);
690 		goto done;
691 	}
692 
693 done:
694 	free(log_buf);
695 	return err;
696 }
697 
698 int btf__fd(const struct btf *btf)
699 {
700 	return btf->fd;
701 }
702 
703 const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
704 {
705 	*size = btf->data_size;
706 	return btf->data;
707 }
708 
709 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
710 {
711 	if (offset < btf->hdr->str_len)
712 		return &btf->strings[offset];
713 	else
714 		return NULL;
715 }
716 
717 int btf__get_from_id(__u32 id, struct btf **btf)
718 {
719 	struct bpf_btf_info btf_info = { 0 };
720 	__u32 len = sizeof(btf_info);
721 	__u32 last_size;
722 	int btf_fd;
723 	void *ptr;
724 	int err;
725 
726 	err = 0;
727 	*btf = NULL;
728 	btf_fd = bpf_btf_get_fd_by_id(id);
729 	if (btf_fd < 0)
730 		return 0;
731 
732 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
733 	 * let's start with a sane default - 4KiB here - and resize it only if
734 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
735 	 */
736 	btf_info.btf_size = 4096;
737 	last_size = btf_info.btf_size;
738 	ptr = malloc(last_size);
739 	if (!ptr) {
740 		err = -ENOMEM;
741 		goto exit_free;
742 	}
743 
744 	memset(ptr, 0, last_size);
745 	btf_info.btf = ptr_to_u64(ptr);
746 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
747 
748 	if (!err && btf_info.btf_size > last_size) {
749 		void *temp_ptr;
750 
751 		last_size = btf_info.btf_size;
752 		temp_ptr = realloc(ptr, last_size);
753 		if (!temp_ptr) {
754 			err = -ENOMEM;
755 			goto exit_free;
756 		}
757 		ptr = temp_ptr;
758 		memset(ptr, 0, last_size);
759 		btf_info.btf = ptr_to_u64(ptr);
760 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
761 	}
762 
763 	if (err || btf_info.btf_size > last_size) {
764 		err = errno;
765 		goto exit_free;
766 	}
767 
768 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
769 	if (IS_ERR(*btf)) {
770 		err = PTR_ERR(*btf);
771 		*btf = NULL;
772 	}
773 
774 exit_free:
775 	close(btf_fd);
776 	free(ptr);
777 
778 	return err;
779 }
780 
781 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
782 			 __u32 expected_key_size, __u32 expected_value_size,
783 			 __u32 *key_type_id, __u32 *value_type_id)
784 {
785 	const struct btf_type *container_type;
786 	const struct btf_member *key, *value;
787 	const size_t max_name = 256;
788 	char container_name[max_name];
789 	__s64 key_size, value_size;
790 	__s32 container_id;
791 
792 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
793 	    max_name) {
794 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
795 			map_name, map_name);
796 		return -EINVAL;
797 	}
798 
799 	container_id = btf__find_by_name(btf, container_name);
800 	if (container_id < 0) {
801 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
802 			 map_name, container_name);
803 		return container_id;
804 	}
805 
806 	container_type = btf__type_by_id(btf, container_id);
807 	if (!container_type) {
808 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
809 			map_name, container_id);
810 		return -EINVAL;
811 	}
812 
813 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
814 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
815 			map_name, container_name);
816 		return -EINVAL;
817 	}
818 
819 	key = btf_members(container_type);
820 	value = key + 1;
821 
822 	key_size = btf__resolve_size(btf, key->type);
823 	if (key_size < 0) {
824 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
825 		return key_size;
826 	}
827 
828 	if (expected_key_size != key_size) {
829 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
830 			map_name, (__u32)key_size, expected_key_size);
831 		return -EINVAL;
832 	}
833 
834 	value_size = btf__resolve_size(btf, value->type);
835 	if (value_size < 0) {
836 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
837 		return value_size;
838 	}
839 
840 	if (expected_value_size != value_size) {
841 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
842 			map_name, (__u32)value_size, expected_value_size);
843 		return -EINVAL;
844 	}
845 
846 	*key_type_id = key->type;
847 	*value_type_id = value->type;
848 
849 	return 0;
850 }
851 
852 struct btf_ext_sec_setup_param {
853 	__u32 off;
854 	__u32 len;
855 	__u32 min_rec_size;
856 	struct btf_ext_info *ext_info;
857 	const char *desc;
858 };
859 
860 static int btf_ext_setup_info(struct btf_ext *btf_ext,
861 			      struct btf_ext_sec_setup_param *ext_sec)
862 {
863 	const struct btf_ext_info_sec *sinfo;
864 	struct btf_ext_info *ext_info;
865 	__u32 info_left, record_size;
866 	/* The start of the info sec (including the __u32 record_size). */
867 	void *info;
868 
869 	if (ext_sec->len == 0)
870 		return 0;
871 
872 	if (ext_sec->off & 0x03) {
873 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
874 		     ext_sec->desc);
875 		return -EINVAL;
876 	}
877 
878 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
879 	info_left = ext_sec->len;
880 
881 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
882 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
883 			 ext_sec->desc, ext_sec->off, ext_sec->len);
884 		return -EINVAL;
885 	}
886 
887 	/* At least a record size */
888 	if (info_left < sizeof(__u32)) {
889 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
890 		return -EINVAL;
891 	}
892 
893 	/* The record size needs to meet the minimum standard */
894 	record_size = *(__u32 *)info;
895 	if (record_size < ext_sec->min_rec_size ||
896 	    record_size & 0x03) {
897 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
898 			 ext_sec->desc, record_size);
899 		return -EINVAL;
900 	}
901 
902 	sinfo = info + sizeof(__u32);
903 	info_left -= sizeof(__u32);
904 
905 	/* If no records, return failure now so .BTF.ext won't be used. */
906 	if (!info_left) {
907 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
908 		return -EINVAL;
909 	}
910 
911 	while (info_left) {
912 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
913 		__u64 total_record_size;
914 		__u32 num_records;
915 
916 		if (info_left < sec_hdrlen) {
917 			pr_debug("%s section header is not found in .BTF.ext\n",
918 			     ext_sec->desc);
919 			return -EINVAL;
920 		}
921 
922 		num_records = sinfo->num_info;
923 		if (num_records == 0) {
924 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
925 			     ext_sec->desc);
926 			return -EINVAL;
927 		}
928 
929 		total_record_size = sec_hdrlen +
930 				    (__u64)num_records * record_size;
931 		if (info_left < total_record_size) {
932 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
933 			     ext_sec->desc);
934 			return -EINVAL;
935 		}
936 
937 		info_left -= total_record_size;
938 		sinfo = (void *)sinfo + total_record_size;
939 	}
940 
941 	ext_info = ext_sec->ext_info;
942 	ext_info->len = ext_sec->len - sizeof(__u32);
943 	ext_info->rec_size = record_size;
944 	ext_info->info = info + sizeof(__u32);
945 
946 	return 0;
947 }
948 
949 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
950 {
951 	struct btf_ext_sec_setup_param param = {
952 		.off = btf_ext->hdr->func_info_off,
953 		.len = btf_ext->hdr->func_info_len,
954 		.min_rec_size = sizeof(struct bpf_func_info_min),
955 		.ext_info = &btf_ext->func_info,
956 		.desc = "func_info"
957 	};
958 
959 	return btf_ext_setup_info(btf_ext, &param);
960 }
961 
962 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
963 {
964 	struct btf_ext_sec_setup_param param = {
965 		.off = btf_ext->hdr->line_info_off,
966 		.len = btf_ext->hdr->line_info_len,
967 		.min_rec_size = sizeof(struct bpf_line_info_min),
968 		.ext_info = &btf_ext->line_info,
969 		.desc = "line_info",
970 	};
971 
972 	return btf_ext_setup_info(btf_ext, &param);
973 }
974 
975 static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext)
976 {
977 	struct btf_ext_sec_setup_param param = {
978 		.off = btf_ext->hdr->field_reloc_off,
979 		.len = btf_ext->hdr->field_reloc_len,
980 		.min_rec_size = sizeof(struct bpf_field_reloc),
981 		.ext_info = &btf_ext->field_reloc_info,
982 		.desc = "field_reloc",
983 	};
984 
985 	return btf_ext_setup_info(btf_ext, &param);
986 }
987 
988 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
989 {
990 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
991 
992 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
993 	    data_size < hdr->hdr_len) {
994 		pr_debug("BTF.ext header not found");
995 		return -EINVAL;
996 	}
997 
998 	if (hdr->magic != BTF_MAGIC) {
999 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
1000 		return -EINVAL;
1001 	}
1002 
1003 	if (hdr->version != BTF_VERSION) {
1004 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
1005 		return -ENOTSUP;
1006 	}
1007 
1008 	if (hdr->flags) {
1009 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
1010 		return -ENOTSUP;
1011 	}
1012 
1013 	if (data_size == hdr->hdr_len) {
1014 		pr_debug("BTF.ext has no data\n");
1015 		return -EINVAL;
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 void btf_ext__free(struct btf_ext *btf_ext)
1022 {
1023 	if (!btf_ext)
1024 		return;
1025 	free(btf_ext->data);
1026 	free(btf_ext);
1027 }
1028 
1029 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
1030 {
1031 	struct btf_ext *btf_ext;
1032 	int err;
1033 
1034 	err = btf_ext_parse_hdr(data, size);
1035 	if (err)
1036 		return ERR_PTR(err);
1037 
1038 	btf_ext = calloc(1, sizeof(struct btf_ext));
1039 	if (!btf_ext)
1040 		return ERR_PTR(-ENOMEM);
1041 
1042 	btf_ext->data_size = size;
1043 	btf_ext->data = malloc(size);
1044 	if (!btf_ext->data) {
1045 		err = -ENOMEM;
1046 		goto done;
1047 	}
1048 	memcpy(btf_ext->data, data, size);
1049 
1050 	if (btf_ext->hdr->hdr_len <
1051 	    offsetofend(struct btf_ext_header, line_info_len))
1052 		goto done;
1053 	err = btf_ext_setup_func_info(btf_ext);
1054 	if (err)
1055 		goto done;
1056 
1057 	err = btf_ext_setup_line_info(btf_ext);
1058 	if (err)
1059 		goto done;
1060 
1061 	if (btf_ext->hdr->hdr_len <
1062 	    offsetofend(struct btf_ext_header, field_reloc_len))
1063 		goto done;
1064 	err = btf_ext_setup_field_reloc(btf_ext);
1065 	if (err)
1066 		goto done;
1067 
1068 done:
1069 	if (err) {
1070 		btf_ext__free(btf_ext);
1071 		return ERR_PTR(err);
1072 	}
1073 
1074 	return btf_ext;
1075 }
1076 
1077 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1078 {
1079 	*size = btf_ext->data_size;
1080 	return btf_ext->data;
1081 }
1082 
1083 static int btf_ext_reloc_info(const struct btf *btf,
1084 			      const struct btf_ext_info *ext_info,
1085 			      const char *sec_name, __u32 insns_cnt,
1086 			      void **info, __u32 *cnt)
1087 {
1088 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1089 	__u32 i, record_size, existing_len, records_len;
1090 	struct btf_ext_info_sec *sinfo;
1091 	const char *info_sec_name;
1092 	__u64 remain_len;
1093 	void *data;
1094 
1095 	record_size = ext_info->rec_size;
1096 	sinfo = ext_info->info;
1097 	remain_len = ext_info->len;
1098 	while (remain_len > 0) {
1099 		records_len = sinfo->num_info * record_size;
1100 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1101 		if (strcmp(info_sec_name, sec_name)) {
1102 			remain_len -= sec_hdrlen + records_len;
1103 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1104 			continue;
1105 		}
1106 
1107 		existing_len = (*cnt) * record_size;
1108 		data = realloc(*info, existing_len + records_len);
1109 		if (!data)
1110 			return -ENOMEM;
1111 
1112 		memcpy(data + existing_len, sinfo->data, records_len);
1113 		/* adjust insn_off only, the rest data will be passed
1114 		 * to the kernel.
1115 		 */
1116 		for (i = 0; i < sinfo->num_info; i++) {
1117 			__u32 *insn_off;
1118 
1119 			insn_off = data + existing_len + (i * record_size);
1120 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1121 				insns_cnt;
1122 		}
1123 		*info = data;
1124 		*cnt += sinfo->num_info;
1125 		return 0;
1126 	}
1127 
1128 	return -ENOENT;
1129 }
1130 
1131 int btf_ext__reloc_func_info(const struct btf *btf,
1132 			     const struct btf_ext *btf_ext,
1133 			     const char *sec_name, __u32 insns_cnt,
1134 			     void **func_info, __u32 *cnt)
1135 {
1136 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1137 				  insns_cnt, func_info, cnt);
1138 }
1139 
1140 int btf_ext__reloc_line_info(const struct btf *btf,
1141 			     const struct btf_ext *btf_ext,
1142 			     const char *sec_name, __u32 insns_cnt,
1143 			     void **line_info, __u32 *cnt)
1144 {
1145 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1146 				  insns_cnt, line_info, cnt);
1147 }
1148 
1149 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1150 {
1151 	return btf_ext->func_info.rec_size;
1152 }
1153 
1154 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1155 {
1156 	return btf_ext->line_info.rec_size;
1157 }
1158 
1159 struct btf_dedup;
1160 
1161 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1162 				       const struct btf_dedup_opts *opts);
1163 static void btf_dedup_free(struct btf_dedup *d);
1164 static int btf_dedup_strings(struct btf_dedup *d);
1165 static int btf_dedup_prim_types(struct btf_dedup *d);
1166 static int btf_dedup_struct_types(struct btf_dedup *d);
1167 static int btf_dedup_ref_types(struct btf_dedup *d);
1168 static int btf_dedup_compact_types(struct btf_dedup *d);
1169 static int btf_dedup_remap_types(struct btf_dedup *d);
1170 
1171 /*
1172  * Deduplicate BTF types and strings.
1173  *
1174  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1175  * section with all BTF type descriptors and string data. It overwrites that
1176  * memory in-place with deduplicated types and strings without any loss of
1177  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1178  * is provided, all the strings referenced from .BTF.ext section are honored
1179  * and updated to point to the right offsets after deduplication.
1180  *
1181  * If function returns with error, type/string data might be garbled and should
1182  * be discarded.
1183  *
1184  * More verbose and detailed description of both problem btf_dedup is solving,
1185  * as well as solution could be found at:
1186  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1187  *
1188  * Problem description and justification
1189  * =====================================
1190  *
1191  * BTF type information is typically emitted either as a result of conversion
1192  * from DWARF to BTF or directly by compiler. In both cases, each compilation
1193  * unit contains information about a subset of all the types that are used
1194  * in an application. These subsets are frequently overlapping and contain a lot
1195  * of duplicated information when later concatenated together into a single
1196  * binary. This algorithm ensures that each unique type is represented by single
1197  * BTF type descriptor, greatly reducing resulting size of BTF data.
1198  *
1199  * Compilation unit isolation and subsequent duplication of data is not the only
1200  * problem. The same type hierarchy (e.g., struct and all the type that struct
1201  * references) in different compilation units can be represented in BTF to
1202  * various degrees of completeness (or, rather, incompleteness) due to
1203  * struct/union forward declarations.
1204  *
1205  * Let's take a look at an example, that we'll use to better understand the
1206  * problem (and solution). Suppose we have two compilation units, each using
1207  * same `struct S`, but each of them having incomplete type information about
1208  * struct's fields:
1209  *
1210  * // CU #1:
1211  * struct S;
1212  * struct A {
1213  *	int a;
1214  *	struct A* self;
1215  *	struct S* parent;
1216  * };
1217  * struct B;
1218  * struct S {
1219  *	struct A* a_ptr;
1220  *	struct B* b_ptr;
1221  * };
1222  *
1223  * // CU #2:
1224  * struct S;
1225  * struct A;
1226  * struct B {
1227  *	int b;
1228  *	struct B* self;
1229  *	struct S* parent;
1230  * };
1231  * struct S {
1232  *	struct A* a_ptr;
1233  *	struct B* b_ptr;
1234  * };
1235  *
1236  * In case of CU #1, BTF data will know only that `struct B` exist (but no
1237  * more), but will know the complete type information about `struct A`. While
1238  * for CU #2, it will know full type information about `struct B`, but will
1239  * only know about forward declaration of `struct A` (in BTF terms, it will
1240  * have `BTF_KIND_FWD` type descriptor with name `B`).
1241  *
1242  * This compilation unit isolation means that it's possible that there is no
1243  * single CU with complete type information describing structs `S`, `A`, and
1244  * `B`. Also, we might get tons of duplicated and redundant type information.
1245  *
1246  * Additional complication we need to keep in mind comes from the fact that
1247  * types, in general, can form graphs containing cycles, not just DAGs.
1248  *
1249  * While algorithm does deduplication, it also merges and resolves type
1250  * information (unless disabled throught `struct btf_opts`), whenever possible.
1251  * E.g., in the example above with two compilation units having partial type
1252  * information for structs `A` and `B`, the output of algorithm will emit
1253  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1254  * (as well as type information for `int` and pointers), as if they were defined
1255  * in a single compilation unit as:
1256  *
1257  * struct A {
1258  *	int a;
1259  *	struct A* self;
1260  *	struct S* parent;
1261  * };
1262  * struct B {
1263  *	int b;
1264  *	struct B* self;
1265  *	struct S* parent;
1266  * };
1267  * struct S {
1268  *	struct A* a_ptr;
1269  *	struct B* b_ptr;
1270  * };
1271  *
1272  * Algorithm summary
1273  * =================
1274  *
1275  * Algorithm completes its work in 6 separate passes:
1276  *
1277  * 1. Strings deduplication.
1278  * 2. Primitive types deduplication (int, enum, fwd).
1279  * 3. Struct/union types deduplication.
1280  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1281  *    protos, and const/volatile/restrict modifiers).
1282  * 5. Types compaction.
1283  * 6. Types remapping.
1284  *
1285  * Algorithm determines canonical type descriptor, which is a single
1286  * representative type for each truly unique type. This canonical type is the
1287  * one that will go into final deduplicated BTF type information. For
1288  * struct/unions, it is also the type that algorithm will merge additional type
1289  * information into (while resolving FWDs), as it discovers it from data in
1290  * other CUs. Each input BTF type eventually gets either mapped to itself, if
1291  * that type is canonical, or to some other type, if that type is equivalent
1292  * and was chosen as canonical representative. This mapping is stored in
1293  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1294  * FWD type got resolved to.
1295  *
1296  * To facilitate fast discovery of canonical types, we also maintain canonical
1297  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1298  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1299  * that match that signature. With sufficiently good choice of type signature
1300  * hashing function, we can limit number of canonical types for each unique type
1301  * signature to a very small number, allowing to find canonical type for any
1302  * duplicated type very quickly.
1303  *
1304  * Struct/union deduplication is the most critical part and algorithm for
1305  * deduplicating structs/unions is described in greater details in comments for
1306  * `btf_dedup_is_equiv` function.
1307  */
1308 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1309 	       const struct btf_dedup_opts *opts)
1310 {
1311 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1312 	int err;
1313 
1314 	if (IS_ERR(d)) {
1315 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1316 		return -EINVAL;
1317 	}
1318 
1319 	err = btf_dedup_strings(d);
1320 	if (err < 0) {
1321 		pr_debug("btf_dedup_strings failed:%d\n", err);
1322 		goto done;
1323 	}
1324 	err = btf_dedup_prim_types(d);
1325 	if (err < 0) {
1326 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1327 		goto done;
1328 	}
1329 	err = btf_dedup_struct_types(d);
1330 	if (err < 0) {
1331 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1332 		goto done;
1333 	}
1334 	err = btf_dedup_ref_types(d);
1335 	if (err < 0) {
1336 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1337 		goto done;
1338 	}
1339 	err = btf_dedup_compact_types(d);
1340 	if (err < 0) {
1341 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1342 		goto done;
1343 	}
1344 	err = btf_dedup_remap_types(d);
1345 	if (err < 0) {
1346 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1347 		goto done;
1348 	}
1349 
1350 done:
1351 	btf_dedup_free(d);
1352 	return err;
1353 }
1354 
1355 #define BTF_UNPROCESSED_ID ((__u32)-1)
1356 #define BTF_IN_PROGRESS_ID ((__u32)-2)
1357 
1358 struct btf_dedup {
1359 	/* .BTF section to be deduped in-place */
1360 	struct btf *btf;
1361 	/*
1362 	 * Optional .BTF.ext section. When provided, any strings referenced
1363 	 * from it will be taken into account when deduping strings
1364 	 */
1365 	struct btf_ext *btf_ext;
1366 	/*
1367 	 * This is a map from any type's signature hash to a list of possible
1368 	 * canonical representative type candidates. Hash collisions are
1369 	 * ignored, so even types of various kinds can share same list of
1370 	 * candidates, which is fine because we rely on subsequent
1371 	 * btf_xxx_equal() checks to authoritatively verify type equality.
1372 	 */
1373 	struct hashmap *dedup_table;
1374 	/* Canonical types map */
1375 	__u32 *map;
1376 	/* Hypothetical mapping, used during type graph equivalence checks */
1377 	__u32 *hypot_map;
1378 	__u32 *hypot_list;
1379 	size_t hypot_cnt;
1380 	size_t hypot_cap;
1381 	/* Various option modifying behavior of algorithm */
1382 	struct btf_dedup_opts opts;
1383 };
1384 
1385 struct btf_str_ptr {
1386 	const char *str;
1387 	__u32 new_off;
1388 	bool used;
1389 };
1390 
1391 struct btf_str_ptrs {
1392 	struct btf_str_ptr *ptrs;
1393 	const char *data;
1394 	__u32 cnt;
1395 	__u32 cap;
1396 };
1397 
1398 static long hash_combine(long h, long value)
1399 {
1400 	return h * 31 + value;
1401 }
1402 
1403 #define for_each_dedup_cand(d, node, hash) \
1404 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1405 
1406 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1407 {
1408 	return hashmap__append(d->dedup_table,
1409 			       (void *)hash, (void *)(long)type_id);
1410 }
1411 
1412 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1413 				   __u32 from_id, __u32 to_id)
1414 {
1415 	if (d->hypot_cnt == d->hypot_cap) {
1416 		__u32 *new_list;
1417 
1418 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
1419 		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1420 		if (!new_list)
1421 			return -ENOMEM;
1422 		d->hypot_list = new_list;
1423 	}
1424 	d->hypot_list[d->hypot_cnt++] = from_id;
1425 	d->hypot_map[from_id] = to_id;
1426 	return 0;
1427 }
1428 
1429 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1430 {
1431 	int i;
1432 
1433 	for (i = 0; i < d->hypot_cnt; i++)
1434 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1435 	d->hypot_cnt = 0;
1436 }
1437 
1438 static void btf_dedup_free(struct btf_dedup *d)
1439 {
1440 	hashmap__free(d->dedup_table);
1441 	d->dedup_table = NULL;
1442 
1443 	free(d->map);
1444 	d->map = NULL;
1445 
1446 	free(d->hypot_map);
1447 	d->hypot_map = NULL;
1448 
1449 	free(d->hypot_list);
1450 	d->hypot_list = NULL;
1451 
1452 	free(d);
1453 }
1454 
1455 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1456 {
1457 	return (size_t)key;
1458 }
1459 
1460 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1461 {
1462 	return 0;
1463 }
1464 
1465 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1466 {
1467 	return k1 == k2;
1468 }
1469 
1470 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1471 				       const struct btf_dedup_opts *opts)
1472 {
1473 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1474 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1475 	int i, err = 0;
1476 
1477 	if (!d)
1478 		return ERR_PTR(-ENOMEM);
1479 
1480 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1481 	/* dedup_table_size is now used only to force collisions in tests */
1482 	if (opts && opts->dedup_table_size == 1)
1483 		hash_fn = btf_dedup_collision_hash_fn;
1484 
1485 	d->btf = btf;
1486 	d->btf_ext = btf_ext;
1487 
1488 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1489 	if (IS_ERR(d->dedup_table)) {
1490 		err = PTR_ERR(d->dedup_table);
1491 		d->dedup_table = NULL;
1492 		goto done;
1493 	}
1494 
1495 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1496 	if (!d->map) {
1497 		err = -ENOMEM;
1498 		goto done;
1499 	}
1500 	/* special BTF "void" type is made canonical immediately */
1501 	d->map[0] = 0;
1502 	for (i = 1; i <= btf->nr_types; i++) {
1503 		struct btf_type *t = d->btf->types[i];
1504 
1505 		/* VAR and DATASEC are never deduped and are self-canonical */
1506 		if (btf_is_var(t) || btf_is_datasec(t))
1507 			d->map[i] = i;
1508 		else
1509 			d->map[i] = BTF_UNPROCESSED_ID;
1510 	}
1511 
1512 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1513 	if (!d->hypot_map) {
1514 		err = -ENOMEM;
1515 		goto done;
1516 	}
1517 	for (i = 0; i <= btf->nr_types; i++)
1518 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1519 
1520 done:
1521 	if (err) {
1522 		btf_dedup_free(d);
1523 		return ERR_PTR(err);
1524 	}
1525 
1526 	return d;
1527 }
1528 
1529 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1530 
1531 /*
1532  * Iterate over all possible places in .BTF and .BTF.ext that can reference
1533  * string and pass pointer to it to a provided callback `fn`.
1534  */
1535 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1536 {
1537 	void *line_data_cur, *line_data_end;
1538 	int i, j, r, rec_size;
1539 	struct btf_type *t;
1540 
1541 	for (i = 1; i <= d->btf->nr_types; i++) {
1542 		t = d->btf->types[i];
1543 		r = fn(&t->name_off, ctx);
1544 		if (r)
1545 			return r;
1546 
1547 		switch (btf_kind(t)) {
1548 		case BTF_KIND_STRUCT:
1549 		case BTF_KIND_UNION: {
1550 			struct btf_member *m = btf_members(t);
1551 			__u16 vlen = btf_vlen(t);
1552 
1553 			for (j = 0; j < vlen; j++) {
1554 				r = fn(&m->name_off, ctx);
1555 				if (r)
1556 					return r;
1557 				m++;
1558 			}
1559 			break;
1560 		}
1561 		case BTF_KIND_ENUM: {
1562 			struct btf_enum *m = btf_enum(t);
1563 			__u16 vlen = btf_vlen(t);
1564 
1565 			for (j = 0; j < vlen; j++) {
1566 				r = fn(&m->name_off, ctx);
1567 				if (r)
1568 					return r;
1569 				m++;
1570 			}
1571 			break;
1572 		}
1573 		case BTF_KIND_FUNC_PROTO: {
1574 			struct btf_param *m = btf_params(t);
1575 			__u16 vlen = btf_vlen(t);
1576 
1577 			for (j = 0; j < vlen; j++) {
1578 				r = fn(&m->name_off, ctx);
1579 				if (r)
1580 					return r;
1581 				m++;
1582 			}
1583 			break;
1584 		}
1585 		default:
1586 			break;
1587 		}
1588 	}
1589 
1590 	if (!d->btf_ext)
1591 		return 0;
1592 
1593 	line_data_cur = d->btf_ext->line_info.info;
1594 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1595 	rec_size = d->btf_ext->line_info.rec_size;
1596 
1597 	while (line_data_cur < line_data_end) {
1598 		struct btf_ext_info_sec *sec = line_data_cur;
1599 		struct bpf_line_info_min *line_info;
1600 		__u32 num_info = sec->num_info;
1601 
1602 		r = fn(&sec->sec_name_off, ctx);
1603 		if (r)
1604 			return r;
1605 
1606 		line_data_cur += sizeof(struct btf_ext_info_sec);
1607 		for (i = 0; i < num_info; i++) {
1608 			line_info = line_data_cur;
1609 			r = fn(&line_info->file_name_off, ctx);
1610 			if (r)
1611 				return r;
1612 			r = fn(&line_info->line_off, ctx);
1613 			if (r)
1614 				return r;
1615 			line_data_cur += rec_size;
1616 		}
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 static int str_sort_by_content(const void *a1, const void *a2)
1623 {
1624 	const struct btf_str_ptr *p1 = a1;
1625 	const struct btf_str_ptr *p2 = a2;
1626 
1627 	return strcmp(p1->str, p2->str);
1628 }
1629 
1630 static int str_sort_by_offset(const void *a1, const void *a2)
1631 {
1632 	const struct btf_str_ptr *p1 = a1;
1633 	const struct btf_str_ptr *p2 = a2;
1634 
1635 	if (p1->str != p2->str)
1636 		return p1->str < p2->str ? -1 : 1;
1637 	return 0;
1638 }
1639 
1640 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1641 {
1642 	const struct btf_str_ptr *p = pelem;
1643 
1644 	if (str_ptr != p->str)
1645 		return (const char *)str_ptr < p->str ? -1 : 1;
1646 	return 0;
1647 }
1648 
1649 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1650 {
1651 	struct btf_str_ptrs *strs;
1652 	struct btf_str_ptr *s;
1653 
1654 	if (*str_off_ptr == 0)
1655 		return 0;
1656 
1657 	strs = ctx;
1658 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1659 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1660 	if (!s)
1661 		return -EINVAL;
1662 	s->used = true;
1663 	return 0;
1664 }
1665 
1666 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1667 {
1668 	struct btf_str_ptrs *strs;
1669 	struct btf_str_ptr *s;
1670 
1671 	if (*str_off_ptr == 0)
1672 		return 0;
1673 
1674 	strs = ctx;
1675 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1676 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1677 	if (!s)
1678 		return -EINVAL;
1679 	*str_off_ptr = s->new_off;
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Dedup string and filter out those that are not referenced from either .BTF
1685  * or .BTF.ext (if provided) sections.
1686  *
1687  * This is done by building index of all strings in BTF's string section,
1688  * then iterating over all entities that can reference strings (e.g., type
1689  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1690  * strings as used. After that all used strings are deduped and compacted into
1691  * sequential blob of memory and new offsets are calculated. Then all the string
1692  * references are iterated again and rewritten using new offsets.
1693  */
1694 static int btf_dedup_strings(struct btf_dedup *d)
1695 {
1696 	const struct btf_header *hdr = d->btf->hdr;
1697 	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1698 	char *end = start + d->btf->hdr->str_len;
1699 	char *p = start, *tmp_strs = NULL;
1700 	struct btf_str_ptrs strs = {
1701 		.cnt = 0,
1702 		.cap = 0,
1703 		.ptrs = NULL,
1704 		.data = start,
1705 	};
1706 	int i, j, err = 0, grp_idx;
1707 	bool grp_used;
1708 
1709 	/* build index of all strings */
1710 	while (p < end) {
1711 		if (strs.cnt + 1 > strs.cap) {
1712 			struct btf_str_ptr *new_ptrs;
1713 
1714 			strs.cap += max(strs.cnt / 2, 16U);
1715 			new_ptrs = realloc(strs.ptrs,
1716 					   sizeof(strs.ptrs[0]) * strs.cap);
1717 			if (!new_ptrs) {
1718 				err = -ENOMEM;
1719 				goto done;
1720 			}
1721 			strs.ptrs = new_ptrs;
1722 		}
1723 
1724 		strs.ptrs[strs.cnt].str = p;
1725 		strs.ptrs[strs.cnt].used = false;
1726 
1727 		p += strlen(p) + 1;
1728 		strs.cnt++;
1729 	}
1730 
1731 	/* temporary storage for deduplicated strings */
1732 	tmp_strs = malloc(d->btf->hdr->str_len);
1733 	if (!tmp_strs) {
1734 		err = -ENOMEM;
1735 		goto done;
1736 	}
1737 
1738 	/* mark all used strings */
1739 	strs.ptrs[0].used = true;
1740 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1741 	if (err)
1742 		goto done;
1743 
1744 	/* sort strings by context, so that we can identify duplicates */
1745 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1746 
1747 	/*
1748 	 * iterate groups of equal strings and if any instance in a group was
1749 	 * referenced, emit single instance and remember new offset
1750 	 */
1751 	p = tmp_strs;
1752 	grp_idx = 0;
1753 	grp_used = strs.ptrs[0].used;
1754 	/* iterate past end to avoid code duplication after loop */
1755 	for (i = 1; i <= strs.cnt; i++) {
1756 		/*
1757 		 * when i == strs.cnt, we want to skip string comparison and go
1758 		 * straight to handling last group of strings (otherwise we'd
1759 		 * need to handle last group after the loop w/ duplicated code)
1760 		 */
1761 		if (i < strs.cnt &&
1762 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1763 			grp_used = grp_used || strs.ptrs[i].used;
1764 			continue;
1765 		}
1766 
1767 		/*
1768 		 * this check would have been required after the loop to handle
1769 		 * last group of strings, but due to <= condition in a loop
1770 		 * we avoid that duplication
1771 		 */
1772 		if (grp_used) {
1773 			int new_off = p - tmp_strs;
1774 			__u32 len = strlen(strs.ptrs[grp_idx].str);
1775 
1776 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1777 			for (j = grp_idx; j < i; j++)
1778 				strs.ptrs[j].new_off = new_off;
1779 			p += len + 1;
1780 		}
1781 
1782 		if (i < strs.cnt) {
1783 			grp_idx = i;
1784 			grp_used = strs.ptrs[i].used;
1785 		}
1786 	}
1787 
1788 	/* replace original strings with deduped ones */
1789 	d->btf->hdr->str_len = p - tmp_strs;
1790 	memmove(start, tmp_strs, d->btf->hdr->str_len);
1791 	end = start + d->btf->hdr->str_len;
1792 
1793 	/* restore original order for further binary search lookups */
1794 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1795 
1796 	/* remap string offsets */
1797 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1798 	if (err)
1799 		goto done;
1800 
1801 	d->btf->hdr->str_len = end - start;
1802 
1803 done:
1804 	free(tmp_strs);
1805 	free(strs.ptrs);
1806 	return err;
1807 }
1808 
1809 static long btf_hash_common(struct btf_type *t)
1810 {
1811 	long h;
1812 
1813 	h = hash_combine(0, t->name_off);
1814 	h = hash_combine(h, t->info);
1815 	h = hash_combine(h, t->size);
1816 	return h;
1817 }
1818 
1819 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1820 {
1821 	return t1->name_off == t2->name_off &&
1822 	       t1->info == t2->info &&
1823 	       t1->size == t2->size;
1824 }
1825 
1826 /* Calculate type signature hash of INT. */
1827 static long btf_hash_int(struct btf_type *t)
1828 {
1829 	__u32 info = *(__u32 *)(t + 1);
1830 	long h;
1831 
1832 	h = btf_hash_common(t);
1833 	h = hash_combine(h, info);
1834 	return h;
1835 }
1836 
1837 /* Check structural equality of two INTs. */
1838 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1839 {
1840 	__u32 info1, info2;
1841 
1842 	if (!btf_equal_common(t1, t2))
1843 		return false;
1844 	info1 = *(__u32 *)(t1 + 1);
1845 	info2 = *(__u32 *)(t2 + 1);
1846 	return info1 == info2;
1847 }
1848 
1849 /* Calculate type signature hash of ENUM. */
1850 static long btf_hash_enum(struct btf_type *t)
1851 {
1852 	long h;
1853 
1854 	/* don't hash vlen and enum members to support enum fwd resolving */
1855 	h = hash_combine(0, t->name_off);
1856 	h = hash_combine(h, t->info & ~0xffff);
1857 	h = hash_combine(h, t->size);
1858 	return h;
1859 }
1860 
1861 /* Check structural equality of two ENUMs. */
1862 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1863 {
1864 	const struct btf_enum *m1, *m2;
1865 	__u16 vlen;
1866 	int i;
1867 
1868 	if (!btf_equal_common(t1, t2))
1869 		return false;
1870 
1871 	vlen = btf_vlen(t1);
1872 	m1 = btf_enum(t1);
1873 	m2 = btf_enum(t2);
1874 	for (i = 0; i < vlen; i++) {
1875 		if (m1->name_off != m2->name_off || m1->val != m2->val)
1876 			return false;
1877 		m1++;
1878 		m2++;
1879 	}
1880 	return true;
1881 }
1882 
1883 static inline bool btf_is_enum_fwd(struct btf_type *t)
1884 {
1885 	return btf_is_enum(t) && btf_vlen(t) == 0;
1886 }
1887 
1888 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1889 {
1890 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1891 		return btf_equal_enum(t1, t2);
1892 	/* ignore vlen when comparing */
1893 	return t1->name_off == t2->name_off &&
1894 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1895 	       t1->size == t2->size;
1896 }
1897 
1898 /*
1899  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1900  * as referenced type IDs equivalence is established separately during type
1901  * graph equivalence check algorithm.
1902  */
1903 static long btf_hash_struct(struct btf_type *t)
1904 {
1905 	const struct btf_member *member = btf_members(t);
1906 	__u32 vlen = btf_vlen(t);
1907 	long h = btf_hash_common(t);
1908 	int i;
1909 
1910 	for (i = 0; i < vlen; i++) {
1911 		h = hash_combine(h, member->name_off);
1912 		h = hash_combine(h, member->offset);
1913 		/* no hashing of referenced type ID, it can be unresolved yet */
1914 		member++;
1915 	}
1916 	return h;
1917 }
1918 
1919 /*
1920  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1921  * IDs. This check is performed during type graph equivalence check and
1922  * referenced types equivalence is checked separately.
1923  */
1924 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1925 {
1926 	const struct btf_member *m1, *m2;
1927 	__u16 vlen;
1928 	int i;
1929 
1930 	if (!btf_equal_common(t1, t2))
1931 		return false;
1932 
1933 	vlen = btf_vlen(t1);
1934 	m1 = btf_members(t1);
1935 	m2 = btf_members(t2);
1936 	for (i = 0; i < vlen; i++) {
1937 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1938 			return false;
1939 		m1++;
1940 		m2++;
1941 	}
1942 	return true;
1943 }
1944 
1945 /*
1946  * Calculate type signature hash of ARRAY, including referenced type IDs,
1947  * under assumption that they were already resolved to canonical type IDs and
1948  * are not going to change.
1949  */
1950 static long btf_hash_array(struct btf_type *t)
1951 {
1952 	const struct btf_array *info = btf_array(t);
1953 	long h = btf_hash_common(t);
1954 
1955 	h = hash_combine(h, info->type);
1956 	h = hash_combine(h, info->index_type);
1957 	h = hash_combine(h, info->nelems);
1958 	return h;
1959 }
1960 
1961 /*
1962  * Check exact equality of two ARRAYs, taking into account referenced
1963  * type IDs, under assumption that they were already resolved to canonical
1964  * type IDs and are not going to change.
1965  * This function is called during reference types deduplication to compare
1966  * ARRAY to potential canonical representative.
1967  */
1968 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1969 {
1970 	const struct btf_array *info1, *info2;
1971 
1972 	if (!btf_equal_common(t1, t2))
1973 		return false;
1974 
1975 	info1 = btf_array(t1);
1976 	info2 = btf_array(t2);
1977 	return info1->type == info2->type &&
1978 	       info1->index_type == info2->index_type &&
1979 	       info1->nelems == info2->nelems;
1980 }
1981 
1982 /*
1983  * Check structural compatibility of two ARRAYs, ignoring referenced type
1984  * IDs. This check is performed during type graph equivalence check and
1985  * referenced types equivalence is checked separately.
1986  */
1987 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1988 {
1989 	if (!btf_equal_common(t1, t2))
1990 		return false;
1991 
1992 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
1993 }
1994 
1995 /*
1996  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1997  * under assumption that they were already resolved to canonical type IDs and
1998  * are not going to change.
1999  */
2000 static long btf_hash_fnproto(struct btf_type *t)
2001 {
2002 	const struct btf_param *member = btf_params(t);
2003 	__u16 vlen = btf_vlen(t);
2004 	long h = btf_hash_common(t);
2005 	int i;
2006 
2007 	for (i = 0; i < vlen; i++) {
2008 		h = hash_combine(h, member->name_off);
2009 		h = hash_combine(h, member->type);
2010 		member++;
2011 	}
2012 	return h;
2013 }
2014 
2015 /*
2016  * Check exact equality of two FUNC_PROTOs, taking into account referenced
2017  * type IDs, under assumption that they were already resolved to canonical
2018  * type IDs and are not going to change.
2019  * This function is called during reference types deduplication to compare
2020  * FUNC_PROTO to potential canonical representative.
2021  */
2022 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
2023 {
2024 	const struct btf_param *m1, *m2;
2025 	__u16 vlen;
2026 	int i;
2027 
2028 	if (!btf_equal_common(t1, t2))
2029 		return false;
2030 
2031 	vlen = btf_vlen(t1);
2032 	m1 = btf_params(t1);
2033 	m2 = btf_params(t2);
2034 	for (i = 0; i < vlen; i++) {
2035 		if (m1->name_off != m2->name_off || m1->type != m2->type)
2036 			return false;
2037 		m1++;
2038 		m2++;
2039 	}
2040 	return true;
2041 }
2042 
2043 /*
2044  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2045  * IDs. This check is performed during type graph equivalence check and
2046  * referenced types equivalence is checked separately.
2047  */
2048 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
2049 {
2050 	const struct btf_param *m1, *m2;
2051 	__u16 vlen;
2052 	int i;
2053 
2054 	/* skip return type ID */
2055 	if (t1->name_off != t2->name_off || t1->info != t2->info)
2056 		return false;
2057 
2058 	vlen = btf_vlen(t1);
2059 	m1 = btf_params(t1);
2060 	m2 = btf_params(t2);
2061 	for (i = 0; i < vlen; i++) {
2062 		if (m1->name_off != m2->name_off)
2063 			return false;
2064 		m1++;
2065 		m2++;
2066 	}
2067 	return true;
2068 }
2069 
2070 /*
2071  * Deduplicate primitive types, that can't reference other types, by calculating
2072  * their type signature hash and comparing them with any possible canonical
2073  * candidate. If no canonical candidate matches, type itself is marked as
2074  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2075  */
2076 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2077 {
2078 	struct btf_type *t = d->btf->types[type_id];
2079 	struct hashmap_entry *hash_entry;
2080 	struct btf_type *cand;
2081 	/* if we don't find equivalent type, then we are canonical */
2082 	__u32 new_id = type_id;
2083 	__u32 cand_id;
2084 	long h;
2085 
2086 	switch (btf_kind(t)) {
2087 	case BTF_KIND_CONST:
2088 	case BTF_KIND_VOLATILE:
2089 	case BTF_KIND_RESTRICT:
2090 	case BTF_KIND_PTR:
2091 	case BTF_KIND_TYPEDEF:
2092 	case BTF_KIND_ARRAY:
2093 	case BTF_KIND_STRUCT:
2094 	case BTF_KIND_UNION:
2095 	case BTF_KIND_FUNC:
2096 	case BTF_KIND_FUNC_PROTO:
2097 	case BTF_KIND_VAR:
2098 	case BTF_KIND_DATASEC:
2099 		return 0;
2100 
2101 	case BTF_KIND_INT:
2102 		h = btf_hash_int(t);
2103 		for_each_dedup_cand(d, hash_entry, h) {
2104 			cand_id = (__u32)(long)hash_entry->value;
2105 			cand = d->btf->types[cand_id];
2106 			if (btf_equal_int(t, cand)) {
2107 				new_id = cand_id;
2108 				break;
2109 			}
2110 		}
2111 		break;
2112 
2113 	case BTF_KIND_ENUM:
2114 		h = btf_hash_enum(t);
2115 		for_each_dedup_cand(d, hash_entry, h) {
2116 			cand_id = (__u32)(long)hash_entry->value;
2117 			cand = d->btf->types[cand_id];
2118 			if (btf_equal_enum(t, cand)) {
2119 				new_id = cand_id;
2120 				break;
2121 			}
2122 			if (d->opts.dont_resolve_fwds)
2123 				continue;
2124 			if (btf_compat_enum(t, cand)) {
2125 				if (btf_is_enum_fwd(t)) {
2126 					/* resolve fwd to full enum */
2127 					new_id = cand_id;
2128 					break;
2129 				}
2130 				/* resolve canonical enum fwd to full enum */
2131 				d->map[cand_id] = type_id;
2132 			}
2133 		}
2134 		break;
2135 
2136 	case BTF_KIND_FWD:
2137 		h = btf_hash_common(t);
2138 		for_each_dedup_cand(d, hash_entry, h) {
2139 			cand_id = (__u32)(long)hash_entry->value;
2140 			cand = d->btf->types[cand_id];
2141 			if (btf_equal_common(t, cand)) {
2142 				new_id = cand_id;
2143 				break;
2144 			}
2145 		}
2146 		break;
2147 
2148 	default:
2149 		return -EINVAL;
2150 	}
2151 
2152 	d->map[type_id] = new_id;
2153 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2154 		return -ENOMEM;
2155 
2156 	return 0;
2157 }
2158 
2159 static int btf_dedup_prim_types(struct btf_dedup *d)
2160 {
2161 	int i, err;
2162 
2163 	for (i = 1; i <= d->btf->nr_types; i++) {
2164 		err = btf_dedup_prim_type(d, i);
2165 		if (err)
2166 			return err;
2167 	}
2168 	return 0;
2169 }
2170 
2171 /*
2172  * Check whether type is already mapped into canonical one (could be to itself).
2173  */
2174 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2175 {
2176 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2177 }
2178 
2179 /*
2180  * Resolve type ID into its canonical type ID, if any; otherwise return original
2181  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2182  * STRUCT/UNION link and resolve it into canonical type ID as well.
2183  */
2184 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2185 {
2186 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2187 		type_id = d->map[type_id];
2188 	return type_id;
2189 }
2190 
2191 /*
2192  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2193  * type ID.
2194  */
2195 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2196 {
2197 	__u32 orig_type_id = type_id;
2198 
2199 	if (!btf_is_fwd(d->btf->types[type_id]))
2200 		return type_id;
2201 
2202 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2203 		type_id = d->map[type_id];
2204 
2205 	if (!btf_is_fwd(d->btf->types[type_id]))
2206 		return type_id;
2207 
2208 	return orig_type_id;
2209 }
2210 
2211 
2212 static inline __u16 btf_fwd_kind(struct btf_type *t)
2213 {
2214 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2215 }
2216 
2217 /*
2218  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2219  * call it "candidate graph" in this description for brevity) to a type graph
2220  * formed by (potential) canonical struct/union ("canonical graph" for brevity
2221  * here, though keep in mind that not all types in canonical graph are
2222  * necessarily canonical representatives themselves, some of them might be
2223  * duplicates or its uniqueness might not have been established yet).
2224  * Returns:
2225  *  - >0, if type graphs are equivalent;
2226  *  -  0, if not equivalent;
2227  *  - <0, on error.
2228  *
2229  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2230  * equivalence of BTF types at each step. If at any point BTF types in candidate
2231  * and canonical graphs are not compatible structurally, whole graphs are
2232  * incompatible. If types are structurally equivalent (i.e., all information
2233  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2234  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2235  * If a type references other types, then those referenced types are checked
2236  * for equivalence recursively.
2237  *
2238  * During DFS traversal, if we find that for current `canon_id` type we
2239  * already have some mapping in hypothetical map, we check for two possible
2240  * situations:
2241  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2242  *     happen when type graphs have cycles. In this case we assume those two
2243  *     types are equivalent.
2244  *   - `canon_id` is mapped to different type. This is contradiction in our
2245  *     hypothetical mapping, because same graph in canonical graph corresponds
2246  *     to two different types in candidate graph, which for equivalent type
2247  *     graphs shouldn't happen. This condition terminates equivalence check
2248  *     with negative result.
2249  *
2250  * If type graphs traversal exhausts types to check and find no contradiction,
2251  * then type graphs are equivalent.
2252  *
2253  * When checking types for equivalence, there is one special case: FWD types.
2254  * If FWD type resolution is allowed and one of the types (either from canonical
2255  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2256  * flag) and their names match, hypothetical mapping is updated to point from
2257  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2258  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2259  *
2260  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2261  * if there are two exactly named (or anonymous) structs/unions that are
2262  * compatible structurally, one of which has FWD field, while other is concrete
2263  * STRUCT/UNION, but according to C sources they are different structs/unions
2264  * that are referencing different types with the same name. This is extremely
2265  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2266  * this logic is causing problems.
2267  *
2268  * Doing FWD resolution means that both candidate and/or canonical graphs can
2269  * consists of portions of the graph that come from multiple compilation units.
2270  * This is due to the fact that types within single compilation unit are always
2271  * deduplicated and FWDs are already resolved, if referenced struct/union
2272  * definiton is available. So, if we had unresolved FWD and found corresponding
2273  * STRUCT/UNION, they will be from different compilation units. This
2274  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2275  * type graph will likely have at least two different BTF types that describe
2276  * same type (e.g., most probably there will be two different BTF types for the
2277  * same 'int' primitive type) and could even have "overlapping" parts of type
2278  * graph that describe same subset of types.
2279  *
2280  * This in turn means that our assumption that each type in canonical graph
2281  * must correspond to exactly one type in candidate graph might not hold
2282  * anymore and will make it harder to detect contradictions using hypothetical
2283  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2284  * resolution only in canonical graph. FWDs in candidate graphs are never
2285  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2286  * that can occur:
2287  *   - Both types in canonical and candidate graphs are FWDs. If they are
2288  *     structurally equivalent, then they can either be both resolved to the
2289  *     same STRUCT/UNION or not resolved at all. In both cases they are
2290  *     equivalent and there is no need to resolve FWD on candidate side.
2291  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2292  *     so nothing to resolve as well, algorithm will check equivalence anyway.
2293  *   - Type in canonical graph is FWD, while type in candidate is concrete
2294  *     STRUCT/UNION. In this case candidate graph comes from single compilation
2295  *     unit, so there is exactly one BTF type for each unique C type. After
2296  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2297  *     in canonical graph mapping to single BTF type in candidate graph, but
2298  *     because hypothetical mapping maps from canonical to candidate types, it's
2299  *     alright, and we still maintain the property of having single `canon_id`
2300  *     mapping to single `cand_id` (there could be two different `canon_id`
2301  *     mapped to the same `cand_id`, but it's not contradictory).
2302  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2303  *     graph is FWD. In this case we are just going to check compatibility of
2304  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2305  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2306  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2307  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2308  *     canonical graph.
2309  */
2310 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2311 			      __u32 canon_id)
2312 {
2313 	struct btf_type *cand_type;
2314 	struct btf_type *canon_type;
2315 	__u32 hypot_type_id;
2316 	__u16 cand_kind;
2317 	__u16 canon_kind;
2318 	int i, eq;
2319 
2320 	/* if both resolve to the same canonical, they must be equivalent */
2321 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2322 		return 1;
2323 
2324 	canon_id = resolve_fwd_id(d, canon_id);
2325 
2326 	hypot_type_id = d->hypot_map[canon_id];
2327 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2328 		return hypot_type_id == cand_id;
2329 
2330 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2331 		return -ENOMEM;
2332 
2333 	cand_type = d->btf->types[cand_id];
2334 	canon_type = d->btf->types[canon_id];
2335 	cand_kind = btf_kind(cand_type);
2336 	canon_kind = btf_kind(canon_type);
2337 
2338 	if (cand_type->name_off != canon_type->name_off)
2339 		return 0;
2340 
2341 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2342 	if (!d->opts.dont_resolve_fwds
2343 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2344 	    && cand_kind != canon_kind) {
2345 		__u16 real_kind;
2346 		__u16 fwd_kind;
2347 
2348 		if (cand_kind == BTF_KIND_FWD) {
2349 			real_kind = canon_kind;
2350 			fwd_kind = btf_fwd_kind(cand_type);
2351 		} else {
2352 			real_kind = cand_kind;
2353 			fwd_kind = btf_fwd_kind(canon_type);
2354 		}
2355 		return fwd_kind == real_kind;
2356 	}
2357 
2358 	if (cand_kind != canon_kind)
2359 		return 0;
2360 
2361 	switch (cand_kind) {
2362 	case BTF_KIND_INT:
2363 		return btf_equal_int(cand_type, canon_type);
2364 
2365 	case BTF_KIND_ENUM:
2366 		if (d->opts.dont_resolve_fwds)
2367 			return btf_equal_enum(cand_type, canon_type);
2368 		else
2369 			return btf_compat_enum(cand_type, canon_type);
2370 
2371 	case BTF_KIND_FWD:
2372 		return btf_equal_common(cand_type, canon_type);
2373 
2374 	case BTF_KIND_CONST:
2375 	case BTF_KIND_VOLATILE:
2376 	case BTF_KIND_RESTRICT:
2377 	case BTF_KIND_PTR:
2378 	case BTF_KIND_TYPEDEF:
2379 	case BTF_KIND_FUNC:
2380 		if (cand_type->info != canon_type->info)
2381 			return 0;
2382 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2383 
2384 	case BTF_KIND_ARRAY: {
2385 		const struct btf_array *cand_arr, *canon_arr;
2386 
2387 		if (!btf_compat_array(cand_type, canon_type))
2388 			return 0;
2389 		cand_arr = btf_array(cand_type);
2390 		canon_arr = btf_array(canon_type);
2391 		eq = btf_dedup_is_equiv(d,
2392 			cand_arr->index_type, canon_arr->index_type);
2393 		if (eq <= 0)
2394 			return eq;
2395 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2396 	}
2397 
2398 	case BTF_KIND_STRUCT:
2399 	case BTF_KIND_UNION: {
2400 		const struct btf_member *cand_m, *canon_m;
2401 		__u16 vlen;
2402 
2403 		if (!btf_shallow_equal_struct(cand_type, canon_type))
2404 			return 0;
2405 		vlen = btf_vlen(cand_type);
2406 		cand_m = btf_members(cand_type);
2407 		canon_m = btf_members(canon_type);
2408 		for (i = 0; i < vlen; i++) {
2409 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2410 			if (eq <= 0)
2411 				return eq;
2412 			cand_m++;
2413 			canon_m++;
2414 		}
2415 
2416 		return 1;
2417 	}
2418 
2419 	case BTF_KIND_FUNC_PROTO: {
2420 		const struct btf_param *cand_p, *canon_p;
2421 		__u16 vlen;
2422 
2423 		if (!btf_compat_fnproto(cand_type, canon_type))
2424 			return 0;
2425 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2426 		if (eq <= 0)
2427 			return eq;
2428 		vlen = btf_vlen(cand_type);
2429 		cand_p = btf_params(cand_type);
2430 		canon_p = btf_params(canon_type);
2431 		for (i = 0; i < vlen; i++) {
2432 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2433 			if (eq <= 0)
2434 				return eq;
2435 			cand_p++;
2436 			canon_p++;
2437 		}
2438 		return 1;
2439 	}
2440 
2441 	default:
2442 		return -EINVAL;
2443 	}
2444 	return 0;
2445 }
2446 
2447 /*
2448  * Use hypothetical mapping, produced by successful type graph equivalence
2449  * check, to augment existing struct/union canonical mapping, where possible.
2450  *
2451  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2452  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2453  * it doesn't matter if FWD type was part of canonical graph or candidate one,
2454  * we are recording the mapping anyway. As opposed to carefulness required
2455  * for struct/union correspondence mapping (described below), for FWD resolution
2456  * it's not important, as by the time that FWD type (reference type) will be
2457  * deduplicated all structs/unions will be deduped already anyway.
2458  *
2459  * Recording STRUCT/UNION mapping is purely a performance optimization and is
2460  * not required for correctness. It needs to be done carefully to ensure that
2461  * struct/union from candidate's type graph is not mapped into corresponding
2462  * struct/union from canonical type graph that itself hasn't been resolved into
2463  * canonical representative. The only guarantee we have is that canonical
2464  * struct/union was determined as canonical and that won't change. But any
2465  * types referenced through that struct/union fields could have been not yet
2466  * resolved, so in case like that it's too early to establish any kind of
2467  * correspondence between structs/unions.
2468  *
2469  * No canonical correspondence is derived for primitive types (they are already
2470  * deduplicated completely already anyway) or reference types (they rely on
2471  * stability of struct/union canonical relationship for equivalence checks).
2472  */
2473 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2474 {
2475 	__u32 cand_type_id, targ_type_id;
2476 	__u16 t_kind, c_kind;
2477 	__u32 t_id, c_id;
2478 	int i;
2479 
2480 	for (i = 0; i < d->hypot_cnt; i++) {
2481 		cand_type_id = d->hypot_list[i];
2482 		targ_type_id = d->hypot_map[cand_type_id];
2483 		t_id = resolve_type_id(d, targ_type_id);
2484 		c_id = resolve_type_id(d, cand_type_id);
2485 		t_kind = btf_kind(d->btf->types[t_id]);
2486 		c_kind = btf_kind(d->btf->types[c_id]);
2487 		/*
2488 		 * Resolve FWD into STRUCT/UNION.
2489 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2490 		 * mapped to canonical representative (as opposed to
2491 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2492 		 * eventually that struct is going to be mapped and all resolved
2493 		 * FWDs will automatically resolve to correct canonical
2494 		 * representative. This will happen before ref type deduping,
2495 		 * which critically depends on stability of these mapping. This
2496 		 * stability is not a requirement for STRUCT/UNION equivalence
2497 		 * checks, though.
2498 		 */
2499 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2500 			d->map[c_id] = t_id;
2501 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2502 			d->map[t_id] = c_id;
2503 
2504 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2505 		    c_kind != BTF_KIND_FWD &&
2506 		    is_type_mapped(d, c_id) &&
2507 		    !is_type_mapped(d, t_id)) {
2508 			/*
2509 			 * as a perf optimization, we can map struct/union
2510 			 * that's part of type graph we just verified for
2511 			 * equivalence. We can do that for struct/union that has
2512 			 * canonical representative only, though.
2513 			 */
2514 			d->map[t_id] = c_id;
2515 		}
2516 	}
2517 }
2518 
2519 /*
2520  * Deduplicate struct/union types.
2521  *
2522  * For each struct/union type its type signature hash is calculated, taking
2523  * into account type's name, size, number, order and names of fields, but
2524  * ignoring type ID's referenced from fields, because they might not be deduped
2525  * completely until after reference types deduplication phase. This type hash
2526  * is used to iterate over all potential canonical types, sharing same hash.
2527  * For each canonical candidate we check whether type graphs that they form
2528  * (through referenced types in fields and so on) are equivalent using algorithm
2529  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2530  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2531  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2532  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2533  * potentially map other structs/unions to their canonical representatives,
2534  * if such relationship hasn't yet been established. This speeds up algorithm
2535  * by eliminating some of the duplicate work.
2536  *
2537  * If no matching canonical representative was found, struct/union is marked
2538  * as canonical for itself and is added into btf_dedup->dedup_table hash map
2539  * for further look ups.
2540  */
2541 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2542 {
2543 	struct btf_type *cand_type, *t;
2544 	struct hashmap_entry *hash_entry;
2545 	/* if we don't find equivalent type, then we are canonical */
2546 	__u32 new_id = type_id;
2547 	__u16 kind;
2548 	long h;
2549 
2550 	/* already deduped or is in process of deduping (loop detected) */
2551 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2552 		return 0;
2553 
2554 	t = d->btf->types[type_id];
2555 	kind = btf_kind(t);
2556 
2557 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2558 		return 0;
2559 
2560 	h = btf_hash_struct(t);
2561 	for_each_dedup_cand(d, hash_entry, h) {
2562 		__u32 cand_id = (__u32)(long)hash_entry->value;
2563 		int eq;
2564 
2565 		/*
2566 		 * Even though btf_dedup_is_equiv() checks for
2567 		 * btf_shallow_equal_struct() internally when checking two
2568 		 * structs (unions) for equivalence, we need to guard here
2569 		 * from picking matching FWD type as a dedup candidate.
2570 		 * This can happen due to hash collision. In such case just
2571 		 * relying on btf_dedup_is_equiv() would lead to potentially
2572 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2573 		 * FWD and compatible STRUCT/UNION are considered equivalent.
2574 		 */
2575 		cand_type = d->btf->types[cand_id];
2576 		if (!btf_shallow_equal_struct(t, cand_type))
2577 			continue;
2578 
2579 		btf_dedup_clear_hypot_map(d);
2580 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2581 		if (eq < 0)
2582 			return eq;
2583 		if (!eq)
2584 			continue;
2585 		new_id = cand_id;
2586 		btf_dedup_merge_hypot_map(d);
2587 		break;
2588 	}
2589 
2590 	d->map[type_id] = new_id;
2591 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2592 		return -ENOMEM;
2593 
2594 	return 0;
2595 }
2596 
2597 static int btf_dedup_struct_types(struct btf_dedup *d)
2598 {
2599 	int i, err;
2600 
2601 	for (i = 1; i <= d->btf->nr_types; i++) {
2602 		err = btf_dedup_struct_type(d, i);
2603 		if (err)
2604 			return err;
2605 	}
2606 	return 0;
2607 }
2608 
2609 /*
2610  * Deduplicate reference type.
2611  *
2612  * Once all primitive and struct/union types got deduplicated, we can easily
2613  * deduplicate all other (reference) BTF types. This is done in two steps:
2614  *
2615  * 1. Resolve all referenced type IDs into their canonical type IDs. This
2616  * resolution can be done either immediately for primitive or struct/union types
2617  * (because they were deduped in previous two phases) or recursively for
2618  * reference types. Recursion will always terminate at either primitive or
2619  * struct/union type, at which point we can "unwind" chain of reference types
2620  * one by one. There is no danger of encountering cycles because in C type
2621  * system the only way to form type cycle is through struct/union, so any chain
2622  * of reference types, even those taking part in a type cycle, will inevitably
2623  * reach struct/union at some point.
2624  *
2625  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2626  * becomes "stable", in the sense that no further deduplication will cause
2627  * any changes to it. With that, it's now possible to calculate type's signature
2628  * hash (this time taking into account referenced type IDs) and loop over all
2629  * potential canonical representatives. If no match was found, current type
2630  * will become canonical representative of itself and will be added into
2631  * btf_dedup->dedup_table as another possible canonical representative.
2632  */
2633 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2634 {
2635 	struct hashmap_entry *hash_entry;
2636 	__u32 new_id = type_id, cand_id;
2637 	struct btf_type *t, *cand;
2638 	/* if we don't find equivalent type, then we are representative type */
2639 	int ref_type_id;
2640 	long h;
2641 
2642 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2643 		return -ELOOP;
2644 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2645 		return resolve_type_id(d, type_id);
2646 
2647 	t = d->btf->types[type_id];
2648 	d->map[type_id] = BTF_IN_PROGRESS_ID;
2649 
2650 	switch (btf_kind(t)) {
2651 	case BTF_KIND_CONST:
2652 	case BTF_KIND_VOLATILE:
2653 	case BTF_KIND_RESTRICT:
2654 	case BTF_KIND_PTR:
2655 	case BTF_KIND_TYPEDEF:
2656 	case BTF_KIND_FUNC:
2657 		ref_type_id = btf_dedup_ref_type(d, t->type);
2658 		if (ref_type_id < 0)
2659 			return ref_type_id;
2660 		t->type = ref_type_id;
2661 
2662 		h = btf_hash_common(t);
2663 		for_each_dedup_cand(d, hash_entry, h) {
2664 			cand_id = (__u32)(long)hash_entry->value;
2665 			cand = d->btf->types[cand_id];
2666 			if (btf_equal_common(t, cand)) {
2667 				new_id = cand_id;
2668 				break;
2669 			}
2670 		}
2671 		break;
2672 
2673 	case BTF_KIND_ARRAY: {
2674 		struct btf_array *info = btf_array(t);
2675 
2676 		ref_type_id = btf_dedup_ref_type(d, info->type);
2677 		if (ref_type_id < 0)
2678 			return ref_type_id;
2679 		info->type = ref_type_id;
2680 
2681 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2682 		if (ref_type_id < 0)
2683 			return ref_type_id;
2684 		info->index_type = ref_type_id;
2685 
2686 		h = btf_hash_array(t);
2687 		for_each_dedup_cand(d, hash_entry, h) {
2688 			cand_id = (__u32)(long)hash_entry->value;
2689 			cand = d->btf->types[cand_id];
2690 			if (btf_equal_array(t, cand)) {
2691 				new_id = cand_id;
2692 				break;
2693 			}
2694 		}
2695 		break;
2696 	}
2697 
2698 	case BTF_KIND_FUNC_PROTO: {
2699 		struct btf_param *param;
2700 		__u16 vlen;
2701 		int i;
2702 
2703 		ref_type_id = btf_dedup_ref_type(d, t->type);
2704 		if (ref_type_id < 0)
2705 			return ref_type_id;
2706 		t->type = ref_type_id;
2707 
2708 		vlen = btf_vlen(t);
2709 		param = btf_params(t);
2710 		for (i = 0; i < vlen; i++) {
2711 			ref_type_id = btf_dedup_ref_type(d, param->type);
2712 			if (ref_type_id < 0)
2713 				return ref_type_id;
2714 			param->type = ref_type_id;
2715 			param++;
2716 		}
2717 
2718 		h = btf_hash_fnproto(t);
2719 		for_each_dedup_cand(d, hash_entry, h) {
2720 			cand_id = (__u32)(long)hash_entry->value;
2721 			cand = d->btf->types[cand_id];
2722 			if (btf_equal_fnproto(t, cand)) {
2723 				new_id = cand_id;
2724 				break;
2725 			}
2726 		}
2727 		break;
2728 	}
2729 
2730 	default:
2731 		return -EINVAL;
2732 	}
2733 
2734 	d->map[type_id] = new_id;
2735 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2736 		return -ENOMEM;
2737 
2738 	return new_id;
2739 }
2740 
2741 static int btf_dedup_ref_types(struct btf_dedup *d)
2742 {
2743 	int i, err;
2744 
2745 	for (i = 1; i <= d->btf->nr_types; i++) {
2746 		err = btf_dedup_ref_type(d, i);
2747 		if (err < 0)
2748 			return err;
2749 	}
2750 	/* we won't need d->dedup_table anymore */
2751 	hashmap__free(d->dedup_table);
2752 	d->dedup_table = NULL;
2753 	return 0;
2754 }
2755 
2756 /*
2757  * Compact types.
2758  *
2759  * After we established for each type its corresponding canonical representative
2760  * type, we now can eliminate types that are not canonical and leave only
2761  * canonical ones layed out sequentially in memory by copying them over
2762  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2763  * a map from original type ID to a new compacted type ID, which will be used
2764  * during next phase to "fix up" type IDs, referenced from struct/union and
2765  * reference types.
2766  */
2767 static int btf_dedup_compact_types(struct btf_dedup *d)
2768 {
2769 	struct btf_type **new_types;
2770 	__u32 next_type_id = 1;
2771 	char *types_start, *p;
2772 	int i, len;
2773 
2774 	/* we are going to reuse hypot_map to store compaction remapping */
2775 	d->hypot_map[0] = 0;
2776 	for (i = 1; i <= d->btf->nr_types; i++)
2777 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2778 
2779 	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2780 	p = types_start;
2781 
2782 	for (i = 1; i <= d->btf->nr_types; i++) {
2783 		if (d->map[i] != i)
2784 			continue;
2785 
2786 		len = btf_type_size(d->btf->types[i]);
2787 		if (len < 0)
2788 			return len;
2789 
2790 		memmove(p, d->btf->types[i], len);
2791 		d->hypot_map[i] = next_type_id;
2792 		d->btf->types[next_type_id] = (struct btf_type *)p;
2793 		p += len;
2794 		next_type_id++;
2795 	}
2796 
2797 	/* shrink struct btf's internal types index and update btf_header */
2798 	d->btf->nr_types = next_type_id - 1;
2799 	d->btf->types_size = d->btf->nr_types;
2800 	d->btf->hdr->type_len = p - types_start;
2801 	new_types = realloc(d->btf->types,
2802 			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2803 	if (!new_types)
2804 		return -ENOMEM;
2805 	d->btf->types = new_types;
2806 
2807 	/* make sure string section follows type information without gaps */
2808 	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2809 	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2810 	d->btf->strings = p;
2811 	p += d->btf->hdr->str_len;
2812 
2813 	d->btf->data_size = p - (char *)d->btf->data;
2814 	return 0;
2815 }
2816 
2817 /*
2818  * Figure out final (deduplicated and compacted) type ID for provided original
2819  * `type_id` by first resolving it into corresponding canonical type ID and
2820  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2821  * which is populated during compaction phase.
2822  */
2823 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2824 {
2825 	__u32 resolved_type_id, new_type_id;
2826 
2827 	resolved_type_id = resolve_type_id(d, type_id);
2828 	new_type_id = d->hypot_map[resolved_type_id];
2829 	if (new_type_id > BTF_MAX_NR_TYPES)
2830 		return -EINVAL;
2831 	return new_type_id;
2832 }
2833 
2834 /*
2835  * Remap referenced type IDs into deduped type IDs.
2836  *
2837  * After BTF types are deduplicated and compacted, their final type IDs may
2838  * differ from original ones. The map from original to a corresponding
2839  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2840  * compaction phase. During remapping phase we are rewriting all type IDs
2841  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2842  * their final deduped type IDs.
2843  */
2844 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2845 {
2846 	struct btf_type *t = d->btf->types[type_id];
2847 	int i, r;
2848 
2849 	switch (btf_kind(t)) {
2850 	case BTF_KIND_INT:
2851 	case BTF_KIND_ENUM:
2852 		break;
2853 
2854 	case BTF_KIND_FWD:
2855 	case BTF_KIND_CONST:
2856 	case BTF_KIND_VOLATILE:
2857 	case BTF_KIND_RESTRICT:
2858 	case BTF_KIND_PTR:
2859 	case BTF_KIND_TYPEDEF:
2860 	case BTF_KIND_FUNC:
2861 	case BTF_KIND_VAR:
2862 		r = btf_dedup_remap_type_id(d, t->type);
2863 		if (r < 0)
2864 			return r;
2865 		t->type = r;
2866 		break;
2867 
2868 	case BTF_KIND_ARRAY: {
2869 		struct btf_array *arr_info = btf_array(t);
2870 
2871 		r = btf_dedup_remap_type_id(d, arr_info->type);
2872 		if (r < 0)
2873 			return r;
2874 		arr_info->type = r;
2875 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2876 		if (r < 0)
2877 			return r;
2878 		arr_info->index_type = r;
2879 		break;
2880 	}
2881 
2882 	case BTF_KIND_STRUCT:
2883 	case BTF_KIND_UNION: {
2884 		struct btf_member *member = btf_members(t);
2885 		__u16 vlen = btf_vlen(t);
2886 
2887 		for (i = 0; i < vlen; i++) {
2888 			r = btf_dedup_remap_type_id(d, member->type);
2889 			if (r < 0)
2890 				return r;
2891 			member->type = r;
2892 			member++;
2893 		}
2894 		break;
2895 	}
2896 
2897 	case BTF_KIND_FUNC_PROTO: {
2898 		struct btf_param *param = btf_params(t);
2899 		__u16 vlen = btf_vlen(t);
2900 
2901 		r = btf_dedup_remap_type_id(d, t->type);
2902 		if (r < 0)
2903 			return r;
2904 		t->type = r;
2905 
2906 		for (i = 0; i < vlen; i++) {
2907 			r = btf_dedup_remap_type_id(d, param->type);
2908 			if (r < 0)
2909 				return r;
2910 			param->type = r;
2911 			param++;
2912 		}
2913 		break;
2914 	}
2915 
2916 	case BTF_KIND_DATASEC: {
2917 		struct btf_var_secinfo *var = btf_var_secinfos(t);
2918 		__u16 vlen = btf_vlen(t);
2919 
2920 		for (i = 0; i < vlen; i++) {
2921 			r = btf_dedup_remap_type_id(d, var->type);
2922 			if (r < 0)
2923 				return r;
2924 			var->type = r;
2925 			var++;
2926 		}
2927 		break;
2928 	}
2929 
2930 	default:
2931 		return -EINVAL;
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 static int btf_dedup_remap_types(struct btf_dedup *d)
2938 {
2939 	int i, r;
2940 
2941 	for (i = 1; i <= d->btf->nr_types; i++) {
2942 		r = btf_dedup_remap_type(d, i);
2943 		if (r < 0)
2944 			return r;
2945 	}
2946 	return 0;
2947 }
2948 
2949 static struct btf *btf_load_raw(const char *path)
2950 {
2951 	struct btf *btf;
2952 	size_t read_cnt;
2953 	struct stat st;
2954 	void *data;
2955 	FILE *f;
2956 
2957 	if (stat(path, &st))
2958 		return ERR_PTR(-errno);
2959 
2960 	data = malloc(st.st_size);
2961 	if (!data)
2962 		return ERR_PTR(-ENOMEM);
2963 
2964 	f = fopen(path, "rb");
2965 	if (!f) {
2966 		btf = ERR_PTR(-errno);
2967 		goto cleanup;
2968 	}
2969 
2970 	read_cnt = fread(data, 1, st.st_size, f);
2971 	fclose(f);
2972 	if (read_cnt < st.st_size) {
2973 		btf = ERR_PTR(-EBADF);
2974 		goto cleanup;
2975 	}
2976 
2977 	btf = btf__new(data, read_cnt);
2978 
2979 cleanup:
2980 	free(data);
2981 	return btf;
2982 }
2983 
2984 /*
2985  * Probe few well-known locations for vmlinux kernel image and try to load BTF
2986  * data out of it to use for target BTF.
2987  */
2988 struct btf *libbpf_find_kernel_btf(void)
2989 {
2990 	struct {
2991 		const char *path_fmt;
2992 		bool raw_btf;
2993 	} locations[] = {
2994 		/* try canonical vmlinux BTF through sysfs first */
2995 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
2996 		/* fall back to trying to find vmlinux ELF on disk otherwise */
2997 		{ "/boot/vmlinux-%1$s" },
2998 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
2999 		{ "/lib/modules/%1$s/build/vmlinux" },
3000 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
3001 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
3002 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
3003 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
3004 	};
3005 	char path[PATH_MAX + 1];
3006 	struct utsname buf;
3007 	struct btf *btf;
3008 	int i;
3009 
3010 	uname(&buf);
3011 
3012 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
3013 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
3014 
3015 		if (access(path, R_OK))
3016 			continue;
3017 
3018 		if (locations[i].raw_btf)
3019 			btf = btf_load_raw(path);
3020 		else
3021 			btf = btf__parse_elf(path, NULL);
3022 
3023 		pr_debug("loading kernel BTF '%s': %ld\n",
3024 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
3025 		if (IS_ERR(btf))
3026 			continue;
3027 
3028 		return btf;
3029 	}
3030 
3031 	pr_warn("failed to find valid kernel BTF\n");
3032 	return ERR_PTR(-ESRCH);
3033 }
3034