1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__get_raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 193 { 194 __u32 *p; 195 196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 197 btf->nr_types, BTF_MAX_NR_TYPES, 1); 198 if (!p) 199 return -ENOMEM; 200 201 *p = type_off; 202 return 0; 203 } 204 205 static void btf_bswap_hdr(struct btf_header *h) 206 { 207 h->magic = bswap_16(h->magic); 208 h->hdr_len = bswap_32(h->hdr_len); 209 h->type_off = bswap_32(h->type_off); 210 h->type_len = bswap_32(h->type_len); 211 h->str_off = bswap_32(h->str_off); 212 h->str_len = bswap_32(h->str_len); 213 } 214 215 static int btf_parse_hdr(struct btf *btf) 216 { 217 struct btf_header *hdr = btf->hdr; 218 __u32 meta_left; 219 220 if (btf->raw_size < sizeof(struct btf_header)) { 221 pr_debug("BTF header not found\n"); 222 return -EINVAL; 223 } 224 225 if (hdr->magic == bswap_16(BTF_MAGIC)) { 226 btf->swapped_endian = true; 227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 229 bswap_32(hdr->hdr_len)); 230 return -ENOTSUP; 231 } 232 btf_bswap_hdr(hdr); 233 } else if (hdr->magic != BTF_MAGIC) { 234 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 235 return -EINVAL; 236 } 237 238 meta_left = btf->raw_size - sizeof(*hdr); 239 if (meta_left < hdr->str_off + hdr->str_len) { 240 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 241 return -EINVAL; 242 } 243 244 if (hdr->type_off + hdr->type_len > hdr->str_off) { 245 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 246 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 247 return -EINVAL; 248 } 249 250 if (hdr->type_off % 4) { 251 pr_debug("BTF type section is not aligned to 4 bytes\n"); 252 return -EINVAL; 253 } 254 255 return 0; 256 } 257 258 static int btf_parse_str_sec(struct btf *btf) 259 { 260 const struct btf_header *hdr = btf->hdr; 261 const char *start = btf->strs_data; 262 const char *end = start + btf->hdr->str_len; 263 264 if (btf->base_btf && hdr->str_len == 0) 265 return 0; 266 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 267 pr_debug("Invalid BTF string section\n"); 268 return -EINVAL; 269 } 270 if (!btf->base_btf && start[0]) { 271 pr_debug("Invalid BTF string section\n"); 272 return -EINVAL; 273 } 274 return 0; 275 } 276 277 static int btf_type_size(const struct btf_type *t) 278 { 279 const int base_size = sizeof(struct btf_type); 280 __u16 vlen = btf_vlen(t); 281 282 switch (btf_kind(t)) { 283 case BTF_KIND_FWD: 284 case BTF_KIND_CONST: 285 case BTF_KIND_VOLATILE: 286 case BTF_KIND_RESTRICT: 287 case BTF_KIND_PTR: 288 case BTF_KIND_TYPEDEF: 289 case BTF_KIND_FUNC: 290 case BTF_KIND_FLOAT: 291 return base_size; 292 case BTF_KIND_INT: 293 return base_size + sizeof(__u32); 294 case BTF_KIND_ENUM: 295 return base_size + vlen * sizeof(struct btf_enum); 296 case BTF_KIND_ARRAY: 297 return base_size + sizeof(struct btf_array); 298 case BTF_KIND_STRUCT: 299 case BTF_KIND_UNION: 300 return base_size + vlen * sizeof(struct btf_member); 301 case BTF_KIND_FUNC_PROTO: 302 return base_size + vlen * sizeof(struct btf_param); 303 case BTF_KIND_VAR: 304 return base_size + sizeof(struct btf_var); 305 case BTF_KIND_DATASEC: 306 return base_size + vlen * sizeof(struct btf_var_secinfo); 307 default: 308 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 309 return -EINVAL; 310 } 311 } 312 313 static void btf_bswap_type_base(struct btf_type *t) 314 { 315 t->name_off = bswap_32(t->name_off); 316 t->info = bswap_32(t->info); 317 t->type = bswap_32(t->type); 318 } 319 320 static int btf_bswap_type_rest(struct btf_type *t) 321 { 322 struct btf_var_secinfo *v; 323 struct btf_member *m; 324 struct btf_array *a; 325 struct btf_param *p; 326 struct btf_enum *e; 327 __u16 vlen = btf_vlen(t); 328 int i; 329 330 switch (btf_kind(t)) { 331 case BTF_KIND_FWD: 332 case BTF_KIND_CONST: 333 case BTF_KIND_VOLATILE: 334 case BTF_KIND_RESTRICT: 335 case BTF_KIND_PTR: 336 case BTF_KIND_TYPEDEF: 337 case BTF_KIND_FUNC: 338 case BTF_KIND_FLOAT: 339 return 0; 340 case BTF_KIND_INT: 341 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 342 return 0; 343 case BTF_KIND_ENUM: 344 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 345 e->name_off = bswap_32(e->name_off); 346 e->val = bswap_32(e->val); 347 } 348 return 0; 349 case BTF_KIND_ARRAY: 350 a = btf_array(t); 351 a->type = bswap_32(a->type); 352 a->index_type = bswap_32(a->index_type); 353 a->nelems = bswap_32(a->nelems); 354 return 0; 355 case BTF_KIND_STRUCT: 356 case BTF_KIND_UNION: 357 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 358 m->name_off = bswap_32(m->name_off); 359 m->type = bswap_32(m->type); 360 m->offset = bswap_32(m->offset); 361 } 362 return 0; 363 case BTF_KIND_FUNC_PROTO: 364 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 365 p->name_off = bswap_32(p->name_off); 366 p->type = bswap_32(p->type); 367 } 368 return 0; 369 case BTF_KIND_VAR: 370 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 371 return 0; 372 case BTF_KIND_DATASEC: 373 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 374 v->type = bswap_32(v->type); 375 v->offset = bswap_32(v->offset); 376 v->size = bswap_32(v->size); 377 } 378 return 0; 379 default: 380 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 381 return -EINVAL; 382 } 383 } 384 385 static int btf_parse_type_sec(struct btf *btf) 386 { 387 struct btf_header *hdr = btf->hdr; 388 void *next_type = btf->types_data; 389 void *end_type = next_type + hdr->type_len; 390 int err, type_size; 391 392 while (next_type + sizeof(struct btf_type) <= end_type) { 393 if (btf->swapped_endian) 394 btf_bswap_type_base(next_type); 395 396 type_size = btf_type_size(next_type); 397 if (type_size < 0) 398 return type_size; 399 if (next_type + type_size > end_type) { 400 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 401 return -EINVAL; 402 } 403 404 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 405 return -EINVAL; 406 407 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 408 if (err) 409 return err; 410 411 next_type += type_size; 412 btf->nr_types++; 413 } 414 415 if (next_type != end_type) { 416 pr_warn("BTF types data is malformed\n"); 417 return -EINVAL; 418 } 419 420 return 0; 421 } 422 423 __u32 btf__get_nr_types(const struct btf *btf) 424 { 425 return btf->start_id + btf->nr_types - 1; 426 } 427 428 const struct btf *btf__base_btf(const struct btf *btf) 429 { 430 return btf->base_btf; 431 } 432 433 /* internal helper returning non-const pointer to a type */ 434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 435 { 436 if (type_id == 0) 437 return &btf_void; 438 if (type_id < btf->start_id) 439 return btf_type_by_id(btf->base_btf, type_id); 440 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 441 } 442 443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 444 { 445 if (type_id >= btf->start_id + btf->nr_types) 446 return errno = EINVAL, NULL; 447 return btf_type_by_id((struct btf *)btf, type_id); 448 } 449 450 static int determine_ptr_size(const struct btf *btf) 451 { 452 const struct btf_type *t; 453 const char *name; 454 int i, n; 455 456 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 457 return btf->base_btf->ptr_sz; 458 459 n = btf__get_nr_types(btf); 460 for (i = 1; i <= n; i++) { 461 t = btf__type_by_id(btf, i); 462 if (!btf_is_int(t)) 463 continue; 464 465 name = btf__name_by_offset(btf, t->name_off); 466 if (!name) 467 continue; 468 469 if (strcmp(name, "long int") == 0 || 470 strcmp(name, "long unsigned int") == 0) { 471 if (t->size != 4 && t->size != 8) 472 continue; 473 return t->size; 474 } 475 } 476 477 return -1; 478 } 479 480 static size_t btf_ptr_sz(const struct btf *btf) 481 { 482 if (!btf->ptr_sz) 483 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 484 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 485 } 486 487 /* Return pointer size this BTF instance assumes. The size is heuristically 488 * determined by looking for 'long' or 'unsigned long' integer type and 489 * recording its size in bytes. If BTF type information doesn't have any such 490 * type, this function returns 0. In the latter case, native architecture's 491 * pointer size is assumed, so will be either 4 or 8, depending on 492 * architecture that libbpf was compiled for. It's possible to override 493 * guessed value by using btf__set_pointer_size() API. 494 */ 495 size_t btf__pointer_size(const struct btf *btf) 496 { 497 if (!btf->ptr_sz) 498 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 499 500 if (btf->ptr_sz < 0) 501 /* not enough BTF type info to guess */ 502 return 0; 503 504 return btf->ptr_sz; 505 } 506 507 /* Override or set pointer size in bytes. Only values of 4 and 8 are 508 * supported. 509 */ 510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 511 { 512 if (ptr_sz != 4 && ptr_sz != 8) 513 return libbpf_err(-EINVAL); 514 btf->ptr_sz = ptr_sz; 515 return 0; 516 } 517 518 static bool is_host_big_endian(void) 519 { 520 #if __BYTE_ORDER == __LITTLE_ENDIAN 521 return false; 522 #elif __BYTE_ORDER == __BIG_ENDIAN 523 return true; 524 #else 525 # error "Unrecognized __BYTE_ORDER__" 526 #endif 527 } 528 529 enum btf_endianness btf__endianness(const struct btf *btf) 530 { 531 if (is_host_big_endian()) 532 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 533 else 534 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 535 } 536 537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 538 { 539 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 540 return libbpf_err(-EINVAL); 541 542 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 543 if (!btf->swapped_endian) { 544 free(btf->raw_data_swapped); 545 btf->raw_data_swapped = NULL; 546 } 547 return 0; 548 } 549 550 static bool btf_type_is_void(const struct btf_type *t) 551 { 552 return t == &btf_void || btf_is_fwd(t); 553 } 554 555 static bool btf_type_is_void_or_null(const struct btf_type *t) 556 { 557 return !t || btf_type_is_void(t); 558 } 559 560 #define MAX_RESOLVE_DEPTH 32 561 562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 563 { 564 const struct btf_array *array; 565 const struct btf_type *t; 566 __u32 nelems = 1; 567 __s64 size = -1; 568 int i; 569 570 t = btf__type_by_id(btf, type_id); 571 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 572 switch (btf_kind(t)) { 573 case BTF_KIND_INT: 574 case BTF_KIND_STRUCT: 575 case BTF_KIND_UNION: 576 case BTF_KIND_ENUM: 577 case BTF_KIND_DATASEC: 578 case BTF_KIND_FLOAT: 579 size = t->size; 580 goto done; 581 case BTF_KIND_PTR: 582 size = btf_ptr_sz(btf); 583 goto done; 584 case BTF_KIND_TYPEDEF: 585 case BTF_KIND_VOLATILE: 586 case BTF_KIND_CONST: 587 case BTF_KIND_RESTRICT: 588 case BTF_KIND_VAR: 589 type_id = t->type; 590 break; 591 case BTF_KIND_ARRAY: 592 array = btf_array(t); 593 if (nelems && array->nelems > UINT32_MAX / nelems) 594 return libbpf_err(-E2BIG); 595 nelems *= array->nelems; 596 type_id = array->type; 597 break; 598 default: 599 return libbpf_err(-EINVAL); 600 } 601 602 t = btf__type_by_id(btf, type_id); 603 } 604 605 done: 606 if (size < 0) 607 return libbpf_err(-EINVAL); 608 if (nelems && size > UINT32_MAX / nelems) 609 return libbpf_err(-E2BIG); 610 611 return nelems * size; 612 } 613 614 int btf__align_of(const struct btf *btf, __u32 id) 615 { 616 const struct btf_type *t = btf__type_by_id(btf, id); 617 __u16 kind = btf_kind(t); 618 619 switch (kind) { 620 case BTF_KIND_INT: 621 case BTF_KIND_ENUM: 622 case BTF_KIND_FLOAT: 623 return min(btf_ptr_sz(btf), (size_t)t->size); 624 case BTF_KIND_PTR: 625 return btf_ptr_sz(btf); 626 case BTF_KIND_TYPEDEF: 627 case BTF_KIND_VOLATILE: 628 case BTF_KIND_CONST: 629 case BTF_KIND_RESTRICT: 630 return btf__align_of(btf, t->type); 631 case BTF_KIND_ARRAY: 632 return btf__align_of(btf, btf_array(t)->type); 633 case BTF_KIND_STRUCT: 634 case BTF_KIND_UNION: { 635 const struct btf_member *m = btf_members(t); 636 __u16 vlen = btf_vlen(t); 637 int i, max_align = 1, align; 638 639 for (i = 0; i < vlen; i++, m++) { 640 align = btf__align_of(btf, m->type); 641 if (align <= 0) 642 return libbpf_err(align); 643 max_align = max(max_align, align); 644 } 645 646 return max_align; 647 } 648 default: 649 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 650 return errno = EINVAL, 0; 651 } 652 } 653 654 int btf__resolve_type(const struct btf *btf, __u32 type_id) 655 { 656 const struct btf_type *t; 657 int depth = 0; 658 659 t = btf__type_by_id(btf, type_id); 660 while (depth < MAX_RESOLVE_DEPTH && 661 !btf_type_is_void_or_null(t) && 662 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 663 type_id = t->type; 664 t = btf__type_by_id(btf, type_id); 665 depth++; 666 } 667 668 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 669 return libbpf_err(-EINVAL); 670 671 return type_id; 672 } 673 674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 675 { 676 __u32 i, nr_types = btf__get_nr_types(btf); 677 678 if (!strcmp(type_name, "void")) 679 return 0; 680 681 for (i = 1; i <= nr_types; i++) { 682 const struct btf_type *t = btf__type_by_id(btf, i); 683 const char *name = btf__name_by_offset(btf, t->name_off); 684 685 if (name && !strcmp(type_name, name)) 686 return i; 687 } 688 689 return libbpf_err(-ENOENT); 690 } 691 692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 693 __u32 kind) 694 { 695 __u32 i, nr_types = btf__get_nr_types(btf); 696 697 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 698 return 0; 699 700 for (i = 1; i <= nr_types; i++) { 701 const struct btf_type *t = btf__type_by_id(btf, i); 702 const char *name; 703 704 if (btf_kind(t) != kind) 705 continue; 706 name = btf__name_by_offset(btf, t->name_off); 707 if (name && !strcmp(type_name, name)) 708 return i; 709 } 710 711 return libbpf_err(-ENOENT); 712 } 713 714 static bool btf_is_modifiable(const struct btf *btf) 715 { 716 return (void *)btf->hdr != btf->raw_data; 717 } 718 719 void btf__free(struct btf *btf) 720 { 721 if (IS_ERR_OR_NULL(btf)) 722 return; 723 724 if (btf->fd >= 0) 725 close(btf->fd); 726 727 if (btf_is_modifiable(btf)) { 728 /* if BTF was modified after loading, it will have a split 729 * in-memory representation for header, types, and strings 730 * sections, so we need to free all of them individually. It 731 * might still have a cached contiguous raw data present, 732 * which will be unconditionally freed below. 733 */ 734 free(btf->hdr); 735 free(btf->types_data); 736 strset__free(btf->strs_set); 737 } 738 free(btf->raw_data); 739 free(btf->raw_data_swapped); 740 free(btf->type_offs); 741 free(btf); 742 } 743 744 static struct btf *btf_new_empty(struct btf *base_btf) 745 { 746 struct btf *btf; 747 748 btf = calloc(1, sizeof(*btf)); 749 if (!btf) 750 return ERR_PTR(-ENOMEM); 751 752 btf->nr_types = 0; 753 btf->start_id = 1; 754 btf->start_str_off = 0; 755 btf->fd = -1; 756 btf->ptr_sz = sizeof(void *); 757 btf->swapped_endian = false; 758 759 if (base_btf) { 760 btf->base_btf = base_btf; 761 btf->start_id = btf__get_nr_types(base_btf) + 1; 762 btf->start_str_off = base_btf->hdr->str_len; 763 } 764 765 /* +1 for empty string at offset 0 */ 766 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 767 btf->raw_data = calloc(1, btf->raw_size); 768 if (!btf->raw_data) { 769 free(btf); 770 return ERR_PTR(-ENOMEM); 771 } 772 773 btf->hdr = btf->raw_data; 774 btf->hdr->hdr_len = sizeof(struct btf_header); 775 btf->hdr->magic = BTF_MAGIC; 776 btf->hdr->version = BTF_VERSION; 777 778 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 779 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 780 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 781 782 return btf; 783 } 784 785 struct btf *btf__new_empty(void) 786 { 787 return libbpf_ptr(btf_new_empty(NULL)); 788 } 789 790 struct btf *btf__new_empty_split(struct btf *base_btf) 791 { 792 return libbpf_ptr(btf_new_empty(base_btf)); 793 } 794 795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 796 { 797 struct btf *btf; 798 int err; 799 800 btf = calloc(1, sizeof(struct btf)); 801 if (!btf) 802 return ERR_PTR(-ENOMEM); 803 804 btf->nr_types = 0; 805 btf->start_id = 1; 806 btf->start_str_off = 0; 807 808 if (base_btf) { 809 btf->base_btf = base_btf; 810 btf->start_id = btf__get_nr_types(base_btf) + 1; 811 btf->start_str_off = base_btf->hdr->str_len; 812 } 813 814 btf->raw_data = malloc(size); 815 if (!btf->raw_data) { 816 err = -ENOMEM; 817 goto done; 818 } 819 memcpy(btf->raw_data, data, size); 820 btf->raw_size = size; 821 822 btf->hdr = btf->raw_data; 823 err = btf_parse_hdr(btf); 824 if (err) 825 goto done; 826 827 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 828 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 829 830 err = btf_parse_str_sec(btf); 831 err = err ?: btf_parse_type_sec(btf); 832 if (err) 833 goto done; 834 835 btf->fd = -1; 836 837 done: 838 if (err) { 839 btf__free(btf); 840 return ERR_PTR(err); 841 } 842 843 return btf; 844 } 845 846 struct btf *btf__new(const void *data, __u32 size) 847 { 848 return libbpf_ptr(btf_new(data, size, NULL)); 849 } 850 851 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 852 struct btf_ext **btf_ext) 853 { 854 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 855 int err = 0, fd = -1, idx = 0; 856 struct btf *btf = NULL; 857 Elf_Scn *scn = NULL; 858 Elf *elf = NULL; 859 GElf_Ehdr ehdr; 860 size_t shstrndx; 861 862 if (elf_version(EV_CURRENT) == EV_NONE) { 863 pr_warn("failed to init libelf for %s\n", path); 864 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 865 } 866 867 fd = open(path, O_RDONLY); 868 if (fd < 0) { 869 err = -errno; 870 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 871 return ERR_PTR(err); 872 } 873 874 err = -LIBBPF_ERRNO__FORMAT; 875 876 elf = elf_begin(fd, ELF_C_READ, NULL); 877 if (!elf) { 878 pr_warn("failed to open %s as ELF file\n", path); 879 goto done; 880 } 881 if (!gelf_getehdr(elf, &ehdr)) { 882 pr_warn("failed to get EHDR from %s\n", path); 883 goto done; 884 } 885 886 if (elf_getshdrstrndx(elf, &shstrndx)) { 887 pr_warn("failed to get section names section index for %s\n", 888 path); 889 goto done; 890 } 891 892 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 893 pr_warn("failed to get e_shstrndx from %s\n", path); 894 goto done; 895 } 896 897 while ((scn = elf_nextscn(elf, scn)) != NULL) { 898 GElf_Shdr sh; 899 char *name; 900 901 idx++; 902 if (gelf_getshdr(scn, &sh) != &sh) { 903 pr_warn("failed to get section(%d) header from %s\n", 904 idx, path); 905 goto done; 906 } 907 name = elf_strptr(elf, shstrndx, sh.sh_name); 908 if (!name) { 909 pr_warn("failed to get section(%d) name from %s\n", 910 idx, path); 911 goto done; 912 } 913 if (strcmp(name, BTF_ELF_SEC) == 0) { 914 btf_data = elf_getdata(scn, 0); 915 if (!btf_data) { 916 pr_warn("failed to get section(%d, %s) data from %s\n", 917 idx, name, path); 918 goto done; 919 } 920 continue; 921 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 922 btf_ext_data = elf_getdata(scn, 0); 923 if (!btf_ext_data) { 924 pr_warn("failed to get section(%d, %s) data from %s\n", 925 idx, name, path); 926 goto done; 927 } 928 continue; 929 } 930 } 931 932 err = 0; 933 934 if (!btf_data) { 935 err = -ENOENT; 936 goto done; 937 } 938 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 939 err = libbpf_get_error(btf); 940 if (err) 941 goto done; 942 943 switch (gelf_getclass(elf)) { 944 case ELFCLASS32: 945 btf__set_pointer_size(btf, 4); 946 break; 947 case ELFCLASS64: 948 btf__set_pointer_size(btf, 8); 949 break; 950 default: 951 pr_warn("failed to get ELF class (bitness) for %s\n", path); 952 break; 953 } 954 955 if (btf_ext && btf_ext_data) { 956 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 957 err = libbpf_get_error(*btf_ext); 958 if (err) 959 goto done; 960 } else if (btf_ext) { 961 *btf_ext = NULL; 962 } 963 done: 964 if (elf) 965 elf_end(elf); 966 close(fd); 967 968 if (!err) 969 return btf; 970 971 if (btf_ext) 972 btf_ext__free(*btf_ext); 973 btf__free(btf); 974 975 return ERR_PTR(err); 976 } 977 978 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 979 { 980 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 981 } 982 983 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 984 { 985 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 986 } 987 988 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 989 { 990 struct btf *btf = NULL; 991 void *data = NULL; 992 FILE *f = NULL; 993 __u16 magic; 994 int err = 0; 995 long sz; 996 997 f = fopen(path, "rb"); 998 if (!f) { 999 err = -errno; 1000 goto err_out; 1001 } 1002 1003 /* check BTF magic */ 1004 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1005 err = -EIO; 1006 goto err_out; 1007 } 1008 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1009 /* definitely not a raw BTF */ 1010 err = -EPROTO; 1011 goto err_out; 1012 } 1013 1014 /* get file size */ 1015 if (fseek(f, 0, SEEK_END)) { 1016 err = -errno; 1017 goto err_out; 1018 } 1019 sz = ftell(f); 1020 if (sz < 0) { 1021 err = -errno; 1022 goto err_out; 1023 } 1024 /* rewind to the start */ 1025 if (fseek(f, 0, SEEK_SET)) { 1026 err = -errno; 1027 goto err_out; 1028 } 1029 1030 /* pre-alloc memory and read all of BTF data */ 1031 data = malloc(sz); 1032 if (!data) { 1033 err = -ENOMEM; 1034 goto err_out; 1035 } 1036 if (fread(data, 1, sz, f) < sz) { 1037 err = -EIO; 1038 goto err_out; 1039 } 1040 1041 /* finally parse BTF data */ 1042 btf = btf_new(data, sz, base_btf); 1043 1044 err_out: 1045 free(data); 1046 if (f) 1047 fclose(f); 1048 return err ? ERR_PTR(err) : btf; 1049 } 1050 1051 struct btf *btf__parse_raw(const char *path) 1052 { 1053 return libbpf_ptr(btf_parse_raw(path, NULL)); 1054 } 1055 1056 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1057 { 1058 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1059 } 1060 1061 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1062 { 1063 struct btf *btf; 1064 int err; 1065 1066 if (btf_ext) 1067 *btf_ext = NULL; 1068 1069 btf = btf_parse_raw(path, base_btf); 1070 err = libbpf_get_error(btf); 1071 if (!err) 1072 return btf; 1073 if (err != -EPROTO) 1074 return ERR_PTR(err); 1075 return btf_parse_elf(path, base_btf, btf_ext); 1076 } 1077 1078 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1079 { 1080 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1081 } 1082 1083 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1084 { 1085 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1086 } 1087 1088 static int compare_vsi_off(const void *_a, const void *_b) 1089 { 1090 const struct btf_var_secinfo *a = _a; 1091 const struct btf_var_secinfo *b = _b; 1092 1093 return a->offset - b->offset; 1094 } 1095 1096 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1097 struct btf_type *t) 1098 { 1099 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1100 const char *name = btf__name_by_offset(btf, t->name_off); 1101 const struct btf_type *t_var; 1102 struct btf_var_secinfo *vsi; 1103 const struct btf_var *var; 1104 int ret; 1105 1106 if (!name) { 1107 pr_debug("No name found in string section for DATASEC kind.\n"); 1108 return -ENOENT; 1109 } 1110 1111 /* .extern datasec size and var offsets were set correctly during 1112 * extern collection step, so just skip straight to sorting variables 1113 */ 1114 if (t->size) 1115 goto sort_vars; 1116 1117 ret = bpf_object__section_size(obj, name, &size); 1118 if (ret || !size || (t->size && t->size != size)) { 1119 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1120 return -ENOENT; 1121 } 1122 1123 t->size = size; 1124 1125 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1126 t_var = btf__type_by_id(btf, vsi->type); 1127 var = btf_var(t_var); 1128 1129 if (!btf_is_var(t_var)) { 1130 pr_debug("Non-VAR type seen in section %s\n", name); 1131 return -EINVAL; 1132 } 1133 1134 if (var->linkage == BTF_VAR_STATIC) 1135 continue; 1136 1137 name = btf__name_by_offset(btf, t_var->name_off); 1138 if (!name) { 1139 pr_debug("No name found in string section for VAR kind\n"); 1140 return -ENOENT; 1141 } 1142 1143 ret = bpf_object__variable_offset(obj, name, &off); 1144 if (ret) { 1145 pr_debug("No offset found in symbol table for VAR %s\n", 1146 name); 1147 return -ENOENT; 1148 } 1149 1150 vsi->offset = off; 1151 } 1152 1153 sort_vars: 1154 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1155 return 0; 1156 } 1157 1158 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1159 { 1160 int err = 0; 1161 __u32 i; 1162 1163 for (i = 1; i <= btf->nr_types; i++) { 1164 struct btf_type *t = btf_type_by_id(btf, i); 1165 1166 /* Loader needs to fix up some of the things compiler 1167 * couldn't get its hands on while emitting BTF. This 1168 * is section size and global variable offset. We use 1169 * the info from the ELF itself for this purpose. 1170 */ 1171 if (btf_is_datasec(t)) { 1172 err = btf_fixup_datasec(obj, btf, t); 1173 if (err) 1174 break; 1175 } 1176 } 1177 1178 return libbpf_err(err); 1179 } 1180 1181 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1182 1183 int btf__load_into_kernel(struct btf *btf) 1184 { 1185 __u32 log_buf_size = 0, raw_size; 1186 char *log_buf = NULL; 1187 void *raw_data; 1188 int err = 0; 1189 1190 if (btf->fd >= 0) 1191 return libbpf_err(-EEXIST); 1192 1193 retry_load: 1194 if (log_buf_size) { 1195 log_buf = malloc(log_buf_size); 1196 if (!log_buf) 1197 return libbpf_err(-ENOMEM); 1198 1199 *log_buf = 0; 1200 } 1201 1202 raw_data = btf_get_raw_data(btf, &raw_size, false); 1203 if (!raw_data) { 1204 err = -ENOMEM; 1205 goto done; 1206 } 1207 /* cache native raw data representation */ 1208 btf->raw_size = raw_size; 1209 btf->raw_data = raw_data; 1210 1211 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1212 if (btf->fd < 0) { 1213 if (!log_buf || errno == ENOSPC) { 1214 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1215 log_buf_size << 1); 1216 free(log_buf); 1217 goto retry_load; 1218 } 1219 1220 err = -errno; 1221 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1222 if (*log_buf) 1223 pr_warn("%s\n", log_buf); 1224 goto done; 1225 } 1226 1227 done: 1228 free(log_buf); 1229 return libbpf_err(err); 1230 } 1231 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel"))); 1232 1233 int btf__fd(const struct btf *btf) 1234 { 1235 return btf->fd; 1236 } 1237 1238 void btf__set_fd(struct btf *btf, int fd) 1239 { 1240 btf->fd = fd; 1241 } 1242 1243 static const void *btf_strs_data(const struct btf *btf) 1244 { 1245 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1246 } 1247 1248 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1249 { 1250 struct btf_header *hdr = btf->hdr; 1251 struct btf_type *t; 1252 void *data, *p; 1253 __u32 data_sz; 1254 int i; 1255 1256 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1257 if (data) { 1258 *size = btf->raw_size; 1259 return data; 1260 } 1261 1262 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1263 data = calloc(1, data_sz); 1264 if (!data) 1265 return NULL; 1266 p = data; 1267 1268 memcpy(p, hdr, hdr->hdr_len); 1269 if (swap_endian) 1270 btf_bswap_hdr(p); 1271 p += hdr->hdr_len; 1272 1273 memcpy(p, btf->types_data, hdr->type_len); 1274 if (swap_endian) { 1275 for (i = 0; i < btf->nr_types; i++) { 1276 t = p + btf->type_offs[i]; 1277 /* btf_bswap_type_rest() relies on native t->info, so 1278 * we swap base type info after we swapped all the 1279 * additional information 1280 */ 1281 if (btf_bswap_type_rest(t)) 1282 goto err_out; 1283 btf_bswap_type_base(t); 1284 } 1285 } 1286 p += hdr->type_len; 1287 1288 memcpy(p, btf_strs_data(btf), hdr->str_len); 1289 p += hdr->str_len; 1290 1291 *size = data_sz; 1292 return data; 1293 err_out: 1294 free(data); 1295 return NULL; 1296 } 1297 1298 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1299 { 1300 struct btf *btf = (struct btf *)btf_ro; 1301 __u32 data_sz; 1302 void *data; 1303 1304 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1305 if (!data) 1306 return errno = -ENOMEM, NULL; 1307 1308 btf->raw_size = data_sz; 1309 if (btf->swapped_endian) 1310 btf->raw_data_swapped = data; 1311 else 1312 btf->raw_data = data; 1313 *size = data_sz; 1314 return data; 1315 } 1316 1317 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1318 { 1319 if (offset < btf->start_str_off) 1320 return btf__str_by_offset(btf->base_btf, offset); 1321 else if (offset - btf->start_str_off < btf->hdr->str_len) 1322 return btf_strs_data(btf) + (offset - btf->start_str_off); 1323 else 1324 return errno = EINVAL, NULL; 1325 } 1326 1327 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1328 { 1329 return btf__str_by_offset(btf, offset); 1330 } 1331 1332 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1333 { 1334 struct bpf_btf_info btf_info; 1335 __u32 len = sizeof(btf_info); 1336 __u32 last_size; 1337 struct btf *btf; 1338 void *ptr; 1339 int err; 1340 1341 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1342 * let's start with a sane default - 4KiB here - and resize it only if 1343 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1344 */ 1345 last_size = 4096; 1346 ptr = malloc(last_size); 1347 if (!ptr) 1348 return ERR_PTR(-ENOMEM); 1349 1350 memset(&btf_info, 0, sizeof(btf_info)); 1351 btf_info.btf = ptr_to_u64(ptr); 1352 btf_info.btf_size = last_size; 1353 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1354 1355 if (!err && btf_info.btf_size > last_size) { 1356 void *temp_ptr; 1357 1358 last_size = btf_info.btf_size; 1359 temp_ptr = realloc(ptr, last_size); 1360 if (!temp_ptr) { 1361 btf = ERR_PTR(-ENOMEM); 1362 goto exit_free; 1363 } 1364 ptr = temp_ptr; 1365 1366 len = sizeof(btf_info); 1367 memset(&btf_info, 0, sizeof(btf_info)); 1368 btf_info.btf = ptr_to_u64(ptr); 1369 btf_info.btf_size = last_size; 1370 1371 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1372 } 1373 1374 if (err || btf_info.btf_size > last_size) { 1375 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1376 goto exit_free; 1377 } 1378 1379 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1380 1381 exit_free: 1382 free(ptr); 1383 return btf; 1384 } 1385 1386 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1387 { 1388 struct btf *btf; 1389 int btf_fd; 1390 1391 btf_fd = bpf_btf_get_fd_by_id(id); 1392 if (btf_fd < 0) 1393 return libbpf_err_ptr(-errno); 1394 1395 btf = btf_get_from_fd(btf_fd, base_btf); 1396 close(btf_fd); 1397 1398 return libbpf_ptr(btf); 1399 } 1400 1401 struct btf *btf__load_from_kernel_by_id(__u32 id) 1402 { 1403 return btf__load_from_kernel_by_id_split(id, NULL); 1404 } 1405 1406 int btf__get_from_id(__u32 id, struct btf **btf) 1407 { 1408 struct btf *res; 1409 int err; 1410 1411 *btf = NULL; 1412 res = btf__load_from_kernel_by_id(id); 1413 err = libbpf_get_error(res); 1414 1415 if (err) 1416 return libbpf_err(err); 1417 1418 *btf = res; 1419 return 0; 1420 } 1421 1422 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1423 __u32 expected_key_size, __u32 expected_value_size, 1424 __u32 *key_type_id, __u32 *value_type_id) 1425 { 1426 const struct btf_type *container_type; 1427 const struct btf_member *key, *value; 1428 const size_t max_name = 256; 1429 char container_name[max_name]; 1430 __s64 key_size, value_size; 1431 __s32 container_id; 1432 1433 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1434 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1435 map_name, map_name); 1436 return libbpf_err(-EINVAL); 1437 } 1438 1439 container_id = btf__find_by_name(btf, container_name); 1440 if (container_id < 0) { 1441 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1442 map_name, container_name); 1443 return libbpf_err(container_id); 1444 } 1445 1446 container_type = btf__type_by_id(btf, container_id); 1447 if (!container_type) { 1448 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1449 map_name, container_id); 1450 return libbpf_err(-EINVAL); 1451 } 1452 1453 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1454 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1455 map_name, container_name); 1456 return libbpf_err(-EINVAL); 1457 } 1458 1459 key = btf_members(container_type); 1460 value = key + 1; 1461 1462 key_size = btf__resolve_size(btf, key->type); 1463 if (key_size < 0) { 1464 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1465 return libbpf_err(key_size); 1466 } 1467 1468 if (expected_key_size != key_size) { 1469 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1470 map_name, (__u32)key_size, expected_key_size); 1471 return libbpf_err(-EINVAL); 1472 } 1473 1474 value_size = btf__resolve_size(btf, value->type); 1475 if (value_size < 0) { 1476 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1477 return libbpf_err(value_size); 1478 } 1479 1480 if (expected_value_size != value_size) { 1481 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1482 map_name, (__u32)value_size, expected_value_size); 1483 return libbpf_err(-EINVAL); 1484 } 1485 1486 *key_type_id = key->type; 1487 *value_type_id = value->type; 1488 1489 return 0; 1490 } 1491 1492 static void btf_invalidate_raw_data(struct btf *btf) 1493 { 1494 if (btf->raw_data) { 1495 free(btf->raw_data); 1496 btf->raw_data = NULL; 1497 } 1498 if (btf->raw_data_swapped) { 1499 free(btf->raw_data_swapped); 1500 btf->raw_data_swapped = NULL; 1501 } 1502 } 1503 1504 /* Ensure BTF is ready to be modified (by splitting into a three memory 1505 * regions for header, types, and strings). Also invalidate cached 1506 * raw_data, if any. 1507 */ 1508 static int btf_ensure_modifiable(struct btf *btf) 1509 { 1510 void *hdr, *types; 1511 struct strset *set = NULL; 1512 int err = -ENOMEM; 1513 1514 if (btf_is_modifiable(btf)) { 1515 /* any BTF modification invalidates raw_data */ 1516 btf_invalidate_raw_data(btf); 1517 return 0; 1518 } 1519 1520 /* split raw data into three memory regions */ 1521 hdr = malloc(btf->hdr->hdr_len); 1522 types = malloc(btf->hdr->type_len); 1523 if (!hdr || !types) 1524 goto err_out; 1525 1526 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1527 memcpy(types, btf->types_data, btf->hdr->type_len); 1528 1529 /* build lookup index for all strings */ 1530 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1531 if (IS_ERR(set)) { 1532 err = PTR_ERR(set); 1533 goto err_out; 1534 } 1535 1536 /* only when everything was successful, update internal state */ 1537 btf->hdr = hdr; 1538 btf->types_data = types; 1539 btf->types_data_cap = btf->hdr->type_len; 1540 btf->strs_data = NULL; 1541 btf->strs_set = set; 1542 /* if BTF was created from scratch, all strings are guaranteed to be 1543 * unique and deduplicated 1544 */ 1545 if (btf->hdr->str_len == 0) 1546 btf->strs_deduped = true; 1547 if (!btf->base_btf && btf->hdr->str_len == 1) 1548 btf->strs_deduped = true; 1549 1550 /* invalidate raw_data representation */ 1551 btf_invalidate_raw_data(btf); 1552 1553 return 0; 1554 1555 err_out: 1556 strset__free(set); 1557 free(hdr); 1558 free(types); 1559 return err; 1560 } 1561 1562 /* Find an offset in BTF string section that corresponds to a given string *s*. 1563 * Returns: 1564 * - >0 offset into string section, if string is found; 1565 * - -ENOENT, if string is not in the string section; 1566 * - <0, on any other error. 1567 */ 1568 int btf__find_str(struct btf *btf, const char *s) 1569 { 1570 int off; 1571 1572 if (btf->base_btf) { 1573 off = btf__find_str(btf->base_btf, s); 1574 if (off != -ENOENT) 1575 return off; 1576 } 1577 1578 /* BTF needs to be in a modifiable state to build string lookup index */ 1579 if (btf_ensure_modifiable(btf)) 1580 return libbpf_err(-ENOMEM); 1581 1582 off = strset__find_str(btf->strs_set, s); 1583 if (off < 0) 1584 return libbpf_err(off); 1585 1586 return btf->start_str_off + off; 1587 } 1588 1589 /* Add a string s to the BTF string section. 1590 * Returns: 1591 * - > 0 offset into string section, on success; 1592 * - < 0, on error. 1593 */ 1594 int btf__add_str(struct btf *btf, const char *s) 1595 { 1596 int off; 1597 1598 if (btf->base_btf) { 1599 off = btf__find_str(btf->base_btf, s); 1600 if (off != -ENOENT) 1601 return off; 1602 } 1603 1604 if (btf_ensure_modifiable(btf)) 1605 return libbpf_err(-ENOMEM); 1606 1607 off = strset__add_str(btf->strs_set, s); 1608 if (off < 0) 1609 return libbpf_err(off); 1610 1611 btf->hdr->str_len = strset__data_size(btf->strs_set); 1612 1613 return btf->start_str_off + off; 1614 } 1615 1616 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1617 { 1618 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1619 btf->hdr->type_len, UINT_MAX, add_sz); 1620 } 1621 1622 static void btf_type_inc_vlen(struct btf_type *t) 1623 { 1624 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1625 } 1626 1627 static int btf_commit_type(struct btf *btf, int data_sz) 1628 { 1629 int err; 1630 1631 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1632 if (err) 1633 return libbpf_err(err); 1634 1635 btf->hdr->type_len += data_sz; 1636 btf->hdr->str_off += data_sz; 1637 btf->nr_types++; 1638 return btf->start_id + btf->nr_types - 1; 1639 } 1640 1641 struct btf_pipe { 1642 const struct btf *src; 1643 struct btf *dst; 1644 }; 1645 1646 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1647 { 1648 struct btf_pipe *p = ctx; 1649 int off; 1650 1651 if (!*str_off) /* nothing to do for empty strings */ 1652 return 0; 1653 1654 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1655 if (off < 0) 1656 return off; 1657 1658 *str_off = off; 1659 return 0; 1660 } 1661 1662 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1663 { 1664 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1665 struct btf_type *t; 1666 int sz, err; 1667 1668 sz = btf_type_size(src_type); 1669 if (sz < 0) 1670 return libbpf_err(sz); 1671 1672 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1673 if (btf_ensure_modifiable(btf)) 1674 return libbpf_err(-ENOMEM); 1675 1676 t = btf_add_type_mem(btf, sz); 1677 if (!t) 1678 return libbpf_err(-ENOMEM); 1679 1680 memcpy(t, src_type, sz); 1681 1682 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1683 if (err) 1684 return libbpf_err(err); 1685 1686 return btf_commit_type(btf, sz); 1687 } 1688 1689 /* 1690 * Append new BTF_KIND_INT type with: 1691 * - *name* - non-empty, non-NULL type name; 1692 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1693 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1694 * Returns: 1695 * - >0, type ID of newly added BTF type; 1696 * - <0, on error. 1697 */ 1698 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1699 { 1700 struct btf_type *t; 1701 int sz, name_off; 1702 1703 /* non-empty name */ 1704 if (!name || !name[0]) 1705 return libbpf_err(-EINVAL); 1706 /* byte_sz must be power of 2 */ 1707 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1708 return libbpf_err(-EINVAL); 1709 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1710 return libbpf_err(-EINVAL); 1711 1712 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1713 if (btf_ensure_modifiable(btf)) 1714 return libbpf_err(-ENOMEM); 1715 1716 sz = sizeof(struct btf_type) + sizeof(int); 1717 t = btf_add_type_mem(btf, sz); 1718 if (!t) 1719 return libbpf_err(-ENOMEM); 1720 1721 /* if something goes wrong later, we might end up with an extra string, 1722 * but that shouldn't be a problem, because BTF can't be constructed 1723 * completely anyway and will most probably be just discarded 1724 */ 1725 name_off = btf__add_str(btf, name); 1726 if (name_off < 0) 1727 return name_off; 1728 1729 t->name_off = name_off; 1730 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1731 t->size = byte_sz; 1732 /* set INT info, we don't allow setting legacy bit offset/size */ 1733 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1734 1735 return btf_commit_type(btf, sz); 1736 } 1737 1738 /* 1739 * Append new BTF_KIND_FLOAT type with: 1740 * - *name* - non-empty, non-NULL type name; 1741 * - *sz* - size of the type, in bytes; 1742 * Returns: 1743 * - >0, type ID of newly added BTF type; 1744 * - <0, on error. 1745 */ 1746 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1747 { 1748 struct btf_type *t; 1749 int sz, name_off; 1750 1751 /* non-empty name */ 1752 if (!name || !name[0]) 1753 return libbpf_err(-EINVAL); 1754 1755 /* byte_sz must be one of the explicitly allowed values */ 1756 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1757 byte_sz != 16) 1758 return libbpf_err(-EINVAL); 1759 1760 if (btf_ensure_modifiable(btf)) 1761 return libbpf_err(-ENOMEM); 1762 1763 sz = sizeof(struct btf_type); 1764 t = btf_add_type_mem(btf, sz); 1765 if (!t) 1766 return libbpf_err(-ENOMEM); 1767 1768 name_off = btf__add_str(btf, name); 1769 if (name_off < 0) 1770 return name_off; 1771 1772 t->name_off = name_off; 1773 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1774 t->size = byte_sz; 1775 1776 return btf_commit_type(btf, sz); 1777 } 1778 1779 /* it's completely legal to append BTF types with type IDs pointing forward to 1780 * types that haven't been appended yet, so we only make sure that id looks 1781 * sane, we can't guarantee that ID will always be valid 1782 */ 1783 static int validate_type_id(int id) 1784 { 1785 if (id < 0 || id > BTF_MAX_NR_TYPES) 1786 return -EINVAL; 1787 return 0; 1788 } 1789 1790 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1791 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1792 { 1793 struct btf_type *t; 1794 int sz, name_off = 0; 1795 1796 if (validate_type_id(ref_type_id)) 1797 return libbpf_err(-EINVAL); 1798 1799 if (btf_ensure_modifiable(btf)) 1800 return libbpf_err(-ENOMEM); 1801 1802 sz = sizeof(struct btf_type); 1803 t = btf_add_type_mem(btf, sz); 1804 if (!t) 1805 return libbpf_err(-ENOMEM); 1806 1807 if (name && name[0]) { 1808 name_off = btf__add_str(btf, name); 1809 if (name_off < 0) 1810 return name_off; 1811 } 1812 1813 t->name_off = name_off; 1814 t->info = btf_type_info(kind, 0, 0); 1815 t->type = ref_type_id; 1816 1817 return btf_commit_type(btf, sz); 1818 } 1819 1820 /* 1821 * Append new BTF_KIND_PTR type with: 1822 * - *ref_type_id* - referenced type ID, it might not exist yet; 1823 * Returns: 1824 * - >0, type ID of newly added BTF type; 1825 * - <0, on error. 1826 */ 1827 int btf__add_ptr(struct btf *btf, int ref_type_id) 1828 { 1829 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1830 } 1831 1832 /* 1833 * Append new BTF_KIND_ARRAY type with: 1834 * - *index_type_id* - type ID of the type describing array index; 1835 * - *elem_type_id* - type ID of the type describing array element; 1836 * - *nr_elems* - the size of the array; 1837 * Returns: 1838 * - >0, type ID of newly added BTF type; 1839 * - <0, on error. 1840 */ 1841 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1842 { 1843 struct btf_type *t; 1844 struct btf_array *a; 1845 int sz; 1846 1847 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1848 return libbpf_err(-EINVAL); 1849 1850 if (btf_ensure_modifiable(btf)) 1851 return libbpf_err(-ENOMEM); 1852 1853 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1854 t = btf_add_type_mem(btf, sz); 1855 if (!t) 1856 return libbpf_err(-ENOMEM); 1857 1858 t->name_off = 0; 1859 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1860 t->size = 0; 1861 1862 a = btf_array(t); 1863 a->type = elem_type_id; 1864 a->index_type = index_type_id; 1865 a->nelems = nr_elems; 1866 1867 return btf_commit_type(btf, sz); 1868 } 1869 1870 /* generic STRUCT/UNION append function */ 1871 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1872 { 1873 struct btf_type *t; 1874 int sz, name_off = 0; 1875 1876 if (btf_ensure_modifiable(btf)) 1877 return libbpf_err(-ENOMEM); 1878 1879 sz = sizeof(struct btf_type); 1880 t = btf_add_type_mem(btf, sz); 1881 if (!t) 1882 return libbpf_err(-ENOMEM); 1883 1884 if (name && name[0]) { 1885 name_off = btf__add_str(btf, name); 1886 if (name_off < 0) 1887 return name_off; 1888 } 1889 1890 /* start out with vlen=0 and no kflag; this will be adjusted when 1891 * adding each member 1892 */ 1893 t->name_off = name_off; 1894 t->info = btf_type_info(kind, 0, 0); 1895 t->size = bytes_sz; 1896 1897 return btf_commit_type(btf, sz); 1898 } 1899 1900 /* 1901 * Append new BTF_KIND_STRUCT type with: 1902 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1903 * - *byte_sz* - size of the struct, in bytes; 1904 * 1905 * Struct initially has no fields in it. Fields can be added by 1906 * btf__add_field() right after btf__add_struct() succeeds. 1907 * 1908 * Returns: 1909 * - >0, type ID of newly added BTF type; 1910 * - <0, on error. 1911 */ 1912 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1913 { 1914 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1915 } 1916 1917 /* 1918 * Append new BTF_KIND_UNION type with: 1919 * - *name* - name of the union, can be NULL or empty for anonymous union; 1920 * - *byte_sz* - size of the union, in bytes; 1921 * 1922 * Union initially has no fields in it. Fields can be added by 1923 * btf__add_field() right after btf__add_union() succeeds. All fields 1924 * should have *bit_offset* of 0. 1925 * 1926 * Returns: 1927 * - >0, type ID of newly added BTF type; 1928 * - <0, on error. 1929 */ 1930 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1931 { 1932 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1933 } 1934 1935 static struct btf_type *btf_last_type(struct btf *btf) 1936 { 1937 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1938 } 1939 1940 /* 1941 * Append new field for the current STRUCT/UNION type with: 1942 * - *name* - name of the field, can be NULL or empty for anonymous field; 1943 * - *type_id* - type ID for the type describing field type; 1944 * - *bit_offset* - bit offset of the start of the field within struct/union; 1945 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1946 * Returns: 1947 * - 0, on success; 1948 * - <0, on error. 1949 */ 1950 int btf__add_field(struct btf *btf, const char *name, int type_id, 1951 __u32 bit_offset, __u32 bit_size) 1952 { 1953 struct btf_type *t; 1954 struct btf_member *m; 1955 bool is_bitfield; 1956 int sz, name_off = 0; 1957 1958 /* last type should be union/struct */ 1959 if (btf->nr_types == 0) 1960 return libbpf_err(-EINVAL); 1961 t = btf_last_type(btf); 1962 if (!btf_is_composite(t)) 1963 return libbpf_err(-EINVAL); 1964 1965 if (validate_type_id(type_id)) 1966 return libbpf_err(-EINVAL); 1967 /* best-effort bit field offset/size enforcement */ 1968 is_bitfield = bit_size || (bit_offset % 8 != 0); 1969 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1970 return libbpf_err(-EINVAL); 1971 1972 /* only offset 0 is allowed for unions */ 1973 if (btf_is_union(t) && bit_offset) 1974 return libbpf_err(-EINVAL); 1975 1976 /* decompose and invalidate raw data */ 1977 if (btf_ensure_modifiable(btf)) 1978 return libbpf_err(-ENOMEM); 1979 1980 sz = sizeof(struct btf_member); 1981 m = btf_add_type_mem(btf, sz); 1982 if (!m) 1983 return libbpf_err(-ENOMEM); 1984 1985 if (name && name[0]) { 1986 name_off = btf__add_str(btf, name); 1987 if (name_off < 0) 1988 return name_off; 1989 } 1990 1991 m->name_off = name_off; 1992 m->type = type_id; 1993 m->offset = bit_offset | (bit_size << 24); 1994 1995 /* btf_add_type_mem can invalidate t pointer */ 1996 t = btf_last_type(btf); 1997 /* update parent type's vlen and kflag */ 1998 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1999 2000 btf->hdr->type_len += sz; 2001 btf->hdr->str_off += sz; 2002 return 0; 2003 } 2004 2005 /* 2006 * Append new BTF_KIND_ENUM type with: 2007 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2008 * - *byte_sz* - size of the enum, in bytes. 2009 * 2010 * Enum initially has no enum values in it (and corresponds to enum forward 2011 * declaration). Enumerator values can be added by btf__add_enum_value() 2012 * immediately after btf__add_enum() succeeds. 2013 * 2014 * Returns: 2015 * - >0, type ID of newly added BTF type; 2016 * - <0, on error. 2017 */ 2018 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2019 { 2020 struct btf_type *t; 2021 int sz, name_off = 0; 2022 2023 /* byte_sz must be power of 2 */ 2024 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2025 return libbpf_err(-EINVAL); 2026 2027 if (btf_ensure_modifiable(btf)) 2028 return libbpf_err(-ENOMEM); 2029 2030 sz = sizeof(struct btf_type); 2031 t = btf_add_type_mem(btf, sz); 2032 if (!t) 2033 return libbpf_err(-ENOMEM); 2034 2035 if (name && name[0]) { 2036 name_off = btf__add_str(btf, name); 2037 if (name_off < 0) 2038 return name_off; 2039 } 2040 2041 /* start out with vlen=0; it will be adjusted when adding enum values */ 2042 t->name_off = name_off; 2043 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2044 t->size = byte_sz; 2045 2046 return btf_commit_type(btf, sz); 2047 } 2048 2049 /* 2050 * Append new enum value for the current ENUM type with: 2051 * - *name* - name of the enumerator value, can't be NULL or empty; 2052 * - *value* - integer value corresponding to enum value *name*; 2053 * Returns: 2054 * - 0, on success; 2055 * - <0, on error. 2056 */ 2057 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2058 { 2059 struct btf_type *t; 2060 struct btf_enum *v; 2061 int sz, name_off; 2062 2063 /* last type should be BTF_KIND_ENUM */ 2064 if (btf->nr_types == 0) 2065 return libbpf_err(-EINVAL); 2066 t = btf_last_type(btf); 2067 if (!btf_is_enum(t)) 2068 return libbpf_err(-EINVAL); 2069 2070 /* non-empty name */ 2071 if (!name || !name[0]) 2072 return libbpf_err(-EINVAL); 2073 if (value < INT_MIN || value > UINT_MAX) 2074 return libbpf_err(-E2BIG); 2075 2076 /* decompose and invalidate raw data */ 2077 if (btf_ensure_modifiable(btf)) 2078 return libbpf_err(-ENOMEM); 2079 2080 sz = sizeof(struct btf_enum); 2081 v = btf_add_type_mem(btf, sz); 2082 if (!v) 2083 return libbpf_err(-ENOMEM); 2084 2085 name_off = btf__add_str(btf, name); 2086 if (name_off < 0) 2087 return name_off; 2088 2089 v->name_off = name_off; 2090 v->val = value; 2091 2092 /* update parent type's vlen */ 2093 t = btf_last_type(btf); 2094 btf_type_inc_vlen(t); 2095 2096 btf->hdr->type_len += sz; 2097 btf->hdr->str_off += sz; 2098 return 0; 2099 } 2100 2101 /* 2102 * Append new BTF_KIND_FWD type with: 2103 * - *name*, non-empty/non-NULL name; 2104 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2105 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2106 * Returns: 2107 * - >0, type ID of newly added BTF type; 2108 * - <0, on error. 2109 */ 2110 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2111 { 2112 if (!name || !name[0]) 2113 return libbpf_err(-EINVAL); 2114 2115 switch (fwd_kind) { 2116 case BTF_FWD_STRUCT: 2117 case BTF_FWD_UNION: { 2118 struct btf_type *t; 2119 int id; 2120 2121 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2122 if (id <= 0) 2123 return id; 2124 t = btf_type_by_id(btf, id); 2125 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2126 return id; 2127 } 2128 case BTF_FWD_ENUM: 2129 /* enum forward in BTF currently is just an enum with no enum 2130 * values; we also assume a standard 4-byte size for it 2131 */ 2132 return btf__add_enum(btf, name, sizeof(int)); 2133 default: 2134 return libbpf_err(-EINVAL); 2135 } 2136 } 2137 2138 /* 2139 * Append new BTF_KING_TYPEDEF type with: 2140 * - *name*, non-empty/non-NULL name; 2141 * - *ref_type_id* - referenced type ID, it might not exist yet; 2142 * Returns: 2143 * - >0, type ID of newly added BTF type; 2144 * - <0, on error. 2145 */ 2146 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2147 { 2148 if (!name || !name[0]) 2149 return libbpf_err(-EINVAL); 2150 2151 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2152 } 2153 2154 /* 2155 * Append new BTF_KIND_VOLATILE type with: 2156 * - *ref_type_id* - referenced type ID, it might not exist yet; 2157 * Returns: 2158 * - >0, type ID of newly added BTF type; 2159 * - <0, on error. 2160 */ 2161 int btf__add_volatile(struct btf *btf, int ref_type_id) 2162 { 2163 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2164 } 2165 2166 /* 2167 * Append new BTF_KIND_CONST type with: 2168 * - *ref_type_id* - referenced type ID, it might not exist yet; 2169 * Returns: 2170 * - >0, type ID of newly added BTF type; 2171 * - <0, on error. 2172 */ 2173 int btf__add_const(struct btf *btf, int ref_type_id) 2174 { 2175 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2176 } 2177 2178 /* 2179 * Append new BTF_KIND_RESTRICT type with: 2180 * - *ref_type_id* - referenced type ID, it might not exist yet; 2181 * Returns: 2182 * - >0, type ID of newly added BTF type; 2183 * - <0, on error. 2184 */ 2185 int btf__add_restrict(struct btf *btf, int ref_type_id) 2186 { 2187 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2188 } 2189 2190 /* 2191 * Append new BTF_KIND_FUNC type with: 2192 * - *name*, non-empty/non-NULL name; 2193 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2194 * Returns: 2195 * - >0, type ID of newly added BTF type; 2196 * - <0, on error. 2197 */ 2198 int btf__add_func(struct btf *btf, const char *name, 2199 enum btf_func_linkage linkage, int proto_type_id) 2200 { 2201 int id; 2202 2203 if (!name || !name[0]) 2204 return libbpf_err(-EINVAL); 2205 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2206 linkage != BTF_FUNC_EXTERN) 2207 return libbpf_err(-EINVAL); 2208 2209 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2210 if (id > 0) { 2211 struct btf_type *t = btf_type_by_id(btf, id); 2212 2213 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2214 } 2215 return libbpf_err(id); 2216 } 2217 2218 /* 2219 * Append new BTF_KIND_FUNC_PROTO with: 2220 * - *ret_type_id* - type ID for return result of a function. 2221 * 2222 * Function prototype initially has no arguments, but they can be added by 2223 * btf__add_func_param() one by one, immediately after 2224 * btf__add_func_proto() succeeded. 2225 * 2226 * Returns: 2227 * - >0, type ID of newly added BTF type; 2228 * - <0, on error. 2229 */ 2230 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2231 { 2232 struct btf_type *t; 2233 int sz; 2234 2235 if (validate_type_id(ret_type_id)) 2236 return libbpf_err(-EINVAL); 2237 2238 if (btf_ensure_modifiable(btf)) 2239 return libbpf_err(-ENOMEM); 2240 2241 sz = sizeof(struct btf_type); 2242 t = btf_add_type_mem(btf, sz); 2243 if (!t) 2244 return libbpf_err(-ENOMEM); 2245 2246 /* start out with vlen=0; this will be adjusted when adding enum 2247 * values, if necessary 2248 */ 2249 t->name_off = 0; 2250 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2251 t->type = ret_type_id; 2252 2253 return btf_commit_type(btf, sz); 2254 } 2255 2256 /* 2257 * Append new function parameter for current FUNC_PROTO type with: 2258 * - *name* - parameter name, can be NULL or empty; 2259 * - *type_id* - type ID describing the type of the parameter. 2260 * Returns: 2261 * - 0, on success; 2262 * - <0, on error. 2263 */ 2264 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2265 { 2266 struct btf_type *t; 2267 struct btf_param *p; 2268 int sz, name_off = 0; 2269 2270 if (validate_type_id(type_id)) 2271 return libbpf_err(-EINVAL); 2272 2273 /* last type should be BTF_KIND_FUNC_PROTO */ 2274 if (btf->nr_types == 0) 2275 return libbpf_err(-EINVAL); 2276 t = btf_last_type(btf); 2277 if (!btf_is_func_proto(t)) 2278 return libbpf_err(-EINVAL); 2279 2280 /* decompose and invalidate raw data */ 2281 if (btf_ensure_modifiable(btf)) 2282 return libbpf_err(-ENOMEM); 2283 2284 sz = sizeof(struct btf_param); 2285 p = btf_add_type_mem(btf, sz); 2286 if (!p) 2287 return libbpf_err(-ENOMEM); 2288 2289 if (name && name[0]) { 2290 name_off = btf__add_str(btf, name); 2291 if (name_off < 0) 2292 return name_off; 2293 } 2294 2295 p->name_off = name_off; 2296 p->type = type_id; 2297 2298 /* update parent type's vlen */ 2299 t = btf_last_type(btf); 2300 btf_type_inc_vlen(t); 2301 2302 btf->hdr->type_len += sz; 2303 btf->hdr->str_off += sz; 2304 return 0; 2305 } 2306 2307 /* 2308 * Append new BTF_KIND_VAR type with: 2309 * - *name* - non-empty/non-NULL name; 2310 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2311 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2312 * - *type_id* - type ID of the type describing the type of the variable. 2313 * Returns: 2314 * - >0, type ID of newly added BTF type; 2315 * - <0, on error. 2316 */ 2317 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2318 { 2319 struct btf_type *t; 2320 struct btf_var *v; 2321 int sz, name_off; 2322 2323 /* non-empty name */ 2324 if (!name || !name[0]) 2325 return libbpf_err(-EINVAL); 2326 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2327 linkage != BTF_VAR_GLOBAL_EXTERN) 2328 return libbpf_err(-EINVAL); 2329 if (validate_type_id(type_id)) 2330 return libbpf_err(-EINVAL); 2331 2332 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2333 if (btf_ensure_modifiable(btf)) 2334 return libbpf_err(-ENOMEM); 2335 2336 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2337 t = btf_add_type_mem(btf, sz); 2338 if (!t) 2339 return libbpf_err(-ENOMEM); 2340 2341 name_off = btf__add_str(btf, name); 2342 if (name_off < 0) 2343 return name_off; 2344 2345 t->name_off = name_off; 2346 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2347 t->type = type_id; 2348 2349 v = btf_var(t); 2350 v->linkage = linkage; 2351 2352 return btf_commit_type(btf, sz); 2353 } 2354 2355 /* 2356 * Append new BTF_KIND_DATASEC type with: 2357 * - *name* - non-empty/non-NULL name; 2358 * - *byte_sz* - data section size, in bytes. 2359 * 2360 * Data section is initially empty. Variables info can be added with 2361 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2362 * 2363 * Returns: 2364 * - >0, type ID of newly added BTF type; 2365 * - <0, on error. 2366 */ 2367 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2368 { 2369 struct btf_type *t; 2370 int sz, name_off; 2371 2372 /* non-empty name */ 2373 if (!name || !name[0]) 2374 return libbpf_err(-EINVAL); 2375 2376 if (btf_ensure_modifiable(btf)) 2377 return libbpf_err(-ENOMEM); 2378 2379 sz = sizeof(struct btf_type); 2380 t = btf_add_type_mem(btf, sz); 2381 if (!t) 2382 return libbpf_err(-ENOMEM); 2383 2384 name_off = btf__add_str(btf, name); 2385 if (name_off < 0) 2386 return name_off; 2387 2388 /* start with vlen=0, which will be update as var_secinfos are added */ 2389 t->name_off = name_off; 2390 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2391 t->size = byte_sz; 2392 2393 return btf_commit_type(btf, sz); 2394 } 2395 2396 /* 2397 * Append new data section variable information entry for current DATASEC type: 2398 * - *var_type_id* - type ID, describing type of the variable; 2399 * - *offset* - variable offset within data section, in bytes; 2400 * - *byte_sz* - variable size, in bytes. 2401 * 2402 * Returns: 2403 * - 0, on success; 2404 * - <0, on error. 2405 */ 2406 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2407 { 2408 struct btf_type *t; 2409 struct btf_var_secinfo *v; 2410 int sz; 2411 2412 /* last type should be BTF_KIND_DATASEC */ 2413 if (btf->nr_types == 0) 2414 return libbpf_err(-EINVAL); 2415 t = btf_last_type(btf); 2416 if (!btf_is_datasec(t)) 2417 return libbpf_err(-EINVAL); 2418 2419 if (validate_type_id(var_type_id)) 2420 return libbpf_err(-EINVAL); 2421 2422 /* decompose and invalidate raw data */ 2423 if (btf_ensure_modifiable(btf)) 2424 return libbpf_err(-ENOMEM); 2425 2426 sz = sizeof(struct btf_var_secinfo); 2427 v = btf_add_type_mem(btf, sz); 2428 if (!v) 2429 return libbpf_err(-ENOMEM); 2430 2431 v->type = var_type_id; 2432 v->offset = offset; 2433 v->size = byte_sz; 2434 2435 /* update parent type's vlen */ 2436 t = btf_last_type(btf); 2437 btf_type_inc_vlen(t); 2438 2439 btf->hdr->type_len += sz; 2440 btf->hdr->str_off += sz; 2441 return 0; 2442 } 2443 2444 struct btf_ext_sec_setup_param { 2445 __u32 off; 2446 __u32 len; 2447 __u32 min_rec_size; 2448 struct btf_ext_info *ext_info; 2449 const char *desc; 2450 }; 2451 2452 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2453 struct btf_ext_sec_setup_param *ext_sec) 2454 { 2455 const struct btf_ext_info_sec *sinfo; 2456 struct btf_ext_info *ext_info; 2457 __u32 info_left, record_size; 2458 /* The start of the info sec (including the __u32 record_size). */ 2459 void *info; 2460 2461 if (ext_sec->len == 0) 2462 return 0; 2463 2464 if (ext_sec->off & 0x03) { 2465 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2466 ext_sec->desc); 2467 return -EINVAL; 2468 } 2469 2470 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2471 info_left = ext_sec->len; 2472 2473 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2474 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2475 ext_sec->desc, ext_sec->off, ext_sec->len); 2476 return -EINVAL; 2477 } 2478 2479 /* At least a record size */ 2480 if (info_left < sizeof(__u32)) { 2481 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2482 return -EINVAL; 2483 } 2484 2485 /* The record size needs to meet the minimum standard */ 2486 record_size = *(__u32 *)info; 2487 if (record_size < ext_sec->min_rec_size || 2488 record_size & 0x03) { 2489 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2490 ext_sec->desc, record_size); 2491 return -EINVAL; 2492 } 2493 2494 sinfo = info + sizeof(__u32); 2495 info_left -= sizeof(__u32); 2496 2497 /* If no records, return failure now so .BTF.ext won't be used. */ 2498 if (!info_left) { 2499 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2500 return -EINVAL; 2501 } 2502 2503 while (info_left) { 2504 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2505 __u64 total_record_size; 2506 __u32 num_records; 2507 2508 if (info_left < sec_hdrlen) { 2509 pr_debug("%s section header is not found in .BTF.ext\n", 2510 ext_sec->desc); 2511 return -EINVAL; 2512 } 2513 2514 num_records = sinfo->num_info; 2515 if (num_records == 0) { 2516 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2517 ext_sec->desc); 2518 return -EINVAL; 2519 } 2520 2521 total_record_size = sec_hdrlen + 2522 (__u64)num_records * record_size; 2523 if (info_left < total_record_size) { 2524 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2525 ext_sec->desc); 2526 return -EINVAL; 2527 } 2528 2529 info_left -= total_record_size; 2530 sinfo = (void *)sinfo + total_record_size; 2531 } 2532 2533 ext_info = ext_sec->ext_info; 2534 ext_info->len = ext_sec->len - sizeof(__u32); 2535 ext_info->rec_size = record_size; 2536 ext_info->info = info + sizeof(__u32); 2537 2538 return 0; 2539 } 2540 2541 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2542 { 2543 struct btf_ext_sec_setup_param param = { 2544 .off = btf_ext->hdr->func_info_off, 2545 .len = btf_ext->hdr->func_info_len, 2546 .min_rec_size = sizeof(struct bpf_func_info_min), 2547 .ext_info = &btf_ext->func_info, 2548 .desc = "func_info" 2549 }; 2550 2551 return btf_ext_setup_info(btf_ext, ¶m); 2552 } 2553 2554 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2555 { 2556 struct btf_ext_sec_setup_param param = { 2557 .off = btf_ext->hdr->line_info_off, 2558 .len = btf_ext->hdr->line_info_len, 2559 .min_rec_size = sizeof(struct bpf_line_info_min), 2560 .ext_info = &btf_ext->line_info, 2561 .desc = "line_info", 2562 }; 2563 2564 return btf_ext_setup_info(btf_ext, ¶m); 2565 } 2566 2567 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2568 { 2569 struct btf_ext_sec_setup_param param = { 2570 .off = btf_ext->hdr->core_relo_off, 2571 .len = btf_ext->hdr->core_relo_len, 2572 .min_rec_size = sizeof(struct bpf_core_relo), 2573 .ext_info = &btf_ext->core_relo_info, 2574 .desc = "core_relo", 2575 }; 2576 2577 return btf_ext_setup_info(btf_ext, ¶m); 2578 } 2579 2580 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2581 { 2582 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2583 2584 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2585 data_size < hdr->hdr_len) { 2586 pr_debug("BTF.ext header not found"); 2587 return -EINVAL; 2588 } 2589 2590 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2591 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2592 return -ENOTSUP; 2593 } else if (hdr->magic != BTF_MAGIC) { 2594 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2595 return -EINVAL; 2596 } 2597 2598 if (hdr->version != BTF_VERSION) { 2599 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2600 return -ENOTSUP; 2601 } 2602 2603 if (hdr->flags) { 2604 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2605 return -ENOTSUP; 2606 } 2607 2608 if (data_size == hdr->hdr_len) { 2609 pr_debug("BTF.ext has no data\n"); 2610 return -EINVAL; 2611 } 2612 2613 return 0; 2614 } 2615 2616 void btf_ext__free(struct btf_ext *btf_ext) 2617 { 2618 if (IS_ERR_OR_NULL(btf_ext)) 2619 return; 2620 free(btf_ext->data); 2621 free(btf_ext); 2622 } 2623 2624 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2625 { 2626 struct btf_ext *btf_ext; 2627 int err; 2628 2629 err = btf_ext_parse_hdr(data, size); 2630 if (err) 2631 return libbpf_err_ptr(err); 2632 2633 btf_ext = calloc(1, sizeof(struct btf_ext)); 2634 if (!btf_ext) 2635 return libbpf_err_ptr(-ENOMEM); 2636 2637 btf_ext->data_size = size; 2638 btf_ext->data = malloc(size); 2639 if (!btf_ext->data) { 2640 err = -ENOMEM; 2641 goto done; 2642 } 2643 memcpy(btf_ext->data, data, size); 2644 2645 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2646 err = -EINVAL; 2647 goto done; 2648 } 2649 2650 err = btf_ext_setup_func_info(btf_ext); 2651 if (err) 2652 goto done; 2653 2654 err = btf_ext_setup_line_info(btf_ext); 2655 if (err) 2656 goto done; 2657 2658 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2659 err = -EINVAL; 2660 goto done; 2661 } 2662 2663 err = btf_ext_setup_core_relos(btf_ext); 2664 if (err) 2665 goto done; 2666 2667 done: 2668 if (err) { 2669 btf_ext__free(btf_ext); 2670 return libbpf_err_ptr(err); 2671 } 2672 2673 return btf_ext; 2674 } 2675 2676 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2677 { 2678 *size = btf_ext->data_size; 2679 return btf_ext->data; 2680 } 2681 2682 static int btf_ext_reloc_info(const struct btf *btf, 2683 const struct btf_ext_info *ext_info, 2684 const char *sec_name, __u32 insns_cnt, 2685 void **info, __u32 *cnt) 2686 { 2687 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2688 __u32 i, record_size, existing_len, records_len; 2689 struct btf_ext_info_sec *sinfo; 2690 const char *info_sec_name; 2691 __u64 remain_len; 2692 void *data; 2693 2694 record_size = ext_info->rec_size; 2695 sinfo = ext_info->info; 2696 remain_len = ext_info->len; 2697 while (remain_len > 0) { 2698 records_len = sinfo->num_info * record_size; 2699 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2700 if (strcmp(info_sec_name, sec_name)) { 2701 remain_len -= sec_hdrlen + records_len; 2702 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2703 continue; 2704 } 2705 2706 existing_len = (*cnt) * record_size; 2707 data = realloc(*info, existing_len + records_len); 2708 if (!data) 2709 return libbpf_err(-ENOMEM); 2710 2711 memcpy(data + existing_len, sinfo->data, records_len); 2712 /* adjust insn_off only, the rest data will be passed 2713 * to the kernel. 2714 */ 2715 for (i = 0; i < sinfo->num_info; i++) { 2716 __u32 *insn_off; 2717 2718 insn_off = data + existing_len + (i * record_size); 2719 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2720 } 2721 *info = data; 2722 *cnt += sinfo->num_info; 2723 return 0; 2724 } 2725 2726 return libbpf_err(-ENOENT); 2727 } 2728 2729 int btf_ext__reloc_func_info(const struct btf *btf, 2730 const struct btf_ext *btf_ext, 2731 const char *sec_name, __u32 insns_cnt, 2732 void **func_info, __u32 *cnt) 2733 { 2734 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2735 insns_cnt, func_info, cnt); 2736 } 2737 2738 int btf_ext__reloc_line_info(const struct btf *btf, 2739 const struct btf_ext *btf_ext, 2740 const char *sec_name, __u32 insns_cnt, 2741 void **line_info, __u32 *cnt) 2742 { 2743 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2744 insns_cnt, line_info, cnt); 2745 } 2746 2747 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2748 { 2749 return btf_ext->func_info.rec_size; 2750 } 2751 2752 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2753 { 2754 return btf_ext->line_info.rec_size; 2755 } 2756 2757 struct btf_dedup; 2758 2759 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2760 const struct btf_dedup_opts *opts); 2761 static void btf_dedup_free(struct btf_dedup *d); 2762 static int btf_dedup_prep(struct btf_dedup *d); 2763 static int btf_dedup_strings(struct btf_dedup *d); 2764 static int btf_dedup_prim_types(struct btf_dedup *d); 2765 static int btf_dedup_struct_types(struct btf_dedup *d); 2766 static int btf_dedup_ref_types(struct btf_dedup *d); 2767 static int btf_dedup_compact_types(struct btf_dedup *d); 2768 static int btf_dedup_remap_types(struct btf_dedup *d); 2769 2770 /* 2771 * Deduplicate BTF types and strings. 2772 * 2773 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2774 * section with all BTF type descriptors and string data. It overwrites that 2775 * memory in-place with deduplicated types and strings without any loss of 2776 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2777 * is provided, all the strings referenced from .BTF.ext section are honored 2778 * and updated to point to the right offsets after deduplication. 2779 * 2780 * If function returns with error, type/string data might be garbled and should 2781 * be discarded. 2782 * 2783 * More verbose and detailed description of both problem btf_dedup is solving, 2784 * as well as solution could be found at: 2785 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2786 * 2787 * Problem description and justification 2788 * ===================================== 2789 * 2790 * BTF type information is typically emitted either as a result of conversion 2791 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2792 * unit contains information about a subset of all the types that are used 2793 * in an application. These subsets are frequently overlapping and contain a lot 2794 * of duplicated information when later concatenated together into a single 2795 * binary. This algorithm ensures that each unique type is represented by single 2796 * BTF type descriptor, greatly reducing resulting size of BTF data. 2797 * 2798 * Compilation unit isolation and subsequent duplication of data is not the only 2799 * problem. The same type hierarchy (e.g., struct and all the type that struct 2800 * references) in different compilation units can be represented in BTF to 2801 * various degrees of completeness (or, rather, incompleteness) due to 2802 * struct/union forward declarations. 2803 * 2804 * Let's take a look at an example, that we'll use to better understand the 2805 * problem (and solution). Suppose we have two compilation units, each using 2806 * same `struct S`, but each of them having incomplete type information about 2807 * struct's fields: 2808 * 2809 * // CU #1: 2810 * struct S; 2811 * struct A { 2812 * int a; 2813 * struct A* self; 2814 * struct S* parent; 2815 * }; 2816 * struct B; 2817 * struct S { 2818 * struct A* a_ptr; 2819 * struct B* b_ptr; 2820 * }; 2821 * 2822 * // CU #2: 2823 * struct S; 2824 * struct A; 2825 * struct B { 2826 * int b; 2827 * struct B* self; 2828 * struct S* parent; 2829 * }; 2830 * struct S { 2831 * struct A* a_ptr; 2832 * struct B* b_ptr; 2833 * }; 2834 * 2835 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2836 * more), but will know the complete type information about `struct A`. While 2837 * for CU #2, it will know full type information about `struct B`, but will 2838 * only know about forward declaration of `struct A` (in BTF terms, it will 2839 * have `BTF_KIND_FWD` type descriptor with name `B`). 2840 * 2841 * This compilation unit isolation means that it's possible that there is no 2842 * single CU with complete type information describing structs `S`, `A`, and 2843 * `B`. Also, we might get tons of duplicated and redundant type information. 2844 * 2845 * Additional complication we need to keep in mind comes from the fact that 2846 * types, in general, can form graphs containing cycles, not just DAGs. 2847 * 2848 * While algorithm does deduplication, it also merges and resolves type 2849 * information (unless disabled throught `struct btf_opts`), whenever possible. 2850 * E.g., in the example above with two compilation units having partial type 2851 * information for structs `A` and `B`, the output of algorithm will emit 2852 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2853 * (as well as type information for `int` and pointers), as if they were defined 2854 * in a single compilation unit as: 2855 * 2856 * struct A { 2857 * int a; 2858 * struct A* self; 2859 * struct S* parent; 2860 * }; 2861 * struct B { 2862 * int b; 2863 * struct B* self; 2864 * struct S* parent; 2865 * }; 2866 * struct S { 2867 * struct A* a_ptr; 2868 * struct B* b_ptr; 2869 * }; 2870 * 2871 * Algorithm summary 2872 * ================= 2873 * 2874 * Algorithm completes its work in 6 separate passes: 2875 * 2876 * 1. Strings deduplication. 2877 * 2. Primitive types deduplication (int, enum, fwd). 2878 * 3. Struct/union types deduplication. 2879 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2880 * protos, and const/volatile/restrict modifiers). 2881 * 5. Types compaction. 2882 * 6. Types remapping. 2883 * 2884 * Algorithm determines canonical type descriptor, which is a single 2885 * representative type for each truly unique type. This canonical type is the 2886 * one that will go into final deduplicated BTF type information. For 2887 * struct/unions, it is also the type that algorithm will merge additional type 2888 * information into (while resolving FWDs), as it discovers it from data in 2889 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2890 * that type is canonical, or to some other type, if that type is equivalent 2891 * and was chosen as canonical representative. This mapping is stored in 2892 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2893 * FWD type got resolved to. 2894 * 2895 * To facilitate fast discovery of canonical types, we also maintain canonical 2896 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2897 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2898 * that match that signature. With sufficiently good choice of type signature 2899 * hashing function, we can limit number of canonical types for each unique type 2900 * signature to a very small number, allowing to find canonical type for any 2901 * duplicated type very quickly. 2902 * 2903 * Struct/union deduplication is the most critical part and algorithm for 2904 * deduplicating structs/unions is described in greater details in comments for 2905 * `btf_dedup_is_equiv` function. 2906 */ 2907 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2908 const struct btf_dedup_opts *opts) 2909 { 2910 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2911 int err; 2912 2913 if (IS_ERR(d)) { 2914 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2915 return libbpf_err(-EINVAL); 2916 } 2917 2918 if (btf_ensure_modifiable(btf)) 2919 return libbpf_err(-ENOMEM); 2920 2921 err = btf_dedup_prep(d); 2922 if (err) { 2923 pr_debug("btf_dedup_prep failed:%d\n", err); 2924 goto done; 2925 } 2926 err = btf_dedup_strings(d); 2927 if (err < 0) { 2928 pr_debug("btf_dedup_strings failed:%d\n", err); 2929 goto done; 2930 } 2931 err = btf_dedup_prim_types(d); 2932 if (err < 0) { 2933 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2934 goto done; 2935 } 2936 err = btf_dedup_struct_types(d); 2937 if (err < 0) { 2938 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2939 goto done; 2940 } 2941 err = btf_dedup_ref_types(d); 2942 if (err < 0) { 2943 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2944 goto done; 2945 } 2946 err = btf_dedup_compact_types(d); 2947 if (err < 0) { 2948 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2949 goto done; 2950 } 2951 err = btf_dedup_remap_types(d); 2952 if (err < 0) { 2953 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2954 goto done; 2955 } 2956 2957 done: 2958 btf_dedup_free(d); 2959 return libbpf_err(err); 2960 } 2961 2962 #define BTF_UNPROCESSED_ID ((__u32)-1) 2963 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2964 2965 struct btf_dedup { 2966 /* .BTF section to be deduped in-place */ 2967 struct btf *btf; 2968 /* 2969 * Optional .BTF.ext section. When provided, any strings referenced 2970 * from it will be taken into account when deduping strings 2971 */ 2972 struct btf_ext *btf_ext; 2973 /* 2974 * This is a map from any type's signature hash to a list of possible 2975 * canonical representative type candidates. Hash collisions are 2976 * ignored, so even types of various kinds can share same list of 2977 * candidates, which is fine because we rely on subsequent 2978 * btf_xxx_equal() checks to authoritatively verify type equality. 2979 */ 2980 struct hashmap *dedup_table; 2981 /* Canonical types map */ 2982 __u32 *map; 2983 /* Hypothetical mapping, used during type graph equivalence checks */ 2984 __u32 *hypot_map; 2985 __u32 *hypot_list; 2986 size_t hypot_cnt; 2987 size_t hypot_cap; 2988 /* Whether hypothetical mapping, if successful, would need to adjust 2989 * already canonicalized types (due to a new forward declaration to 2990 * concrete type resolution). In such case, during split BTF dedup 2991 * candidate type would still be considered as different, because base 2992 * BTF is considered to be immutable. 2993 */ 2994 bool hypot_adjust_canon; 2995 /* Various option modifying behavior of algorithm */ 2996 struct btf_dedup_opts opts; 2997 /* temporary strings deduplication state */ 2998 struct strset *strs_set; 2999 }; 3000 3001 static long hash_combine(long h, long value) 3002 { 3003 return h * 31 + value; 3004 } 3005 3006 #define for_each_dedup_cand(d, node, hash) \ 3007 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 3008 3009 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3010 { 3011 return hashmap__append(d->dedup_table, 3012 (void *)hash, (void *)(long)type_id); 3013 } 3014 3015 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3016 __u32 from_id, __u32 to_id) 3017 { 3018 if (d->hypot_cnt == d->hypot_cap) { 3019 __u32 *new_list; 3020 3021 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3022 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3023 if (!new_list) 3024 return -ENOMEM; 3025 d->hypot_list = new_list; 3026 } 3027 d->hypot_list[d->hypot_cnt++] = from_id; 3028 d->hypot_map[from_id] = to_id; 3029 return 0; 3030 } 3031 3032 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3033 { 3034 int i; 3035 3036 for (i = 0; i < d->hypot_cnt; i++) 3037 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3038 d->hypot_cnt = 0; 3039 d->hypot_adjust_canon = false; 3040 } 3041 3042 static void btf_dedup_free(struct btf_dedup *d) 3043 { 3044 hashmap__free(d->dedup_table); 3045 d->dedup_table = NULL; 3046 3047 free(d->map); 3048 d->map = NULL; 3049 3050 free(d->hypot_map); 3051 d->hypot_map = NULL; 3052 3053 free(d->hypot_list); 3054 d->hypot_list = NULL; 3055 3056 free(d); 3057 } 3058 3059 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3060 { 3061 return (size_t)key; 3062 } 3063 3064 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3065 { 3066 return 0; 3067 } 3068 3069 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3070 { 3071 return k1 == k2; 3072 } 3073 3074 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3075 const struct btf_dedup_opts *opts) 3076 { 3077 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3078 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3079 int i, err = 0, type_cnt; 3080 3081 if (!d) 3082 return ERR_PTR(-ENOMEM); 3083 3084 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3085 /* dedup_table_size is now used only to force collisions in tests */ 3086 if (opts && opts->dedup_table_size == 1) 3087 hash_fn = btf_dedup_collision_hash_fn; 3088 3089 d->btf = btf; 3090 d->btf_ext = btf_ext; 3091 3092 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3093 if (IS_ERR(d->dedup_table)) { 3094 err = PTR_ERR(d->dedup_table); 3095 d->dedup_table = NULL; 3096 goto done; 3097 } 3098 3099 type_cnt = btf__get_nr_types(btf) + 1; 3100 d->map = malloc(sizeof(__u32) * type_cnt); 3101 if (!d->map) { 3102 err = -ENOMEM; 3103 goto done; 3104 } 3105 /* special BTF "void" type is made canonical immediately */ 3106 d->map[0] = 0; 3107 for (i = 1; i < type_cnt; i++) { 3108 struct btf_type *t = btf_type_by_id(d->btf, i); 3109 3110 /* VAR and DATASEC are never deduped and are self-canonical */ 3111 if (btf_is_var(t) || btf_is_datasec(t)) 3112 d->map[i] = i; 3113 else 3114 d->map[i] = BTF_UNPROCESSED_ID; 3115 } 3116 3117 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3118 if (!d->hypot_map) { 3119 err = -ENOMEM; 3120 goto done; 3121 } 3122 for (i = 0; i < type_cnt; i++) 3123 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3124 3125 done: 3126 if (err) { 3127 btf_dedup_free(d); 3128 return ERR_PTR(err); 3129 } 3130 3131 return d; 3132 } 3133 3134 /* 3135 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3136 * string and pass pointer to it to a provided callback `fn`. 3137 */ 3138 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3139 { 3140 int i, r; 3141 3142 for (i = 0; i < d->btf->nr_types; i++) { 3143 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3144 3145 r = btf_type_visit_str_offs(t, fn, ctx); 3146 if (r) 3147 return r; 3148 } 3149 3150 if (!d->btf_ext) 3151 return 0; 3152 3153 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3154 if (r) 3155 return r; 3156 3157 return 0; 3158 } 3159 3160 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3161 { 3162 struct btf_dedup *d = ctx; 3163 __u32 str_off = *str_off_ptr; 3164 const char *s; 3165 int off, err; 3166 3167 /* don't touch empty string or string in main BTF */ 3168 if (str_off == 0 || str_off < d->btf->start_str_off) 3169 return 0; 3170 3171 s = btf__str_by_offset(d->btf, str_off); 3172 if (d->btf->base_btf) { 3173 err = btf__find_str(d->btf->base_btf, s); 3174 if (err >= 0) { 3175 *str_off_ptr = err; 3176 return 0; 3177 } 3178 if (err != -ENOENT) 3179 return err; 3180 } 3181 3182 off = strset__add_str(d->strs_set, s); 3183 if (off < 0) 3184 return off; 3185 3186 *str_off_ptr = d->btf->start_str_off + off; 3187 return 0; 3188 } 3189 3190 /* 3191 * Dedup string and filter out those that are not referenced from either .BTF 3192 * or .BTF.ext (if provided) sections. 3193 * 3194 * This is done by building index of all strings in BTF's string section, 3195 * then iterating over all entities that can reference strings (e.g., type 3196 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3197 * strings as used. After that all used strings are deduped and compacted into 3198 * sequential blob of memory and new offsets are calculated. Then all the string 3199 * references are iterated again and rewritten using new offsets. 3200 */ 3201 static int btf_dedup_strings(struct btf_dedup *d) 3202 { 3203 int err; 3204 3205 if (d->btf->strs_deduped) 3206 return 0; 3207 3208 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3209 if (IS_ERR(d->strs_set)) { 3210 err = PTR_ERR(d->strs_set); 3211 goto err_out; 3212 } 3213 3214 if (!d->btf->base_btf) { 3215 /* insert empty string; we won't be looking it up during strings 3216 * dedup, but it's good to have it for generic BTF string lookups 3217 */ 3218 err = strset__add_str(d->strs_set, ""); 3219 if (err < 0) 3220 goto err_out; 3221 } 3222 3223 /* remap string offsets */ 3224 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3225 if (err) 3226 goto err_out; 3227 3228 /* replace BTF string data and hash with deduped ones */ 3229 strset__free(d->btf->strs_set); 3230 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3231 d->btf->strs_set = d->strs_set; 3232 d->strs_set = NULL; 3233 d->btf->strs_deduped = true; 3234 return 0; 3235 3236 err_out: 3237 strset__free(d->strs_set); 3238 d->strs_set = NULL; 3239 3240 return err; 3241 } 3242 3243 static long btf_hash_common(struct btf_type *t) 3244 { 3245 long h; 3246 3247 h = hash_combine(0, t->name_off); 3248 h = hash_combine(h, t->info); 3249 h = hash_combine(h, t->size); 3250 return h; 3251 } 3252 3253 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3254 { 3255 return t1->name_off == t2->name_off && 3256 t1->info == t2->info && 3257 t1->size == t2->size; 3258 } 3259 3260 /* Calculate type signature hash of INT. */ 3261 static long btf_hash_int(struct btf_type *t) 3262 { 3263 __u32 info = *(__u32 *)(t + 1); 3264 long h; 3265 3266 h = btf_hash_common(t); 3267 h = hash_combine(h, info); 3268 return h; 3269 } 3270 3271 /* Check structural equality of two INTs. */ 3272 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3273 { 3274 __u32 info1, info2; 3275 3276 if (!btf_equal_common(t1, t2)) 3277 return false; 3278 info1 = *(__u32 *)(t1 + 1); 3279 info2 = *(__u32 *)(t2 + 1); 3280 return info1 == info2; 3281 } 3282 3283 /* Calculate type signature hash of ENUM. */ 3284 static long btf_hash_enum(struct btf_type *t) 3285 { 3286 long h; 3287 3288 /* don't hash vlen and enum members to support enum fwd resolving */ 3289 h = hash_combine(0, t->name_off); 3290 h = hash_combine(h, t->info & ~0xffff); 3291 h = hash_combine(h, t->size); 3292 return h; 3293 } 3294 3295 /* Check structural equality of two ENUMs. */ 3296 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3297 { 3298 const struct btf_enum *m1, *m2; 3299 __u16 vlen; 3300 int i; 3301 3302 if (!btf_equal_common(t1, t2)) 3303 return false; 3304 3305 vlen = btf_vlen(t1); 3306 m1 = btf_enum(t1); 3307 m2 = btf_enum(t2); 3308 for (i = 0; i < vlen; i++) { 3309 if (m1->name_off != m2->name_off || m1->val != m2->val) 3310 return false; 3311 m1++; 3312 m2++; 3313 } 3314 return true; 3315 } 3316 3317 static inline bool btf_is_enum_fwd(struct btf_type *t) 3318 { 3319 return btf_is_enum(t) && btf_vlen(t) == 0; 3320 } 3321 3322 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3323 { 3324 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3325 return btf_equal_enum(t1, t2); 3326 /* ignore vlen when comparing */ 3327 return t1->name_off == t2->name_off && 3328 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3329 t1->size == t2->size; 3330 } 3331 3332 /* 3333 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3334 * as referenced type IDs equivalence is established separately during type 3335 * graph equivalence check algorithm. 3336 */ 3337 static long btf_hash_struct(struct btf_type *t) 3338 { 3339 const struct btf_member *member = btf_members(t); 3340 __u32 vlen = btf_vlen(t); 3341 long h = btf_hash_common(t); 3342 int i; 3343 3344 for (i = 0; i < vlen; i++) { 3345 h = hash_combine(h, member->name_off); 3346 h = hash_combine(h, member->offset); 3347 /* no hashing of referenced type ID, it can be unresolved yet */ 3348 member++; 3349 } 3350 return h; 3351 } 3352 3353 /* 3354 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3355 * IDs. This check is performed during type graph equivalence check and 3356 * referenced types equivalence is checked separately. 3357 */ 3358 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3359 { 3360 const struct btf_member *m1, *m2; 3361 __u16 vlen; 3362 int i; 3363 3364 if (!btf_equal_common(t1, t2)) 3365 return false; 3366 3367 vlen = btf_vlen(t1); 3368 m1 = btf_members(t1); 3369 m2 = btf_members(t2); 3370 for (i = 0; i < vlen; i++) { 3371 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3372 return false; 3373 m1++; 3374 m2++; 3375 } 3376 return true; 3377 } 3378 3379 /* 3380 * Calculate type signature hash of ARRAY, including referenced type IDs, 3381 * under assumption that they were already resolved to canonical type IDs and 3382 * are not going to change. 3383 */ 3384 static long btf_hash_array(struct btf_type *t) 3385 { 3386 const struct btf_array *info = btf_array(t); 3387 long h = btf_hash_common(t); 3388 3389 h = hash_combine(h, info->type); 3390 h = hash_combine(h, info->index_type); 3391 h = hash_combine(h, info->nelems); 3392 return h; 3393 } 3394 3395 /* 3396 * Check exact equality of two ARRAYs, taking into account referenced 3397 * type IDs, under assumption that they were already resolved to canonical 3398 * type IDs and are not going to change. 3399 * This function is called during reference types deduplication to compare 3400 * ARRAY to potential canonical representative. 3401 */ 3402 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3403 { 3404 const struct btf_array *info1, *info2; 3405 3406 if (!btf_equal_common(t1, t2)) 3407 return false; 3408 3409 info1 = btf_array(t1); 3410 info2 = btf_array(t2); 3411 return info1->type == info2->type && 3412 info1->index_type == info2->index_type && 3413 info1->nelems == info2->nelems; 3414 } 3415 3416 /* 3417 * Check structural compatibility of two ARRAYs, ignoring referenced type 3418 * IDs. This check is performed during type graph equivalence check and 3419 * referenced types equivalence is checked separately. 3420 */ 3421 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3422 { 3423 if (!btf_equal_common(t1, t2)) 3424 return false; 3425 3426 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3427 } 3428 3429 /* 3430 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3431 * under assumption that they were already resolved to canonical type IDs and 3432 * are not going to change. 3433 */ 3434 static long btf_hash_fnproto(struct btf_type *t) 3435 { 3436 const struct btf_param *member = btf_params(t); 3437 __u16 vlen = btf_vlen(t); 3438 long h = btf_hash_common(t); 3439 int i; 3440 3441 for (i = 0; i < vlen; i++) { 3442 h = hash_combine(h, member->name_off); 3443 h = hash_combine(h, member->type); 3444 member++; 3445 } 3446 return h; 3447 } 3448 3449 /* 3450 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3451 * type IDs, under assumption that they were already resolved to canonical 3452 * type IDs and are not going to change. 3453 * This function is called during reference types deduplication to compare 3454 * FUNC_PROTO to potential canonical representative. 3455 */ 3456 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3457 { 3458 const struct btf_param *m1, *m2; 3459 __u16 vlen; 3460 int i; 3461 3462 if (!btf_equal_common(t1, t2)) 3463 return false; 3464 3465 vlen = btf_vlen(t1); 3466 m1 = btf_params(t1); 3467 m2 = btf_params(t2); 3468 for (i = 0; i < vlen; i++) { 3469 if (m1->name_off != m2->name_off || m1->type != m2->type) 3470 return false; 3471 m1++; 3472 m2++; 3473 } 3474 return true; 3475 } 3476 3477 /* 3478 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3479 * IDs. This check is performed during type graph equivalence check and 3480 * referenced types equivalence is checked separately. 3481 */ 3482 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3483 { 3484 const struct btf_param *m1, *m2; 3485 __u16 vlen; 3486 int i; 3487 3488 /* skip return type ID */ 3489 if (t1->name_off != t2->name_off || t1->info != t2->info) 3490 return false; 3491 3492 vlen = btf_vlen(t1); 3493 m1 = btf_params(t1); 3494 m2 = btf_params(t2); 3495 for (i = 0; i < vlen; i++) { 3496 if (m1->name_off != m2->name_off) 3497 return false; 3498 m1++; 3499 m2++; 3500 } 3501 return true; 3502 } 3503 3504 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3505 * types and initializing the rest of the state (canonical type mapping) for 3506 * the fixed base BTF part. 3507 */ 3508 static int btf_dedup_prep(struct btf_dedup *d) 3509 { 3510 struct btf_type *t; 3511 int type_id; 3512 long h; 3513 3514 if (!d->btf->base_btf) 3515 return 0; 3516 3517 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3518 t = btf_type_by_id(d->btf, type_id); 3519 3520 /* all base BTF types are self-canonical by definition */ 3521 d->map[type_id] = type_id; 3522 3523 switch (btf_kind(t)) { 3524 case BTF_KIND_VAR: 3525 case BTF_KIND_DATASEC: 3526 /* VAR and DATASEC are never hash/deduplicated */ 3527 continue; 3528 case BTF_KIND_CONST: 3529 case BTF_KIND_VOLATILE: 3530 case BTF_KIND_RESTRICT: 3531 case BTF_KIND_PTR: 3532 case BTF_KIND_FWD: 3533 case BTF_KIND_TYPEDEF: 3534 case BTF_KIND_FUNC: 3535 case BTF_KIND_FLOAT: 3536 h = btf_hash_common(t); 3537 break; 3538 case BTF_KIND_INT: 3539 h = btf_hash_int(t); 3540 break; 3541 case BTF_KIND_ENUM: 3542 h = btf_hash_enum(t); 3543 break; 3544 case BTF_KIND_STRUCT: 3545 case BTF_KIND_UNION: 3546 h = btf_hash_struct(t); 3547 break; 3548 case BTF_KIND_ARRAY: 3549 h = btf_hash_array(t); 3550 break; 3551 case BTF_KIND_FUNC_PROTO: 3552 h = btf_hash_fnproto(t); 3553 break; 3554 default: 3555 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3556 return -EINVAL; 3557 } 3558 if (btf_dedup_table_add(d, h, type_id)) 3559 return -ENOMEM; 3560 } 3561 3562 return 0; 3563 } 3564 3565 /* 3566 * Deduplicate primitive types, that can't reference other types, by calculating 3567 * their type signature hash and comparing them with any possible canonical 3568 * candidate. If no canonical candidate matches, type itself is marked as 3569 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3570 */ 3571 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3572 { 3573 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3574 struct hashmap_entry *hash_entry; 3575 struct btf_type *cand; 3576 /* if we don't find equivalent type, then we are canonical */ 3577 __u32 new_id = type_id; 3578 __u32 cand_id; 3579 long h; 3580 3581 switch (btf_kind(t)) { 3582 case BTF_KIND_CONST: 3583 case BTF_KIND_VOLATILE: 3584 case BTF_KIND_RESTRICT: 3585 case BTF_KIND_PTR: 3586 case BTF_KIND_TYPEDEF: 3587 case BTF_KIND_ARRAY: 3588 case BTF_KIND_STRUCT: 3589 case BTF_KIND_UNION: 3590 case BTF_KIND_FUNC: 3591 case BTF_KIND_FUNC_PROTO: 3592 case BTF_KIND_VAR: 3593 case BTF_KIND_DATASEC: 3594 return 0; 3595 3596 case BTF_KIND_INT: 3597 h = btf_hash_int(t); 3598 for_each_dedup_cand(d, hash_entry, h) { 3599 cand_id = (__u32)(long)hash_entry->value; 3600 cand = btf_type_by_id(d->btf, cand_id); 3601 if (btf_equal_int(t, cand)) { 3602 new_id = cand_id; 3603 break; 3604 } 3605 } 3606 break; 3607 3608 case BTF_KIND_ENUM: 3609 h = btf_hash_enum(t); 3610 for_each_dedup_cand(d, hash_entry, h) { 3611 cand_id = (__u32)(long)hash_entry->value; 3612 cand = btf_type_by_id(d->btf, cand_id); 3613 if (btf_equal_enum(t, cand)) { 3614 new_id = cand_id; 3615 break; 3616 } 3617 if (d->opts.dont_resolve_fwds) 3618 continue; 3619 if (btf_compat_enum(t, cand)) { 3620 if (btf_is_enum_fwd(t)) { 3621 /* resolve fwd to full enum */ 3622 new_id = cand_id; 3623 break; 3624 } 3625 /* resolve canonical enum fwd to full enum */ 3626 d->map[cand_id] = type_id; 3627 } 3628 } 3629 break; 3630 3631 case BTF_KIND_FWD: 3632 case BTF_KIND_FLOAT: 3633 h = btf_hash_common(t); 3634 for_each_dedup_cand(d, hash_entry, h) { 3635 cand_id = (__u32)(long)hash_entry->value; 3636 cand = btf_type_by_id(d->btf, cand_id); 3637 if (btf_equal_common(t, cand)) { 3638 new_id = cand_id; 3639 break; 3640 } 3641 } 3642 break; 3643 3644 default: 3645 return -EINVAL; 3646 } 3647 3648 d->map[type_id] = new_id; 3649 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3650 return -ENOMEM; 3651 3652 return 0; 3653 } 3654 3655 static int btf_dedup_prim_types(struct btf_dedup *d) 3656 { 3657 int i, err; 3658 3659 for (i = 0; i < d->btf->nr_types; i++) { 3660 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3661 if (err) 3662 return err; 3663 } 3664 return 0; 3665 } 3666 3667 /* 3668 * Check whether type is already mapped into canonical one (could be to itself). 3669 */ 3670 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3671 { 3672 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3673 } 3674 3675 /* 3676 * Resolve type ID into its canonical type ID, if any; otherwise return original 3677 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3678 * STRUCT/UNION link and resolve it into canonical type ID as well. 3679 */ 3680 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3681 { 3682 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3683 type_id = d->map[type_id]; 3684 return type_id; 3685 } 3686 3687 /* 3688 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3689 * type ID. 3690 */ 3691 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3692 { 3693 __u32 orig_type_id = type_id; 3694 3695 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3696 return type_id; 3697 3698 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3699 type_id = d->map[type_id]; 3700 3701 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3702 return type_id; 3703 3704 return orig_type_id; 3705 } 3706 3707 3708 static inline __u16 btf_fwd_kind(struct btf_type *t) 3709 { 3710 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3711 } 3712 3713 /* Check if given two types are identical ARRAY definitions */ 3714 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3715 { 3716 struct btf_type *t1, *t2; 3717 3718 t1 = btf_type_by_id(d->btf, id1); 3719 t2 = btf_type_by_id(d->btf, id2); 3720 if (!btf_is_array(t1) || !btf_is_array(t2)) 3721 return 0; 3722 3723 return btf_equal_array(t1, t2); 3724 } 3725 3726 /* 3727 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3728 * call it "candidate graph" in this description for brevity) to a type graph 3729 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3730 * here, though keep in mind that not all types in canonical graph are 3731 * necessarily canonical representatives themselves, some of them might be 3732 * duplicates or its uniqueness might not have been established yet). 3733 * Returns: 3734 * - >0, if type graphs are equivalent; 3735 * - 0, if not equivalent; 3736 * - <0, on error. 3737 * 3738 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3739 * equivalence of BTF types at each step. If at any point BTF types in candidate 3740 * and canonical graphs are not compatible structurally, whole graphs are 3741 * incompatible. If types are structurally equivalent (i.e., all information 3742 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3743 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3744 * If a type references other types, then those referenced types are checked 3745 * for equivalence recursively. 3746 * 3747 * During DFS traversal, if we find that for current `canon_id` type we 3748 * already have some mapping in hypothetical map, we check for two possible 3749 * situations: 3750 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3751 * happen when type graphs have cycles. In this case we assume those two 3752 * types are equivalent. 3753 * - `canon_id` is mapped to different type. This is contradiction in our 3754 * hypothetical mapping, because same graph in canonical graph corresponds 3755 * to two different types in candidate graph, which for equivalent type 3756 * graphs shouldn't happen. This condition terminates equivalence check 3757 * with negative result. 3758 * 3759 * If type graphs traversal exhausts types to check and find no contradiction, 3760 * then type graphs are equivalent. 3761 * 3762 * When checking types for equivalence, there is one special case: FWD types. 3763 * If FWD type resolution is allowed and one of the types (either from canonical 3764 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3765 * flag) and their names match, hypothetical mapping is updated to point from 3766 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3767 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3768 * 3769 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3770 * if there are two exactly named (or anonymous) structs/unions that are 3771 * compatible structurally, one of which has FWD field, while other is concrete 3772 * STRUCT/UNION, but according to C sources they are different structs/unions 3773 * that are referencing different types with the same name. This is extremely 3774 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3775 * this logic is causing problems. 3776 * 3777 * Doing FWD resolution means that both candidate and/or canonical graphs can 3778 * consists of portions of the graph that come from multiple compilation units. 3779 * This is due to the fact that types within single compilation unit are always 3780 * deduplicated and FWDs are already resolved, if referenced struct/union 3781 * definiton is available. So, if we had unresolved FWD and found corresponding 3782 * STRUCT/UNION, they will be from different compilation units. This 3783 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3784 * type graph will likely have at least two different BTF types that describe 3785 * same type (e.g., most probably there will be two different BTF types for the 3786 * same 'int' primitive type) and could even have "overlapping" parts of type 3787 * graph that describe same subset of types. 3788 * 3789 * This in turn means that our assumption that each type in canonical graph 3790 * must correspond to exactly one type in candidate graph might not hold 3791 * anymore and will make it harder to detect contradictions using hypothetical 3792 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3793 * resolution only in canonical graph. FWDs in candidate graphs are never 3794 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3795 * that can occur: 3796 * - Both types in canonical and candidate graphs are FWDs. If they are 3797 * structurally equivalent, then they can either be both resolved to the 3798 * same STRUCT/UNION or not resolved at all. In both cases they are 3799 * equivalent and there is no need to resolve FWD on candidate side. 3800 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3801 * so nothing to resolve as well, algorithm will check equivalence anyway. 3802 * - Type in canonical graph is FWD, while type in candidate is concrete 3803 * STRUCT/UNION. In this case candidate graph comes from single compilation 3804 * unit, so there is exactly one BTF type for each unique C type. After 3805 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3806 * in canonical graph mapping to single BTF type in candidate graph, but 3807 * because hypothetical mapping maps from canonical to candidate types, it's 3808 * alright, and we still maintain the property of having single `canon_id` 3809 * mapping to single `cand_id` (there could be two different `canon_id` 3810 * mapped to the same `cand_id`, but it's not contradictory). 3811 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3812 * graph is FWD. In this case we are just going to check compatibility of 3813 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3814 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3815 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3816 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3817 * canonical graph. 3818 */ 3819 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3820 __u32 canon_id) 3821 { 3822 struct btf_type *cand_type; 3823 struct btf_type *canon_type; 3824 __u32 hypot_type_id; 3825 __u16 cand_kind; 3826 __u16 canon_kind; 3827 int i, eq; 3828 3829 /* if both resolve to the same canonical, they must be equivalent */ 3830 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3831 return 1; 3832 3833 canon_id = resolve_fwd_id(d, canon_id); 3834 3835 hypot_type_id = d->hypot_map[canon_id]; 3836 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3837 /* In some cases compiler will generate different DWARF types 3838 * for *identical* array type definitions and use them for 3839 * different fields within the *same* struct. This breaks type 3840 * equivalence check, which makes an assumption that candidate 3841 * types sub-graph has a consistent and deduped-by-compiler 3842 * types within a single CU. So work around that by explicitly 3843 * allowing identical array types here. 3844 */ 3845 return hypot_type_id == cand_id || 3846 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3847 } 3848 3849 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3850 return -ENOMEM; 3851 3852 cand_type = btf_type_by_id(d->btf, cand_id); 3853 canon_type = btf_type_by_id(d->btf, canon_id); 3854 cand_kind = btf_kind(cand_type); 3855 canon_kind = btf_kind(canon_type); 3856 3857 if (cand_type->name_off != canon_type->name_off) 3858 return 0; 3859 3860 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3861 if (!d->opts.dont_resolve_fwds 3862 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3863 && cand_kind != canon_kind) { 3864 __u16 real_kind; 3865 __u16 fwd_kind; 3866 3867 if (cand_kind == BTF_KIND_FWD) { 3868 real_kind = canon_kind; 3869 fwd_kind = btf_fwd_kind(cand_type); 3870 } else { 3871 real_kind = cand_kind; 3872 fwd_kind = btf_fwd_kind(canon_type); 3873 /* we'd need to resolve base FWD to STRUCT/UNION */ 3874 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3875 d->hypot_adjust_canon = true; 3876 } 3877 return fwd_kind == real_kind; 3878 } 3879 3880 if (cand_kind != canon_kind) 3881 return 0; 3882 3883 switch (cand_kind) { 3884 case BTF_KIND_INT: 3885 return btf_equal_int(cand_type, canon_type); 3886 3887 case BTF_KIND_ENUM: 3888 if (d->opts.dont_resolve_fwds) 3889 return btf_equal_enum(cand_type, canon_type); 3890 else 3891 return btf_compat_enum(cand_type, canon_type); 3892 3893 case BTF_KIND_FWD: 3894 case BTF_KIND_FLOAT: 3895 return btf_equal_common(cand_type, canon_type); 3896 3897 case BTF_KIND_CONST: 3898 case BTF_KIND_VOLATILE: 3899 case BTF_KIND_RESTRICT: 3900 case BTF_KIND_PTR: 3901 case BTF_KIND_TYPEDEF: 3902 case BTF_KIND_FUNC: 3903 if (cand_type->info != canon_type->info) 3904 return 0; 3905 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3906 3907 case BTF_KIND_ARRAY: { 3908 const struct btf_array *cand_arr, *canon_arr; 3909 3910 if (!btf_compat_array(cand_type, canon_type)) 3911 return 0; 3912 cand_arr = btf_array(cand_type); 3913 canon_arr = btf_array(canon_type); 3914 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 3915 if (eq <= 0) 3916 return eq; 3917 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 3918 } 3919 3920 case BTF_KIND_STRUCT: 3921 case BTF_KIND_UNION: { 3922 const struct btf_member *cand_m, *canon_m; 3923 __u16 vlen; 3924 3925 if (!btf_shallow_equal_struct(cand_type, canon_type)) 3926 return 0; 3927 vlen = btf_vlen(cand_type); 3928 cand_m = btf_members(cand_type); 3929 canon_m = btf_members(canon_type); 3930 for (i = 0; i < vlen; i++) { 3931 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 3932 if (eq <= 0) 3933 return eq; 3934 cand_m++; 3935 canon_m++; 3936 } 3937 3938 return 1; 3939 } 3940 3941 case BTF_KIND_FUNC_PROTO: { 3942 const struct btf_param *cand_p, *canon_p; 3943 __u16 vlen; 3944 3945 if (!btf_compat_fnproto(cand_type, canon_type)) 3946 return 0; 3947 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3948 if (eq <= 0) 3949 return eq; 3950 vlen = btf_vlen(cand_type); 3951 cand_p = btf_params(cand_type); 3952 canon_p = btf_params(canon_type); 3953 for (i = 0; i < vlen; i++) { 3954 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 3955 if (eq <= 0) 3956 return eq; 3957 cand_p++; 3958 canon_p++; 3959 } 3960 return 1; 3961 } 3962 3963 default: 3964 return -EINVAL; 3965 } 3966 return 0; 3967 } 3968 3969 /* 3970 * Use hypothetical mapping, produced by successful type graph equivalence 3971 * check, to augment existing struct/union canonical mapping, where possible. 3972 * 3973 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 3974 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 3975 * it doesn't matter if FWD type was part of canonical graph or candidate one, 3976 * we are recording the mapping anyway. As opposed to carefulness required 3977 * for struct/union correspondence mapping (described below), for FWD resolution 3978 * it's not important, as by the time that FWD type (reference type) will be 3979 * deduplicated all structs/unions will be deduped already anyway. 3980 * 3981 * Recording STRUCT/UNION mapping is purely a performance optimization and is 3982 * not required for correctness. It needs to be done carefully to ensure that 3983 * struct/union from candidate's type graph is not mapped into corresponding 3984 * struct/union from canonical type graph that itself hasn't been resolved into 3985 * canonical representative. The only guarantee we have is that canonical 3986 * struct/union was determined as canonical and that won't change. But any 3987 * types referenced through that struct/union fields could have been not yet 3988 * resolved, so in case like that it's too early to establish any kind of 3989 * correspondence between structs/unions. 3990 * 3991 * No canonical correspondence is derived for primitive types (they are already 3992 * deduplicated completely already anyway) or reference types (they rely on 3993 * stability of struct/union canonical relationship for equivalence checks). 3994 */ 3995 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 3996 { 3997 __u32 canon_type_id, targ_type_id; 3998 __u16 t_kind, c_kind; 3999 __u32 t_id, c_id; 4000 int i; 4001 4002 for (i = 0; i < d->hypot_cnt; i++) { 4003 canon_type_id = d->hypot_list[i]; 4004 targ_type_id = d->hypot_map[canon_type_id]; 4005 t_id = resolve_type_id(d, targ_type_id); 4006 c_id = resolve_type_id(d, canon_type_id); 4007 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4008 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4009 /* 4010 * Resolve FWD into STRUCT/UNION. 4011 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4012 * mapped to canonical representative (as opposed to 4013 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4014 * eventually that struct is going to be mapped and all resolved 4015 * FWDs will automatically resolve to correct canonical 4016 * representative. This will happen before ref type deduping, 4017 * which critically depends on stability of these mapping. This 4018 * stability is not a requirement for STRUCT/UNION equivalence 4019 * checks, though. 4020 */ 4021 4022 /* if it's the split BTF case, we still need to point base FWD 4023 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4024 * will be resolved against base FWD. If we don't point base 4025 * canonical FWD to the resolved STRUCT/UNION, then all the 4026 * FWDs in split BTF won't be correctly resolved to a proper 4027 * STRUCT/UNION. 4028 */ 4029 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4030 d->map[c_id] = t_id; 4031 4032 /* if graph equivalence determined that we'd need to adjust 4033 * base canonical types, then we need to only point base FWDs 4034 * to STRUCTs/UNIONs and do no more modifications. For all 4035 * other purposes the type graphs were not equivalent. 4036 */ 4037 if (d->hypot_adjust_canon) 4038 continue; 4039 4040 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4041 d->map[t_id] = c_id; 4042 4043 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4044 c_kind != BTF_KIND_FWD && 4045 is_type_mapped(d, c_id) && 4046 !is_type_mapped(d, t_id)) { 4047 /* 4048 * as a perf optimization, we can map struct/union 4049 * that's part of type graph we just verified for 4050 * equivalence. We can do that for struct/union that has 4051 * canonical representative only, though. 4052 */ 4053 d->map[t_id] = c_id; 4054 } 4055 } 4056 } 4057 4058 /* 4059 * Deduplicate struct/union types. 4060 * 4061 * For each struct/union type its type signature hash is calculated, taking 4062 * into account type's name, size, number, order and names of fields, but 4063 * ignoring type ID's referenced from fields, because they might not be deduped 4064 * completely until after reference types deduplication phase. This type hash 4065 * is used to iterate over all potential canonical types, sharing same hash. 4066 * For each canonical candidate we check whether type graphs that they form 4067 * (through referenced types in fields and so on) are equivalent using algorithm 4068 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4069 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4070 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4071 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4072 * potentially map other structs/unions to their canonical representatives, 4073 * if such relationship hasn't yet been established. This speeds up algorithm 4074 * by eliminating some of the duplicate work. 4075 * 4076 * If no matching canonical representative was found, struct/union is marked 4077 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4078 * for further look ups. 4079 */ 4080 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4081 { 4082 struct btf_type *cand_type, *t; 4083 struct hashmap_entry *hash_entry; 4084 /* if we don't find equivalent type, then we are canonical */ 4085 __u32 new_id = type_id; 4086 __u16 kind; 4087 long h; 4088 4089 /* already deduped or is in process of deduping (loop detected) */ 4090 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4091 return 0; 4092 4093 t = btf_type_by_id(d->btf, type_id); 4094 kind = btf_kind(t); 4095 4096 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4097 return 0; 4098 4099 h = btf_hash_struct(t); 4100 for_each_dedup_cand(d, hash_entry, h) { 4101 __u32 cand_id = (__u32)(long)hash_entry->value; 4102 int eq; 4103 4104 /* 4105 * Even though btf_dedup_is_equiv() checks for 4106 * btf_shallow_equal_struct() internally when checking two 4107 * structs (unions) for equivalence, we need to guard here 4108 * from picking matching FWD type as a dedup candidate. 4109 * This can happen due to hash collision. In such case just 4110 * relying on btf_dedup_is_equiv() would lead to potentially 4111 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4112 * FWD and compatible STRUCT/UNION are considered equivalent. 4113 */ 4114 cand_type = btf_type_by_id(d->btf, cand_id); 4115 if (!btf_shallow_equal_struct(t, cand_type)) 4116 continue; 4117 4118 btf_dedup_clear_hypot_map(d); 4119 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4120 if (eq < 0) 4121 return eq; 4122 if (!eq) 4123 continue; 4124 btf_dedup_merge_hypot_map(d); 4125 if (d->hypot_adjust_canon) /* not really equivalent */ 4126 continue; 4127 new_id = cand_id; 4128 break; 4129 } 4130 4131 d->map[type_id] = new_id; 4132 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4133 return -ENOMEM; 4134 4135 return 0; 4136 } 4137 4138 static int btf_dedup_struct_types(struct btf_dedup *d) 4139 { 4140 int i, err; 4141 4142 for (i = 0; i < d->btf->nr_types; i++) { 4143 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4144 if (err) 4145 return err; 4146 } 4147 return 0; 4148 } 4149 4150 /* 4151 * Deduplicate reference type. 4152 * 4153 * Once all primitive and struct/union types got deduplicated, we can easily 4154 * deduplicate all other (reference) BTF types. This is done in two steps: 4155 * 4156 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4157 * resolution can be done either immediately for primitive or struct/union types 4158 * (because they were deduped in previous two phases) or recursively for 4159 * reference types. Recursion will always terminate at either primitive or 4160 * struct/union type, at which point we can "unwind" chain of reference types 4161 * one by one. There is no danger of encountering cycles because in C type 4162 * system the only way to form type cycle is through struct/union, so any chain 4163 * of reference types, even those taking part in a type cycle, will inevitably 4164 * reach struct/union at some point. 4165 * 4166 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4167 * becomes "stable", in the sense that no further deduplication will cause 4168 * any changes to it. With that, it's now possible to calculate type's signature 4169 * hash (this time taking into account referenced type IDs) and loop over all 4170 * potential canonical representatives. If no match was found, current type 4171 * will become canonical representative of itself and will be added into 4172 * btf_dedup->dedup_table as another possible canonical representative. 4173 */ 4174 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4175 { 4176 struct hashmap_entry *hash_entry; 4177 __u32 new_id = type_id, cand_id; 4178 struct btf_type *t, *cand; 4179 /* if we don't find equivalent type, then we are representative type */ 4180 int ref_type_id; 4181 long h; 4182 4183 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4184 return -ELOOP; 4185 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4186 return resolve_type_id(d, type_id); 4187 4188 t = btf_type_by_id(d->btf, type_id); 4189 d->map[type_id] = BTF_IN_PROGRESS_ID; 4190 4191 switch (btf_kind(t)) { 4192 case BTF_KIND_CONST: 4193 case BTF_KIND_VOLATILE: 4194 case BTF_KIND_RESTRICT: 4195 case BTF_KIND_PTR: 4196 case BTF_KIND_TYPEDEF: 4197 case BTF_KIND_FUNC: 4198 ref_type_id = btf_dedup_ref_type(d, t->type); 4199 if (ref_type_id < 0) 4200 return ref_type_id; 4201 t->type = ref_type_id; 4202 4203 h = btf_hash_common(t); 4204 for_each_dedup_cand(d, hash_entry, h) { 4205 cand_id = (__u32)(long)hash_entry->value; 4206 cand = btf_type_by_id(d->btf, cand_id); 4207 if (btf_equal_common(t, cand)) { 4208 new_id = cand_id; 4209 break; 4210 } 4211 } 4212 break; 4213 4214 case BTF_KIND_ARRAY: { 4215 struct btf_array *info = btf_array(t); 4216 4217 ref_type_id = btf_dedup_ref_type(d, info->type); 4218 if (ref_type_id < 0) 4219 return ref_type_id; 4220 info->type = ref_type_id; 4221 4222 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4223 if (ref_type_id < 0) 4224 return ref_type_id; 4225 info->index_type = ref_type_id; 4226 4227 h = btf_hash_array(t); 4228 for_each_dedup_cand(d, hash_entry, h) { 4229 cand_id = (__u32)(long)hash_entry->value; 4230 cand = btf_type_by_id(d->btf, cand_id); 4231 if (btf_equal_array(t, cand)) { 4232 new_id = cand_id; 4233 break; 4234 } 4235 } 4236 break; 4237 } 4238 4239 case BTF_KIND_FUNC_PROTO: { 4240 struct btf_param *param; 4241 __u16 vlen; 4242 int i; 4243 4244 ref_type_id = btf_dedup_ref_type(d, t->type); 4245 if (ref_type_id < 0) 4246 return ref_type_id; 4247 t->type = ref_type_id; 4248 4249 vlen = btf_vlen(t); 4250 param = btf_params(t); 4251 for (i = 0; i < vlen; i++) { 4252 ref_type_id = btf_dedup_ref_type(d, param->type); 4253 if (ref_type_id < 0) 4254 return ref_type_id; 4255 param->type = ref_type_id; 4256 param++; 4257 } 4258 4259 h = btf_hash_fnproto(t); 4260 for_each_dedup_cand(d, hash_entry, h) { 4261 cand_id = (__u32)(long)hash_entry->value; 4262 cand = btf_type_by_id(d->btf, cand_id); 4263 if (btf_equal_fnproto(t, cand)) { 4264 new_id = cand_id; 4265 break; 4266 } 4267 } 4268 break; 4269 } 4270 4271 default: 4272 return -EINVAL; 4273 } 4274 4275 d->map[type_id] = new_id; 4276 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4277 return -ENOMEM; 4278 4279 return new_id; 4280 } 4281 4282 static int btf_dedup_ref_types(struct btf_dedup *d) 4283 { 4284 int i, err; 4285 4286 for (i = 0; i < d->btf->nr_types; i++) { 4287 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4288 if (err < 0) 4289 return err; 4290 } 4291 /* we won't need d->dedup_table anymore */ 4292 hashmap__free(d->dedup_table); 4293 d->dedup_table = NULL; 4294 return 0; 4295 } 4296 4297 /* 4298 * Compact types. 4299 * 4300 * After we established for each type its corresponding canonical representative 4301 * type, we now can eliminate types that are not canonical and leave only 4302 * canonical ones layed out sequentially in memory by copying them over 4303 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4304 * a map from original type ID to a new compacted type ID, which will be used 4305 * during next phase to "fix up" type IDs, referenced from struct/union and 4306 * reference types. 4307 */ 4308 static int btf_dedup_compact_types(struct btf_dedup *d) 4309 { 4310 __u32 *new_offs; 4311 __u32 next_type_id = d->btf->start_id; 4312 const struct btf_type *t; 4313 void *p; 4314 int i, id, len; 4315 4316 /* we are going to reuse hypot_map to store compaction remapping */ 4317 d->hypot_map[0] = 0; 4318 /* base BTF types are not renumbered */ 4319 for (id = 1; id < d->btf->start_id; id++) 4320 d->hypot_map[id] = id; 4321 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4322 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4323 4324 p = d->btf->types_data; 4325 4326 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4327 if (d->map[id] != id) 4328 continue; 4329 4330 t = btf__type_by_id(d->btf, id); 4331 len = btf_type_size(t); 4332 if (len < 0) 4333 return len; 4334 4335 memmove(p, t, len); 4336 d->hypot_map[id] = next_type_id; 4337 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4338 p += len; 4339 next_type_id++; 4340 } 4341 4342 /* shrink struct btf's internal types index and update btf_header */ 4343 d->btf->nr_types = next_type_id - d->btf->start_id; 4344 d->btf->type_offs_cap = d->btf->nr_types; 4345 d->btf->hdr->type_len = p - d->btf->types_data; 4346 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4347 sizeof(*new_offs)); 4348 if (d->btf->type_offs_cap && !new_offs) 4349 return -ENOMEM; 4350 d->btf->type_offs = new_offs; 4351 d->btf->hdr->str_off = d->btf->hdr->type_len; 4352 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4353 return 0; 4354 } 4355 4356 /* 4357 * Figure out final (deduplicated and compacted) type ID for provided original 4358 * `type_id` by first resolving it into corresponding canonical type ID and 4359 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4360 * which is populated during compaction phase. 4361 */ 4362 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4363 { 4364 struct btf_dedup *d = ctx; 4365 __u32 resolved_type_id, new_type_id; 4366 4367 resolved_type_id = resolve_type_id(d, *type_id); 4368 new_type_id = d->hypot_map[resolved_type_id]; 4369 if (new_type_id > BTF_MAX_NR_TYPES) 4370 return -EINVAL; 4371 4372 *type_id = new_type_id; 4373 return 0; 4374 } 4375 4376 /* 4377 * Remap referenced type IDs into deduped type IDs. 4378 * 4379 * After BTF types are deduplicated and compacted, their final type IDs may 4380 * differ from original ones. The map from original to a corresponding 4381 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4382 * compaction phase. During remapping phase we are rewriting all type IDs 4383 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4384 * their final deduped type IDs. 4385 */ 4386 static int btf_dedup_remap_types(struct btf_dedup *d) 4387 { 4388 int i, r; 4389 4390 for (i = 0; i < d->btf->nr_types; i++) { 4391 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4392 4393 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4394 if (r) 4395 return r; 4396 } 4397 4398 if (!d->btf_ext) 4399 return 0; 4400 4401 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4402 if (r) 4403 return r; 4404 4405 return 0; 4406 } 4407 4408 /* 4409 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4410 * data out of it to use for target BTF. 4411 */ 4412 struct btf *btf__load_vmlinux_btf(void) 4413 { 4414 struct { 4415 const char *path_fmt; 4416 bool raw_btf; 4417 } locations[] = { 4418 /* try canonical vmlinux BTF through sysfs first */ 4419 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4420 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4421 { "/boot/vmlinux-%1$s" }, 4422 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4423 { "/lib/modules/%1$s/build/vmlinux" }, 4424 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4425 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4426 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4427 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4428 }; 4429 char path[PATH_MAX + 1]; 4430 struct utsname buf; 4431 struct btf *btf; 4432 int i, err; 4433 4434 uname(&buf); 4435 4436 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4437 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4438 4439 if (access(path, R_OK)) 4440 continue; 4441 4442 if (locations[i].raw_btf) 4443 btf = btf__parse_raw(path); 4444 else 4445 btf = btf__parse_elf(path, NULL); 4446 err = libbpf_get_error(btf); 4447 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4448 if (err) 4449 continue; 4450 4451 return btf; 4452 } 4453 4454 pr_warn("failed to find valid kernel BTF\n"); 4455 return libbpf_err_ptr(-ESRCH); 4456 } 4457 4458 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4459 4460 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4461 { 4462 char path[80]; 4463 4464 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4465 return btf__parse_split(path, vmlinux_btf); 4466 } 4467 4468 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4469 { 4470 int i, n, err; 4471 4472 switch (btf_kind(t)) { 4473 case BTF_KIND_INT: 4474 case BTF_KIND_FLOAT: 4475 case BTF_KIND_ENUM: 4476 return 0; 4477 4478 case BTF_KIND_FWD: 4479 case BTF_KIND_CONST: 4480 case BTF_KIND_VOLATILE: 4481 case BTF_KIND_RESTRICT: 4482 case BTF_KIND_PTR: 4483 case BTF_KIND_TYPEDEF: 4484 case BTF_KIND_FUNC: 4485 case BTF_KIND_VAR: 4486 return visit(&t->type, ctx); 4487 4488 case BTF_KIND_ARRAY: { 4489 struct btf_array *a = btf_array(t); 4490 4491 err = visit(&a->type, ctx); 4492 err = err ?: visit(&a->index_type, ctx); 4493 return err; 4494 } 4495 4496 case BTF_KIND_STRUCT: 4497 case BTF_KIND_UNION: { 4498 struct btf_member *m = btf_members(t); 4499 4500 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4501 err = visit(&m->type, ctx); 4502 if (err) 4503 return err; 4504 } 4505 return 0; 4506 } 4507 4508 case BTF_KIND_FUNC_PROTO: { 4509 struct btf_param *m = btf_params(t); 4510 4511 err = visit(&t->type, ctx); 4512 if (err) 4513 return err; 4514 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4515 err = visit(&m->type, ctx); 4516 if (err) 4517 return err; 4518 } 4519 return 0; 4520 } 4521 4522 case BTF_KIND_DATASEC: { 4523 struct btf_var_secinfo *m = btf_var_secinfos(t); 4524 4525 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4526 err = visit(&m->type, ctx); 4527 if (err) 4528 return err; 4529 } 4530 return 0; 4531 } 4532 4533 default: 4534 return -EINVAL; 4535 } 4536 } 4537 4538 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4539 { 4540 int i, n, err; 4541 4542 err = visit(&t->name_off, ctx); 4543 if (err) 4544 return err; 4545 4546 switch (btf_kind(t)) { 4547 case BTF_KIND_STRUCT: 4548 case BTF_KIND_UNION: { 4549 struct btf_member *m = btf_members(t); 4550 4551 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4552 err = visit(&m->name_off, ctx); 4553 if (err) 4554 return err; 4555 } 4556 break; 4557 } 4558 case BTF_KIND_ENUM: { 4559 struct btf_enum *m = btf_enum(t); 4560 4561 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4562 err = visit(&m->name_off, ctx); 4563 if (err) 4564 return err; 4565 } 4566 break; 4567 } 4568 case BTF_KIND_FUNC_PROTO: { 4569 struct btf_param *m = btf_params(t); 4570 4571 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4572 err = visit(&m->name_off, ctx); 4573 if (err) 4574 return err; 4575 } 4576 break; 4577 } 4578 default: 4579 break; 4580 } 4581 4582 return 0; 4583 } 4584 4585 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4586 { 4587 const struct btf_ext_info *seg; 4588 struct btf_ext_info_sec *sec; 4589 int i, err; 4590 4591 seg = &btf_ext->func_info; 4592 for_each_btf_ext_sec(seg, sec) { 4593 struct bpf_func_info_min *rec; 4594 4595 for_each_btf_ext_rec(seg, sec, i, rec) { 4596 err = visit(&rec->type_id, ctx); 4597 if (err < 0) 4598 return err; 4599 } 4600 } 4601 4602 seg = &btf_ext->core_relo_info; 4603 for_each_btf_ext_sec(seg, sec) { 4604 struct bpf_core_relo *rec; 4605 4606 for_each_btf_ext_rec(seg, sec, i, rec) { 4607 err = visit(&rec->type_id, ctx); 4608 if (err < 0) 4609 return err; 4610 } 4611 } 4612 4613 return 0; 4614 } 4615 4616 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4617 { 4618 const struct btf_ext_info *seg; 4619 struct btf_ext_info_sec *sec; 4620 int i, err; 4621 4622 seg = &btf_ext->func_info; 4623 for_each_btf_ext_sec(seg, sec) { 4624 err = visit(&sec->sec_name_off, ctx); 4625 if (err) 4626 return err; 4627 } 4628 4629 seg = &btf_ext->line_info; 4630 for_each_btf_ext_sec(seg, sec) { 4631 struct bpf_line_info_min *rec; 4632 4633 err = visit(&sec->sec_name_off, ctx); 4634 if (err) 4635 return err; 4636 4637 for_each_btf_ext_rec(seg, sec, i, rec) { 4638 err = visit(&rec->file_name_off, ctx); 4639 if (err) 4640 return err; 4641 err = visit(&rec->line_off, ctx); 4642 if (err) 4643 return err; 4644 } 4645 } 4646 4647 seg = &btf_ext->core_relo_info; 4648 for_each_btf_ext_sec(seg, sec) { 4649 struct bpf_core_relo *rec; 4650 4651 err = visit(&sec->sec_name_off, ctx); 4652 if (err) 4653 return err; 4654 4655 for_each_btf_ext_rec(seg, sec, i, rec) { 4656 err = visit(&rec->access_str_off, ctx); 4657 if (err) 4658 return err; 4659 } 4660 } 4661 4662 return 0; 4663 } 4664