xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 0ca8d3ca4561535f97b31e7b8de569c69bc3b27b)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__get_raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193 {
194 	__u32 *p;
195 
196 	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 	if (!p)
199 		return -ENOMEM;
200 
201 	*p = type_off;
202 	return 0;
203 }
204 
205 static void btf_bswap_hdr(struct btf_header *h)
206 {
207 	h->magic = bswap_16(h->magic);
208 	h->hdr_len = bswap_32(h->hdr_len);
209 	h->type_off = bswap_32(h->type_off);
210 	h->type_len = bswap_32(h->type_len);
211 	h->str_off = bswap_32(h->str_off);
212 	h->str_len = bswap_32(h->str_len);
213 }
214 
215 static int btf_parse_hdr(struct btf *btf)
216 {
217 	struct btf_header *hdr = btf->hdr;
218 	__u32 meta_left;
219 
220 	if (btf->raw_size < sizeof(struct btf_header)) {
221 		pr_debug("BTF header not found\n");
222 		return -EINVAL;
223 	}
224 
225 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 		btf->swapped_endian = true;
227 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 				bswap_32(hdr->hdr_len));
230 			return -ENOTSUP;
231 		}
232 		btf_bswap_hdr(hdr);
233 	} else if (hdr->magic != BTF_MAGIC) {
234 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
235 		return -EINVAL;
236 	}
237 
238 	meta_left = btf->raw_size - sizeof(*hdr);
239 	if (meta_left < hdr->str_off + hdr->str_len) {
240 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
241 		return -EINVAL;
242 	}
243 
244 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
245 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
246 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
247 		return -EINVAL;
248 	}
249 
250 	if (hdr->type_off % 4) {
251 		pr_debug("BTF type section is not aligned to 4 bytes\n");
252 		return -EINVAL;
253 	}
254 
255 	return 0;
256 }
257 
258 static int btf_parse_str_sec(struct btf *btf)
259 {
260 	const struct btf_header *hdr = btf->hdr;
261 	const char *start = btf->strs_data;
262 	const char *end = start + btf->hdr->str_len;
263 
264 	if (btf->base_btf && hdr->str_len == 0)
265 		return 0;
266 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
267 		pr_debug("Invalid BTF string section\n");
268 		return -EINVAL;
269 	}
270 	if (!btf->base_btf && start[0]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	return 0;
275 }
276 
277 static int btf_type_size(const struct btf_type *t)
278 {
279 	const int base_size = sizeof(struct btf_type);
280 	__u16 vlen = btf_vlen(t);
281 
282 	switch (btf_kind(t)) {
283 	case BTF_KIND_FWD:
284 	case BTF_KIND_CONST:
285 	case BTF_KIND_VOLATILE:
286 	case BTF_KIND_RESTRICT:
287 	case BTF_KIND_PTR:
288 	case BTF_KIND_TYPEDEF:
289 	case BTF_KIND_FUNC:
290 	case BTF_KIND_FLOAT:
291 		return base_size;
292 	case BTF_KIND_INT:
293 		return base_size + sizeof(__u32);
294 	case BTF_KIND_ENUM:
295 		return base_size + vlen * sizeof(struct btf_enum);
296 	case BTF_KIND_ARRAY:
297 		return base_size + sizeof(struct btf_array);
298 	case BTF_KIND_STRUCT:
299 	case BTF_KIND_UNION:
300 		return base_size + vlen * sizeof(struct btf_member);
301 	case BTF_KIND_FUNC_PROTO:
302 		return base_size + vlen * sizeof(struct btf_param);
303 	case BTF_KIND_VAR:
304 		return base_size + sizeof(struct btf_var);
305 	case BTF_KIND_DATASEC:
306 		return base_size + vlen * sizeof(struct btf_var_secinfo);
307 	default:
308 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
309 		return -EINVAL;
310 	}
311 }
312 
313 static void btf_bswap_type_base(struct btf_type *t)
314 {
315 	t->name_off = bswap_32(t->name_off);
316 	t->info = bswap_32(t->info);
317 	t->type = bswap_32(t->type);
318 }
319 
320 static int btf_bswap_type_rest(struct btf_type *t)
321 {
322 	struct btf_var_secinfo *v;
323 	struct btf_member *m;
324 	struct btf_array *a;
325 	struct btf_param *p;
326 	struct btf_enum *e;
327 	__u16 vlen = btf_vlen(t);
328 	int i;
329 
330 	switch (btf_kind(t)) {
331 	case BTF_KIND_FWD:
332 	case BTF_KIND_CONST:
333 	case BTF_KIND_VOLATILE:
334 	case BTF_KIND_RESTRICT:
335 	case BTF_KIND_PTR:
336 	case BTF_KIND_TYPEDEF:
337 	case BTF_KIND_FUNC:
338 	case BTF_KIND_FLOAT:
339 		return 0;
340 	case BTF_KIND_INT:
341 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
342 		return 0;
343 	case BTF_KIND_ENUM:
344 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
345 			e->name_off = bswap_32(e->name_off);
346 			e->val = bswap_32(e->val);
347 		}
348 		return 0;
349 	case BTF_KIND_ARRAY:
350 		a = btf_array(t);
351 		a->type = bswap_32(a->type);
352 		a->index_type = bswap_32(a->index_type);
353 		a->nelems = bswap_32(a->nelems);
354 		return 0;
355 	case BTF_KIND_STRUCT:
356 	case BTF_KIND_UNION:
357 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
358 			m->name_off = bswap_32(m->name_off);
359 			m->type = bswap_32(m->type);
360 			m->offset = bswap_32(m->offset);
361 		}
362 		return 0;
363 	case BTF_KIND_FUNC_PROTO:
364 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
365 			p->name_off = bswap_32(p->name_off);
366 			p->type = bswap_32(p->type);
367 		}
368 		return 0;
369 	case BTF_KIND_VAR:
370 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
371 		return 0;
372 	case BTF_KIND_DATASEC:
373 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
374 			v->type = bswap_32(v->type);
375 			v->offset = bswap_32(v->offset);
376 			v->size = bswap_32(v->size);
377 		}
378 		return 0;
379 	default:
380 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
381 		return -EINVAL;
382 	}
383 }
384 
385 static int btf_parse_type_sec(struct btf *btf)
386 {
387 	struct btf_header *hdr = btf->hdr;
388 	void *next_type = btf->types_data;
389 	void *end_type = next_type + hdr->type_len;
390 	int err, type_size;
391 
392 	while (next_type + sizeof(struct btf_type) <= end_type) {
393 		if (btf->swapped_endian)
394 			btf_bswap_type_base(next_type);
395 
396 		type_size = btf_type_size(next_type);
397 		if (type_size < 0)
398 			return type_size;
399 		if (next_type + type_size > end_type) {
400 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
401 			return -EINVAL;
402 		}
403 
404 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
405 			return -EINVAL;
406 
407 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
408 		if (err)
409 			return err;
410 
411 		next_type += type_size;
412 		btf->nr_types++;
413 	}
414 
415 	if (next_type != end_type) {
416 		pr_warn("BTF types data is malformed\n");
417 		return -EINVAL;
418 	}
419 
420 	return 0;
421 }
422 
423 __u32 btf__get_nr_types(const struct btf *btf)
424 {
425 	return btf->start_id + btf->nr_types - 1;
426 }
427 
428 const struct btf *btf__base_btf(const struct btf *btf)
429 {
430 	return btf->base_btf;
431 }
432 
433 /* internal helper returning non-const pointer to a type */
434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
435 {
436 	if (type_id == 0)
437 		return &btf_void;
438 	if (type_id < btf->start_id)
439 		return btf_type_by_id(btf->base_btf, type_id);
440 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
441 }
442 
443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
444 {
445 	if (type_id >= btf->start_id + btf->nr_types)
446 		return errno = EINVAL, NULL;
447 	return btf_type_by_id((struct btf *)btf, type_id);
448 }
449 
450 static int determine_ptr_size(const struct btf *btf)
451 {
452 	const struct btf_type *t;
453 	const char *name;
454 	int i, n;
455 
456 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
457 		return btf->base_btf->ptr_sz;
458 
459 	n = btf__get_nr_types(btf);
460 	for (i = 1; i <= n; i++) {
461 		t = btf__type_by_id(btf, i);
462 		if (!btf_is_int(t))
463 			continue;
464 
465 		name = btf__name_by_offset(btf, t->name_off);
466 		if (!name)
467 			continue;
468 
469 		if (strcmp(name, "long int") == 0 ||
470 		    strcmp(name, "long unsigned int") == 0) {
471 			if (t->size != 4 && t->size != 8)
472 				continue;
473 			return t->size;
474 		}
475 	}
476 
477 	return -1;
478 }
479 
480 static size_t btf_ptr_sz(const struct btf *btf)
481 {
482 	if (!btf->ptr_sz)
483 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
484 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
485 }
486 
487 /* Return pointer size this BTF instance assumes. The size is heuristically
488  * determined by looking for 'long' or 'unsigned long' integer type and
489  * recording its size in bytes. If BTF type information doesn't have any such
490  * type, this function returns 0. In the latter case, native architecture's
491  * pointer size is assumed, so will be either 4 or 8, depending on
492  * architecture that libbpf was compiled for. It's possible to override
493  * guessed value by using btf__set_pointer_size() API.
494  */
495 size_t btf__pointer_size(const struct btf *btf)
496 {
497 	if (!btf->ptr_sz)
498 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
499 
500 	if (btf->ptr_sz < 0)
501 		/* not enough BTF type info to guess */
502 		return 0;
503 
504 	return btf->ptr_sz;
505 }
506 
507 /* Override or set pointer size in bytes. Only values of 4 and 8 are
508  * supported.
509  */
510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
511 {
512 	if (ptr_sz != 4 && ptr_sz != 8)
513 		return libbpf_err(-EINVAL);
514 	btf->ptr_sz = ptr_sz;
515 	return 0;
516 }
517 
518 static bool is_host_big_endian(void)
519 {
520 #if __BYTE_ORDER == __LITTLE_ENDIAN
521 	return false;
522 #elif __BYTE_ORDER == __BIG_ENDIAN
523 	return true;
524 #else
525 # error "Unrecognized __BYTE_ORDER__"
526 #endif
527 }
528 
529 enum btf_endianness btf__endianness(const struct btf *btf)
530 {
531 	if (is_host_big_endian())
532 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
533 	else
534 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
535 }
536 
537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
538 {
539 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
540 		return libbpf_err(-EINVAL);
541 
542 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
543 	if (!btf->swapped_endian) {
544 		free(btf->raw_data_swapped);
545 		btf->raw_data_swapped = NULL;
546 	}
547 	return 0;
548 }
549 
550 static bool btf_type_is_void(const struct btf_type *t)
551 {
552 	return t == &btf_void || btf_is_fwd(t);
553 }
554 
555 static bool btf_type_is_void_or_null(const struct btf_type *t)
556 {
557 	return !t || btf_type_is_void(t);
558 }
559 
560 #define MAX_RESOLVE_DEPTH 32
561 
562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
563 {
564 	const struct btf_array *array;
565 	const struct btf_type *t;
566 	__u32 nelems = 1;
567 	__s64 size = -1;
568 	int i;
569 
570 	t = btf__type_by_id(btf, type_id);
571 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
572 		switch (btf_kind(t)) {
573 		case BTF_KIND_INT:
574 		case BTF_KIND_STRUCT:
575 		case BTF_KIND_UNION:
576 		case BTF_KIND_ENUM:
577 		case BTF_KIND_DATASEC:
578 		case BTF_KIND_FLOAT:
579 			size = t->size;
580 			goto done;
581 		case BTF_KIND_PTR:
582 			size = btf_ptr_sz(btf);
583 			goto done;
584 		case BTF_KIND_TYPEDEF:
585 		case BTF_KIND_VOLATILE:
586 		case BTF_KIND_CONST:
587 		case BTF_KIND_RESTRICT:
588 		case BTF_KIND_VAR:
589 			type_id = t->type;
590 			break;
591 		case BTF_KIND_ARRAY:
592 			array = btf_array(t);
593 			if (nelems && array->nelems > UINT32_MAX / nelems)
594 				return libbpf_err(-E2BIG);
595 			nelems *= array->nelems;
596 			type_id = array->type;
597 			break;
598 		default:
599 			return libbpf_err(-EINVAL);
600 		}
601 
602 		t = btf__type_by_id(btf, type_id);
603 	}
604 
605 done:
606 	if (size < 0)
607 		return libbpf_err(-EINVAL);
608 	if (nelems && size > UINT32_MAX / nelems)
609 		return libbpf_err(-E2BIG);
610 
611 	return nelems * size;
612 }
613 
614 int btf__align_of(const struct btf *btf, __u32 id)
615 {
616 	const struct btf_type *t = btf__type_by_id(btf, id);
617 	__u16 kind = btf_kind(t);
618 
619 	switch (kind) {
620 	case BTF_KIND_INT:
621 	case BTF_KIND_ENUM:
622 	case BTF_KIND_FLOAT:
623 		return min(btf_ptr_sz(btf), (size_t)t->size);
624 	case BTF_KIND_PTR:
625 		return btf_ptr_sz(btf);
626 	case BTF_KIND_TYPEDEF:
627 	case BTF_KIND_VOLATILE:
628 	case BTF_KIND_CONST:
629 	case BTF_KIND_RESTRICT:
630 		return btf__align_of(btf, t->type);
631 	case BTF_KIND_ARRAY:
632 		return btf__align_of(btf, btf_array(t)->type);
633 	case BTF_KIND_STRUCT:
634 	case BTF_KIND_UNION: {
635 		const struct btf_member *m = btf_members(t);
636 		__u16 vlen = btf_vlen(t);
637 		int i, max_align = 1, align;
638 
639 		for (i = 0; i < vlen; i++, m++) {
640 			align = btf__align_of(btf, m->type);
641 			if (align <= 0)
642 				return libbpf_err(align);
643 			max_align = max(max_align, align);
644 		}
645 
646 		return max_align;
647 	}
648 	default:
649 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
650 		return errno = EINVAL, 0;
651 	}
652 }
653 
654 int btf__resolve_type(const struct btf *btf, __u32 type_id)
655 {
656 	const struct btf_type *t;
657 	int depth = 0;
658 
659 	t = btf__type_by_id(btf, type_id);
660 	while (depth < MAX_RESOLVE_DEPTH &&
661 	       !btf_type_is_void_or_null(t) &&
662 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
663 		type_id = t->type;
664 		t = btf__type_by_id(btf, type_id);
665 		depth++;
666 	}
667 
668 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
669 		return libbpf_err(-EINVAL);
670 
671 	return type_id;
672 }
673 
674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
675 {
676 	__u32 i, nr_types = btf__get_nr_types(btf);
677 
678 	if (!strcmp(type_name, "void"))
679 		return 0;
680 
681 	for (i = 1; i <= nr_types; i++) {
682 		const struct btf_type *t = btf__type_by_id(btf, i);
683 		const char *name = btf__name_by_offset(btf, t->name_off);
684 
685 		if (name && !strcmp(type_name, name))
686 			return i;
687 	}
688 
689 	return libbpf_err(-ENOENT);
690 }
691 
692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
693 			     __u32 kind)
694 {
695 	__u32 i, nr_types = btf__get_nr_types(btf);
696 
697 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
698 		return 0;
699 
700 	for (i = 1; i <= nr_types; i++) {
701 		const struct btf_type *t = btf__type_by_id(btf, i);
702 		const char *name;
703 
704 		if (btf_kind(t) != kind)
705 			continue;
706 		name = btf__name_by_offset(btf, t->name_off);
707 		if (name && !strcmp(type_name, name))
708 			return i;
709 	}
710 
711 	return libbpf_err(-ENOENT);
712 }
713 
714 static bool btf_is_modifiable(const struct btf *btf)
715 {
716 	return (void *)btf->hdr != btf->raw_data;
717 }
718 
719 void btf__free(struct btf *btf)
720 {
721 	if (IS_ERR_OR_NULL(btf))
722 		return;
723 
724 	if (btf->fd >= 0)
725 		close(btf->fd);
726 
727 	if (btf_is_modifiable(btf)) {
728 		/* if BTF was modified after loading, it will have a split
729 		 * in-memory representation for header, types, and strings
730 		 * sections, so we need to free all of them individually. It
731 		 * might still have a cached contiguous raw data present,
732 		 * which will be unconditionally freed below.
733 		 */
734 		free(btf->hdr);
735 		free(btf->types_data);
736 		strset__free(btf->strs_set);
737 	}
738 	free(btf->raw_data);
739 	free(btf->raw_data_swapped);
740 	free(btf->type_offs);
741 	free(btf);
742 }
743 
744 static struct btf *btf_new_empty(struct btf *base_btf)
745 {
746 	struct btf *btf;
747 
748 	btf = calloc(1, sizeof(*btf));
749 	if (!btf)
750 		return ERR_PTR(-ENOMEM);
751 
752 	btf->nr_types = 0;
753 	btf->start_id = 1;
754 	btf->start_str_off = 0;
755 	btf->fd = -1;
756 	btf->ptr_sz = sizeof(void *);
757 	btf->swapped_endian = false;
758 
759 	if (base_btf) {
760 		btf->base_btf = base_btf;
761 		btf->start_id = btf__get_nr_types(base_btf) + 1;
762 		btf->start_str_off = base_btf->hdr->str_len;
763 	}
764 
765 	/* +1 for empty string at offset 0 */
766 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
767 	btf->raw_data = calloc(1, btf->raw_size);
768 	if (!btf->raw_data) {
769 		free(btf);
770 		return ERR_PTR(-ENOMEM);
771 	}
772 
773 	btf->hdr = btf->raw_data;
774 	btf->hdr->hdr_len = sizeof(struct btf_header);
775 	btf->hdr->magic = BTF_MAGIC;
776 	btf->hdr->version = BTF_VERSION;
777 
778 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
779 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
781 
782 	return btf;
783 }
784 
785 struct btf *btf__new_empty(void)
786 {
787 	return libbpf_ptr(btf_new_empty(NULL));
788 }
789 
790 struct btf *btf__new_empty_split(struct btf *base_btf)
791 {
792 	return libbpf_ptr(btf_new_empty(base_btf));
793 }
794 
795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
796 {
797 	struct btf *btf;
798 	int err;
799 
800 	btf = calloc(1, sizeof(struct btf));
801 	if (!btf)
802 		return ERR_PTR(-ENOMEM);
803 
804 	btf->nr_types = 0;
805 	btf->start_id = 1;
806 	btf->start_str_off = 0;
807 
808 	if (base_btf) {
809 		btf->base_btf = base_btf;
810 		btf->start_id = btf__get_nr_types(base_btf) + 1;
811 		btf->start_str_off = base_btf->hdr->str_len;
812 	}
813 
814 	btf->raw_data = malloc(size);
815 	if (!btf->raw_data) {
816 		err = -ENOMEM;
817 		goto done;
818 	}
819 	memcpy(btf->raw_data, data, size);
820 	btf->raw_size = size;
821 
822 	btf->hdr = btf->raw_data;
823 	err = btf_parse_hdr(btf);
824 	if (err)
825 		goto done;
826 
827 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
828 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
829 
830 	err = btf_parse_str_sec(btf);
831 	err = err ?: btf_parse_type_sec(btf);
832 	if (err)
833 		goto done;
834 
835 	btf->fd = -1;
836 
837 done:
838 	if (err) {
839 		btf__free(btf);
840 		return ERR_PTR(err);
841 	}
842 
843 	return btf;
844 }
845 
846 struct btf *btf__new(const void *data, __u32 size)
847 {
848 	return libbpf_ptr(btf_new(data, size, NULL));
849 }
850 
851 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
852 				 struct btf_ext **btf_ext)
853 {
854 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
855 	int err = 0, fd = -1, idx = 0;
856 	struct btf *btf = NULL;
857 	Elf_Scn *scn = NULL;
858 	Elf *elf = NULL;
859 	GElf_Ehdr ehdr;
860 	size_t shstrndx;
861 
862 	if (elf_version(EV_CURRENT) == EV_NONE) {
863 		pr_warn("failed to init libelf for %s\n", path);
864 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
865 	}
866 
867 	fd = open(path, O_RDONLY);
868 	if (fd < 0) {
869 		err = -errno;
870 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
871 		return ERR_PTR(err);
872 	}
873 
874 	err = -LIBBPF_ERRNO__FORMAT;
875 
876 	elf = elf_begin(fd, ELF_C_READ, NULL);
877 	if (!elf) {
878 		pr_warn("failed to open %s as ELF file\n", path);
879 		goto done;
880 	}
881 	if (!gelf_getehdr(elf, &ehdr)) {
882 		pr_warn("failed to get EHDR from %s\n", path);
883 		goto done;
884 	}
885 
886 	if (elf_getshdrstrndx(elf, &shstrndx)) {
887 		pr_warn("failed to get section names section index for %s\n",
888 			path);
889 		goto done;
890 	}
891 
892 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
893 		pr_warn("failed to get e_shstrndx from %s\n", path);
894 		goto done;
895 	}
896 
897 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
898 		GElf_Shdr sh;
899 		char *name;
900 
901 		idx++;
902 		if (gelf_getshdr(scn, &sh) != &sh) {
903 			pr_warn("failed to get section(%d) header from %s\n",
904 				idx, path);
905 			goto done;
906 		}
907 		name = elf_strptr(elf, shstrndx, sh.sh_name);
908 		if (!name) {
909 			pr_warn("failed to get section(%d) name from %s\n",
910 				idx, path);
911 			goto done;
912 		}
913 		if (strcmp(name, BTF_ELF_SEC) == 0) {
914 			btf_data = elf_getdata(scn, 0);
915 			if (!btf_data) {
916 				pr_warn("failed to get section(%d, %s) data from %s\n",
917 					idx, name, path);
918 				goto done;
919 			}
920 			continue;
921 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
922 			btf_ext_data = elf_getdata(scn, 0);
923 			if (!btf_ext_data) {
924 				pr_warn("failed to get section(%d, %s) data from %s\n",
925 					idx, name, path);
926 				goto done;
927 			}
928 			continue;
929 		}
930 	}
931 
932 	err = 0;
933 
934 	if (!btf_data) {
935 		err = -ENOENT;
936 		goto done;
937 	}
938 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
939 	err = libbpf_get_error(btf);
940 	if (err)
941 		goto done;
942 
943 	switch (gelf_getclass(elf)) {
944 	case ELFCLASS32:
945 		btf__set_pointer_size(btf, 4);
946 		break;
947 	case ELFCLASS64:
948 		btf__set_pointer_size(btf, 8);
949 		break;
950 	default:
951 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
952 		break;
953 	}
954 
955 	if (btf_ext && btf_ext_data) {
956 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
957 		err = libbpf_get_error(*btf_ext);
958 		if (err)
959 			goto done;
960 	} else if (btf_ext) {
961 		*btf_ext = NULL;
962 	}
963 done:
964 	if (elf)
965 		elf_end(elf);
966 	close(fd);
967 
968 	if (!err)
969 		return btf;
970 
971 	if (btf_ext)
972 		btf_ext__free(*btf_ext);
973 	btf__free(btf);
974 
975 	return ERR_PTR(err);
976 }
977 
978 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
979 {
980 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
981 }
982 
983 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
984 {
985 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
986 }
987 
988 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
989 {
990 	struct btf *btf = NULL;
991 	void *data = NULL;
992 	FILE *f = NULL;
993 	__u16 magic;
994 	int err = 0;
995 	long sz;
996 
997 	f = fopen(path, "rb");
998 	if (!f) {
999 		err = -errno;
1000 		goto err_out;
1001 	}
1002 
1003 	/* check BTF magic */
1004 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1005 		err = -EIO;
1006 		goto err_out;
1007 	}
1008 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1009 		/* definitely not a raw BTF */
1010 		err = -EPROTO;
1011 		goto err_out;
1012 	}
1013 
1014 	/* get file size */
1015 	if (fseek(f, 0, SEEK_END)) {
1016 		err = -errno;
1017 		goto err_out;
1018 	}
1019 	sz = ftell(f);
1020 	if (sz < 0) {
1021 		err = -errno;
1022 		goto err_out;
1023 	}
1024 	/* rewind to the start */
1025 	if (fseek(f, 0, SEEK_SET)) {
1026 		err = -errno;
1027 		goto err_out;
1028 	}
1029 
1030 	/* pre-alloc memory and read all of BTF data */
1031 	data = malloc(sz);
1032 	if (!data) {
1033 		err = -ENOMEM;
1034 		goto err_out;
1035 	}
1036 	if (fread(data, 1, sz, f) < sz) {
1037 		err = -EIO;
1038 		goto err_out;
1039 	}
1040 
1041 	/* finally parse BTF data */
1042 	btf = btf_new(data, sz, base_btf);
1043 
1044 err_out:
1045 	free(data);
1046 	if (f)
1047 		fclose(f);
1048 	return err ? ERR_PTR(err) : btf;
1049 }
1050 
1051 struct btf *btf__parse_raw(const char *path)
1052 {
1053 	return libbpf_ptr(btf_parse_raw(path, NULL));
1054 }
1055 
1056 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1057 {
1058 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1059 }
1060 
1061 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1062 {
1063 	struct btf *btf;
1064 	int err;
1065 
1066 	if (btf_ext)
1067 		*btf_ext = NULL;
1068 
1069 	btf = btf_parse_raw(path, base_btf);
1070 	err = libbpf_get_error(btf);
1071 	if (!err)
1072 		return btf;
1073 	if (err != -EPROTO)
1074 		return ERR_PTR(err);
1075 	return btf_parse_elf(path, base_btf, btf_ext);
1076 }
1077 
1078 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1079 {
1080 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1081 }
1082 
1083 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1084 {
1085 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1086 }
1087 
1088 static int compare_vsi_off(const void *_a, const void *_b)
1089 {
1090 	const struct btf_var_secinfo *a = _a;
1091 	const struct btf_var_secinfo *b = _b;
1092 
1093 	return a->offset - b->offset;
1094 }
1095 
1096 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1097 			     struct btf_type *t)
1098 {
1099 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1100 	const char *name = btf__name_by_offset(btf, t->name_off);
1101 	const struct btf_type *t_var;
1102 	struct btf_var_secinfo *vsi;
1103 	const struct btf_var *var;
1104 	int ret;
1105 
1106 	if (!name) {
1107 		pr_debug("No name found in string section for DATASEC kind.\n");
1108 		return -ENOENT;
1109 	}
1110 
1111 	/* .extern datasec size and var offsets were set correctly during
1112 	 * extern collection step, so just skip straight to sorting variables
1113 	 */
1114 	if (t->size)
1115 		goto sort_vars;
1116 
1117 	ret = bpf_object__section_size(obj, name, &size);
1118 	if (ret || !size || (t->size && t->size != size)) {
1119 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1120 		return -ENOENT;
1121 	}
1122 
1123 	t->size = size;
1124 
1125 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1126 		t_var = btf__type_by_id(btf, vsi->type);
1127 		var = btf_var(t_var);
1128 
1129 		if (!btf_is_var(t_var)) {
1130 			pr_debug("Non-VAR type seen in section %s\n", name);
1131 			return -EINVAL;
1132 		}
1133 
1134 		if (var->linkage == BTF_VAR_STATIC)
1135 			continue;
1136 
1137 		name = btf__name_by_offset(btf, t_var->name_off);
1138 		if (!name) {
1139 			pr_debug("No name found in string section for VAR kind\n");
1140 			return -ENOENT;
1141 		}
1142 
1143 		ret = bpf_object__variable_offset(obj, name, &off);
1144 		if (ret) {
1145 			pr_debug("No offset found in symbol table for VAR %s\n",
1146 				 name);
1147 			return -ENOENT;
1148 		}
1149 
1150 		vsi->offset = off;
1151 	}
1152 
1153 sort_vars:
1154 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1155 	return 0;
1156 }
1157 
1158 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1159 {
1160 	int err = 0;
1161 	__u32 i;
1162 
1163 	for (i = 1; i <= btf->nr_types; i++) {
1164 		struct btf_type *t = btf_type_by_id(btf, i);
1165 
1166 		/* Loader needs to fix up some of the things compiler
1167 		 * couldn't get its hands on while emitting BTF. This
1168 		 * is section size and global variable offset. We use
1169 		 * the info from the ELF itself for this purpose.
1170 		 */
1171 		if (btf_is_datasec(t)) {
1172 			err = btf_fixup_datasec(obj, btf, t);
1173 			if (err)
1174 				break;
1175 		}
1176 	}
1177 
1178 	return libbpf_err(err);
1179 }
1180 
1181 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1182 
1183 int btf__load_into_kernel(struct btf *btf)
1184 {
1185 	__u32 log_buf_size = 0, raw_size;
1186 	char *log_buf = NULL;
1187 	void *raw_data;
1188 	int err = 0;
1189 
1190 	if (btf->fd >= 0)
1191 		return libbpf_err(-EEXIST);
1192 
1193 retry_load:
1194 	if (log_buf_size) {
1195 		log_buf = malloc(log_buf_size);
1196 		if (!log_buf)
1197 			return libbpf_err(-ENOMEM);
1198 
1199 		*log_buf = 0;
1200 	}
1201 
1202 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1203 	if (!raw_data) {
1204 		err = -ENOMEM;
1205 		goto done;
1206 	}
1207 	/* cache native raw data representation */
1208 	btf->raw_size = raw_size;
1209 	btf->raw_data = raw_data;
1210 
1211 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1212 	if (btf->fd < 0) {
1213 		if (!log_buf || errno == ENOSPC) {
1214 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1215 					   log_buf_size << 1);
1216 			free(log_buf);
1217 			goto retry_load;
1218 		}
1219 
1220 		err = -errno;
1221 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1222 		if (*log_buf)
1223 			pr_warn("%s\n", log_buf);
1224 		goto done;
1225 	}
1226 
1227 done:
1228 	free(log_buf);
1229 	return libbpf_err(err);
1230 }
1231 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1232 
1233 int btf__fd(const struct btf *btf)
1234 {
1235 	return btf->fd;
1236 }
1237 
1238 void btf__set_fd(struct btf *btf, int fd)
1239 {
1240 	btf->fd = fd;
1241 }
1242 
1243 static const void *btf_strs_data(const struct btf *btf)
1244 {
1245 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1246 }
1247 
1248 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1249 {
1250 	struct btf_header *hdr = btf->hdr;
1251 	struct btf_type *t;
1252 	void *data, *p;
1253 	__u32 data_sz;
1254 	int i;
1255 
1256 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1257 	if (data) {
1258 		*size = btf->raw_size;
1259 		return data;
1260 	}
1261 
1262 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1263 	data = calloc(1, data_sz);
1264 	if (!data)
1265 		return NULL;
1266 	p = data;
1267 
1268 	memcpy(p, hdr, hdr->hdr_len);
1269 	if (swap_endian)
1270 		btf_bswap_hdr(p);
1271 	p += hdr->hdr_len;
1272 
1273 	memcpy(p, btf->types_data, hdr->type_len);
1274 	if (swap_endian) {
1275 		for (i = 0; i < btf->nr_types; i++) {
1276 			t = p + btf->type_offs[i];
1277 			/* btf_bswap_type_rest() relies on native t->info, so
1278 			 * we swap base type info after we swapped all the
1279 			 * additional information
1280 			 */
1281 			if (btf_bswap_type_rest(t))
1282 				goto err_out;
1283 			btf_bswap_type_base(t);
1284 		}
1285 	}
1286 	p += hdr->type_len;
1287 
1288 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1289 	p += hdr->str_len;
1290 
1291 	*size = data_sz;
1292 	return data;
1293 err_out:
1294 	free(data);
1295 	return NULL;
1296 }
1297 
1298 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1299 {
1300 	struct btf *btf = (struct btf *)btf_ro;
1301 	__u32 data_sz;
1302 	void *data;
1303 
1304 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1305 	if (!data)
1306 		return errno = -ENOMEM, NULL;
1307 
1308 	btf->raw_size = data_sz;
1309 	if (btf->swapped_endian)
1310 		btf->raw_data_swapped = data;
1311 	else
1312 		btf->raw_data = data;
1313 	*size = data_sz;
1314 	return data;
1315 }
1316 
1317 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1318 {
1319 	if (offset < btf->start_str_off)
1320 		return btf__str_by_offset(btf->base_btf, offset);
1321 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1322 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1323 	else
1324 		return errno = EINVAL, NULL;
1325 }
1326 
1327 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1328 {
1329 	return btf__str_by_offset(btf, offset);
1330 }
1331 
1332 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1333 {
1334 	struct bpf_btf_info btf_info;
1335 	__u32 len = sizeof(btf_info);
1336 	__u32 last_size;
1337 	struct btf *btf;
1338 	void *ptr;
1339 	int err;
1340 
1341 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1342 	 * let's start with a sane default - 4KiB here - and resize it only if
1343 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1344 	 */
1345 	last_size = 4096;
1346 	ptr = malloc(last_size);
1347 	if (!ptr)
1348 		return ERR_PTR(-ENOMEM);
1349 
1350 	memset(&btf_info, 0, sizeof(btf_info));
1351 	btf_info.btf = ptr_to_u64(ptr);
1352 	btf_info.btf_size = last_size;
1353 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1354 
1355 	if (!err && btf_info.btf_size > last_size) {
1356 		void *temp_ptr;
1357 
1358 		last_size = btf_info.btf_size;
1359 		temp_ptr = realloc(ptr, last_size);
1360 		if (!temp_ptr) {
1361 			btf = ERR_PTR(-ENOMEM);
1362 			goto exit_free;
1363 		}
1364 		ptr = temp_ptr;
1365 
1366 		len = sizeof(btf_info);
1367 		memset(&btf_info, 0, sizeof(btf_info));
1368 		btf_info.btf = ptr_to_u64(ptr);
1369 		btf_info.btf_size = last_size;
1370 
1371 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1372 	}
1373 
1374 	if (err || btf_info.btf_size > last_size) {
1375 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1376 		goto exit_free;
1377 	}
1378 
1379 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1380 
1381 exit_free:
1382 	free(ptr);
1383 	return btf;
1384 }
1385 
1386 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1387 {
1388 	struct btf *btf;
1389 	int btf_fd;
1390 
1391 	btf_fd = bpf_btf_get_fd_by_id(id);
1392 	if (btf_fd < 0)
1393 		return libbpf_err_ptr(-errno);
1394 
1395 	btf = btf_get_from_fd(btf_fd, base_btf);
1396 	close(btf_fd);
1397 
1398 	return libbpf_ptr(btf);
1399 }
1400 
1401 struct btf *btf__load_from_kernel_by_id(__u32 id)
1402 {
1403 	return btf__load_from_kernel_by_id_split(id, NULL);
1404 }
1405 
1406 int btf__get_from_id(__u32 id, struct btf **btf)
1407 {
1408 	struct btf *res;
1409 	int err;
1410 
1411 	*btf = NULL;
1412 	res = btf__load_from_kernel_by_id(id);
1413 	err = libbpf_get_error(res);
1414 
1415 	if (err)
1416 		return libbpf_err(err);
1417 
1418 	*btf = res;
1419 	return 0;
1420 }
1421 
1422 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1423 			 __u32 expected_key_size, __u32 expected_value_size,
1424 			 __u32 *key_type_id, __u32 *value_type_id)
1425 {
1426 	const struct btf_type *container_type;
1427 	const struct btf_member *key, *value;
1428 	const size_t max_name = 256;
1429 	char container_name[max_name];
1430 	__s64 key_size, value_size;
1431 	__s32 container_id;
1432 
1433 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1434 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1435 			map_name, map_name);
1436 		return libbpf_err(-EINVAL);
1437 	}
1438 
1439 	container_id = btf__find_by_name(btf, container_name);
1440 	if (container_id < 0) {
1441 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1442 			 map_name, container_name);
1443 		return libbpf_err(container_id);
1444 	}
1445 
1446 	container_type = btf__type_by_id(btf, container_id);
1447 	if (!container_type) {
1448 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1449 			map_name, container_id);
1450 		return libbpf_err(-EINVAL);
1451 	}
1452 
1453 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1454 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1455 			map_name, container_name);
1456 		return libbpf_err(-EINVAL);
1457 	}
1458 
1459 	key = btf_members(container_type);
1460 	value = key + 1;
1461 
1462 	key_size = btf__resolve_size(btf, key->type);
1463 	if (key_size < 0) {
1464 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1465 		return libbpf_err(key_size);
1466 	}
1467 
1468 	if (expected_key_size != key_size) {
1469 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1470 			map_name, (__u32)key_size, expected_key_size);
1471 		return libbpf_err(-EINVAL);
1472 	}
1473 
1474 	value_size = btf__resolve_size(btf, value->type);
1475 	if (value_size < 0) {
1476 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1477 		return libbpf_err(value_size);
1478 	}
1479 
1480 	if (expected_value_size != value_size) {
1481 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1482 			map_name, (__u32)value_size, expected_value_size);
1483 		return libbpf_err(-EINVAL);
1484 	}
1485 
1486 	*key_type_id = key->type;
1487 	*value_type_id = value->type;
1488 
1489 	return 0;
1490 }
1491 
1492 static void btf_invalidate_raw_data(struct btf *btf)
1493 {
1494 	if (btf->raw_data) {
1495 		free(btf->raw_data);
1496 		btf->raw_data = NULL;
1497 	}
1498 	if (btf->raw_data_swapped) {
1499 		free(btf->raw_data_swapped);
1500 		btf->raw_data_swapped = NULL;
1501 	}
1502 }
1503 
1504 /* Ensure BTF is ready to be modified (by splitting into a three memory
1505  * regions for header, types, and strings). Also invalidate cached
1506  * raw_data, if any.
1507  */
1508 static int btf_ensure_modifiable(struct btf *btf)
1509 {
1510 	void *hdr, *types;
1511 	struct strset *set = NULL;
1512 	int err = -ENOMEM;
1513 
1514 	if (btf_is_modifiable(btf)) {
1515 		/* any BTF modification invalidates raw_data */
1516 		btf_invalidate_raw_data(btf);
1517 		return 0;
1518 	}
1519 
1520 	/* split raw data into three memory regions */
1521 	hdr = malloc(btf->hdr->hdr_len);
1522 	types = malloc(btf->hdr->type_len);
1523 	if (!hdr || !types)
1524 		goto err_out;
1525 
1526 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1527 	memcpy(types, btf->types_data, btf->hdr->type_len);
1528 
1529 	/* build lookup index for all strings */
1530 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1531 	if (IS_ERR(set)) {
1532 		err = PTR_ERR(set);
1533 		goto err_out;
1534 	}
1535 
1536 	/* only when everything was successful, update internal state */
1537 	btf->hdr = hdr;
1538 	btf->types_data = types;
1539 	btf->types_data_cap = btf->hdr->type_len;
1540 	btf->strs_data = NULL;
1541 	btf->strs_set = set;
1542 	/* if BTF was created from scratch, all strings are guaranteed to be
1543 	 * unique and deduplicated
1544 	 */
1545 	if (btf->hdr->str_len == 0)
1546 		btf->strs_deduped = true;
1547 	if (!btf->base_btf && btf->hdr->str_len == 1)
1548 		btf->strs_deduped = true;
1549 
1550 	/* invalidate raw_data representation */
1551 	btf_invalidate_raw_data(btf);
1552 
1553 	return 0;
1554 
1555 err_out:
1556 	strset__free(set);
1557 	free(hdr);
1558 	free(types);
1559 	return err;
1560 }
1561 
1562 /* Find an offset in BTF string section that corresponds to a given string *s*.
1563  * Returns:
1564  *   - >0 offset into string section, if string is found;
1565  *   - -ENOENT, if string is not in the string section;
1566  *   - <0, on any other error.
1567  */
1568 int btf__find_str(struct btf *btf, const char *s)
1569 {
1570 	int off;
1571 
1572 	if (btf->base_btf) {
1573 		off = btf__find_str(btf->base_btf, s);
1574 		if (off != -ENOENT)
1575 			return off;
1576 	}
1577 
1578 	/* BTF needs to be in a modifiable state to build string lookup index */
1579 	if (btf_ensure_modifiable(btf))
1580 		return libbpf_err(-ENOMEM);
1581 
1582 	off = strset__find_str(btf->strs_set, s);
1583 	if (off < 0)
1584 		return libbpf_err(off);
1585 
1586 	return btf->start_str_off + off;
1587 }
1588 
1589 /* Add a string s to the BTF string section.
1590  * Returns:
1591  *   - > 0 offset into string section, on success;
1592  *   - < 0, on error.
1593  */
1594 int btf__add_str(struct btf *btf, const char *s)
1595 {
1596 	int off;
1597 
1598 	if (btf->base_btf) {
1599 		off = btf__find_str(btf->base_btf, s);
1600 		if (off != -ENOENT)
1601 			return off;
1602 	}
1603 
1604 	if (btf_ensure_modifiable(btf))
1605 		return libbpf_err(-ENOMEM);
1606 
1607 	off = strset__add_str(btf->strs_set, s);
1608 	if (off < 0)
1609 		return libbpf_err(off);
1610 
1611 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1612 
1613 	return btf->start_str_off + off;
1614 }
1615 
1616 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1617 {
1618 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1619 			      btf->hdr->type_len, UINT_MAX, add_sz);
1620 }
1621 
1622 static void btf_type_inc_vlen(struct btf_type *t)
1623 {
1624 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1625 }
1626 
1627 static int btf_commit_type(struct btf *btf, int data_sz)
1628 {
1629 	int err;
1630 
1631 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1632 	if (err)
1633 		return libbpf_err(err);
1634 
1635 	btf->hdr->type_len += data_sz;
1636 	btf->hdr->str_off += data_sz;
1637 	btf->nr_types++;
1638 	return btf->start_id + btf->nr_types - 1;
1639 }
1640 
1641 struct btf_pipe {
1642 	const struct btf *src;
1643 	struct btf *dst;
1644 };
1645 
1646 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1647 {
1648 	struct btf_pipe *p = ctx;
1649 	int off;
1650 
1651 	if (!*str_off) /* nothing to do for empty strings */
1652 		return 0;
1653 
1654 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1655 	if (off < 0)
1656 		return off;
1657 
1658 	*str_off = off;
1659 	return 0;
1660 }
1661 
1662 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1663 {
1664 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1665 	struct btf_type *t;
1666 	int sz, err;
1667 
1668 	sz = btf_type_size(src_type);
1669 	if (sz < 0)
1670 		return libbpf_err(sz);
1671 
1672 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1673 	if (btf_ensure_modifiable(btf))
1674 		return libbpf_err(-ENOMEM);
1675 
1676 	t = btf_add_type_mem(btf, sz);
1677 	if (!t)
1678 		return libbpf_err(-ENOMEM);
1679 
1680 	memcpy(t, src_type, sz);
1681 
1682 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1683 	if (err)
1684 		return libbpf_err(err);
1685 
1686 	return btf_commit_type(btf, sz);
1687 }
1688 
1689 /*
1690  * Append new BTF_KIND_INT type with:
1691  *   - *name* - non-empty, non-NULL type name;
1692  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1693  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1694  * Returns:
1695  *   - >0, type ID of newly added BTF type;
1696  *   - <0, on error.
1697  */
1698 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1699 {
1700 	struct btf_type *t;
1701 	int sz, name_off;
1702 
1703 	/* non-empty name */
1704 	if (!name || !name[0])
1705 		return libbpf_err(-EINVAL);
1706 	/* byte_sz must be power of 2 */
1707 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1708 		return libbpf_err(-EINVAL);
1709 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1710 		return libbpf_err(-EINVAL);
1711 
1712 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1713 	if (btf_ensure_modifiable(btf))
1714 		return libbpf_err(-ENOMEM);
1715 
1716 	sz = sizeof(struct btf_type) + sizeof(int);
1717 	t = btf_add_type_mem(btf, sz);
1718 	if (!t)
1719 		return libbpf_err(-ENOMEM);
1720 
1721 	/* if something goes wrong later, we might end up with an extra string,
1722 	 * but that shouldn't be a problem, because BTF can't be constructed
1723 	 * completely anyway and will most probably be just discarded
1724 	 */
1725 	name_off = btf__add_str(btf, name);
1726 	if (name_off < 0)
1727 		return name_off;
1728 
1729 	t->name_off = name_off;
1730 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1731 	t->size = byte_sz;
1732 	/* set INT info, we don't allow setting legacy bit offset/size */
1733 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1734 
1735 	return btf_commit_type(btf, sz);
1736 }
1737 
1738 /*
1739  * Append new BTF_KIND_FLOAT type with:
1740  *   - *name* - non-empty, non-NULL type name;
1741  *   - *sz* - size of the type, in bytes;
1742  * Returns:
1743  *   - >0, type ID of newly added BTF type;
1744  *   - <0, on error.
1745  */
1746 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1747 {
1748 	struct btf_type *t;
1749 	int sz, name_off;
1750 
1751 	/* non-empty name */
1752 	if (!name || !name[0])
1753 		return libbpf_err(-EINVAL);
1754 
1755 	/* byte_sz must be one of the explicitly allowed values */
1756 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1757 	    byte_sz != 16)
1758 		return libbpf_err(-EINVAL);
1759 
1760 	if (btf_ensure_modifiable(btf))
1761 		return libbpf_err(-ENOMEM);
1762 
1763 	sz = sizeof(struct btf_type);
1764 	t = btf_add_type_mem(btf, sz);
1765 	if (!t)
1766 		return libbpf_err(-ENOMEM);
1767 
1768 	name_off = btf__add_str(btf, name);
1769 	if (name_off < 0)
1770 		return name_off;
1771 
1772 	t->name_off = name_off;
1773 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1774 	t->size = byte_sz;
1775 
1776 	return btf_commit_type(btf, sz);
1777 }
1778 
1779 /* it's completely legal to append BTF types with type IDs pointing forward to
1780  * types that haven't been appended yet, so we only make sure that id looks
1781  * sane, we can't guarantee that ID will always be valid
1782  */
1783 static int validate_type_id(int id)
1784 {
1785 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1786 		return -EINVAL;
1787 	return 0;
1788 }
1789 
1790 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1791 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1792 {
1793 	struct btf_type *t;
1794 	int sz, name_off = 0;
1795 
1796 	if (validate_type_id(ref_type_id))
1797 		return libbpf_err(-EINVAL);
1798 
1799 	if (btf_ensure_modifiable(btf))
1800 		return libbpf_err(-ENOMEM);
1801 
1802 	sz = sizeof(struct btf_type);
1803 	t = btf_add_type_mem(btf, sz);
1804 	if (!t)
1805 		return libbpf_err(-ENOMEM);
1806 
1807 	if (name && name[0]) {
1808 		name_off = btf__add_str(btf, name);
1809 		if (name_off < 0)
1810 			return name_off;
1811 	}
1812 
1813 	t->name_off = name_off;
1814 	t->info = btf_type_info(kind, 0, 0);
1815 	t->type = ref_type_id;
1816 
1817 	return btf_commit_type(btf, sz);
1818 }
1819 
1820 /*
1821  * Append new BTF_KIND_PTR type with:
1822  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1823  * Returns:
1824  *   - >0, type ID of newly added BTF type;
1825  *   - <0, on error.
1826  */
1827 int btf__add_ptr(struct btf *btf, int ref_type_id)
1828 {
1829 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1830 }
1831 
1832 /*
1833  * Append new BTF_KIND_ARRAY type with:
1834  *   - *index_type_id* - type ID of the type describing array index;
1835  *   - *elem_type_id* - type ID of the type describing array element;
1836  *   - *nr_elems* - the size of the array;
1837  * Returns:
1838  *   - >0, type ID of newly added BTF type;
1839  *   - <0, on error.
1840  */
1841 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1842 {
1843 	struct btf_type *t;
1844 	struct btf_array *a;
1845 	int sz;
1846 
1847 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1848 		return libbpf_err(-EINVAL);
1849 
1850 	if (btf_ensure_modifiable(btf))
1851 		return libbpf_err(-ENOMEM);
1852 
1853 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1854 	t = btf_add_type_mem(btf, sz);
1855 	if (!t)
1856 		return libbpf_err(-ENOMEM);
1857 
1858 	t->name_off = 0;
1859 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1860 	t->size = 0;
1861 
1862 	a = btf_array(t);
1863 	a->type = elem_type_id;
1864 	a->index_type = index_type_id;
1865 	a->nelems = nr_elems;
1866 
1867 	return btf_commit_type(btf, sz);
1868 }
1869 
1870 /* generic STRUCT/UNION append function */
1871 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1872 {
1873 	struct btf_type *t;
1874 	int sz, name_off = 0;
1875 
1876 	if (btf_ensure_modifiable(btf))
1877 		return libbpf_err(-ENOMEM);
1878 
1879 	sz = sizeof(struct btf_type);
1880 	t = btf_add_type_mem(btf, sz);
1881 	if (!t)
1882 		return libbpf_err(-ENOMEM);
1883 
1884 	if (name && name[0]) {
1885 		name_off = btf__add_str(btf, name);
1886 		if (name_off < 0)
1887 			return name_off;
1888 	}
1889 
1890 	/* start out with vlen=0 and no kflag; this will be adjusted when
1891 	 * adding each member
1892 	 */
1893 	t->name_off = name_off;
1894 	t->info = btf_type_info(kind, 0, 0);
1895 	t->size = bytes_sz;
1896 
1897 	return btf_commit_type(btf, sz);
1898 }
1899 
1900 /*
1901  * Append new BTF_KIND_STRUCT type with:
1902  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1903  *   - *byte_sz* - size of the struct, in bytes;
1904  *
1905  * Struct initially has no fields in it. Fields can be added by
1906  * btf__add_field() right after btf__add_struct() succeeds.
1907  *
1908  * Returns:
1909  *   - >0, type ID of newly added BTF type;
1910  *   - <0, on error.
1911  */
1912 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1913 {
1914 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1915 }
1916 
1917 /*
1918  * Append new BTF_KIND_UNION type with:
1919  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1920  *   - *byte_sz* - size of the union, in bytes;
1921  *
1922  * Union initially has no fields in it. Fields can be added by
1923  * btf__add_field() right after btf__add_union() succeeds. All fields
1924  * should have *bit_offset* of 0.
1925  *
1926  * Returns:
1927  *   - >0, type ID of newly added BTF type;
1928  *   - <0, on error.
1929  */
1930 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1931 {
1932 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1933 }
1934 
1935 static struct btf_type *btf_last_type(struct btf *btf)
1936 {
1937 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1938 }
1939 
1940 /*
1941  * Append new field for the current STRUCT/UNION type with:
1942  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1943  *   - *type_id* - type ID for the type describing field type;
1944  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1945  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1946  * Returns:
1947  *   -  0, on success;
1948  *   - <0, on error.
1949  */
1950 int btf__add_field(struct btf *btf, const char *name, int type_id,
1951 		   __u32 bit_offset, __u32 bit_size)
1952 {
1953 	struct btf_type *t;
1954 	struct btf_member *m;
1955 	bool is_bitfield;
1956 	int sz, name_off = 0;
1957 
1958 	/* last type should be union/struct */
1959 	if (btf->nr_types == 0)
1960 		return libbpf_err(-EINVAL);
1961 	t = btf_last_type(btf);
1962 	if (!btf_is_composite(t))
1963 		return libbpf_err(-EINVAL);
1964 
1965 	if (validate_type_id(type_id))
1966 		return libbpf_err(-EINVAL);
1967 	/* best-effort bit field offset/size enforcement */
1968 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1969 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1970 		return libbpf_err(-EINVAL);
1971 
1972 	/* only offset 0 is allowed for unions */
1973 	if (btf_is_union(t) && bit_offset)
1974 		return libbpf_err(-EINVAL);
1975 
1976 	/* decompose and invalidate raw data */
1977 	if (btf_ensure_modifiable(btf))
1978 		return libbpf_err(-ENOMEM);
1979 
1980 	sz = sizeof(struct btf_member);
1981 	m = btf_add_type_mem(btf, sz);
1982 	if (!m)
1983 		return libbpf_err(-ENOMEM);
1984 
1985 	if (name && name[0]) {
1986 		name_off = btf__add_str(btf, name);
1987 		if (name_off < 0)
1988 			return name_off;
1989 	}
1990 
1991 	m->name_off = name_off;
1992 	m->type = type_id;
1993 	m->offset = bit_offset | (bit_size << 24);
1994 
1995 	/* btf_add_type_mem can invalidate t pointer */
1996 	t = btf_last_type(btf);
1997 	/* update parent type's vlen and kflag */
1998 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1999 
2000 	btf->hdr->type_len += sz;
2001 	btf->hdr->str_off += sz;
2002 	return 0;
2003 }
2004 
2005 /*
2006  * Append new BTF_KIND_ENUM type with:
2007  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2008  *   - *byte_sz* - size of the enum, in bytes.
2009  *
2010  * Enum initially has no enum values in it (and corresponds to enum forward
2011  * declaration). Enumerator values can be added by btf__add_enum_value()
2012  * immediately after btf__add_enum() succeeds.
2013  *
2014  * Returns:
2015  *   - >0, type ID of newly added BTF type;
2016  *   - <0, on error.
2017  */
2018 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2019 {
2020 	struct btf_type *t;
2021 	int sz, name_off = 0;
2022 
2023 	/* byte_sz must be power of 2 */
2024 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2025 		return libbpf_err(-EINVAL);
2026 
2027 	if (btf_ensure_modifiable(btf))
2028 		return libbpf_err(-ENOMEM);
2029 
2030 	sz = sizeof(struct btf_type);
2031 	t = btf_add_type_mem(btf, sz);
2032 	if (!t)
2033 		return libbpf_err(-ENOMEM);
2034 
2035 	if (name && name[0]) {
2036 		name_off = btf__add_str(btf, name);
2037 		if (name_off < 0)
2038 			return name_off;
2039 	}
2040 
2041 	/* start out with vlen=0; it will be adjusted when adding enum values */
2042 	t->name_off = name_off;
2043 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2044 	t->size = byte_sz;
2045 
2046 	return btf_commit_type(btf, sz);
2047 }
2048 
2049 /*
2050  * Append new enum value for the current ENUM type with:
2051  *   - *name* - name of the enumerator value, can't be NULL or empty;
2052  *   - *value* - integer value corresponding to enum value *name*;
2053  * Returns:
2054  *   -  0, on success;
2055  *   - <0, on error.
2056  */
2057 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2058 {
2059 	struct btf_type *t;
2060 	struct btf_enum *v;
2061 	int sz, name_off;
2062 
2063 	/* last type should be BTF_KIND_ENUM */
2064 	if (btf->nr_types == 0)
2065 		return libbpf_err(-EINVAL);
2066 	t = btf_last_type(btf);
2067 	if (!btf_is_enum(t))
2068 		return libbpf_err(-EINVAL);
2069 
2070 	/* non-empty name */
2071 	if (!name || !name[0])
2072 		return libbpf_err(-EINVAL);
2073 	if (value < INT_MIN || value > UINT_MAX)
2074 		return libbpf_err(-E2BIG);
2075 
2076 	/* decompose and invalidate raw data */
2077 	if (btf_ensure_modifiable(btf))
2078 		return libbpf_err(-ENOMEM);
2079 
2080 	sz = sizeof(struct btf_enum);
2081 	v = btf_add_type_mem(btf, sz);
2082 	if (!v)
2083 		return libbpf_err(-ENOMEM);
2084 
2085 	name_off = btf__add_str(btf, name);
2086 	if (name_off < 0)
2087 		return name_off;
2088 
2089 	v->name_off = name_off;
2090 	v->val = value;
2091 
2092 	/* update parent type's vlen */
2093 	t = btf_last_type(btf);
2094 	btf_type_inc_vlen(t);
2095 
2096 	btf->hdr->type_len += sz;
2097 	btf->hdr->str_off += sz;
2098 	return 0;
2099 }
2100 
2101 /*
2102  * Append new BTF_KIND_FWD type with:
2103  *   - *name*, non-empty/non-NULL name;
2104  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2105  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2106  * Returns:
2107  *   - >0, type ID of newly added BTF type;
2108  *   - <0, on error.
2109  */
2110 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2111 {
2112 	if (!name || !name[0])
2113 		return libbpf_err(-EINVAL);
2114 
2115 	switch (fwd_kind) {
2116 	case BTF_FWD_STRUCT:
2117 	case BTF_FWD_UNION: {
2118 		struct btf_type *t;
2119 		int id;
2120 
2121 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2122 		if (id <= 0)
2123 			return id;
2124 		t = btf_type_by_id(btf, id);
2125 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2126 		return id;
2127 	}
2128 	case BTF_FWD_ENUM:
2129 		/* enum forward in BTF currently is just an enum with no enum
2130 		 * values; we also assume a standard 4-byte size for it
2131 		 */
2132 		return btf__add_enum(btf, name, sizeof(int));
2133 	default:
2134 		return libbpf_err(-EINVAL);
2135 	}
2136 }
2137 
2138 /*
2139  * Append new BTF_KING_TYPEDEF type with:
2140  *   - *name*, non-empty/non-NULL name;
2141  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2142  * Returns:
2143  *   - >0, type ID of newly added BTF type;
2144  *   - <0, on error.
2145  */
2146 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2147 {
2148 	if (!name || !name[0])
2149 		return libbpf_err(-EINVAL);
2150 
2151 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2152 }
2153 
2154 /*
2155  * Append new BTF_KIND_VOLATILE type with:
2156  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2157  * Returns:
2158  *   - >0, type ID of newly added BTF type;
2159  *   - <0, on error.
2160  */
2161 int btf__add_volatile(struct btf *btf, int ref_type_id)
2162 {
2163 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2164 }
2165 
2166 /*
2167  * Append new BTF_KIND_CONST type with:
2168  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2169  * Returns:
2170  *   - >0, type ID of newly added BTF type;
2171  *   - <0, on error.
2172  */
2173 int btf__add_const(struct btf *btf, int ref_type_id)
2174 {
2175 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2176 }
2177 
2178 /*
2179  * Append new BTF_KIND_RESTRICT type with:
2180  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2181  * Returns:
2182  *   - >0, type ID of newly added BTF type;
2183  *   - <0, on error.
2184  */
2185 int btf__add_restrict(struct btf *btf, int ref_type_id)
2186 {
2187 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2188 }
2189 
2190 /*
2191  * Append new BTF_KIND_FUNC type with:
2192  *   - *name*, non-empty/non-NULL name;
2193  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2194  * Returns:
2195  *   - >0, type ID of newly added BTF type;
2196  *   - <0, on error.
2197  */
2198 int btf__add_func(struct btf *btf, const char *name,
2199 		  enum btf_func_linkage linkage, int proto_type_id)
2200 {
2201 	int id;
2202 
2203 	if (!name || !name[0])
2204 		return libbpf_err(-EINVAL);
2205 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2206 	    linkage != BTF_FUNC_EXTERN)
2207 		return libbpf_err(-EINVAL);
2208 
2209 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2210 	if (id > 0) {
2211 		struct btf_type *t = btf_type_by_id(btf, id);
2212 
2213 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2214 	}
2215 	return libbpf_err(id);
2216 }
2217 
2218 /*
2219  * Append new BTF_KIND_FUNC_PROTO with:
2220  *   - *ret_type_id* - type ID for return result of a function.
2221  *
2222  * Function prototype initially has no arguments, but they can be added by
2223  * btf__add_func_param() one by one, immediately after
2224  * btf__add_func_proto() succeeded.
2225  *
2226  * Returns:
2227  *   - >0, type ID of newly added BTF type;
2228  *   - <0, on error.
2229  */
2230 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2231 {
2232 	struct btf_type *t;
2233 	int sz;
2234 
2235 	if (validate_type_id(ret_type_id))
2236 		return libbpf_err(-EINVAL);
2237 
2238 	if (btf_ensure_modifiable(btf))
2239 		return libbpf_err(-ENOMEM);
2240 
2241 	sz = sizeof(struct btf_type);
2242 	t = btf_add_type_mem(btf, sz);
2243 	if (!t)
2244 		return libbpf_err(-ENOMEM);
2245 
2246 	/* start out with vlen=0; this will be adjusted when adding enum
2247 	 * values, if necessary
2248 	 */
2249 	t->name_off = 0;
2250 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2251 	t->type = ret_type_id;
2252 
2253 	return btf_commit_type(btf, sz);
2254 }
2255 
2256 /*
2257  * Append new function parameter for current FUNC_PROTO type with:
2258  *   - *name* - parameter name, can be NULL or empty;
2259  *   - *type_id* - type ID describing the type of the parameter.
2260  * Returns:
2261  *   -  0, on success;
2262  *   - <0, on error.
2263  */
2264 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2265 {
2266 	struct btf_type *t;
2267 	struct btf_param *p;
2268 	int sz, name_off = 0;
2269 
2270 	if (validate_type_id(type_id))
2271 		return libbpf_err(-EINVAL);
2272 
2273 	/* last type should be BTF_KIND_FUNC_PROTO */
2274 	if (btf->nr_types == 0)
2275 		return libbpf_err(-EINVAL);
2276 	t = btf_last_type(btf);
2277 	if (!btf_is_func_proto(t))
2278 		return libbpf_err(-EINVAL);
2279 
2280 	/* decompose and invalidate raw data */
2281 	if (btf_ensure_modifiable(btf))
2282 		return libbpf_err(-ENOMEM);
2283 
2284 	sz = sizeof(struct btf_param);
2285 	p = btf_add_type_mem(btf, sz);
2286 	if (!p)
2287 		return libbpf_err(-ENOMEM);
2288 
2289 	if (name && name[0]) {
2290 		name_off = btf__add_str(btf, name);
2291 		if (name_off < 0)
2292 			return name_off;
2293 	}
2294 
2295 	p->name_off = name_off;
2296 	p->type = type_id;
2297 
2298 	/* update parent type's vlen */
2299 	t = btf_last_type(btf);
2300 	btf_type_inc_vlen(t);
2301 
2302 	btf->hdr->type_len += sz;
2303 	btf->hdr->str_off += sz;
2304 	return 0;
2305 }
2306 
2307 /*
2308  * Append new BTF_KIND_VAR type with:
2309  *   - *name* - non-empty/non-NULL name;
2310  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2311  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2312  *   - *type_id* - type ID of the type describing the type of the variable.
2313  * Returns:
2314  *   - >0, type ID of newly added BTF type;
2315  *   - <0, on error.
2316  */
2317 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2318 {
2319 	struct btf_type *t;
2320 	struct btf_var *v;
2321 	int sz, name_off;
2322 
2323 	/* non-empty name */
2324 	if (!name || !name[0])
2325 		return libbpf_err(-EINVAL);
2326 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2327 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2328 		return libbpf_err(-EINVAL);
2329 	if (validate_type_id(type_id))
2330 		return libbpf_err(-EINVAL);
2331 
2332 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2333 	if (btf_ensure_modifiable(btf))
2334 		return libbpf_err(-ENOMEM);
2335 
2336 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2337 	t = btf_add_type_mem(btf, sz);
2338 	if (!t)
2339 		return libbpf_err(-ENOMEM);
2340 
2341 	name_off = btf__add_str(btf, name);
2342 	if (name_off < 0)
2343 		return name_off;
2344 
2345 	t->name_off = name_off;
2346 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2347 	t->type = type_id;
2348 
2349 	v = btf_var(t);
2350 	v->linkage = linkage;
2351 
2352 	return btf_commit_type(btf, sz);
2353 }
2354 
2355 /*
2356  * Append new BTF_KIND_DATASEC type with:
2357  *   - *name* - non-empty/non-NULL name;
2358  *   - *byte_sz* - data section size, in bytes.
2359  *
2360  * Data section is initially empty. Variables info can be added with
2361  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2362  *
2363  * Returns:
2364  *   - >0, type ID of newly added BTF type;
2365  *   - <0, on error.
2366  */
2367 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2368 {
2369 	struct btf_type *t;
2370 	int sz, name_off;
2371 
2372 	/* non-empty name */
2373 	if (!name || !name[0])
2374 		return libbpf_err(-EINVAL);
2375 
2376 	if (btf_ensure_modifiable(btf))
2377 		return libbpf_err(-ENOMEM);
2378 
2379 	sz = sizeof(struct btf_type);
2380 	t = btf_add_type_mem(btf, sz);
2381 	if (!t)
2382 		return libbpf_err(-ENOMEM);
2383 
2384 	name_off = btf__add_str(btf, name);
2385 	if (name_off < 0)
2386 		return name_off;
2387 
2388 	/* start with vlen=0, which will be update as var_secinfos are added */
2389 	t->name_off = name_off;
2390 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2391 	t->size = byte_sz;
2392 
2393 	return btf_commit_type(btf, sz);
2394 }
2395 
2396 /*
2397  * Append new data section variable information entry for current DATASEC type:
2398  *   - *var_type_id* - type ID, describing type of the variable;
2399  *   - *offset* - variable offset within data section, in bytes;
2400  *   - *byte_sz* - variable size, in bytes.
2401  *
2402  * Returns:
2403  *   -  0, on success;
2404  *   - <0, on error.
2405  */
2406 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2407 {
2408 	struct btf_type *t;
2409 	struct btf_var_secinfo *v;
2410 	int sz;
2411 
2412 	/* last type should be BTF_KIND_DATASEC */
2413 	if (btf->nr_types == 0)
2414 		return libbpf_err(-EINVAL);
2415 	t = btf_last_type(btf);
2416 	if (!btf_is_datasec(t))
2417 		return libbpf_err(-EINVAL);
2418 
2419 	if (validate_type_id(var_type_id))
2420 		return libbpf_err(-EINVAL);
2421 
2422 	/* decompose and invalidate raw data */
2423 	if (btf_ensure_modifiable(btf))
2424 		return libbpf_err(-ENOMEM);
2425 
2426 	sz = sizeof(struct btf_var_secinfo);
2427 	v = btf_add_type_mem(btf, sz);
2428 	if (!v)
2429 		return libbpf_err(-ENOMEM);
2430 
2431 	v->type = var_type_id;
2432 	v->offset = offset;
2433 	v->size = byte_sz;
2434 
2435 	/* update parent type's vlen */
2436 	t = btf_last_type(btf);
2437 	btf_type_inc_vlen(t);
2438 
2439 	btf->hdr->type_len += sz;
2440 	btf->hdr->str_off += sz;
2441 	return 0;
2442 }
2443 
2444 struct btf_ext_sec_setup_param {
2445 	__u32 off;
2446 	__u32 len;
2447 	__u32 min_rec_size;
2448 	struct btf_ext_info *ext_info;
2449 	const char *desc;
2450 };
2451 
2452 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2453 			      struct btf_ext_sec_setup_param *ext_sec)
2454 {
2455 	const struct btf_ext_info_sec *sinfo;
2456 	struct btf_ext_info *ext_info;
2457 	__u32 info_left, record_size;
2458 	/* The start of the info sec (including the __u32 record_size). */
2459 	void *info;
2460 
2461 	if (ext_sec->len == 0)
2462 		return 0;
2463 
2464 	if (ext_sec->off & 0x03) {
2465 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2466 		     ext_sec->desc);
2467 		return -EINVAL;
2468 	}
2469 
2470 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2471 	info_left = ext_sec->len;
2472 
2473 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2474 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2475 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2476 		return -EINVAL;
2477 	}
2478 
2479 	/* At least a record size */
2480 	if (info_left < sizeof(__u32)) {
2481 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2482 		return -EINVAL;
2483 	}
2484 
2485 	/* The record size needs to meet the minimum standard */
2486 	record_size = *(__u32 *)info;
2487 	if (record_size < ext_sec->min_rec_size ||
2488 	    record_size & 0x03) {
2489 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2490 			 ext_sec->desc, record_size);
2491 		return -EINVAL;
2492 	}
2493 
2494 	sinfo = info + sizeof(__u32);
2495 	info_left -= sizeof(__u32);
2496 
2497 	/* If no records, return failure now so .BTF.ext won't be used. */
2498 	if (!info_left) {
2499 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2500 		return -EINVAL;
2501 	}
2502 
2503 	while (info_left) {
2504 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2505 		__u64 total_record_size;
2506 		__u32 num_records;
2507 
2508 		if (info_left < sec_hdrlen) {
2509 			pr_debug("%s section header is not found in .BTF.ext\n",
2510 			     ext_sec->desc);
2511 			return -EINVAL;
2512 		}
2513 
2514 		num_records = sinfo->num_info;
2515 		if (num_records == 0) {
2516 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2517 			     ext_sec->desc);
2518 			return -EINVAL;
2519 		}
2520 
2521 		total_record_size = sec_hdrlen +
2522 				    (__u64)num_records * record_size;
2523 		if (info_left < total_record_size) {
2524 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2525 			     ext_sec->desc);
2526 			return -EINVAL;
2527 		}
2528 
2529 		info_left -= total_record_size;
2530 		sinfo = (void *)sinfo + total_record_size;
2531 	}
2532 
2533 	ext_info = ext_sec->ext_info;
2534 	ext_info->len = ext_sec->len - sizeof(__u32);
2535 	ext_info->rec_size = record_size;
2536 	ext_info->info = info + sizeof(__u32);
2537 
2538 	return 0;
2539 }
2540 
2541 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2542 {
2543 	struct btf_ext_sec_setup_param param = {
2544 		.off = btf_ext->hdr->func_info_off,
2545 		.len = btf_ext->hdr->func_info_len,
2546 		.min_rec_size = sizeof(struct bpf_func_info_min),
2547 		.ext_info = &btf_ext->func_info,
2548 		.desc = "func_info"
2549 	};
2550 
2551 	return btf_ext_setup_info(btf_ext, &param);
2552 }
2553 
2554 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2555 {
2556 	struct btf_ext_sec_setup_param param = {
2557 		.off = btf_ext->hdr->line_info_off,
2558 		.len = btf_ext->hdr->line_info_len,
2559 		.min_rec_size = sizeof(struct bpf_line_info_min),
2560 		.ext_info = &btf_ext->line_info,
2561 		.desc = "line_info",
2562 	};
2563 
2564 	return btf_ext_setup_info(btf_ext, &param);
2565 }
2566 
2567 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2568 {
2569 	struct btf_ext_sec_setup_param param = {
2570 		.off = btf_ext->hdr->core_relo_off,
2571 		.len = btf_ext->hdr->core_relo_len,
2572 		.min_rec_size = sizeof(struct bpf_core_relo),
2573 		.ext_info = &btf_ext->core_relo_info,
2574 		.desc = "core_relo",
2575 	};
2576 
2577 	return btf_ext_setup_info(btf_ext, &param);
2578 }
2579 
2580 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2581 {
2582 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2583 
2584 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2585 	    data_size < hdr->hdr_len) {
2586 		pr_debug("BTF.ext header not found");
2587 		return -EINVAL;
2588 	}
2589 
2590 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2591 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2592 		return -ENOTSUP;
2593 	} else if (hdr->magic != BTF_MAGIC) {
2594 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2595 		return -EINVAL;
2596 	}
2597 
2598 	if (hdr->version != BTF_VERSION) {
2599 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2600 		return -ENOTSUP;
2601 	}
2602 
2603 	if (hdr->flags) {
2604 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2605 		return -ENOTSUP;
2606 	}
2607 
2608 	if (data_size == hdr->hdr_len) {
2609 		pr_debug("BTF.ext has no data\n");
2610 		return -EINVAL;
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 void btf_ext__free(struct btf_ext *btf_ext)
2617 {
2618 	if (IS_ERR_OR_NULL(btf_ext))
2619 		return;
2620 	free(btf_ext->data);
2621 	free(btf_ext);
2622 }
2623 
2624 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2625 {
2626 	struct btf_ext *btf_ext;
2627 	int err;
2628 
2629 	err = btf_ext_parse_hdr(data, size);
2630 	if (err)
2631 		return libbpf_err_ptr(err);
2632 
2633 	btf_ext = calloc(1, sizeof(struct btf_ext));
2634 	if (!btf_ext)
2635 		return libbpf_err_ptr(-ENOMEM);
2636 
2637 	btf_ext->data_size = size;
2638 	btf_ext->data = malloc(size);
2639 	if (!btf_ext->data) {
2640 		err = -ENOMEM;
2641 		goto done;
2642 	}
2643 	memcpy(btf_ext->data, data, size);
2644 
2645 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2646 		err = -EINVAL;
2647 		goto done;
2648 	}
2649 
2650 	err = btf_ext_setup_func_info(btf_ext);
2651 	if (err)
2652 		goto done;
2653 
2654 	err = btf_ext_setup_line_info(btf_ext);
2655 	if (err)
2656 		goto done;
2657 
2658 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2659 		err = -EINVAL;
2660 		goto done;
2661 	}
2662 
2663 	err = btf_ext_setup_core_relos(btf_ext);
2664 	if (err)
2665 		goto done;
2666 
2667 done:
2668 	if (err) {
2669 		btf_ext__free(btf_ext);
2670 		return libbpf_err_ptr(err);
2671 	}
2672 
2673 	return btf_ext;
2674 }
2675 
2676 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2677 {
2678 	*size = btf_ext->data_size;
2679 	return btf_ext->data;
2680 }
2681 
2682 static int btf_ext_reloc_info(const struct btf *btf,
2683 			      const struct btf_ext_info *ext_info,
2684 			      const char *sec_name, __u32 insns_cnt,
2685 			      void **info, __u32 *cnt)
2686 {
2687 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2688 	__u32 i, record_size, existing_len, records_len;
2689 	struct btf_ext_info_sec *sinfo;
2690 	const char *info_sec_name;
2691 	__u64 remain_len;
2692 	void *data;
2693 
2694 	record_size = ext_info->rec_size;
2695 	sinfo = ext_info->info;
2696 	remain_len = ext_info->len;
2697 	while (remain_len > 0) {
2698 		records_len = sinfo->num_info * record_size;
2699 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2700 		if (strcmp(info_sec_name, sec_name)) {
2701 			remain_len -= sec_hdrlen + records_len;
2702 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2703 			continue;
2704 		}
2705 
2706 		existing_len = (*cnt) * record_size;
2707 		data = realloc(*info, existing_len + records_len);
2708 		if (!data)
2709 			return libbpf_err(-ENOMEM);
2710 
2711 		memcpy(data + existing_len, sinfo->data, records_len);
2712 		/* adjust insn_off only, the rest data will be passed
2713 		 * to the kernel.
2714 		 */
2715 		for (i = 0; i < sinfo->num_info; i++) {
2716 			__u32 *insn_off;
2717 
2718 			insn_off = data + existing_len + (i * record_size);
2719 			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2720 		}
2721 		*info = data;
2722 		*cnt += sinfo->num_info;
2723 		return 0;
2724 	}
2725 
2726 	return libbpf_err(-ENOENT);
2727 }
2728 
2729 int btf_ext__reloc_func_info(const struct btf *btf,
2730 			     const struct btf_ext *btf_ext,
2731 			     const char *sec_name, __u32 insns_cnt,
2732 			     void **func_info, __u32 *cnt)
2733 {
2734 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2735 				  insns_cnt, func_info, cnt);
2736 }
2737 
2738 int btf_ext__reloc_line_info(const struct btf *btf,
2739 			     const struct btf_ext *btf_ext,
2740 			     const char *sec_name, __u32 insns_cnt,
2741 			     void **line_info, __u32 *cnt)
2742 {
2743 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2744 				  insns_cnt, line_info, cnt);
2745 }
2746 
2747 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2748 {
2749 	return btf_ext->func_info.rec_size;
2750 }
2751 
2752 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2753 {
2754 	return btf_ext->line_info.rec_size;
2755 }
2756 
2757 struct btf_dedup;
2758 
2759 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2760 				       const struct btf_dedup_opts *opts);
2761 static void btf_dedup_free(struct btf_dedup *d);
2762 static int btf_dedup_prep(struct btf_dedup *d);
2763 static int btf_dedup_strings(struct btf_dedup *d);
2764 static int btf_dedup_prim_types(struct btf_dedup *d);
2765 static int btf_dedup_struct_types(struct btf_dedup *d);
2766 static int btf_dedup_ref_types(struct btf_dedup *d);
2767 static int btf_dedup_compact_types(struct btf_dedup *d);
2768 static int btf_dedup_remap_types(struct btf_dedup *d);
2769 
2770 /*
2771  * Deduplicate BTF types and strings.
2772  *
2773  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2774  * section with all BTF type descriptors and string data. It overwrites that
2775  * memory in-place with deduplicated types and strings without any loss of
2776  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2777  * is provided, all the strings referenced from .BTF.ext section are honored
2778  * and updated to point to the right offsets after deduplication.
2779  *
2780  * If function returns with error, type/string data might be garbled and should
2781  * be discarded.
2782  *
2783  * More verbose and detailed description of both problem btf_dedup is solving,
2784  * as well as solution could be found at:
2785  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2786  *
2787  * Problem description and justification
2788  * =====================================
2789  *
2790  * BTF type information is typically emitted either as a result of conversion
2791  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2792  * unit contains information about a subset of all the types that are used
2793  * in an application. These subsets are frequently overlapping and contain a lot
2794  * of duplicated information when later concatenated together into a single
2795  * binary. This algorithm ensures that each unique type is represented by single
2796  * BTF type descriptor, greatly reducing resulting size of BTF data.
2797  *
2798  * Compilation unit isolation and subsequent duplication of data is not the only
2799  * problem. The same type hierarchy (e.g., struct and all the type that struct
2800  * references) in different compilation units can be represented in BTF to
2801  * various degrees of completeness (or, rather, incompleteness) due to
2802  * struct/union forward declarations.
2803  *
2804  * Let's take a look at an example, that we'll use to better understand the
2805  * problem (and solution). Suppose we have two compilation units, each using
2806  * same `struct S`, but each of them having incomplete type information about
2807  * struct's fields:
2808  *
2809  * // CU #1:
2810  * struct S;
2811  * struct A {
2812  *	int a;
2813  *	struct A* self;
2814  *	struct S* parent;
2815  * };
2816  * struct B;
2817  * struct S {
2818  *	struct A* a_ptr;
2819  *	struct B* b_ptr;
2820  * };
2821  *
2822  * // CU #2:
2823  * struct S;
2824  * struct A;
2825  * struct B {
2826  *	int b;
2827  *	struct B* self;
2828  *	struct S* parent;
2829  * };
2830  * struct S {
2831  *	struct A* a_ptr;
2832  *	struct B* b_ptr;
2833  * };
2834  *
2835  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2836  * more), but will know the complete type information about `struct A`. While
2837  * for CU #2, it will know full type information about `struct B`, but will
2838  * only know about forward declaration of `struct A` (in BTF terms, it will
2839  * have `BTF_KIND_FWD` type descriptor with name `B`).
2840  *
2841  * This compilation unit isolation means that it's possible that there is no
2842  * single CU with complete type information describing structs `S`, `A`, and
2843  * `B`. Also, we might get tons of duplicated and redundant type information.
2844  *
2845  * Additional complication we need to keep in mind comes from the fact that
2846  * types, in general, can form graphs containing cycles, not just DAGs.
2847  *
2848  * While algorithm does deduplication, it also merges and resolves type
2849  * information (unless disabled throught `struct btf_opts`), whenever possible.
2850  * E.g., in the example above with two compilation units having partial type
2851  * information for structs `A` and `B`, the output of algorithm will emit
2852  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2853  * (as well as type information for `int` and pointers), as if they were defined
2854  * in a single compilation unit as:
2855  *
2856  * struct A {
2857  *	int a;
2858  *	struct A* self;
2859  *	struct S* parent;
2860  * };
2861  * struct B {
2862  *	int b;
2863  *	struct B* self;
2864  *	struct S* parent;
2865  * };
2866  * struct S {
2867  *	struct A* a_ptr;
2868  *	struct B* b_ptr;
2869  * };
2870  *
2871  * Algorithm summary
2872  * =================
2873  *
2874  * Algorithm completes its work in 6 separate passes:
2875  *
2876  * 1. Strings deduplication.
2877  * 2. Primitive types deduplication (int, enum, fwd).
2878  * 3. Struct/union types deduplication.
2879  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2880  *    protos, and const/volatile/restrict modifiers).
2881  * 5. Types compaction.
2882  * 6. Types remapping.
2883  *
2884  * Algorithm determines canonical type descriptor, which is a single
2885  * representative type for each truly unique type. This canonical type is the
2886  * one that will go into final deduplicated BTF type information. For
2887  * struct/unions, it is also the type that algorithm will merge additional type
2888  * information into (while resolving FWDs), as it discovers it from data in
2889  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2890  * that type is canonical, or to some other type, if that type is equivalent
2891  * and was chosen as canonical representative. This mapping is stored in
2892  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2893  * FWD type got resolved to.
2894  *
2895  * To facilitate fast discovery of canonical types, we also maintain canonical
2896  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2897  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2898  * that match that signature. With sufficiently good choice of type signature
2899  * hashing function, we can limit number of canonical types for each unique type
2900  * signature to a very small number, allowing to find canonical type for any
2901  * duplicated type very quickly.
2902  *
2903  * Struct/union deduplication is the most critical part and algorithm for
2904  * deduplicating structs/unions is described in greater details in comments for
2905  * `btf_dedup_is_equiv` function.
2906  */
2907 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2908 	       const struct btf_dedup_opts *opts)
2909 {
2910 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2911 	int err;
2912 
2913 	if (IS_ERR(d)) {
2914 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2915 		return libbpf_err(-EINVAL);
2916 	}
2917 
2918 	if (btf_ensure_modifiable(btf))
2919 		return libbpf_err(-ENOMEM);
2920 
2921 	err = btf_dedup_prep(d);
2922 	if (err) {
2923 		pr_debug("btf_dedup_prep failed:%d\n", err);
2924 		goto done;
2925 	}
2926 	err = btf_dedup_strings(d);
2927 	if (err < 0) {
2928 		pr_debug("btf_dedup_strings failed:%d\n", err);
2929 		goto done;
2930 	}
2931 	err = btf_dedup_prim_types(d);
2932 	if (err < 0) {
2933 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2934 		goto done;
2935 	}
2936 	err = btf_dedup_struct_types(d);
2937 	if (err < 0) {
2938 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2939 		goto done;
2940 	}
2941 	err = btf_dedup_ref_types(d);
2942 	if (err < 0) {
2943 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2944 		goto done;
2945 	}
2946 	err = btf_dedup_compact_types(d);
2947 	if (err < 0) {
2948 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2949 		goto done;
2950 	}
2951 	err = btf_dedup_remap_types(d);
2952 	if (err < 0) {
2953 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2954 		goto done;
2955 	}
2956 
2957 done:
2958 	btf_dedup_free(d);
2959 	return libbpf_err(err);
2960 }
2961 
2962 #define BTF_UNPROCESSED_ID ((__u32)-1)
2963 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2964 
2965 struct btf_dedup {
2966 	/* .BTF section to be deduped in-place */
2967 	struct btf *btf;
2968 	/*
2969 	 * Optional .BTF.ext section. When provided, any strings referenced
2970 	 * from it will be taken into account when deduping strings
2971 	 */
2972 	struct btf_ext *btf_ext;
2973 	/*
2974 	 * This is a map from any type's signature hash to a list of possible
2975 	 * canonical representative type candidates. Hash collisions are
2976 	 * ignored, so even types of various kinds can share same list of
2977 	 * candidates, which is fine because we rely on subsequent
2978 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2979 	 */
2980 	struct hashmap *dedup_table;
2981 	/* Canonical types map */
2982 	__u32 *map;
2983 	/* Hypothetical mapping, used during type graph equivalence checks */
2984 	__u32 *hypot_map;
2985 	__u32 *hypot_list;
2986 	size_t hypot_cnt;
2987 	size_t hypot_cap;
2988 	/* Whether hypothetical mapping, if successful, would need to adjust
2989 	 * already canonicalized types (due to a new forward declaration to
2990 	 * concrete type resolution). In such case, during split BTF dedup
2991 	 * candidate type would still be considered as different, because base
2992 	 * BTF is considered to be immutable.
2993 	 */
2994 	bool hypot_adjust_canon;
2995 	/* Various option modifying behavior of algorithm */
2996 	struct btf_dedup_opts opts;
2997 	/* temporary strings deduplication state */
2998 	struct strset *strs_set;
2999 };
3000 
3001 static long hash_combine(long h, long value)
3002 {
3003 	return h * 31 + value;
3004 }
3005 
3006 #define for_each_dedup_cand(d, node, hash) \
3007 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3008 
3009 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3010 {
3011 	return hashmap__append(d->dedup_table,
3012 			       (void *)hash, (void *)(long)type_id);
3013 }
3014 
3015 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3016 				   __u32 from_id, __u32 to_id)
3017 {
3018 	if (d->hypot_cnt == d->hypot_cap) {
3019 		__u32 *new_list;
3020 
3021 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3022 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3023 		if (!new_list)
3024 			return -ENOMEM;
3025 		d->hypot_list = new_list;
3026 	}
3027 	d->hypot_list[d->hypot_cnt++] = from_id;
3028 	d->hypot_map[from_id] = to_id;
3029 	return 0;
3030 }
3031 
3032 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3033 {
3034 	int i;
3035 
3036 	for (i = 0; i < d->hypot_cnt; i++)
3037 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3038 	d->hypot_cnt = 0;
3039 	d->hypot_adjust_canon = false;
3040 }
3041 
3042 static void btf_dedup_free(struct btf_dedup *d)
3043 {
3044 	hashmap__free(d->dedup_table);
3045 	d->dedup_table = NULL;
3046 
3047 	free(d->map);
3048 	d->map = NULL;
3049 
3050 	free(d->hypot_map);
3051 	d->hypot_map = NULL;
3052 
3053 	free(d->hypot_list);
3054 	d->hypot_list = NULL;
3055 
3056 	free(d);
3057 }
3058 
3059 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3060 {
3061 	return (size_t)key;
3062 }
3063 
3064 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3065 {
3066 	return 0;
3067 }
3068 
3069 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3070 {
3071 	return k1 == k2;
3072 }
3073 
3074 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3075 				       const struct btf_dedup_opts *opts)
3076 {
3077 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3078 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3079 	int i, err = 0, type_cnt;
3080 
3081 	if (!d)
3082 		return ERR_PTR(-ENOMEM);
3083 
3084 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3085 	/* dedup_table_size is now used only to force collisions in tests */
3086 	if (opts && opts->dedup_table_size == 1)
3087 		hash_fn = btf_dedup_collision_hash_fn;
3088 
3089 	d->btf = btf;
3090 	d->btf_ext = btf_ext;
3091 
3092 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3093 	if (IS_ERR(d->dedup_table)) {
3094 		err = PTR_ERR(d->dedup_table);
3095 		d->dedup_table = NULL;
3096 		goto done;
3097 	}
3098 
3099 	type_cnt = btf__get_nr_types(btf) + 1;
3100 	d->map = malloc(sizeof(__u32) * type_cnt);
3101 	if (!d->map) {
3102 		err = -ENOMEM;
3103 		goto done;
3104 	}
3105 	/* special BTF "void" type is made canonical immediately */
3106 	d->map[0] = 0;
3107 	for (i = 1; i < type_cnt; i++) {
3108 		struct btf_type *t = btf_type_by_id(d->btf, i);
3109 
3110 		/* VAR and DATASEC are never deduped and are self-canonical */
3111 		if (btf_is_var(t) || btf_is_datasec(t))
3112 			d->map[i] = i;
3113 		else
3114 			d->map[i] = BTF_UNPROCESSED_ID;
3115 	}
3116 
3117 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3118 	if (!d->hypot_map) {
3119 		err = -ENOMEM;
3120 		goto done;
3121 	}
3122 	for (i = 0; i < type_cnt; i++)
3123 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3124 
3125 done:
3126 	if (err) {
3127 		btf_dedup_free(d);
3128 		return ERR_PTR(err);
3129 	}
3130 
3131 	return d;
3132 }
3133 
3134 /*
3135  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3136  * string and pass pointer to it to a provided callback `fn`.
3137  */
3138 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3139 {
3140 	int i, r;
3141 
3142 	for (i = 0; i < d->btf->nr_types; i++) {
3143 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3144 
3145 		r = btf_type_visit_str_offs(t, fn, ctx);
3146 		if (r)
3147 			return r;
3148 	}
3149 
3150 	if (!d->btf_ext)
3151 		return 0;
3152 
3153 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3154 	if (r)
3155 		return r;
3156 
3157 	return 0;
3158 }
3159 
3160 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3161 {
3162 	struct btf_dedup *d = ctx;
3163 	__u32 str_off = *str_off_ptr;
3164 	const char *s;
3165 	int off, err;
3166 
3167 	/* don't touch empty string or string in main BTF */
3168 	if (str_off == 0 || str_off < d->btf->start_str_off)
3169 		return 0;
3170 
3171 	s = btf__str_by_offset(d->btf, str_off);
3172 	if (d->btf->base_btf) {
3173 		err = btf__find_str(d->btf->base_btf, s);
3174 		if (err >= 0) {
3175 			*str_off_ptr = err;
3176 			return 0;
3177 		}
3178 		if (err != -ENOENT)
3179 			return err;
3180 	}
3181 
3182 	off = strset__add_str(d->strs_set, s);
3183 	if (off < 0)
3184 		return off;
3185 
3186 	*str_off_ptr = d->btf->start_str_off + off;
3187 	return 0;
3188 }
3189 
3190 /*
3191  * Dedup string and filter out those that are not referenced from either .BTF
3192  * or .BTF.ext (if provided) sections.
3193  *
3194  * This is done by building index of all strings in BTF's string section,
3195  * then iterating over all entities that can reference strings (e.g., type
3196  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3197  * strings as used. After that all used strings are deduped and compacted into
3198  * sequential blob of memory and new offsets are calculated. Then all the string
3199  * references are iterated again and rewritten using new offsets.
3200  */
3201 static int btf_dedup_strings(struct btf_dedup *d)
3202 {
3203 	int err;
3204 
3205 	if (d->btf->strs_deduped)
3206 		return 0;
3207 
3208 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3209 	if (IS_ERR(d->strs_set)) {
3210 		err = PTR_ERR(d->strs_set);
3211 		goto err_out;
3212 	}
3213 
3214 	if (!d->btf->base_btf) {
3215 		/* insert empty string; we won't be looking it up during strings
3216 		 * dedup, but it's good to have it for generic BTF string lookups
3217 		 */
3218 		err = strset__add_str(d->strs_set, "");
3219 		if (err < 0)
3220 			goto err_out;
3221 	}
3222 
3223 	/* remap string offsets */
3224 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3225 	if (err)
3226 		goto err_out;
3227 
3228 	/* replace BTF string data and hash with deduped ones */
3229 	strset__free(d->btf->strs_set);
3230 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3231 	d->btf->strs_set = d->strs_set;
3232 	d->strs_set = NULL;
3233 	d->btf->strs_deduped = true;
3234 	return 0;
3235 
3236 err_out:
3237 	strset__free(d->strs_set);
3238 	d->strs_set = NULL;
3239 
3240 	return err;
3241 }
3242 
3243 static long btf_hash_common(struct btf_type *t)
3244 {
3245 	long h;
3246 
3247 	h = hash_combine(0, t->name_off);
3248 	h = hash_combine(h, t->info);
3249 	h = hash_combine(h, t->size);
3250 	return h;
3251 }
3252 
3253 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3254 {
3255 	return t1->name_off == t2->name_off &&
3256 	       t1->info == t2->info &&
3257 	       t1->size == t2->size;
3258 }
3259 
3260 /* Calculate type signature hash of INT. */
3261 static long btf_hash_int(struct btf_type *t)
3262 {
3263 	__u32 info = *(__u32 *)(t + 1);
3264 	long h;
3265 
3266 	h = btf_hash_common(t);
3267 	h = hash_combine(h, info);
3268 	return h;
3269 }
3270 
3271 /* Check structural equality of two INTs. */
3272 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3273 {
3274 	__u32 info1, info2;
3275 
3276 	if (!btf_equal_common(t1, t2))
3277 		return false;
3278 	info1 = *(__u32 *)(t1 + 1);
3279 	info2 = *(__u32 *)(t2 + 1);
3280 	return info1 == info2;
3281 }
3282 
3283 /* Calculate type signature hash of ENUM. */
3284 static long btf_hash_enum(struct btf_type *t)
3285 {
3286 	long h;
3287 
3288 	/* don't hash vlen and enum members to support enum fwd resolving */
3289 	h = hash_combine(0, t->name_off);
3290 	h = hash_combine(h, t->info & ~0xffff);
3291 	h = hash_combine(h, t->size);
3292 	return h;
3293 }
3294 
3295 /* Check structural equality of two ENUMs. */
3296 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3297 {
3298 	const struct btf_enum *m1, *m2;
3299 	__u16 vlen;
3300 	int i;
3301 
3302 	if (!btf_equal_common(t1, t2))
3303 		return false;
3304 
3305 	vlen = btf_vlen(t1);
3306 	m1 = btf_enum(t1);
3307 	m2 = btf_enum(t2);
3308 	for (i = 0; i < vlen; i++) {
3309 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3310 			return false;
3311 		m1++;
3312 		m2++;
3313 	}
3314 	return true;
3315 }
3316 
3317 static inline bool btf_is_enum_fwd(struct btf_type *t)
3318 {
3319 	return btf_is_enum(t) && btf_vlen(t) == 0;
3320 }
3321 
3322 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3323 {
3324 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3325 		return btf_equal_enum(t1, t2);
3326 	/* ignore vlen when comparing */
3327 	return t1->name_off == t2->name_off &&
3328 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3329 	       t1->size == t2->size;
3330 }
3331 
3332 /*
3333  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3334  * as referenced type IDs equivalence is established separately during type
3335  * graph equivalence check algorithm.
3336  */
3337 static long btf_hash_struct(struct btf_type *t)
3338 {
3339 	const struct btf_member *member = btf_members(t);
3340 	__u32 vlen = btf_vlen(t);
3341 	long h = btf_hash_common(t);
3342 	int i;
3343 
3344 	for (i = 0; i < vlen; i++) {
3345 		h = hash_combine(h, member->name_off);
3346 		h = hash_combine(h, member->offset);
3347 		/* no hashing of referenced type ID, it can be unresolved yet */
3348 		member++;
3349 	}
3350 	return h;
3351 }
3352 
3353 /*
3354  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3355  * IDs. This check is performed during type graph equivalence check and
3356  * referenced types equivalence is checked separately.
3357  */
3358 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3359 {
3360 	const struct btf_member *m1, *m2;
3361 	__u16 vlen;
3362 	int i;
3363 
3364 	if (!btf_equal_common(t1, t2))
3365 		return false;
3366 
3367 	vlen = btf_vlen(t1);
3368 	m1 = btf_members(t1);
3369 	m2 = btf_members(t2);
3370 	for (i = 0; i < vlen; i++) {
3371 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3372 			return false;
3373 		m1++;
3374 		m2++;
3375 	}
3376 	return true;
3377 }
3378 
3379 /*
3380  * Calculate type signature hash of ARRAY, including referenced type IDs,
3381  * under assumption that they were already resolved to canonical type IDs and
3382  * are not going to change.
3383  */
3384 static long btf_hash_array(struct btf_type *t)
3385 {
3386 	const struct btf_array *info = btf_array(t);
3387 	long h = btf_hash_common(t);
3388 
3389 	h = hash_combine(h, info->type);
3390 	h = hash_combine(h, info->index_type);
3391 	h = hash_combine(h, info->nelems);
3392 	return h;
3393 }
3394 
3395 /*
3396  * Check exact equality of two ARRAYs, taking into account referenced
3397  * type IDs, under assumption that they were already resolved to canonical
3398  * type IDs and are not going to change.
3399  * This function is called during reference types deduplication to compare
3400  * ARRAY to potential canonical representative.
3401  */
3402 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3403 {
3404 	const struct btf_array *info1, *info2;
3405 
3406 	if (!btf_equal_common(t1, t2))
3407 		return false;
3408 
3409 	info1 = btf_array(t1);
3410 	info2 = btf_array(t2);
3411 	return info1->type == info2->type &&
3412 	       info1->index_type == info2->index_type &&
3413 	       info1->nelems == info2->nelems;
3414 }
3415 
3416 /*
3417  * Check structural compatibility of two ARRAYs, ignoring referenced type
3418  * IDs. This check is performed during type graph equivalence check and
3419  * referenced types equivalence is checked separately.
3420  */
3421 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3422 {
3423 	if (!btf_equal_common(t1, t2))
3424 		return false;
3425 
3426 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3427 }
3428 
3429 /*
3430  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3431  * under assumption that they were already resolved to canonical type IDs and
3432  * are not going to change.
3433  */
3434 static long btf_hash_fnproto(struct btf_type *t)
3435 {
3436 	const struct btf_param *member = btf_params(t);
3437 	__u16 vlen = btf_vlen(t);
3438 	long h = btf_hash_common(t);
3439 	int i;
3440 
3441 	for (i = 0; i < vlen; i++) {
3442 		h = hash_combine(h, member->name_off);
3443 		h = hash_combine(h, member->type);
3444 		member++;
3445 	}
3446 	return h;
3447 }
3448 
3449 /*
3450  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3451  * type IDs, under assumption that they were already resolved to canonical
3452  * type IDs and are not going to change.
3453  * This function is called during reference types deduplication to compare
3454  * FUNC_PROTO to potential canonical representative.
3455  */
3456 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3457 {
3458 	const struct btf_param *m1, *m2;
3459 	__u16 vlen;
3460 	int i;
3461 
3462 	if (!btf_equal_common(t1, t2))
3463 		return false;
3464 
3465 	vlen = btf_vlen(t1);
3466 	m1 = btf_params(t1);
3467 	m2 = btf_params(t2);
3468 	for (i = 0; i < vlen; i++) {
3469 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3470 			return false;
3471 		m1++;
3472 		m2++;
3473 	}
3474 	return true;
3475 }
3476 
3477 /*
3478  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3479  * IDs. This check is performed during type graph equivalence check and
3480  * referenced types equivalence is checked separately.
3481  */
3482 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3483 {
3484 	const struct btf_param *m1, *m2;
3485 	__u16 vlen;
3486 	int i;
3487 
3488 	/* skip return type ID */
3489 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3490 		return false;
3491 
3492 	vlen = btf_vlen(t1);
3493 	m1 = btf_params(t1);
3494 	m2 = btf_params(t2);
3495 	for (i = 0; i < vlen; i++) {
3496 		if (m1->name_off != m2->name_off)
3497 			return false;
3498 		m1++;
3499 		m2++;
3500 	}
3501 	return true;
3502 }
3503 
3504 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3505  * types and initializing the rest of the state (canonical type mapping) for
3506  * the fixed base BTF part.
3507  */
3508 static int btf_dedup_prep(struct btf_dedup *d)
3509 {
3510 	struct btf_type *t;
3511 	int type_id;
3512 	long h;
3513 
3514 	if (!d->btf->base_btf)
3515 		return 0;
3516 
3517 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3518 		t = btf_type_by_id(d->btf, type_id);
3519 
3520 		/* all base BTF types are self-canonical by definition */
3521 		d->map[type_id] = type_id;
3522 
3523 		switch (btf_kind(t)) {
3524 		case BTF_KIND_VAR:
3525 		case BTF_KIND_DATASEC:
3526 			/* VAR and DATASEC are never hash/deduplicated */
3527 			continue;
3528 		case BTF_KIND_CONST:
3529 		case BTF_KIND_VOLATILE:
3530 		case BTF_KIND_RESTRICT:
3531 		case BTF_KIND_PTR:
3532 		case BTF_KIND_FWD:
3533 		case BTF_KIND_TYPEDEF:
3534 		case BTF_KIND_FUNC:
3535 		case BTF_KIND_FLOAT:
3536 			h = btf_hash_common(t);
3537 			break;
3538 		case BTF_KIND_INT:
3539 			h = btf_hash_int(t);
3540 			break;
3541 		case BTF_KIND_ENUM:
3542 			h = btf_hash_enum(t);
3543 			break;
3544 		case BTF_KIND_STRUCT:
3545 		case BTF_KIND_UNION:
3546 			h = btf_hash_struct(t);
3547 			break;
3548 		case BTF_KIND_ARRAY:
3549 			h = btf_hash_array(t);
3550 			break;
3551 		case BTF_KIND_FUNC_PROTO:
3552 			h = btf_hash_fnproto(t);
3553 			break;
3554 		default:
3555 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3556 			return -EINVAL;
3557 		}
3558 		if (btf_dedup_table_add(d, h, type_id))
3559 			return -ENOMEM;
3560 	}
3561 
3562 	return 0;
3563 }
3564 
3565 /*
3566  * Deduplicate primitive types, that can't reference other types, by calculating
3567  * their type signature hash and comparing them with any possible canonical
3568  * candidate. If no canonical candidate matches, type itself is marked as
3569  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3570  */
3571 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3572 {
3573 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3574 	struct hashmap_entry *hash_entry;
3575 	struct btf_type *cand;
3576 	/* if we don't find equivalent type, then we are canonical */
3577 	__u32 new_id = type_id;
3578 	__u32 cand_id;
3579 	long h;
3580 
3581 	switch (btf_kind(t)) {
3582 	case BTF_KIND_CONST:
3583 	case BTF_KIND_VOLATILE:
3584 	case BTF_KIND_RESTRICT:
3585 	case BTF_KIND_PTR:
3586 	case BTF_KIND_TYPEDEF:
3587 	case BTF_KIND_ARRAY:
3588 	case BTF_KIND_STRUCT:
3589 	case BTF_KIND_UNION:
3590 	case BTF_KIND_FUNC:
3591 	case BTF_KIND_FUNC_PROTO:
3592 	case BTF_KIND_VAR:
3593 	case BTF_KIND_DATASEC:
3594 		return 0;
3595 
3596 	case BTF_KIND_INT:
3597 		h = btf_hash_int(t);
3598 		for_each_dedup_cand(d, hash_entry, h) {
3599 			cand_id = (__u32)(long)hash_entry->value;
3600 			cand = btf_type_by_id(d->btf, cand_id);
3601 			if (btf_equal_int(t, cand)) {
3602 				new_id = cand_id;
3603 				break;
3604 			}
3605 		}
3606 		break;
3607 
3608 	case BTF_KIND_ENUM:
3609 		h = btf_hash_enum(t);
3610 		for_each_dedup_cand(d, hash_entry, h) {
3611 			cand_id = (__u32)(long)hash_entry->value;
3612 			cand = btf_type_by_id(d->btf, cand_id);
3613 			if (btf_equal_enum(t, cand)) {
3614 				new_id = cand_id;
3615 				break;
3616 			}
3617 			if (d->opts.dont_resolve_fwds)
3618 				continue;
3619 			if (btf_compat_enum(t, cand)) {
3620 				if (btf_is_enum_fwd(t)) {
3621 					/* resolve fwd to full enum */
3622 					new_id = cand_id;
3623 					break;
3624 				}
3625 				/* resolve canonical enum fwd to full enum */
3626 				d->map[cand_id] = type_id;
3627 			}
3628 		}
3629 		break;
3630 
3631 	case BTF_KIND_FWD:
3632 	case BTF_KIND_FLOAT:
3633 		h = btf_hash_common(t);
3634 		for_each_dedup_cand(d, hash_entry, h) {
3635 			cand_id = (__u32)(long)hash_entry->value;
3636 			cand = btf_type_by_id(d->btf, cand_id);
3637 			if (btf_equal_common(t, cand)) {
3638 				new_id = cand_id;
3639 				break;
3640 			}
3641 		}
3642 		break;
3643 
3644 	default:
3645 		return -EINVAL;
3646 	}
3647 
3648 	d->map[type_id] = new_id;
3649 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3650 		return -ENOMEM;
3651 
3652 	return 0;
3653 }
3654 
3655 static int btf_dedup_prim_types(struct btf_dedup *d)
3656 {
3657 	int i, err;
3658 
3659 	for (i = 0; i < d->btf->nr_types; i++) {
3660 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3661 		if (err)
3662 			return err;
3663 	}
3664 	return 0;
3665 }
3666 
3667 /*
3668  * Check whether type is already mapped into canonical one (could be to itself).
3669  */
3670 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3671 {
3672 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3673 }
3674 
3675 /*
3676  * Resolve type ID into its canonical type ID, if any; otherwise return original
3677  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3678  * STRUCT/UNION link and resolve it into canonical type ID as well.
3679  */
3680 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3681 {
3682 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3683 		type_id = d->map[type_id];
3684 	return type_id;
3685 }
3686 
3687 /*
3688  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3689  * type ID.
3690  */
3691 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3692 {
3693 	__u32 orig_type_id = type_id;
3694 
3695 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3696 		return type_id;
3697 
3698 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3699 		type_id = d->map[type_id];
3700 
3701 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3702 		return type_id;
3703 
3704 	return orig_type_id;
3705 }
3706 
3707 
3708 static inline __u16 btf_fwd_kind(struct btf_type *t)
3709 {
3710 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3711 }
3712 
3713 /* Check if given two types are identical ARRAY definitions */
3714 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3715 {
3716 	struct btf_type *t1, *t2;
3717 
3718 	t1 = btf_type_by_id(d->btf, id1);
3719 	t2 = btf_type_by_id(d->btf, id2);
3720 	if (!btf_is_array(t1) || !btf_is_array(t2))
3721 		return 0;
3722 
3723 	return btf_equal_array(t1, t2);
3724 }
3725 
3726 /*
3727  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3728  * call it "candidate graph" in this description for brevity) to a type graph
3729  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3730  * here, though keep in mind that not all types in canonical graph are
3731  * necessarily canonical representatives themselves, some of them might be
3732  * duplicates or its uniqueness might not have been established yet).
3733  * Returns:
3734  *  - >0, if type graphs are equivalent;
3735  *  -  0, if not equivalent;
3736  *  - <0, on error.
3737  *
3738  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3739  * equivalence of BTF types at each step. If at any point BTF types in candidate
3740  * and canonical graphs are not compatible structurally, whole graphs are
3741  * incompatible. If types are structurally equivalent (i.e., all information
3742  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3743  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3744  * If a type references other types, then those referenced types are checked
3745  * for equivalence recursively.
3746  *
3747  * During DFS traversal, if we find that for current `canon_id` type we
3748  * already have some mapping in hypothetical map, we check for two possible
3749  * situations:
3750  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3751  *     happen when type graphs have cycles. In this case we assume those two
3752  *     types are equivalent.
3753  *   - `canon_id` is mapped to different type. This is contradiction in our
3754  *     hypothetical mapping, because same graph in canonical graph corresponds
3755  *     to two different types in candidate graph, which for equivalent type
3756  *     graphs shouldn't happen. This condition terminates equivalence check
3757  *     with negative result.
3758  *
3759  * If type graphs traversal exhausts types to check and find no contradiction,
3760  * then type graphs are equivalent.
3761  *
3762  * When checking types for equivalence, there is one special case: FWD types.
3763  * If FWD type resolution is allowed and one of the types (either from canonical
3764  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3765  * flag) and their names match, hypothetical mapping is updated to point from
3766  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3767  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3768  *
3769  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3770  * if there are two exactly named (or anonymous) structs/unions that are
3771  * compatible structurally, one of which has FWD field, while other is concrete
3772  * STRUCT/UNION, but according to C sources they are different structs/unions
3773  * that are referencing different types with the same name. This is extremely
3774  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3775  * this logic is causing problems.
3776  *
3777  * Doing FWD resolution means that both candidate and/or canonical graphs can
3778  * consists of portions of the graph that come from multiple compilation units.
3779  * This is due to the fact that types within single compilation unit are always
3780  * deduplicated and FWDs are already resolved, if referenced struct/union
3781  * definiton is available. So, if we had unresolved FWD and found corresponding
3782  * STRUCT/UNION, they will be from different compilation units. This
3783  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3784  * type graph will likely have at least two different BTF types that describe
3785  * same type (e.g., most probably there will be two different BTF types for the
3786  * same 'int' primitive type) and could even have "overlapping" parts of type
3787  * graph that describe same subset of types.
3788  *
3789  * This in turn means that our assumption that each type in canonical graph
3790  * must correspond to exactly one type in candidate graph might not hold
3791  * anymore and will make it harder to detect contradictions using hypothetical
3792  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3793  * resolution only in canonical graph. FWDs in candidate graphs are never
3794  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3795  * that can occur:
3796  *   - Both types in canonical and candidate graphs are FWDs. If they are
3797  *     structurally equivalent, then they can either be both resolved to the
3798  *     same STRUCT/UNION or not resolved at all. In both cases they are
3799  *     equivalent and there is no need to resolve FWD on candidate side.
3800  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3801  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3802  *   - Type in canonical graph is FWD, while type in candidate is concrete
3803  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3804  *     unit, so there is exactly one BTF type for each unique C type. After
3805  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3806  *     in canonical graph mapping to single BTF type in candidate graph, but
3807  *     because hypothetical mapping maps from canonical to candidate types, it's
3808  *     alright, and we still maintain the property of having single `canon_id`
3809  *     mapping to single `cand_id` (there could be two different `canon_id`
3810  *     mapped to the same `cand_id`, but it's not contradictory).
3811  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3812  *     graph is FWD. In this case we are just going to check compatibility of
3813  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3814  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3815  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3816  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3817  *     canonical graph.
3818  */
3819 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3820 			      __u32 canon_id)
3821 {
3822 	struct btf_type *cand_type;
3823 	struct btf_type *canon_type;
3824 	__u32 hypot_type_id;
3825 	__u16 cand_kind;
3826 	__u16 canon_kind;
3827 	int i, eq;
3828 
3829 	/* if both resolve to the same canonical, they must be equivalent */
3830 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3831 		return 1;
3832 
3833 	canon_id = resolve_fwd_id(d, canon_id);
3834 
3835 	hypot_type_id = d->hypot_map[canon_id];
3836 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3837 		/* In some cases compiler will generate different DWARF types
3838 		 * for *identical* array type definitions and use them for
3839 		 * different fields within the *same* struct. This breaks type
3840 		 * equivalence check, which makes an assumption that candidate
3841 		 * types sub-graph has a consistent and deduped-by-compiler
3842 		 * types within a single CU. So work around that by explicitly
3843 		 * allowing identical array types here.
3844 		 */
3845 		return hypot_type_id == cand_id ||
3846 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3847 	}
3848 
3849 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3850 		return -ENOMEM;
3851 
3852 	cand_type = btf_type_by_id(d->btf, cand_id);
3853 	canon_type = btf_type_by_id(d->btf, canon_id);
3854 	cand_kind = btf_kind(cand_type);
3855 	canon_kind = btf_kind(canon_type);
3856 
3857 	if (cand_type->name_off != canon_type->name_off)
3858 		return 0;
3859 
3860 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3861 	if (!d->opts.dont_resolve_fwds
3862 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3863 	    && cand_kind != canon_kind) {
3864 		__u16 real_kind;
3865 		__u16 fwd_kind;
3866 
3867 		if (cand_kind == BTF_KIND_FWD) {
3868 			real_kind = canon_kind;
3869 			fwd_kind = btf_fwd_kind(cand_type);
3870 		} else {
3871 			real_kind = cand_kind;
3872 			fwd_kind = btf_fwd_kind(canon_type);
3873 			/* we'd need to resolve base FWD to STRUCT/UNION */
3874 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3875 				d->hypot_adjust_canon = true;
3876 		}
3877 		return fwd_kind == real_kind;
3878 	}
3879 
3880 	if (cand_kind != canon_kind)
3881 		return 0;
3882 
3883 	switch (cand_kind) {
3884 	case BTF_KIND_INT:
3885 		return btf_equal_int(cand_type, canon_type);
3886 
3887 	case BTF_KIND_ENUM:
3888 		if (d->opts.dont_resolve_fwds)
3889 			return btf_equal_enum(cand_type, canon_type);
3890 		else
3891 			return btf_compat_enum(cand_type, canon_type);
3892 
3893 	case BTF_KIND_FWD:
3894 	case BTF_KIND_FLOAT:
3895 		return btf_equal_common(cand_type, canon_type);
3896 
3897 	case BTF_KIND_CONST:
3898 	case BTF_KIND_VOLATILE:
3899 	case BTF_KIND_RESTRICT:
3900 	case BTF_KIND_PTR:
3901 	case BTF_KIND_TYPEDEF:
3902 	case BTF_KIND_FUNC:
3903 		if (cand_type->info != canon_type->info)
3904 			return 0;
3905 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3906 
3907 	case BTF_KIND_ARRAY: {
3908 		const struct btf_array *cand_arr, *canon_arr;
3909 
3910 		if (!btf_compat_array(cand_type, canon_type))
3911 			return 0;
3912 		cand_arr = btf_array(cand_type);
3913 		canon_arr = btf_array(canon_type);
3914 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3915 		if (eq <= 0)
3916 			return eq;
3917 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3918 	}
3919 
3920 	case BTF_KIND_STRUCT:
3921 	case BTF_KIND_UNION: {
3922 		const struct btf_member *cand_m, *canon_m;
3923 		__u16 vlen;
3924 
3925 		if (!btf_shallow_equal_struct(cand_type, canon_type))
3926 			return 0;
3927 		vlen = btf_vlen(cand_type);
3928 		cand_m = btf_members(cand_type);
3929 		canon_m = btf_members(canon_type);
3930 		for (i = 0; i < vlen; i++) {
3931 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3932 			if (eq <= 0)
3933 				return eq;
3934 			cand_m++;
3935 			canon_m++;
3936 		}
3937 
3938 		return 1;
3939 	}
3940 
3941 	case BTF_KIND_FUNC_PROTO: {
3942 		const struct btf_param *cand_p, *canon_p;
3943 		__u16 vlen;
3944 
3945 		if (!btf_compat_fnproto(cand_type, canon_type))
3946 			return 0;
3947 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3948 		if (eq <= 0)
3949 			return eq;
3950 		vlen = btf_vlen(cand_type);
3951 		cand_p = btf_params(cand_type);
3952 		canon_p = btf_params(canon_type);
3953 		for (i = 0; i < vlen; i++) {
3954 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3955 			if (eq <= 0)
3956 				return eq;
3957 			cand_p++;
3958 			canon_p++;
3959 		}
3960 		return 1;
3961 	}
3962 
3963 	default:
3964 		return -EINVAL;
3965 	}
3966 	return 0;
3967 }
3968 
3969 /*
3970  * Use hypothetical mapping, produced by successful type graph equivalence
3971  * check, to augment existing struct/union canonical mapping, where possible.
3972  *
3973  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3974  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3975  * it doesn't matter if FWD type was part of canonical graph or candidate one,
3976  * we are recording the mapping anyway. As opposed to carefulness required
3977  * for struct/union correspondence mapping (described below), for FWD resolution
3978  * it's not important, as by the time that FWD type (reference type) will be
3979  * deduplicated all structs/unions will be deduped already anyway.
3980  *
3981  * Recording STRUCT/UNION mapping is purely a performance optimization and is
3982  * not required for correctness. It needs to be done carefully to ensure that
3983  * struct/union from candidate's type graph is not mapped into corresponding
3984  * struct/union from canonical type graph that itself hasn't been resolved into
3985  * canonical representative. The only guarantee we have is that canonical
3986  * struct/union was determined as canonical and that won't change. But any
3987  * types referenced through that struct/union fields could have been not yet
3988  * resolved, so in case like that it's too early to establish any kind of
3989  * correspondence between structs/unions.
3990  *
3991  * No canonical correspondence is derived for primitive types (they are already
3992  * deduplicated completely already anyway) or reference types (they rely on
3993  * stability of struct/union canonical relationship for equivalence checks).
3994  */
3995 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3996 {
3997 	__u32 canon_type_id, targ_type_id;
3998 	__u16 t_kind, c_kind;
3999 	__u32 t_id, c_id;
4000 	int i;
4001 
4002 	for (i = 0; i < d->hypot_cnt; i++) {
4003 		canon_type_id = d->hypot_list[i];
4004 		targ_type_id = d->hypot_map[canon_type_id];
4005 		t_id = resolve_type_id(d, targ_type_id);
4006 		c_id = resolve_type_id(d, canon_type_id);
4007 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4008 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4009 		/*
4010 		 * Resolve FWD into STRUCT/UNION.
4011 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4012 		 * mapped to canonical representative (as opposed to
4013 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4014 		 * eventually that struct is going to be mapped and all resolved
4015 		 * FWDs will automatically resolve to correct canonical
4016 		 * representative. This will happen before ref type deduping,
4017 		 * which critically depends on stability of these mapping. This
4018 		 * stability is not a requirement for STRUCT/UNION equivalence
4019 		 * checks, though.
4020 		 */
4021 
4022 		/* if it's the split BTF case, we still need to point base FWD
4023 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4024 		 * will be resolved against base FWD. If we don't point base
4025 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4026 		 * FWDs in split BTF won't be correctly resolved to a proper
4027 		 * STRUCT/UNION.
4028 		 */
4029 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4030 			d->map[c_id] = t_id;
4031 
4032 		/* if graph equivalence determined that we'd need to adjust
4033 		 * base canonical types, then we need to only point base FWDs
4034 		 * to STRUCTs/UNIONs and do no more modifications. For all
4035 		 * other purposes the type graphs were not equivalent.
4036 		 */
4037 		if (d->hypot_adjust_canon)
4038 			continue;
4039 
4040 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4041 			d->map[t_id] = c_id;
4042 
4043 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4044 		    c_kind != BTF_KIND_FWD &&
4045 		    is_type_mapped(d, c_id) &&
4046 		    !is_type_mapped(d, t_id)) {
4047 			/*
4048 			 * as a perf optimization, we can map struct/union
4049 			 * that's part of type graph we just verified for
4050 			 * equivalence. We can do that for struct/union that has
4051 			 * canonical representative only, though.
4052 			 */
4053 			d->map[t_id] = c_id;
4054 		}
4055 	}
4056 }
4057 
4058 /*
4059  * Deduplicate struct/union types.
4060  *
4061  * For each struct/union type its type signature hash is calculated, taking
4062  * into account type's name, size, number, order and names of fields, but
4063  * ignoring type ID's referenced from fields, because they might not be deduped
4064  * completely until after reference types deduplication phase. This type hash
4065  * is used to iterate over all potential canonical types, sharing same hash.
4066  * For each canonical candidate we check whether type graphs that they form
4067  * (through referenced types in fields and so on) are equivalent using algorithm
4068  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4069  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4070  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4071  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4072  * potentially map other structs/unions to their canonical representatives,
4073  * if such relationship hasn't yet been established. This speeds up algorithm
4074  * by eliminating some of the duplicate work.
4075  *
4076  * If no matching canonical representative was found, struct/union is marked
4077  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4078  * for further look ups.
4079  */
4080 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4081 {
4082 	struct btf_type *cand_type, *t;
4083 	struct hashmap_entry *hash_entry;
4084 	/* if we don't find equivalent type, then we are canonical */
4085 	__u32 new_id = type_id;
4086 	__u16 kind;
4087 	long h;
4088 
4089 	/* already deduped or is in process of deduping (loop detected) */
4090 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4091 		return 0;
4092 
4093 	t = btf_type_by_id(d->btf, type_id);
4094 	kind = btf_kind(t);
4095 
4096 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4097 		return 0;
4098 
4099 	h = btf_hash_struct(t);
4100 	for_each_dedup_cand(d, hash_entry, h) {
4101 		__u32 cand_id = (__u32)(long)hash_entry->value;
4102 		int eq;
4103 
4104 		/*
4105 		 * Even though btf_dedup_is_equiv() checks for
4106 		 * btf_shallow_equal_struct() internally when checking two
4107 		 * structs (unions) for equivalence, we need to guard here
4108 		 * from picking matching FWD type as a dedup candidate.
4109 		 * This can happen due to hash collision. In such case just
4110 		 * relying on btf_dedup_is_equiv() would lead to potentially
4111 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4112 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4113 		 */
4114 		cand_type = btf_type_by_id(d->btf, cand_id);
4115 		if (!btf_shallow_equal_struct(t, cand_type))
4116 			continue;
4117 
4118 		btf_dedup_clear_hypot_map(d);
4119 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4120 		if (eq < 0)
4121 			return eq;
4122 		if (!eq)
4123 			continue;
4124 		btf_dedup_merge_hypot_map(d);
4125 		if (d->hypot_adjust_canon) /* not really equivalent */
4126 			continue;
4127 		new_id = cand_id;
4128 		break;
4129 	}
4130 
4131 	d->map[type_id] = new_id;
4132 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4133 		return -ENOMEM;
4134 
4135 	return 0;
4136 }
4137 
4138 static int btf_dedup_struct_types(struct btf_dedup *d)
4139 {
4140 	int i, err;
4141 
4142 	for (i = 0; i < d->btf->nr_types; i++) {
4143 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4144 		if (err)
4145 			return err;
4146 	}
4147 	return 0;
4148 }
4149 
4150 /*
4151  * Deduplicate reference type.
4152  *
4153  * Once all primitive and struct/union types got deduplicated, we can easily
4154  * deduplicate all other (reference) BTF types. This is done in two steps:
4155  *
4156  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4157  * resolution can be done either immediately for primitive or struct/union types
4158  * (because they were deduped in previous two phases) or recursively for
4159  * reference types. Recursion will always terminate at either primitive or
4160  * struct/union type, at which point we can "unwind" chain of reference types
4161  * one by one. There is no danger of encountering cycles because in C type
4162  * system the only way to form type cycle is through struct/union, so any chain
4163  * of reference types, even those taking part in a type cycle, will inevitably
4164  * reach struct/union at some point.
4165  *
4166  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4167  * becomes "stable", in the sense that no further deduplication will cause
4168  * any changes to it. With that, it's now possible to calculate type's signature
4169  * hash (this time taking into account referenced type IDs) and loop over all
4170  * potential canonical representatives. If no match was found, current type
4171  * will become canonical representative of itself and will be added into
4172  * btf_dedup->dedup_table as another possible canonical representative.
4173  */
4174 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4175 {
4176 	struct hashmap_entry *hash_entry;
4177 	__u32 new_id = type_id, cand_id;
4178 	struct btf_type *t, *cand;
4179 	/* if we don't find equivalent type, then we are representative type */
4180 	int ref_type_id;
4181 	long h;
4182 
4183 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4184 		return -ELOOP;
4185 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4186 		return resolve_type_id(d, type_id);
4187 
4188 	t = btf_type_by_id(d->btf, type_id);
4189 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4190 
4191 	switch (btf_kind(t)) {
4192 	case BTF_KIND_CONST:
4193 	case BTF_KIND_VOLATILE:
4194 	case BTF_KIND_RESTRICT:
4195 	case BTF_KIND_PTR:
4196 	case BTF_KIND_TYPEDEF:
4197 	case BTF_KIND_FUNC:
4198 		ref_type_id = btf_dedup_ref_type(d, t->type);
4199 		if (ref_type_id < 0)
4200 			return ref_type_id;
4201 		t->type = ref_type_id;
4202 
4203 		h = btf_hash_common(t);
4204 		for_each_dedup_cand(d, hash_entry, h) {
4205 			cand_id = (__u32)(long)hash_entry->value;
4206 			cand = btf_type_by_id(d->btf, cand_id);
4207 			if (btf_equal_common(t, cand)) {
4208 				new_id = cand_id;
4209 				break;
4210 			}
4211 		}
4212 		break;
4213 
4214 	case BTF_KIND_ARRAY: {
4215 		struct btf_array *info = btf_array(t);
4216 
4217 		ref_type_id = btf_dedup_ref_type(d, info->type);
4218 		if (ref_type_id < 0)
4219 			return ref_type_id;
4220 		info->type = ref_type_id;
4221 
4222 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4223 		if (ref_type_id < 0)
4224 			return ref_type_id;
4225 		info->index_type = ref_type_id;
4226 
4227 		h = btf_hash_array(t);
4228 		for_each_dedup_cand(d, hash_entry, h) {
4229 			cand_id = (__u32)(long)hash_entry->value;
4230 			cand = btf_type_by_id(d->btf, cand_id);
4231 			if (btf_equal_array(t, cand)) {
4232 				new_id = cand_id;
4233 				break;
4234 			}
4235 		}
4236 		break;
4237 	}
4238 
4239 	case BTF_KIND_FUNC_PROTO: {
4240 		struct btf_param *param;
4241 		__u16 vlen;
4242 		int i;
4243 
4244 		ref_type_id = btf_dedup_ref_type(d, t->type);
4245 		if (ref_type_id < 0)
4246 			return ref_type_id;
4247 		t->type = ref_type_id;
4248 
4249 		vlen = btf_vlen(t);
4250 		param = btf_params(t);
4251 		for (i = 0; i < vlen; i++) {
4252 			ref_type_id = btf_dedup_ref_type(d, param->type);
4253 			if (ref_type_id < 0)
4254 				return ref_type_id;
4255 			param->type = ref_type_id;
4256 			param++;
4257 		}
4258 
4259 		h = btf_hash_fnproto(t);
4260 		for_each_dedup_cand(d, hash_entry, h) {
4261 			cand_id = (__u32)(long)hash_entry->value;
4262 			cand = btf_type_by_id(d->btf, cand_id);
4263 			if (btf_equal_fnproto(t, cand)) {
4264 				new_id = cand_id;
4265 				break;
4266 			}
4267 		}
4268 		break;
4269 	}
4270 
4271 	default:
4272 		return -EINVAL;
4273 	}
4274 
4275 	d->map[type_id] = new_id;
4276 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4277 		return -ENOMEM;
4278 
4279 	return new_id;
4280 }
4281 
4282 static int btf_dedup_ref_types(struct btf_dedup *d)
4283 {
4284 	int i, err;
4285 
4286 	for (i = 0; i < d->btf->nr_types; i++) {
4287 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4288 		if (err < 0)
4289 			return err;
4290 	}
4291 	/* we won't need d->dedup_table anymore */
4292 	hashmap__free(d->dedup_table);
4293 	d->dedup_table = NULL;
4294 	return 0;
4295 }
4296 
4297 /*
4298  * Compact types.
4299  *
4300  * After we established for each type its corresponding canonical representative
4301  * type, we now can eliminate types that are not canonical and leave only
4302  * canonical ones layed out sequentially in memory by copying them over
4303  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4304  * a map from original type ID to a new compacted type ID, which will be used
4305  * during next phase to "fix up" type IDs, referenced from struct/union and
4306  * reference types.
4307  */
4308 static int btf_dedup_compact_types(struct btf_dedup *d)
4309 {
4310 	__u32 *new_offs;
4311 	__u32 next_type_id = d->btf->start_id;
4312 	const struct btf_type *t;
4313 	void *p;
4314 	int i, id, len;
4315 
4316 	/* we are going to reuse hypot_map to store compaction remapping */
4317 	d->hypot_map[0] = 0;
4318 	/* base BTF types are not renumbered */
4319 	for (id = 1; id < d->btf->start_id; id++)
4320 		d->hypot_map[id] = id;
4321 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4322 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4323 
4324 	p = d->btf->types_data;
4325 
4326 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4327 		if (d->map[id] != id)
4328 			continue;
4329 
4330 		t = btf__type_by_id(d->btf, id);
4331 		len = btf_type_size(t);
4332 		if (len < 0)
4333 			return len;
4334 
4335 		memmove(p, t, len);
4336 		d->hypot_map[id] = next_type_id;
4337 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4338 		p += len;
4339 		next_type_id++;
4340 	}
4341 
4342 	/* shrink struct btf's internal types index and update btf_header */
4343 	d->btf->nr_types = next_type_id - d->btf->start_id;
4344 	d->btf->type_offs_cap = d->btf->nr_types;
4345 	d->btf->hdr->type_len = p - d->btf->types_data;
4346 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4347 				       sizeof(*new_offs));
4348 	if (d->btf->type_offs_cap && !new_offs)
4349 		return -ENOMEM;
4350 	d->btf->type_offs = new_offs;
4351 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4352 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4353 	return 0;
4354 }
4355 
4356 /*
4357  * Figure out final (deduplicated and compacted) type ID for provided original
4358  * `type_id` by first resolving it into corresponding canonical type ID and
4359  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4360  * which is populated during compaction phase.
4361  */
4362 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4363 {
4364 	struct btf_dedup *d = ctx;
4365 	__u32 resolved_type_id, new_type_id;
4366 
4367 	resolved_type_id = resolve_type_id(d, *type_id);
4368 	new_type_id = d->hypot_map[resolved_type_id];
4369 	if (new_type_id > BTF_MAX_NR_TYPES)
4370 		return -EINVAL;
4371 
4372 	*type_id = new_type_id;
4373 	return 0;
4374 }
4375 
4376 /*
4377  * Remap referenced type IDs into deduped type IDs.
4378  *
4379  * After BTF types are deduplicated and compacted, their final type IDs may
4380  * differ from original ones. The map from original to a corresponding
4381  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4382  * compaction phase. During remapping phase we are rewriting all type IDs
4383  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4384  * their final deduped type IDs.
4385  */
4386 static int btf_dedup_remap_types(struct btf_dedup *d)
4387 {
4388 	int i, r;
4389 
4390 	for (i = 0; i < d->btf->nr_types; i++) {
4391 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4392 
4393 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4394 		if (r)
4395 			return r;
4396 	}
4397 
4398 	if (!d->btf_ext)
4399 		return 0;
4400 
4401 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4402 	if (r)
4403 		return r;
4404 
4405 	return 0;
4406 }
4407 
4408 /*
4409  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4410  * data out of it to use for target BTF.
4411  */
4412 struct btf *btf__load_vmlinux_btf(void)
4413 {
4414 	struct {
4415 		const char *path_fmt;
4416 		bool raw_btf;
4417 	} locations[] = {
4418 		/* try canonical vmlinux BTF through sysfs first */
4419 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4420 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4421 		{ "/boot/vmlinux-%1$s" },
4422 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4423 		{ "/lib/modules/%1$s/build/vmlinux" },
4424 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4425 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4426 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4427 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4428 	};
4429 	char path[PATH_MAX + 1];
4430 	struct utsname buf;
4431 	struct btf *btf;
4432 	int i, err;
4433 
4434 	uname(&buf);
4435 
4436 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4437 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4438 
4439 		if (access(path, R_OK))
4440 			continue;
4441 
4442 		if (locations[i].raw_btf)
4443 			btf = btf__parse_raw(path);
4444 		else
4445 			btf = btf__parse_elf(path, NULL);
4446 		err = libbpf_get_error(btf);
4447 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4448 		if (err)
4449 			continue;
4450 
4451 		return btf;
4452 	}
4453 
4454 	pr_warn("failed to find valid kernel BTF\n");
4455 	return libbpf_err_ptr(-ESRCH);
4456 }
4457 
4458 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4459 
4460 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4461 {
4462 	char path[80];
4463 
4464 	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4465 	return btf__parse_split(path, vmlinux_btf);
4466 }
4467 
4468 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4469 {
4470 	int i, n, err;
4471 
4472 	switch (btf_kind(t)) {
4473 	case BTF_KIND_INT:
4474 	case BTF_KIND_FLOAT:
4475 	case BTF_KIND_ENUM:
4476 		return 0;
4477 
4478 	case BTF_KIND_FWD:
4479 	case BTF_KIND_CONST:
4480 	case BTF_KIND_VOLATILE:
4481 	case BTF_KIND_RESTRICT:
4482 	case BTF_KIND_PTR:
4483 	case BTF_KIND_TYPEDEF:
4484 	case BTF_KIND_FUNC:
4485 	case BTF_KIND_VAR:
4486 		return visit(&t->type, ctx);
4487 
4488 	case BTF_KIND_ARRAY: {
4489 		struct btf_array *a = btf_array(t);
4490 
4491 		err = visit(&a->type, ctx);
4492 		err = err ?: visit(&a->index_type, ctx);
4493 		return err;
4494 	}
4495 
4496 	case BTF_KIND_STRUCT:
4497 	case BTF_KIND_UNION: {
4498 		struct btf_member *m = btf_members(t);
4499 
4500 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4501 			err = visit(&m->type, ctx);
4502 			if (err)
4503 				return err;
4504 		}
4505 		return 0;
4506 	}
4507 
4508 	case BTF_KIND_FUNC_PROTO: {
4509 		struct btf_param *m = btf_params(t);
4510 
4511 		err = visit(&t->type, ctx);
4512 		if (err)
4513 			return err;
4514 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4515 			err = visit(&m->type, ctx);
4516 			if (err)
4517 				return err;
4518 		}
4519 		return 0;
4520 	}
4521 
4522 	case BTF_KIND_DATASEC: {
4523 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4524 
4525 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4526 			err = visit(&m->type, ctx);
4527 			if (err)
4528 				return err;
4529 		}
4530 		return 0;
4531 	}
4532 
4533 	default:
4534 		return -EINVAL;
4535 	}
4536 }
4537 
4538 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4539 {
4540 	int i, n, err;
4541 
4542 	err = visit(&t->name_off, ctx);
4543 	if (err)
4544 		return err;
4545 
4546 	switch (btf_kind(t)) {
4547 	case BTF_KIND_STRUCT:
4548 	case BTF_KIND_UNION: {
4549 		struct btf_member *m = btf_members(t);
4550 
4551 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4552 			err = visit(&m->name_off, ctx);
4553 			if (err)
4554 				return err;
4555 		}
4556 		break;
4557 	}
4558 	case BTF_KIND_ENUM: {
4559 		struct btf_enum *m = btf_enum(t);
4560 
4561 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4562 			err = visit(&m->name_off, ctx);
4563 			if (err)
4564 				return err;
4565 		}
4566 		break;
4567 	}
4568 	case BTF_KIND_FUNC_PROTO: {
4569 		struct btf_param *m = btf_params(t);
4570 
4571 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4572 			err = visit(&m->name_off, ctx);
4573 			if (err)
4574 				return err;
4575 		}
4576 		break;
4577 	}
4578 	default:
4579 		break;
4580 	}
4581 
4582 	return 0;
4583 }
4584 
4585 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4586 {
4587 	const struct btf_ext_info *seg;
4588 	struct btf_ext_info_sec *sec;
4589 	int i, err;
4590 
4591 	seg = &btf_ext->func_info;
4592 	for_each_btf_ext_sec(seg, sec) {
4593 		struct bpf_func_info_min *rec;
4594 
4595 		for_each_btf_ext_rec(seg, sec, i, rec) {
4596 			err = visit(&rec->type_id, ctx);
4597 			if (err < 0)
4598 				return err;
4599 		}
4600 	}
4601 
4602 	seg = &btf_ext->core_relo_info;
4603 	for_each_btf_ext_sec(seg, sec) {
4604 		struct bpf_core_relo *rec;
4605 
4606 		for_each_btf_ext_rec(seg, sec, i, rec) {
4607 			err = visit(&rec->type_id, ctx);
4608 			if (err < 0)
4609 				return err;
4610 		}
4611 	}
4612 
4613 	return 0;
4614 }
4615 
4616 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4617 {
4618 	const struct btf_ext_info *seg;
4619 	struct btf_ext_info_sec *sec;
4620 	int i, err;
4621 
4622 	seg = &btf_ext->func_info;
4623 	for_each_btf_ext_sec(seg, sec) {
4624 		err = visit(&sec->sec_name_off, ctx);
4625 		if (err)
4626 			return err;
4627 	}
4628 
4629 	seg = &btf_ext->line_info;
4630 	for_each_btf_ext_sec(seg, sec) {
4631 		struct bpf_line_info_min *rec;
4632 
4633 		err = visit(&sec->sec_name_off, ctx);
4634 		if (err)
4635 			return err;
4636 
4637 		for_each_btf_ext_rec(seg, sec, i, rec) {
4638 			err = visit(&rec->file_name_off, ctx);
4639 			if (err)
4640 				return err;
4641 			err = visit(&rec->line_off, ctx);
4642 			if (err)
4643 				return err;
4644 		}
4645 	}
4646 
4647 	seg = &btf_ext->core_relo_info;
4648 	for_each_btf_ext_sec(seg, sec) {
4649 		struct bpf_core_relo *rec;
4650 
4651 		err = visit(&sec->sec_name_off, ctx);
4652 		if (err)
4653 			return err;
4654 
4655 		for_each_btf_ext_rec(seg, sec, i, rec) {
4656 			err = visit(&rec->access_str_off, ctx);
4657 			if (err)
4658 				return err;
4659 		}
4660 	}
4661 
4662 	return 0;
4663 }
4664