xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 09717af7)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193 {
194 	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195 			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196 }
197 
198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199 {
200 	__u32 *p;
201 
202 	p = btf_add_type_offs_mem(btf, 1);
203 	if (!p)
204 		return -ENOMEM;
205 
206 	*p = type_off;
207 	return 0;
208 }
209 
210 static void btf_bswap_hdr(struct btf_header *h)
211 {
212 	h->magic = bswap_16(h->magic);
213 	h->hdr_len = bswap_32(h->hdr_len);
214 	h->type_off = bswap_32(h->type_off);
215 	h->type_len = bswap_32(h->type_len);
216 	h->str_off = bswap_32(h->str_off);
217 	h->str_len = bswap_32(h->str_len);
218 }
219 
220 static int btf_parse_hdr(struct btf *btf)
221 {
222 	struct btf_header *hdr = btf->hdr;
223 	__u32 meta_left;
224 
225 	if (btf->raw_size < sizeof(struct btf_header)) {
226 		pr_debug("BTF header not found\n");
227 		return -EINVAL;
228 	}
229 
230 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
231 		btf->swapped_endian = true;
232 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234 				bswap_32(hdr->hdr_len));
235 			return -ENOTSUP;
236 		}
237 		btf_bswap_hdr(hdr);
238 	} else if (hdr->magic != BTF_MAGIC) {
239 		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240 		return -EINVAL;
241 	}
242 
243 	if (btf->raw_size < hdr->hdr_len) {
244 		pr_debug("BTF header len %u larger than data size %u\n",
245 			 hdr->hdr_len, btf->raw_size);
246 		return -EINVAL;
247 	}
248 
249 	meta_left = btf->raw_size - hdr->hdr_len;
250 	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251 		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252 		return -EINVAL;
253 	}
254 
255 	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258 		return -EINVAL;
259 	}
260 
261 	if (hdr->type_off % 4) {
262 		pr_debug("BTF type section is not aligned to 4 bytes\n");
263 		return -EINVAL;
264 	}
265 
266 	return 0;
267 }
268 
269 static int btf_parse_str_sec(struct btf *btf)
270 {
271 	const struct btf_header *hdr = btf->hdr;
272 	const char *start = btf->strs_data;
273 	const char *end = start + btf->hdr->str_len;
274 
275 	if (btf->base_btf && hdr->str_len == 0)
276 		return 0;
277 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278 		pr_debug("Invalid BTF string section\n");
279 		return -EINVAL;
280 	}
281 	if (!btf->base_btf && start[0]) {
282 		pr_debug("Invalid BTF string section\n");
283 		return -EINVAL;
284 	}
285 	return 0;
286 }
287 
288 static int btf_type_size(const struct btf_type *t)
289 {
290 	const int base_size = sizeof(struct btf_type);
291 	__u16 vlen = btf_vlen(t);
292 
293 	switch (btf_kind(t)) {
294 	case BTF_KIND_FWD:
295 	case BTF_KIND_CONST:
296 	case BTF_KIND_VOLATILE:
297 	case BTF_KIND_RESTRICT:
298 	case BTF_KIND_PTR:
299 	case BTF_KIND_TYPEDEF:
300 	case BTF_KIND_FUNC:
301 	case BTF_KIND_FLOAT:
302 		return base_size;
303 	case BTF_KIND_INT:
304 		return base_size + sizeof(__u32);
305 	case BTF_KIND_ENUM:
306 		return base_size + vlen * sizeof(struct btf_enum);
307 	case BTF_KIND_ARRAY:
308 		return base_size + sizeof(struct btf_array);
309 	case BTF_KIND_STRUCT:
310 	case BTF_KIND_UNION:
311 		return base_size + vlen * sizeof(struct btf_member);
312 	case BTF_KIND_FUNC_PROTO:
313 		return base_size + vlen * sizeof(struct btf_param);
314 	case BTF_KIND_VAR:
315 		return base_size + sizeof(struct btf_var);
316 	case BTF_KIND_DATASEC:
317 		return base_size + vlen * sizeof(struct btf_var_secinfo);
318 	case BTF_KIND_DECL_TAG:
319 		return base_size + sizeof(struct btf_decl_tag);
320 	default:
321 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
322 		return -EINVAL;
323 	}
324 }
325 
326 static void btf_bswap_type_base(struct btf_type *t)
327 {
328 	t->name_off = bswap_32(t->name_off);
329 	t->info = bswap_32(t->info);
330 	t->type = bswap_32(t->type);
331 }
332 
333 static int btf_bswap_type_rest(struct btf_type *t)
334 {
335 	struct btf_var_secinfo *v;
336 	struct btf_member *m;
337 	struct btf_array *a;
338 	struct btf_param *p;
339 	struct btf_enum *e;
340 	__u16 vlen = btf_vlen(t);
341 	int i;
342 
343 	switch (btf_kind(t)) {
344 	case BTF_KIND_FWD:
345 	case BTF_KIND_CONST:
346 	case BTF_KIND_VOLATILE:
347 	case BTF_KIND_RESTRICT:
348 	case BTF_KIND_PTR:
349 	case BTF_KIND_TYPEDEF:
350 	case BTF_KIND_FUNC:
351 	case BTF_KIND_FLOAT:
352 		return 0;
353 	case BTF_KIND_INT:
354 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
355 		return 0;
356 	case BTF_KIND_ENUM:
357 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
358 			e->name_off = bswap_32(e->name_off);
359 			e->val = bswap_32(e->val);
360 		}
361 		return 0;
362 	case BTF_KIND_ARRAY:
363 		a = btf_array(t);
364 		a->type = bswap_32(a->type);
365 		a->index_type = bswap_32(a->index_type);
366 		a->nelems = bswap_32(a->nelems);
367 		return 0;
368 	case BTF_KIND_STRUCT:
369 	case BTF_KIND_UNION:
370 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
371 			m->name_off = bswap_32(m->name_off);
372 			m->type = bswap_32(m->type);
373 			m->offset = bswap_32(m->offset);
374 		}
375 		return 0;
376 	case BTF_KIND_FUNC_PROTO:
377 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
378 			p->name_off = bswap_32(p->name_off);
379 			p->type = bswap_32(p->type);
380 		}
381 		return 0;
382 	case BTF_KIND_VAR:
383 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
384 		return 0;
385 	case BTF_KIND_DATASEC:
386 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
387 			v->type = bswap_32(v->type);
388 			v->offset = bswap_32(v->offset);
389 			v->size = bswap_32(v->size);
390 		}
391 		return 0;
392 	case BTF_KIND_DECL_TAG:
393 		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
394 		return 0;
395 	default:
396 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
397 		return -EINVAL;
398 	}
399 }
400 
401 static int btf_parse_type_sec(struct btf *btf)
402 {
403 	struct btf_header *hdr = btf->hdr;
404 	void *next_type = btf->types_data;
405 	void *end_type = next_type + hdr->type_len;
406 	int err, type_size;
407 
408 	while (next_type + sizeof(struct btf_type) <= end_type) {
409 		if (btf->swapped_endian)
410 			btf_bswap_type_base(next_type);
411 
412 		type_size = btf_type_size(next_type);
413 		if (type_size < 0)
414 			return type_size;
415 		if (next_type + type_size > end_type) {
416 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
417 			return -EINVAL;
418 		}
419 
420 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
421 			return -EINVAL;
422 
423 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
424 		if (err)
425 			return err;
426 
427 		next_type += type_size;
428 		btf->nr_types++;
429 	}
430 
431 	if (next_type != end_type) {
432 		pr_warn("BTF types data is malformed\n");
433 		return -EINVAL;
434 	}
435 
436 	return 0;
437 }
438 
439 __u32 btf__get_nr_types(const struct btf *btf)
440 {
441 	return btf->start_id + btf->nr_types - 1;
442 }
443 
444 __u32 btf__type_cnt(const struct btf *btf)
445 {
446 	return btf->start_id + btf->nr_types;
447 }
448 
449 const struct btf *btf__base_btf(const struct btf *btf)
450 {
451 	return btf->base_btf;
452 }
453 
454 /* internal helper returning non-const pointer to a type */
455 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
456 {
457 	if (type_id == 0)
458 		return &btf_void;
459 	if (type_id < btf->start_id)
460 		return btf_type_by_id(btf->base_btf, type_id);
461 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
462 }
463 
464 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
465 {
466 	if (type_id >= btf->start_id + btf->nr_types)
467 		return errno = EINVAL, NULL;
468 	return btf_type_by_id((struct btf *)btf, type_id);
469 }
470 
471 static int determine_ptr_size(const struct btf *btf)
472 {
473 	const struct btf_type *t;
474 	const char *name;
475 	int i, n;
476 
477 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
478 		return btf->base_btf->ptr_sz;
479 
480 	n = btf__type_cnt(btf);
481 	for (i = 1; i < n; i++) {
482 		t = btf__type_by_id(btf, i);
483 		if (!btf_is_int(t))
484 			continue;
485 
486 		name = btf__name_by_offset(btf, t->name_off);
487 		if (!name)
488 			continue;
489 
490 		if (strcmp(name, "long int") == 0 ||
491 		    strcmp(name, "long unsigned int") == 0) {
492 			if (t->size != 4 && t->size != 8)
493 				continue;
494 			return t->size;
495 		}
496 	}
497 
498 	return -1;
499 }
500 
501 static size_t btf_ptr_sz(const struct btf *btf)
502 {
503 	if (!btf->ptr_sz)
504 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
505 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
506 }
507 
508 /* Return pointer size this BTF instance assumes. The size is heuristically
509  * determined by looking for 'long' or 'unsigned long' integer type and
510  * recording its size in bytes. If BTF type information doesn't have any such
511  * type, this function returns 0. In the latter case, native architecture's
512  * pointer size is assumed, so will be either 4 or 8, depending on
513  * architecture that libbpf was compiled for. It's possible to override
514  * guessed value by using btf__set_pointer_size() API.
515  */
516 size_t btf__pointer_size(const struct btf *btf)
517 {
518 	if (!btf->ptr_sz)
519 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
520 
521 	if (btf->ptr_sz < 0)
522 		/* not enough BTF type info to guess */
523 		return 0;
524 
525 	return btf->ptr_sz;
526 }
527 
528 /* Override or set pointer size in bytes. Only values of 4 and 8 are
529  * supported.
530  */
531 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
532 {
533 	if (ptr_sz != 4 && ptr_sz != 8)
534 		return libbpf_err(-EINVAL);
535 	btf->ptr_sz = ptr_sz;
536 	return 0;
537 }
538 
539 static bool is_host_big_endian(void)
540 {
541 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
542 	return false;
543 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
544 	return true;
545 #else
546 # error "Unrecognized __BYTE_ORDER__"
547 #endif
548 }
549 
550 enum btf_endianness btf__endianness(const struct btf *btf)
551 {
552 	if (is_host_big_endian())
553 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
554 	else
555 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
556 }
557 
558 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
559 {
560 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
561 		return libbpf_err(-EINVAL);
562 
563 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
564 	if (!btf->swapped_endian) {
565 		free(btf->raw_data_swapped);
566 		btf->raw_data_swapped = NULL;
567 	}
568 	return 0;
569 }
570 
571 static bool btf_type_is_void(const struct btf_type *t)
572 {
573 	return t == &btf_void || btf_is_fwd(t);
574 }
575 
576 static bool btf_type_is_void_or_null(const struct btf_type *t)
577 {
578 	return !t || btf_type_is_void(t);
579 }
580 
581 #define MAX_RESOLVE_DEPTH 32
582 
583 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
584 {
585 	const struct btf_array *array;
586 	const struct btf_type *t;
587 	__u32 nelems = 1;
588 	__s64 size = -1;
589 	int i;
590 
591 	t = btf__type_by_id(btf, type_id);
592 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
593 		switch (btf_kind(t)) {
594 		case BTF_KIND_INT:
595 		case BTF_KIND_STRUCT:
596 		case BTF_KIND_UNION:
597 		case BTF_KIND_ENUM:
598 		case BTF_KIND_DATASEC:
599 		case BTF_KIND_FLOAT:
600 			size = t->size;
601 			goto done;
602 		case BTF_KIND_PTR:
603 			size = btf_ptr_sz(btf);
604 			goto done;
605 		case BTF_KIND_TYPEDEF:
606 		case BTF_KIND_VOLATILE:
607 		case BTF_KIND_CONST:
608 		case BTF_KIND_RESTRICT:
609 		case BTF_KIND_VAR:
610 		case BTF_KIND_DECL_TAG:
611 			type_id = t->type;
612 			break;
613 		case BTF_KIND_ARRAY:
614 			array = btf_array(t);
615 			if (nelems && array->nelems > UINT32_MAX / nelems)
616 				return libbpf_err(-E2BIG);
617 			nelems *= array->nelems;
618 			type_id = array->type;
619 			break;
620 		default:
621 			return libbpf_err(-EINVAL);
622 		}
623 
624 		t = btf__type_by_id(btf, type_id);
625 	}
626 
627 done:
628 	if (size < 0)
629 		return libbpf_err(-EINVAL);
630 	if (nelems && size > UINT32_MAX / nelems)
631 		return libbpf_err(-E2BIG);
632 
633 	return nelems * size;
634 }
635 
636 int btf__align_of(const struct btf *btf, __u32 id)
637 {
638 	const struct btf_type *t = btf__type_by_id(btf, id);
639 	__u16 kind = btf_kind(t);
640 
641 	switch (kind) {
642 	case BTF_KIND_INT:
643 	case BTF_KIND_ENUM:
644 	case BTF_KIND_FLOAT:
645 		return min(btf_ptr_sz(btf), (size_t)t->size);
646 	case BTF_KIND_PTR:
647 		return btf_ptr_sz(btf);
648 	case BTF_KIND_TYPEDEF:
649 	case BTF_KIND_VOLATILE:
650 	case BTF_KIND_CONST:
651 	case BTF_KIND_RESTRICT:
652 		return btf__align_of(btf, t->type);
653 	case BTF_KIND_ARRAY:
654 		return btf__align_of(btf, btf_array(t)->type);
655 	case BTF_KIND_STRUCT:
656 	case BTF_KIND_UNION: {
657 		const struct btf_member *m = btf_members(t);
658 		__u16 vlen = btf_vlen(t);
659 		int i, max_align = 1, align;
660 
661 		for (i = 0; i < vlen; i++, m++) {
662 			align = btf__align_of(btf, m->type);
663 			if (align <= 0)
664 				return libbpf_err(align);
665 			max_align = max(max_align, align);
666 		}
667 
668 		return max_align;
669 	}
670 	default:
671 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
672 		return errno = EINVAL, 0;
673 	}
674 }
675 
676 int btf__resolve_type(const struct btf *btf, __u32 type_id)
677 {
678 	const struct btf_type *t;
679 	int depth = 0;
680 
681 	t = btf__type_by_id(btf, type_id);
682 	while (depth < MAX_RESOLVE_DEPTH &&
683 	       !btf_type_is_void_or_null(t) &&
684 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
685 		type_id = t->type;
686 		t = btf__type_by_id(btf, type_id);
687 		depth++;
688 	}
689 
690 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
691 		return libbpf_err(-EINVAL);
692 
693 	return type_id;
694 }
695 
696 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
697 {
698 	__u32 i, nr_types = btf__type_cnt(btf);
699 
700 	if (!strcmp(type_name, "void"))
701 		return 0;
702 
703 	for (i = 1; i < nr_types; i++) {
704 		const struct btf_type *t = btf__type_by_id(btf, i);
705 		const char *name = btf__name_by_offset(btf, t->name_off);
706 
707 		if (name && !strcmp(type_name, name))
708 			return i;
709 	}
710 
711 	return libbpf_err(-ENOENT);
712 }
713 
714 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
715 				   const char *type_name, __u32 kind)
716 {
717 	__u32 i, nr_types = btf__type_cnt(btf);
718 
719 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
720 		return 0;
721 
722 	for (i = start_id; i < nr_types; i++) {
723 		const struct btf_type *t = btf__type_by_id(btf, i);
724 		const char *name;
725 
726 		if (btf_kind(t) != kind)
727 			continue;
728 		name = btf__name_by_offset(btf, t->name_off);
729 		if (name && !strcmp(type_name, name))
730 			return i;
731 	}
732 
733 	return libbpf_err(-ENOENT);
734 }
735 
736 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
737 				 __u32 kind)
738 {
739 	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
740 }
741 
742 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
743 			     __u32 kind)
744 {
745 	return btf_find_by_name_kind(btf, 1, type_name, kind);
746 }
747 
748 static bool btf_is_modifiable(const struct btf *btf)
749 {
750 	return (void *)btf->hdr != btf->raw_data;
751 }
752 
753 void btf__free(struct btf *btf)
754 {
755 	if (IS_ERR_OR_NULL(btf))
756 		return;
757 
758 	if (btf->fd >= 0)
759 		close(btf->fd);
760 
761 	if (btf_is_modifiable(btf)) {
762 		/* if BTF was modified after loading, it will have a split
763 		 * in-memory representation for header, types, and strings
764 		 * sections, so we need to free all of them individually. It
765 		 * might still have a cached contiguous raw data present,
766 		 * which will be unconditionally freed below.
767 		 */
768 		free(btf->hdr);
769 		free(btf->types_data);
770 		strset__free(btf->strs_set);
771 	}
772 	free(btf->raw_data);
773 	free(btf->raw_data_swapped);
774 	free(btf->type_offs);
775 	free(btf);
776 }
777 
778 static struct btf *btf_new_empty(struct btf *base_btf)
779 {
780 	struct btf *btf;
781 
782 	btf = calloc(1, sizeof(*btf));
783 	if (!btf)
784 		return ERR_PTR(-ENOMEM);
785 
786 	btf->nr_types = 0;
787 	btf->start_id = 1;
788 	btf->start_str_off = 0;
789 	btf->fd = -1;
790 	btf->ptr_sz = sizeof(void *);
791 	btf->swapped_endian = false;
792 
793 	if (base_btf) {
794 		btf->base_btf = base_btf;
795 		btf->start_id = btf__type_cnt(base_btf);
796 		btf->start_str_off = base_btf->hdr->str_len;
797 	}
798 
799 	/* +1 for empty string at offset 0 */
800 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
801 	btf->raw_data = calloc(1, btf->raw_size);
802 	if (!btf->raw_data) {
803 		free(btf);
804 		return ERR_PTR(-ENOMEM);
805 	}
806 
807 	btf->hdr = btf->raw_data;
808 	btf->hdr->hdr_len = sizeof(struct btf_header);
809 	btf->hdr->magic = BTF_MAGIC;
810 	btf->hdr->version = BTF_VERSION;
811 
812 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
813 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
814 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
815 
816 	return btf;
817 }
818 
819 struct btf *btf__new_empty(void)
820 {
821 	return libbpf_ptr(btf_new_empty(NULL));
822 }
823 
824 struct btf *btf__new_empty_split(struct btf *base_btf)
825 {
826 	return libbpf_ptr(btf_new_empty(base_btf));
827 }
828 
829 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
830 {
831 	struct btf *btf;
832 	int err;
833 
834 	btf = calloc(1, sizeof(struct btf));
835 	if (!btf)
836 		return ERR_PTR(-ENOMEM);
837 
838 	btf->nr_types = 0;
839 	btf->start_id = 1;
840 	btf->start_str_off = 0;
841 	btf->fd = -1;
842 
843 	if (base_btf) {
844 		btf->base_btf = base_btf;
845 		btf->start_id = btf__type_cnt(base_btf);
846 		btf->start_str_off = base_btf->hdr->str_len;
847 	}
848 
849 	btf->raw_data = malloc(size);
850 	if (!btf->raw_data) {
851 		err = -ENOMEM;
852 		goto done;
853 	}
854 	memcpy(btf->raw_data, data, size);
855 	btf->raw_size = size;
856 
857 	btf->hdr = btf->raw_data;
858 	err = btf_parse_hdr(btf);
859 	if (err)
860 		goto done;
861 
862 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
863 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
864 
865 	err = btf_parse_str_sec(btf);
866 	err = err ?: btf_parse_type_sec(btf);
867 	if (err)
868 		goto done;
869 
870 done:
871 	if (err) {
872 		btf__free(btf);
873 		return ERR_PTR(err);
874 	}
875 
876 	return btf;
877 }
878 
879 struct btf *btf__new(const void *data, __u32 size)
880 {
881 	return libbpf_ptr(btf_new(data, size, NULL));
882 }
883 
884 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
885 				 struct btf_ext **btf_ext)
886 {
887 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
888 	int err = 0, fd = -1, idx = 0;
889 	struct btf *btf = NULL;
890 	Elf_Scn *scn = NULL;
891 	Elf *elf = NULL;
892 	GElf_Ehdr ehdr;
893 	size_t shstrndx;
894 
895 	if (elf_version(EV_CURRENT) == EV_NONE) {
896 		pr_warn("failed to init libelf for %s\n", path);
897 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
898 	}
899 
900 	fd = open(path, O_RDONLY | O_CLOEXEC);
901 	if (fd < 0) {
902 		err = -errno;
903 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
904 		return ERR_PTR(err);
905 	}
906 
907 	err = -LIBBPF_ERRNO__FORMAT;
908 
909 	elf = elf_begin(fd, ELF_C_READ, NULL);
910 	if (!elf) {
911 		pr_warn("failed to open %s as ELF file\n", path);
912 		goto done;
913 	}
914 	if (!gelf_getehdr(elf, &ehdr)) {
915 		pr_warn("failed to get EHDR from %s\n", path);
916 		goto done;
917 	}
918 
919 	if (elf_getshdrstrndx(elf, &shstrndx)) {
920 		pr_warn("failed to get section names section index for %s\n",
921 			path);
922 		goto done;
923 	}
924 
925 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
926 		pr_warn("failed to get e_shstrndx from %s\n", path);
927 		goto done;
928 	}
929 
930 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
931 		GElf_Shdr sh;
932 		char *name;
933 
934 		idx++;
935 		if (gelf_getshdr(scn, &sh) != &sh) {
936 			pr_warn("failed to get section(%d) header from %s\n",
937 				idx, path);
938 			goto done;
939 		}
940 		name = elf_strptr(elf, shstrndx, sh.sh_name);
941 		if (!name) {
942 			pr_warn("failed to get section(%d) name from %s\n",
943 				idx, path);
944 			goto done;
945 		}
946 		if (strcmp(name, BTF_ELF_SEC) == 0) {
947 			btf_data = elf_getdata(scn, 0);
948 			if (!btf_data) {
949 				pr_warn("failed to get section(%d, %s) data from %s\n",
950 					idx, name, path);
951 				goto done;
952 			}
953 			continue;
954 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
955 			btf_ext_data = elf_getdata(scn, 0);
956 			if (!btf_ext_data) {
957 				pr_warn("failed to get section(%d, %s) data from %s\n",
958 					idx, name, path);
959 				goto done;
960 			}
961 			continue;
962 		}
963 	}
964 
965 	err = 0;
966 
967 	if (!btf_data) {
968 		err = -ENOENT;
969 		goto done;
970 	}
971 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
972 	err = libbpf_get_error(btf);
973 	if (err)
974 		goto done;
975 
976 	switch (gelf_getclass(elf)) {
977 	case ELFCLASS32:
978 		btf__set_pointer_size(btf, 4);
979 		break;
980 	case ELFCLASS64:
981 		btf__set_pointer_size(btf, 8);
982 		break;
983 	default:
984 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
985 		break;
986 	}
987 
988 	if (btf_ext && btf_ext_data) {
989 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
990 		err = libbpf_get_error(*btf_ext);
991 		if (err)
992 			goto done;
993 	} else if (btf_ext) {
994 		*btf_ext = NULL;
995 	}
996 done:
997 	if (elf)
998 		elf_end(elf);
999 	close(fd);
1000 
1001 	if (!err)
1002 		return btf;
1003 
1004 	if (btf_ext)
1005 		btf_ext__free(*btf_ext);
1006 	btf__free(btf);
1007 
1008 	return ERR_PTR(err);
1009 }
1010 
1011 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1012 {
1013 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1014 }
1015 
1016 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1017 {
1018 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1019 }
1020 
1021 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1022 {
1023 	struct btf *btf = NULL;
1024 	void *data = NULL;
1025 	FILE *f = NULL;
1026 	__u16 magic;
1027 	int err = 0;
1028 	long sz;
1029 
1030 	f = fopen(path, "rb");
1031 	if (!f) {
1032 		err = -errno;
1033 		goto err_out;
1034 	}
1035 
1036 	/* check BTF magic */
1037 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1038 		err = -EIO;
1039 		goto err_out;
1040 	}
1041 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1042 		/* definitely not a raw BTF */
1043 		err = -EPROTO;
1044 		goto err_out;
1045 	}
1046 
1047 	/* get file size */
1048 	if (fseek(f, 0, SEEK_END)) {
1049 		err = -errno;
1050 		goto err_out;
1051 	}
1052 	sz = ftell(f);
1053 	if (sz < 0) {
1054 		err = -errno;
1055 		goto err_out;
1056 	}
1057 	/* rewind to the start */
1058 	if (fseek(f, 0, SEEK_SET)) {
1059 		err = -errno;
1060 		goto err_out;
1061 	}
1062 
1063 	/* pre-alloc memory and read all of BTF data */
1064 	data = malloc(sz);
1065 	if (!data) {
1066 		err = -ENOMEM;
1067 		goto err_out;
1068 	}
1069 	if (fread(data, 1, sz, f) < sz) {
1070 		err = -EIO;
1071 		goto err_out;
1072 	}
1073 
1074 	/* finally parse BTF data */
1075 	btf = btf_new(data, sz, base_btf);
1076 
1077 err_out:
1078 	free(data);
1079 	if (f)
1080 		fclose(f);
1081 	return err ? ERR_PTR(err) : btf;
1082 }
1083 
1084 struct btf *btf__parse_raw(const char *path)
1085 {
1086 	return libbpf_ptr(btf_parse_raw(path, NULL));
1087 }
1088 
1089 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1090 {
1091 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1092 }
1093 
1094 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1095 {
1096 	struct btf *btf;
1097 	int err;
1098 
1099 	if (btf_ext)
1100 		*btf_ext = NULL;
1101 
1102 	btf = btf_parse_raw(path, base_btf);
1103 	err = libbpf_get_error(btf);
1104 	if (!err)
1105 		return btf;
1106 	if (err != -EPROTO)
1107 		return ERR_PTR(err);
1108 	return btf_parse_elf(path, base_btf, btf_ext);
1109 }
1110 
1111 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1112 {
1113 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1114 }
1115 
1116 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1117 {
1118 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1119 }
1120 
1121 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1122 
1123 int btf__load_into_kernel(struct btf *btf)
1124 {
1125 	__u32 log_buf_size = 0, raw_size;
1126 	char *log_buf = NULL;
1127 	void *raw_data;
1128 	int err = 0;
1129 
1130 	if (btf->fd >= 0)
1131 		return libbpf_err(-EEXIST);
1132 
1133 retry_load:
1134 	if (log_buf_size) {
1135 		log_buf = malloc(log_buf_size);
1136 		if (!log_buf)
1137 			return libbpf_err(-ENOMEM);
1138 
1139 		*log_buf = 0;
1140 	}
1141 
1142 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1143 	if (!raw_data) {
1144 		err = -ENOMEM;
1145 		goto done;
1146 	}
1147 	/* cache native raw data representation */
1148 	btf->raw_size = raw_size;
1149 	btf->raw_data = raw_data;
1150 
1151 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1152 	if (btf->fd < 0) {
1153 		if (!log_buf || errno == ENOSPC) {
1154 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1155 					   log_buf_size << 1);
1156 			free(log_buf);
1157 			goto retry_load;
1158 		}
1159 
1160 		err = -errno;
1161 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1162 		if (*log_buf)
1163 			pr_warn("%s\n", log_buf);
1164 		goto done;
1165 	}
1166 
1167 done:
1168 	free(log_buf);
1169 	return libbpf_err(err);
1170 }
1171 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1172 
1173 int btf__fd(const struct btf *btf)
1174 {
1175 	return btf->fd;
1176 }
1177 
1178 void btf__set_fd(struct btf *btf, int fd)
1179 {
1180 	btf->fd = fd;
1181 }
1182 
1183 static const void *btf_strs_data(const struct btf *btf)
1184 {
1185 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1186 }
1187 
1188 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1189 {
1190 	struct btf_header *hdr = btf->hdr;
1191 	struct btf_type *t;
1192 	void *data, *p;
1193 	__u32 data_sz;
1194 	int i;
1195 
1196 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1197 	if (data) {
1198 		*size = btf->raw_size;
1199 		return data;
1200 	}
1201 
1202 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1203 	data = calloc(1, data_sz);
1204 	if (!data)
1205 		return NULL;
1206 	p = data;
1207 
1208 	memcpy(p, hdr, hdr->hdr_len);
1209 	if (swap_endian)
1210 		btf_bswap_hdr(p);
1211 	p += hdr->hdr_len;
1212 
1213 	memcpy(p, btf->types_data, hdr->type_len);
1214 	if (swap_endian) {
1215 		for (i = 0; i < btf->nr_types; i++) {
1216 			t = p + btf->type_offs[i];
1217 			/* btf_bswap_type_rest() relies on native t->info, so
1218 			 * we swap base type info after we swapped all the
1219 			 * additional information
1220 			 */
1221 			if (btf_bswap_type_rest(t))
1222 				goto err_out;
1223 			btf_bswap_type_base(t);
1224 		}
1225 	}
1226 	p += hdr->type_len;
1227 
1228 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1229 	p += hdr->str_len;
1230 
1231 	*size = data_sz;
1232 	return data;
1233 err_out:
1234 	free(data);
1235 	return NULL;
1236 }
1237 
1238 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1239 {
1240 	struct btf *btf = (struct btf *)btf_ro;
1241 	__u32 data_sz;
1242 	void *data;
1243 
1244 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1245 	if (!data)
1246 		return errno = ENOMEM, NULL;
1247 
1248 	btf->raw_size = data_sz;
1249 	if (btf->swapped_endian)
1250 		btf->raw_data_swapped = data;
1251 	else
1252 		btf->raw_data = data;
1253 	*size = data_sz;
1254 	return data;
1255 }
1256 
1257 __attribute__((alias("btf__raw_data")))
1258 const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1259 
1260 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1261 {
1262 	if (offset < btf->start_str_off)
1263 		return btf__str_by_offset(btf->base_btf, offset);
1264 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1265 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1266 	else
1267 		return errno = EINVAL, NULL;
1268 }
1269 
1270 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1271 {
1272 	return btf__str_by_offset(btf, offset);
1273 }
1274 
1275 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1276 {
1277 	struct bpf_btf_info btf_info;
1278 	__u32 len = sizeof(btf_info);
1279 	__u32 last_size;
1280 	struct btf *btf;
1281 	void *ptr;
1282 	int err;
1283 
1284 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1285 	 * let's start with a sane default - 4KiB here - and resize it only if
1286 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1287 	 */
1288 	last_size = 4096;
1289 	ptr = malloc(last_size);
1290 	if (!ptr)
1291 		return ERR_PTR(-ENOMEM);
1292 
1293 	memset(&btf_info, 0, sizeof(btf_info));
1294 	btf_info.btf = ptr_to_u64(ptr);
1295 	btf_info.btf_size = last_size;
1296 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1297 
1298 	if (!err && btf_info.btf_size > last_size) {
1299 		void *temp_ptr;
1300 
1301 		last_size = btf_info.btf_size;
1302 		temp_ptr = realloc(ptr, last_size);
1303 		if (!temp_ptr) {
1304 			btf = ERR_PTR(-ENOMEM);
1305 			goto exit_free;
1306 		}
1307 		ptr = temp_ptr;
1308 
1309 		len = sizeof(btf_info);
1310 		memset(&btf_info, 0, sizeof(btf_info));
1311 		btf_info.btf = ptr_to_u64(ptr);
1312 		btf_info.btf_size = last_size;
1313 
1314 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1315 	}
1316 
1317 	if (err || btf_info.btf_size > last_size) {
1318 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1319 		goto exit_free;
1320 	}
1321 
1322 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1323 
1324 exit_free:
1325 	free(ptr);
1326 	return btf;
1327 }
1328 
1329 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1330 {
1331 	struct btf *btf;
1332 	int btf_fd;
1333 
1334 	btf_fd = bpf_btf_get_fd_by_id(id);
1335 	if (btf_fd < 0)
1336 		return libbpf_err_ptr(-errno);
1337 
1338 	btf = btf_get_from_fd(btf_fd, base_btf);
1339 	close(btf_fd);
1340 
1341 	return libbpf_ptr(btf);
1342 }
1343 
1344 struct btf *btf__load_from_kernel_by_id(__u32 id)
1345 {
1346 	return btf__load_from_kernel_by_id_split(id, NULL);
1347 }
1348 
1349 int btf__get_from_id(__u32 id, struct btf **btf)
1350 {
1351 	struct btf *res;
1352 	int err;
1353 
1354 	*btf = NULL;
1355 	res = btf__load_from_kernel_by_id(id);
1356 	err = libbpf_get_error(res);
1357 
1358 	if (err)
1359 		return libbpf_err(err);
1360 
1361 	*btf = res;
1362 	return 0;
1363 }
1364 
1365 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1366 			 __u32 expected_key_size, __u32 expected_value_size,
1367 			 __u32 *key_type_id, __u32 *value_type_id)
1368 {
1369 	const struct btf_type *container_type;
1370 	const struct btf_member *key, *value;
1371 	const size_t max_name = 256;
1372 	char container_name[max_name];
1373 	__s64 key_size, value_size;
1374 	__s32 container_id;
1375 
1376 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1377 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1378 			map_name, map_name);
1379 		return libbpf_err(-EINVAL);
1380 	}
1381 
1382 	container_id = btf__find_by_name(btf, container_name);
1383 	if (container_id < 0) {
1384 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1385 			 map_name, container_name);
1386 		return libbpf_err(container_id);
1387 	}
1388 
1389 	container_type = btf__type_by_id(btf, container_id);
1390 	if (!container_type) {
1391 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1392 			map_name, container_id);
1393 		return libbpf_err(-EINVAL);
1394 	}
1395 
1396 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1397 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1398 			map_name, container_name);
1399 		return libbpf_err(-EINVAL);
1400 	}
1401 
1402 	key = btf_members(container_type);
1403 	value = key + 1;
1404 
1405 	key_size = btf__resolve_size(btf, key->type);
1406 	if (key_size < 0) {
1407 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1408 		return libbpf_err(key_size);
1409 	}
1410 
1411 	if (expected_key_size != key_size) {
1412 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1413 			map_name, (__u32)key_size, expected_key_size);
1414 		return libbpf_err(-EINVAL);
1415 	}
1416 
1417 	value_size = btf__resolve_size(btf, value->type);
1418 	if (value_size < 0) {
1419 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1420 		return libbpf_err(value_size);
1421 	}
1422 
1423 	if (expected_value_size != value_size) {
1424 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1425 			map_name, (__u32)value_size, expected_value_size);
1426 		return libbpf_err(-EINVAL);
1427 	}
1428 
1429 	*key_type_id = key->type;
1430 	*value_type_id = value->type;
1431 
1432 	return 0;
1433 }
1434 
1435 static void btf_invalidate_raw_data(struct btf *btf)
1436 {
1437 	if (btf->raw_data) {
1438 		free(btf->raw_data);
1439 		btf->raw_data = NULL;
1440 	}
1441 	if (btf->raw_data_swapped) {
1442 		free(btf->raw_data_swapped);
1443 		btf->raw_data_swapped = NULL;
1444 	}
1445 }
1446 
1447 /* Ensure BTF is ready to be modified (by splitting into a three memory
1448  * regions for header, types, and strings). Also invalidate cached
1449  * raw_data, if any.
1450  */
1451 static int btf_ensure_modifiable(struct btf *btf)
1452 {
1453 	void *hdr, *types;
1454 	struct strset *set = NULL;
1455 	int err = -ENOMEM;
1456 
1457 	if (btf_is_modifiable(btf)) {
1458 		/* any BTF modification invalidates raw_data */
1459 		btf_invalidate_raw_data(btf);
1460 		return 0;
1461 	}
1462 
1463 	/* split raw data into three memory regions */
1464 	hdr = malloc(btf->hdr->hdr_len);
1465 	types = malloc(btf->hdr->type_len);
1466 	if (!hdr || !types)
1467 		goto err_out;
1468 
1469 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1470 	memcpy(types, btf->types_data, btf->hdr->type_len);
1471 
1472 	/* build lookup index for all strings */
1473 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1474 	if (IS_ERR(set)) {
1475 		err = PTR_ERR(set);
1476 		goto err_out;
1477 	}
1478 
1479 	/* only when everything was successful, update internal state */
1480 	btf->hdr = hdr;
1481 	btf->types_data = types;
1482 	btf->types_data_cap = btf->hdr->type_len;
1483 	btf->strs_data = NULL;
1484 	btf->strs_set = set;
1485 	/* if BTF was created from scratch, all strings are guaranteed to be
1486 	 * unique and deduplicated
1487 	 */
1488 	if (btf->hdr->str_len == 0)
1489 		btf->strs_deduped = true;
1490 	if (!btf->base_btf && btf->hdr->str_len == 1)
1491 		btf->strs_deduped = true;
1492 
1493 	/* invalidate raw_data representation */
1494 	btf_invalidate_raw_data(btf);
1495 
1496 	return 0;
1497 
1498 err_out:
1499 	strset__free(set);
1500 	free(hdr);
1501 	free(types);
1502 	return err;
1503 }
1504 
1505 /* Find an offset in BTF string section that corresponds to a given string *s*.
1506  * Returns:
1507  *   - >0 offset into string section, if string is found;
1508  *   - -ENOENT, if string is not in the string section;
1509  *   - <0, on any other error.
1510  */
1511 int btf__find_str(struct btf *btf, const char *s)
1512 {
1513 	int off;
1514 
1515 	if (btf->base_btf) {
1516 		off = btf__find_str(btf->base_btf, s);
1517 		if (off != -ENOENT)
1518 			return off;
1519 	}
1520 
1521 	/* BTF needs to be in a modifiable state to build string lookup index */
1522 	if (btf_ensure_modifiable(btf))
1523 		return libbpf_err(-ENOMEM);
1524 
1525 	off = strset__find_str(btf->strs_set, s);
1526 	if (off < 0)
1527 		return libbpf_err(off);
1528 
1529 	return btf->start_str_off + off;
1530 }
1531 
1532 /* Add a string s to the BTF string section.
1533  * Returns:
1534  *   - > 0 offset into string section, on success;
1535  *   - < 0, on error.
1536  */
1537 int btf__add_str(struct btf *btf, const char *s)
1538 {
1539 	int off;
1540 
1541 	if (btf->base_btf) {
1542 		off = btf__find_str(btf->base_btf, s);
1543 		if (off != -ENOENT)
1544 			return off;
1545 	}
1546 
1547 	if (btf_ensure_modifiable(btf))
1548 		return libbpf_err(-ENOMEM);
1549 
1550 	off = strset__add_str(btf->strs_set, s);
1551 	if (off < 0)
1552 		return libbpf_err(off);
1553 
1554 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1555 
1556 	return btf->start_str_off + off;
1557 }
1558 
1559 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1560 {
1561 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1562 			      btf->hdr->type_len, UINT_MAX, add_sz);
1563 }
1564 
1565 static void btf_type_inc_vlen(struct btf_type *t)
1566 {
1567 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1568 }
1569 
1570 static int btf_commit_type(struct btf *btf, int data_sz)
1571 {
1572 	int err;
1573 
1574 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1575 	if (err)
1576 		return libbpf_err(err);
1577 
1578 	btf->hdr->type_len += data_sz;
1579 	btf->hdr->str_off += data_sz;
1580 	btf->nr_types++;
1581 	return btf->start_id + btf->nr_types - 1;
1582 }
1583 
1584 struct btf_pipe {
1585 	const struct btf *src;
1586 	struct btf *dst;
1587 };
1588 
1589 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1590 {
1591 	struct btf_pipe *p = ctx;
1592 	int off;
1593 
1594 	if (!*str_off) /* nothing to do for empty strings */
1595 		return 0;
1596 
1597 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1598 	if (off < 0)
1599 		return off;
1600 
1601 	*str_off = off;
1602 	return 0;
1603 }
1604 
1605 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1606 {
1607 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1608 	struct btf_type *t;
1609 	int sz, err;
1610 
1611 	sz = btf_type_size(src_type);
1612 	if (sz < 0)
1613 		return libbpf_err(sz);
1614 
1615 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1616 	if (btf_ensure_modifiable(btf))
1617 		return libbpf_err(-ENOMEM);
1618 
1619 	t = btf_add_type_mem(btf, sz);
1620 	if (!t)
1621 		return libbpf_err(-ENOMEM);
1622 
1623 	memcpy(t, src_type, sz);
1624 
1625 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1626 	if (err)
1627 		return libbpf_err(err);
1628 
1629 	return btf_commit_type(btf, sz);
1630 }
1631 
1632 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1633 {
1634 	struct btf *btf = ctx;
1635 
1636 	if (!*type_id) /* nothing to do for VOID references */
1637 		return 0;
1638 
1639 	/* we haven't updated btf's type count yet, so
1640 	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1641 	 * add to all newly added BTF types
1642 	 */
1643 	*type_id += btf->start_id + btf->nr_types - 1;
1644 	return 0;
1645 }
1646 
1647 int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1648 {
1649 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1650 	int data_sz, sz, cnt, i, err, old_strs_len;
1651 	__u32 *off;
1652 	void *t;
1653 
1654 	/* appending split BTF isn't supported yet */
1655 	if (src_btf->base_btf)
1656 		return libbpf_err(-ENOTSUP);
1657 
1658 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1659 	if (btf_ensure_modifiable(btf))
1660 		return libbpf_err(-ENOMEM);
1661 
1662 	/* remember original strings section size if we have to roll back
1663 	 * partial strings section changes
1664 	 */
1665 	old_strs_len = btf->hdr->str_len;
1666 
1667 	data_sz = src_btf->hdr->type_len;
1668 	cnt = btf__type_cnt(src_btf) - 1;
1669 
1670 	/* pre-allocate enough memory for new types */
1671 	t = btf_add_type_mem(btf, data_sz);
1672 	if (!t)
1673 		return libbpf_err(-ENOMEM);
1674 
1675 	/* pre-allocate enough memory for type offset index for new types */
1676 	off = btf_add_type_offs_mem(btf, cnt);
1677 	if (!off)
1678 		return libbpf_err(-ENOMEM);
1679 
1680 	/* bulk copy types data for all types from src_btf */
1681 	memcpy(t, src_btf->types_data, data_sz);
1682 
1683 	for (i = 0; i < cnt; i++) {
1684 		sz = btf_type_size(t);
1685 		if (sz < 0) {
1686 			/* unlikely, has to be corrupted src_btf */
1687 			err = sz;
1688 			goto err_out;
1689 		}
1690 
1691 		/* fill out type ID to type offset mapping for lookups by type ID */
1692 		*off = t - btf->types_data;
1693 
1694 		/* add, dedup, and remap strings referenced by this BTF type */
1695 		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1696 		if (err)
1697 			goto err_out;
1698 
1699 		/* remap all type IDs referenced from this BTF type */
1700 		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1701 		if (err)
1702 			goto err_out;
1703 
1704 		/* go to next type data and type offset index entry */
1705 		t += sz;
1706 		off++;
1707 	}
1708 
1709 	/* Up until now any of the copied type data was effectively invisible,
1710 	 * so if we exited early before this point due to error, BTF would be
1711 	 * effectively unmodified. There would be extra internal memory
1712 	 * pre-allocated, but it would not be available for querying.  But now
1713 	 * that we've copied and rewritten all the data successfully, we can
1714 	 * update type count and various internal offsets and sizes to
1715 	 * "commit" the changes and made them visible to the outside world.
1716 	 */
1717 	btf->hdr->type_len += data_sz;
1718 	btf->hdr->str_off += data_sz;
1719 	btf->nr_types += cnt;
1720 
1721 	/* return type ID of the first added BTF type */
1722 	return btf->start_id + btf->nr_types - cnt;
1723 err_out:
1724 	/* zero out preallocated memory as if it was just allocated with
1725 	 * libbpf_add_mem()
1726 	 */
1727 	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1728 	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1729 
1730 	/* and now restore original strings section size; types data size
1731 	 * wasn't modified, so doesn't need restoring, see big comment above */
1732 	btf->hdr->str_len = old_strs_len;
1733 
1734 	return libbpf_err(err);
1735 }
1736 
1737 /*
1738  * Append new BTF_KIND_INT type with:
1739  *   - *name* - non-empty, non-NULL type name;
1740  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1741  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1742  * Returns:
1743  *   - >0, type ID of newly added BTF type;
1744  *   - <0, on error.
1745  */
1746 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1747 {
1748 	struct btf_type *t;
1749 	int sz, name_off;
1750 
1751 	/* non-empty name */
1752 	if (!name || !name[0])
1753 		return libbpf_err(-EINVAL);
1754 	/* byte_sz must be power of 2 */
1755 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1756 		return libbpf_err(-EINVAL);
1757 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1758 		return libbpf_err(-EINVAL);
1759 
1760 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1761 	if (btf_ensure_modifiable(btf))
1762 		return libbpf_err(-ENOMEM);
1763 
1764 	sz = sizeof(struct btf_type) + sizeof(int);
1765 	t = btf_add_type_mem(btf, sz);
1766 	if (!t)
1767 		return libbpf_err(-ENOMEM);
1768 
1769 	/* if something goes wrong later, we might end up with an extra string,
1770 	 * but that shouldn't be a problem, because BTF can't be constructed
1771 	 * completely anyway and will most probably be just discarded
1772 	 */
1773 	name_off = btf__add_str(btf, name);
1774 	if (name_off < 0)
1775 		return name_off;
1776 
1777 	t->name_off = name_off;
1778 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1779 	t->size = byte_sz;
1780 	/* set INT info, we don't allow setting legacy bit offset/size */
1781 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1782 
1783 	return btf_commit_type(btf, sz);
1784 }
1785 
1786 /*
1787  * Append new BTF_KIND_FLOAT type with:
1788  *   - *name* - non-empty, non-NULL type name;
1789  *   - *sz* - size of the type, in bytes;
1790  * Returns:
1791  *   - >0, type ID of newly added BTF type;
1792  *   - <0, on error.
1793  */
1794 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1795 {
1796 	struct btf_type *t;
1797 	int sz, name_off;
1798 
1799 	/* non-empty name */
1800 	if (!name || !name[0])
1801 		return libbpf_err(-EINVAL);
1802 
1803 	/* byte_sz must be one of the explicitly allowed values */
1804 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1805 	    byte_sz != 16)
1806 		return libbpf_err(-EINVAL);
1807 
1808 	if (btf_ensure_modifiable(btf))
1809 		return libbpf_err(-ENOMEM);
1810 
1811 	sz = sizeof(struct btf_type);
1812 	t = btf_add_type_mem(btf, sz);
1813 	if (!t)
1814 		return libbpf_err(-ENOMEM);
1815 
1816 	name_off = btf__add_str(btf, name);
1817 	if (name_off < 0)
1818 		return name_off;
1819 
1820 	t->name_off = name_off;
1821 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1822 	t->size = byte_sz;
1823 
1824 	return btf_commit_type(btf, sz);
1825 }
1826 
1827 /* it's completely legal to append BTF types with type IDs pointing forward to
1828  * types that haven't been appended yet, so we only make sure that id looks
1829  * sane, we can't guarantee that ID will always be valid
1830  */
1831 static int validate_type_id(int id)
1832 {
1833 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1834 		return -EINVAL;
1835 	return 0;
1836 }
1837 
1838 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1839 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1840 {
1841 	struct btf_type *t;
1842 	int sz, name_off = 0;
1843 
1844 	if (validate_type_id(ref_type_id))
1845 		return libbpf_err(-EINVAL);
1846 
1847 	if (btf_ensure_modifiable(btf))
1848 		return libbpf_err(-ENOMEM);
1849 
1850 	sz = sizeof(struct btf_type);
1851 	t = btf_add_type_mem(btf, sz);
1852 	if (!t)
1853 		return libbpf_err(-ENOMEM);
1854 
1855 	if (name && name[0]) {
1856 		name_off = btf__add_str(btf, name);
1857 		if (name_off < 0)
1858 			return name_off;
1859 	}
1860 
1861 	t->name_off = name_off;
1862 	t->info = btf_type_info(kind, 0, 0);
1863 	t->type = ref_type_id;
1864 
1865 	return btf_commit_type(btf, sz);
1866 }
1867 
1868 /*
1869  * Append new BTF_KIND_PTR type with:
1870  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1871  * Returns:
1872  *   - >0, type ID of newly added BTF type;
1873  *   - <0, on error.
1874  */
1875 int btf__add_ptr(struct btf *btf, int ref_type_id)
1876 {
1877 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1878 }
1879 
1880 /*
1881  * Append new BTF_KIND_ARRAY type with:
1882  *   - *index_type_id* - type ID of the type describing array index;
1883  *   - *elem_type_id* - type ID of the type describing array element;
1884  *   - *nr_elems* - the size of the array;
1885  * Returns:
1886  *   - >0, type ID of newly added BTF type;
1887  *   - <0, on error.
1888  */
1889 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1890 {
1891 	struct btf_type *t;
1892 	struct btf_array *a;
1893 	int sz;
1894 
1895 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1896 		return libbpf_err(-EINVAL);
1897 
1898 	if (btf_ensure_modifiable(btf))
1899 		return libbpf_err(-ENOMEM);
1900 
1901 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1902 	t = btf_add_type_mem(btf, sz);
1903 	if (!t)
1904 		return libbpf_err(-ENOMEM);
1905 
1906 	t->name_off = 0;
1907 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1908 	t->size = 0;
1909 
1910 	a = btf_array(t);
1911 	a->type = elem_type_id;
1912 	a->index_type = index_type_id;
1913 	a->nelems = nr_elems;
1914 
1915 	return btf_commit_type(btf, sz);
1916 }
1917 
1918 /* generic STRUCT/UNION append function */
1919 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1920 {
1921 	struct btf_type *t;
1922 	int sz, name_off = 0;
1923 
1924 	if (btf_ensure_modifiable(btf))
1925 		return libbpf_err(-ENOMEM);
1926 
1927 	sz = sizeof(struct btf_type);
1928 	t = btf_add_type_mem(btf, sz);
1929 	if (!t)
1930 		return libbpf_err(-ENOMEM);
1931 
1932 	if (name && name[0]) {
1933 		name_off = btf__add_str(btf, name);
1934 		if (name_off < 0)
1935 			return name_off;
1936 	}
1937 
1938 	/* start out with vlen=0 and no kflag; this will be adjusted when
1939 	 * adding each member
1940 	 */
1941 	t->name_off = name_off;
1942 	t->info = btf_type_info(kind, 0, 0);
1943 	t->size = bytes_sz;
1944 
1945 	return btf_commit_type(btf, sz);
1946 }
1947 
1948 /*
1949  * Append new BTF_KIND_STRUCT type with:
1950  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1951  *   - *byte_sz* - size of the struct, in bytes;
1952  *
1953  * Struct initially has no fields in it. Fields can be added by
1954  * btf__add_field() right after btf__add_struct() succeeds.
1955  *
1956  * Returns:
1957  *   - >0, type ID of newly added BTF type;
1958  *   - <0, on error.
1959  */
1960 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1961 {
1962 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1963 }
1964 
1965 /*
1966  * Append new BTF_KIND_UNION type with:
1967  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1968  *   - *byte_sz* - size of the union, in bytes;
1969  *
1970  * Union initially has no fields in it. Fields can be added by
1971  * btf__add_field() right after btf__add_union() succeeds. All fields
1972  * should have *bit_offset* of 0.
1973  *
1974  * Returns:
1975  *   - >0, type ID of newly added BTF type;
1976  *   - <0, on error.
1977  */
1978 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1979 {
1980 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1981 }
1982 
1983 static struct btf_type *btf_last_type(struct btf *btf)
1984 {
1985 	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1986 }
1987 
1988 /*
1989  * Append new field for the current STRUCT/UNION type with:
1990  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1991  *   - *type_id* - type ID for the type describing field type;
1992  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1993  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1994  * Returns:
1995  *   -  0, on success;
1996  *   - <0, on error.
1997  */
1998 int btf__add_field(struct btf *btf, const char *name, int type_id,
1999 		   __u32 bit_offset, __u32 bit_size)
2000 {
2001 	struct btf_type *t;
2002 	struct btf_member *m;
2003 	bool is_bitfield;
2004 	int sz, name_off = 0;
2005 
2006 	/* last type should be union/struct */
2007 	if (btf->nr_types == 0)
2008 		return libbpf_err(-EINVAL);
2009 	t = btf_last_type(btf);
2010 	if (!btf_is_composite(t))
2011 		return libbpf_err(-EINVAL);
2012 
2013 	if (validate_type_id(type_id))
2014 		return libbpf_err(-EINVAL);
2015 	/* best-effort bit field offset/size enforcement */
2016 	is_bitfield = bit_size || (bit_offset % 8 != 0);
2017 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2018 		return libbpf_err(-EINVAL);
2019 
2020 	/* only offset 0 is allowed for unions */
2021 	if (btf_is_union(t) && bit_offset)
2022 		return libbpf_err(-EINVAL);
2023 
2024 	/* decompose and invalidate raw data */
2025 	if (btf_ensure_modifiable(btf))
2026 		return libbpf_err(-ENOMEM);
2027 
2028 	sz = sizeof(struct btf_member);
2029 	m = btf_add_type_mem(btf, sz);
2030 	if (!m)
2031 		return libbpf_err(-ENOMEM);
2032 
2033 	if (name && name[0]) {
2034 		name_off = btf__add_str(btf, name);
2035 		if (name_off < 0)
2036 			return name_off;
2037 	}
2038 
2039 	m->name_off = name_off;
2040 	m->type = type_id;
2041 	m->offset = bit_offset | (bit_size << 24);
2042 
2043 	/* btf_add_type_mem can invalidate t pointer */
2044 	t = btf_last_type(btf);
2045 	/* update parent type's vlen and kflag */
2046 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2047 
2048 	btf->hdr->type_len += sz;
2049 	btf->hdr->str_off += sz;
2050 	return 0;
2051 }
2052 
2053 /*
2054  * Append new BTF_KIND_ENUM type with:
2055  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2056  *   - *byte_sz* - size of the enum, in bytes.
2057  *
2058  * Enum initially has no enum values in it (and corresponds to enum forward
2059  * declaration). Enumerator values can be added by btf__add_enum_value()
2060  * immediately after btf__add_enum() succeeds.
2061  *
2062  * Returns:
2063  *   - >0, type ID of newly added BTF type;
2064  *   - <0, on error.
2065  */
2066 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2067 {
2068 	struct btf_type *t;
2069 	int sz, name_off = 0;
2070 
2071 	/* byte_sz must be power of 2 */
2072 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2073 		return libbpf_err(-EINVAL);
2074 
2075 	if (btf_ensure_modifiable(btf))
2076 		return libbpf_err(-ENOMEM);
2077 
2078 	sz = sizeof(struct btf_type);
2079 	t = btf_add_type_mem(btf, sz);
2080 	if (!t)
2081 		return libbpf_err(-ENOMEM);
2082 
2083 	if (name && name[0]) {
2084 		name_off = btf__add_str(btf, name);
2085 		if (name_off < 0)
2086 			return name_off;
2087 	}
2088 
2089 	/* start out with vlen=0; it will be adjusted when adding enum values */
2090 	t->name_off = name_off;
2091 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2092 	t->size = byte_sz;
2093 
2094 	return btf_commit_type(btf, sz);
2095 }
2096 
2097 /*
2098  * Append new enum value for the current ENUM type with:
2099  *   - *name* - name of the enumerator value, can't be NULL or empty;
2100  *   - *value* - integer value corresponding to enum value *name*;
2101  * Returns:
2102  *   -  0, on success;
2103  *   - <0, on error.
2104  */
2105 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2106 {
2107 	struct btf_type *t;
2108 	struct btf_enum *v;
2109 	int sz, name_off;
2110 
2111 	/* last type should be BTF_KIND_ENUM */
2112 	if (btf->nr_types == 0)
2113 		return libbpf_err(-EINVAL);
2114 	t = btf_last_type(btf);
2115 	if (!btf_is_enum(t))
2116 		return libbpf_err(-EINVAL);
2117 
2118 	/* non-empty name */
2119 	if (!name || !name[0])
2120 		return libbpf_err(-EINVAL);
2121 	if (value < INT_MIN || value > UINT_MAX)
2122 		return libbpf_err(-E2BIG);
2123 
2124 	/* decompose and invalidate raw data */
2125 	if (btf_ensure_modifiable(btf))
2126 		return libbpf_err(-ENOMEM);
2127 
2128 	sz = sizeof(struct btf_enum);
2129 	v = btf_add_type_mem(btf, sz);
2130 	if (!v)
2131 		return libbpf_err(-ENOMEM);
2132 
2133 	name_off = btf__add_str(btf, name);
2134 	if (name_off < 0)
2135 		return name_off;
2136 
2137 	v->name_off = name_off;
2138 	v->val = value;
2139 
2140 	/* update parent type's vlen */
2141 	t = btf_last_type(btf);
2142 	btf_type_inc_vlen(t);
2143 
2144 	btf->hdr->type_len += sz;
2145 	btf->hdr->str_off += sz;
2146 	return 0;
2147 }
2148 
2149 /*
2150  * Append new BTF_KIND_FWD type with:
2151  *   - *name*, non-empty/non-NULL name;
2152  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2153  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2154  * Returns:
2155  *   - >0, type ID of newly added BTF type;
2156  *   - <0, on error.
2157  */
2158 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2159 {
2160 	if (!name || !name[0])
2161 		return libbpf_err(-EINVAL);
2162 
2163 	switch (fwd_kind) {
2164 	case BTF_FWD_STRUCT:
2165 	case BTF_FWD_UNION: {
2166 		struct btf_type *t;
2167 		int id;
2168 
2169 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2170 		if (id <= 0)
2171 			return id;
2172 		t = btf_type_by_id(btf, id);
2173 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2174 		return id;
2175 	}
2176 	case BTF_FWD_ENUM:
2177 		/* enum forward in BTF currently is just an enum with no enum
2178 		 * values; we also assume a standard 4-byte size for it
2179 		 */
2180 		return btf__add_enum(btf, name, sizeof(int));
2181 	default:
2182 		return libbpf_err(-EINVAL);
2183 	}
2184 }
2185 
2186 /*
2187  * Append new BTF_KING_TYPEDEF type with:
2188  *   - *name*, non-empty/non-NULL name;
2189  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2190  * Returns:
2191  *   - >0, type ID of newly added BTF type;
2192  *   - <0, on error.
2193  */
2194 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2195 {
2196 	if (!name || !name[0])
2197 		return libbpf_err(-EINVAL);
2198 
2199 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2200 }
2201 
2202 /*
2203  * Append new BTF_KIND_VOLATILE type with:
2204  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2205  * Returns:
2206  *   - >0, type ID of newly added BTF type;
2207  *   - <0, on error.
2208  */
2209 int btf__add_volatile(struct btf *btf, int ref_type_id)
2210 {
2211 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2212 }
2213 
2214 /*
2215  * Append new BTF_KIND_CONST type with:
2216  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2217  * Returns:
2218  *   - >0, type ID of newly added BTF type;
2219  *   - <0, on error.
2220  */
2221 int btf__add_const(struct btf *btf, int ref_type_id)
2222 {
2223 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2224 }
2225 
2226 /*
2227  * Append new BTF_KIND_RESTRICT type with:
2228  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2229  * Returns:
2230  *   - >0, type ID of newly added BTF type;
2231  *   - <0, on error.
2232  */
2233 int btf__add_restrict(struct btf *btf, int ref_type_id)
2234 {
2235 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2236 }
2237 
2238 /*
2239  * Append new BTF_KIND_FUNC type with:
2240  *   - *name*, non-empty/non-NULL name;
2241  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2242  * Returns:
2243  *   - >0, type ID of newly added BTF type;
2244  *   - <0, on error.
2245  */
2246 int btf__add_func(struct btf *btf, const char *name,
2247 		  enum btf_func_linkage linkage, int proto_type_id)
2248 {
2249 	int id;
2250 
2251 	if (!name || !name[0])
2252 		return libbpf_err(-EINVAL);
2253 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2254 	    linkage != BTF_FUNC_EXTERN)
2255 		return libbpf_err(-EINVAL);
2256 
2257 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2258 	if (id > 0) {
2259 		struct btf_type *t = btf_type_by_id(btf, id);
2260 
2261 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2262 	}
2263 	return libbpf_err(id);
2264 }
2265 
2266 /*
2267  * Append new BTF_KIND_FUNC_PROTO with:
2268  *   - *ret_type_id* - type ID for return result of a function.
2269  *
2270  * Function prototype initially has no arguments, but they can be added by
2271  * btf__add_func_param() one by one, immediately after
2272  * btf__add_func_proto() succeeded.
2273  *
2274  * Returns:
2275  *   - >0, type ID of newly added BTF type;
2276  *   - <0, on error.
2277  */
2278 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2279 {
2280 	struct btf_type *t;
2281 	int sz;
2282 
2283 	if (validate_type_id(ret_type_id))
2284 		return libbpf_err(-EINVAL);
2285 
2286 	if (btf_ensure_modifiable(btf))
2287 		return libbpf_err(-ENOMEM);
2288 
2289 	sz = sizeof(struct btf_type);
2290 	t = btf_add_type_mem(btf, sz);
2291 	if (!t)
2292 		return libbpf_err(-ENOMEM);
2293 
2294 	/* start out with vlen=0; this will be adjusted when adding enum
2295 	 * values, if necessary
2296 	 */
2297 	t->name_off = 0;
2298 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2299 	t->type = ret_type_id;
2300 
2301 	return btf_commit_type(btf, sz);
2302 }
2303 
2304 /*
2305  * Append new function parameter for current FUNC_PROTO type with:
2306  *   - *name* - parameter name, can be NULL or empty;
2307  *   - *type_id* - type ID describing the type of the parameter.
2308  * Returns:
2309  *   -  0, on success;
2310  *   - <0, on error.
2311  */
2312 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2313 {
2314 	struct btf_type *t;
2315 	struct btf_param *p;
2316 	int sz, name_off = 0;
2317 
2318 	if (validate_type_id(type_id))
2319 		return libbpf_err(-EINVAL);
2320 
2321 	/* last type should be BTF_KIND_FUNC_PROTO */
2322 	if (btf->nr_types == 0)
2323 		return libbpf_err(-EINVAL);
2324 	t = btf_last_type(btf);
2325 	if (!btf_is_func_proto(t))
2326 		return libbpf_err(-EINVAL);
2327 
2328 	/* decompose and invalidate raw data */
2329 	if (btf_ensure_modifiable(btf))
2330 		return libbpf_err(-ENOMEM);
2331 
2332 	sz = sizeof(struct btf_param);
2333 	p = btf_add_type_mem(btf, sz);
2334 	if (!p)
2335 		return libbpf_err(-ENOMEM);
2336 
2337 	if (name && name[0]) {
2338 		name_off = btf__add_str(btf, name);
2339 		if (name_off < 0)
2340 			return name_off;
2341 	}
2342 
2343 	p->name_off = name_off;
2344 	p->type = type_id;
2345 
2346 	/* update parent type's vlen */
2347 	t = btf_last_type(btf);
2348 	btf_type_inc_vlen(t);
2349 
2350 	btf->hdr->type_len += sz;
2351 	btf->hdr->str_off += sz;
2352 	return 0;
2353 }
2354 
2355 /*
2356  * Append new BTF_KIND_VAR type with:
2357  *   - *name* - non-empty/non-NULL name;
2358  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2359  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2360  *   - *type_id* - type ID of the type describing the type of the variable.
2361  * Returns:
2362  *   - >0, type ID of newly added BTF type;
2363  *   - <0, on error.
2364  */
2365 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2366 {
2367 	struct btf_type *t;
2368 	struct btf_var *v;
2369 	int sz, name_off;
2370 
2371 	/* non-empty name */
2372 	if (!name || !name[0])
2373 		return libbpf_err(-EINVAL);
2374 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2375 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2376 		return libbpf_err(-EINVAL);
2377 	if (validate_type_id(type_id))
2378 		return libbpf_err(-EINVAL);
2379 
2380 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2381 	if (btf_ensure_modifiable(btf))
2382 		return libbpf_err(-ENOMEM);
2383 
2384 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2385 	t = btf_add_type_mem(btf, sz);
2386 	if (!t)
2387 		return libbpf_err(-ENOMEM);
2388 
2389 	name_off = btf__add_str(btf, name);
2390 	if (name_off < 0)
2391 		return name_off;
2392 
2393 	t->name_off = name_off;
2394 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2395 	t->type = type_id;
2396 
2397 	v = btf_var(t);
2398 	v->linkage = linkage;
2399 
2400 	return btf_commit_type(btf, sz);
2401 }
2402 
2403 /*
2404  * Append new BTF_KIND_DATASEC type with:
2405  *   - *name* - non-empty/non-NULL name;
2406  *   - *byte_sz* - data section size, in bytes.
2407  *
2408  * Data section is initially empty. Variables info can be added with
2409  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2410  *
2411  * Returns:
2412  *   - >0, type ID of newly added BTF type;
2413  *   - <0, on error.
2414  */
2415 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2416 {
2417 	struct btf_type *t;
2418 	int sz, name_off;
2419 
2420 	/* non-empty name */
2421 	if (!name || !name[0])
2422 		return libbpf_err(-EINVAL);
2423 
2424 	if (btf_ensure_modifiable(btf))
2425 		return libbpf_err(-ENOMEM);
2426 
2427 	sz = sizeof(struct btf_type);
2428 	t = btf_add_type_mem(btf, sz);
2429 	if (!t)
2430 		return libbpf_err(-ENOMEM);
2431 
2432 	name_off = btf__add_str(btf, name);
2433 	if (name_off < 0)
2434 		return name_off;
2435 
2436 	/* start with vlen=0, which will be update as var_secinfos are added */
2437 	t->name_off = name_off;
2438 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2439 	t->size = byte_sz;
2440 
2441 	return btf_commit_type(btf, sz);
2442 }
2443 
2444 /*
2445  * Append new data section variable information entry for current DATASEC type:
2446  *   - *var_type_id* - type ID, describing type of the variable;
2447  *   - *offset* - variable offset within data section, in bytes;
2448  *   - *byte_sz* - variable size, in bytes.
2449  *
2450  * Returns:
2451  *   -  0, on success;
2452  *   - <0, on error.
2453  */
2454 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2455 {
2456 	struct btf_type *t;
2457 	struct btf_var_secinfo *v;
2458 	int sz;
2459 
2460 	/* last type should be BTF_KIND_DATASEC */
2461 	if (btf->nr_types == 0)
2462 		return libbpf_err(-EINVAL);
2463 	t = btf_last_type(btf);
2464 	if (!btf_is_datasec(t))
2465 		return libbpf_err(-EINVAL);
2466 
2467 	if (validate_type_id(var_type_id))
2468 		return libbpf_err(-EINVAL);
2469 
2470 	/* decompose and invalidate raw data */
2471 	if (btf_ensure_modifiable(btf))
2472 		return libbpf_err(-ENOMEM);
2473 
2474 	sz = sizeof(struct btf_var_secinfo);
2475 	v = btf_add_type_mem(btf, sz);
2476 	if (!v)
2477 		return libbpf_err(-ENOMEM);
2478 
2479 	v->type = var_type_id;
2480 	v->offset = offset;
2481 	v->size = byte_sz;
2482 
2483 	/* update parent type's vlen */
2484 	t = btf_last_type(btf);
2485 	btf_type_inc_vlen(t);
2486 
2487 	btf->hdr->type_len += sz;
2488 	btf->hdr->str_off += sz;
2489 	return 0;
2490 }
2491 
2492 /*
2493  * Append new BTF_KIND_DECL_TAG type with:
2494  *   - *value* - non-empty/non-NULL string;
2495  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2496  *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2497  *     member or function argument index;
2498  * Returns:
2499  *   - >0, type ID of newly added BTF type;
2500  *   - <0, on error.
2501  */
2502 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2503 		 int component_idx)
2504 {
2505 	struct btf_type *t;
2506 	int sz, value_off;
2507 
2508 	if (!value || !value[0] || component_idx < -1)
2509 		return libbpf_err(-EINVAL);
2510 
2511 	if (validate_type_id(ref_type_id))
2512 		return libbpf_err(-EINVAL);
2513 
2514 	if (btf_ensure_modifiable(btf))
2515 		return libbpf_err(-ENOMEM);
2516 
2517 	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2518 	t = btf_add_type_mem(btf, sz);
2519 	if (!t)
2520 		return libbpf_err(-ENOMEM);
2521 
2522 	value_off = btf__add_str(btf, value);
2523 	if (value_off < 0)
2524 		return value_off;
2525 
2526 	t->name_off = value_off;
2527 	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2528 	t->type = ref_type_id;
2529 	btf_decl_tag(t)->component_idx = component_idx;
2530 
2531 	return btf_commit_type(btf, sz);
2532 }
2533 
2534 struct btf_ext_sec_setup_param {
2535 	__u32 off;
2536 	__u32 len;
2537 	__u32 min_rec_size;
2538 	struct btf_ext_info *ext_info;
2539 	const char *desc;
2540 };
2541 
2542 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2543 			      struct btf_ext_sec_setup_param *ext_sec)
2544 {
2545 	const struct btf_ext_info_sec *sinfo;
2546 	struct btf_ext_info *ext_info;
2547 	__u32 info_left, record_size;
2548 	/* The start of the info sec (including the __u32 record_size). */
2549 	void *info;
2550 
2551 	if (ext_sec->len == 0)
2552 		return 0;
2553 
2554 	if (ext_sec->off & 0x03) {
2555 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2556 		     ext_sec->desc);
2557 		return -EINVAL;
2558 	}
2559 
2560 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2561 	info_left = ext_sec->len;
2562 
2563 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2564 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2565 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2566 		return -EINVAL;
2567 	}
2568 
2569 	/* At least a record size */
2570 	if (info_left < sizeof(__u32)) {
2571 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2572 		return -EINVAL;
2573 	}
2574 
2575 	/* The record size needs to meet the minimum standard */
2576 	record_size = *(__u32 *)info;
2577 	if (record_size < ext_sec->min_rec_size ||
2578 	    record_size & 0x03) {
2579 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2580 			 ext_sec->desc, record_size);
2581 		return -EINVAL;
2582 	}
2583 
2584 	sinfo = info + sizeof(__u32);
2585 	info_left -= sizeof(__u32);
2586 
2587 	/* If no records, return failure now so .BTF.ext won't be used. */
2588 	if (!info_left) {
2589 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2590 		return -EINVAL;
2591 	}
2592 
2593 	while (info_left) {
2594 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2595 		__u64 total_record_size;
2596 		__u32 num_records;
2597 
2598 		if (info_left < sec_hdrlen) {
2599 			pr_debug("%s section header is not found in .BTF.ext\n",
2600 			     ext_sec->desc);
2601 			return -EINVAL;
2602 		}
2603 
2604 		num_records = sinfo->num_info;
2605 		if (num_records == 0) {
2606 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2607 			     ext_sec->desc);
2608 			return -EINVAL;
2609 		}
2610 
2611 		total_record_size = sec_hdrlen +
2612 				    (__u64)num_records * record_size;
2613 		if (info_left < total_record_size) {
2614 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2615 			     ext_sec->desc);
2616 			return -EINVAL;
2617 		}
2618 
2619 		info_left -= total_record_size;
2620 		sinfo = (void *)sinfo + total_record_size;
2621 	}
2622 
2623 	ext_info = ext_sec->ext_info;
2624 	ext_info->len = ext_sec->len - sizeof(__u32);
2625 	ext_info->rec_size = record_size;
2626 	ext_info->info = info + sizeof(__u32);
2627 
2628 	return 0;
2629 }
2630 
2631 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2632 {
2633 	struct btf_ext_sec_setup_param param = {
2634 		.off = btf_ext->hdr->func_info_off,
2635 		.len = btf_ext->hdr->func_info_len,
2636 		.min_rec_size = sizeof(struct bpf_func_info_min),
2637 		.ext_info = &btf_ext->func_info,
2638 		.desc = "func_info"
2639 	};
2640 
2641 	return btf_ext_setup_info(btf_ext, &param);
2642 }
2643 
2644 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2645 {
2646 	struct btf_ext_sec_setup_param param = {
2647 		.off = btf_ext->hdr->line_info_off,
2648 		.len = btf_ext->hdr->line_info_len,
2649 		.min_rec_size = sizeof(struct bpf_line_info_min),
2650 		.ext_info = &btf_ext->line_info,
2651 		.desc = "line_info",
2652 	};
2653 
2654 	return btf_ext_setup_info(btf_ext, &param);
2655 }
2656 
2657 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2658 {
2659 	struct btf_ext_sec_setup_param param = {
2660 		.off = btf_ext->hdr->core_relo_off,
2661 		.len = btf_ext->hdr->core_relo_len,
2662 		.min_rec_size = sizeof(struct bpf_core_relo),
2663 		.ext_info = &btf_ext->core_relo_info,
2664 		.desc = "core_relo",
2665 	};
2666 
2667 	return btf_ext_setup_info(btf_ext, &param);
2668 }
2669 
2670 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2671 {
2672 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2673 
2674 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2675 	    data_size < hdr->hdr_len) {
2676 		pr_debug("BTF.ext header not found");
2677 		return -EINVAL;
2678 	}
2679 
2680 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2681 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2682 		return -ENOTSUP;
2683 	} else if (hdr->magic != BTF_MAGIC) {
2684 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2685 		return -EINVAL;
2686 	}
2687 
2688 	if (hdr->version != BTF_VERSION) {
2689 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2690 		return -ENOTSUP;
2691 	}
2692 
2693 	if (hdr->flags) {
2694 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2695 		return -ENOTSUP;
2696 	}
2697 
2698 	if (data_size == hdr->hdr_len) {
2699 		pr_debug("BTF.ext has no data\n");
2700 		return -EINVAL;
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 void btf_ext__free(struct btf_ext *btf_ext)
2707 {
2708 	if (IS_ERR_OR_NULL(btf_ext))
2709 		return;
2710 	free(btf_ext->data);
2711 	free(btf_ext);
2712 }
2713 
2714 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2715 {
2716 	struct btf_ext *btf_ext;
2717 	int err;
2718 
2719 	err = btf_ext_parse_hdr(data, size);
2720 	if (err)
2721 		return libbpf_err_ptr(err);
2722 
2723 	btf_ext = calloc(1, sizeof(struct btf_ext));
2724 	if (!btf_ext)
2725 		return libbpf_err_ptr(-ENOMEM);
2726 
2727 	btf_ext->data_size = size;
2728 	btf_ext->data = malloc(size);
2729 	if (!btf_ext->data) {
2730 		err = -ENOMEM;
2731 		goto done;
2732 	}
2733 	memcpy(btf_ext->data, data, size);
2734 
2735 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2736 		err = -EINVAL;
2737 		goto done;
2738 	}
2739 
2740 	err = btf_ext_setup_func_info(btf_ext);
2741 	if (err)
2742 		goto done;
2743 
2744 	err = btf_ext_setup_line_info(btf_ext);
2745 	if (err)
2746 		goto done;
2747 
2748 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2749 		err = -EINVAL;
2750 		goto done;
2751 	}
2752 
2753 	err = btf_ext_setup_core_relos(btf_ext);
2754 	if (err)
2755 		goto done;
2756 
2757 done:
2758 	if (err) {
2759 		btf_ext__free(btf_ext);
2760 		return libbpf_err_ptr(err);
2761 	}
2762 
2763 	return btf_ext;
2764 }
2765 
2766 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2767 {
2768 	*size = btf_ext->data_size;
2769 	return btf_ext->data;
2770 }
2771 
2772 static int btf_ext_reloc_info(const struct btf *btf,
2773 			      const struct btf_ext_info *ext_info,
2774 			      const char *sec_name, __u32 insns_cnt,
2775 			      void **info, __u32 *cnt)
2776 {
2777 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2778 	__u32 i, record_size, existing_len, records_len;
2779 	struct btf_ext_info_sec *sinfo;
2780 	const char *info_sec_name;
2781 	__u64 remain_len;
2782 	void *data;
2783 
2784 	record_size = ext_info->rec_size;
2785 	sinfo = ext_info->info;
2786 	remain_len = ext_info->len;
2787 	while (remain_len > 0) {
2788 		records_len = sinfo->num_info * record_size;
2789 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2790 		if (strcmp(info_sec_name, sec_name)) {
2791 			remain_len -= sec_hdrlen + records_len;
2792 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2793 			continue;
2794 		}
2795 
2796 		existing_len = (*cnt) * record_size;
2797 		data = realloc(*info, existing_len + records_len);
2798 		if (!data)
2799 			return libbpf_err(-ENOMEM);
2800 
2801 		memcpy(data + existing_len, sinfo->data, records_len);
2802 		/* adjust insn_off only, the rest data will be passed
2803 		 * to the kernel.
2804 		 */
2805 		for (i = 0; i < sinfo->num_info; i++) {
2806 			__u32 *insn_off;
2807 
2808 			insn_off = data + existing_len + (i * record_size);
2809 			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2810 		}
2811 		*info = data;
2812 		*cnt += sinfo->num_info;
2813 		return 0;
2814 	}
2815 
2816 	return libbpf_err(-ENOENT);
2817 }
2818 
2819 int btf_ext__reloc_func_info(const struct btf *btf,
2820 			     const struct btf_ext *btf_ext,
2821 			     const char *sec_name, __u32 insns_cnt,
2822 			     void **func_info, __u32 *cnt)
2823 {
2824 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2825 				  insns_cnt, func_info, cnt);
2826 }
2827 
2828 int btf_ext__reloc_line_info(const struct btf *btf,
2829 			     const struct btf_ext *btf_ext,
2830 			     const char *sec_name, __u32 insns_cnt,
2831 			     void **line_info, __u32 *cnt)
2832 {
2833 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2834 				  insns_cnt, line_info, cnt);
2835 }
2836 
2837 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2838 {
2839 	return btf_ext->func_info.rec_size;
2840 }
2841 
2842 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2843 {
2844 	return btf_ext->line_info.rec_size;
2845 }
2846 
2847 struct btf_dedup;
2848 
2849 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2850 				       const struct btf_dedup_opts *opts);
2851 static void btf_dedup_free(struct btf_dedup *d);
2852 static int btf_dedup_prep(struct btf_dedup *d);
2853 static int btf_dedup_strings(struct btf_dedup *d);
2854 static int btf_dedup_prim_types(struct btf_dedup *d);
2855 static int btf_dedup_struct_types(struct btf_dedup *d);
2856 static int btf_dedup_ref_types(struct btf_dedup *d);
2857 static int btf_dedup_compact_types(struct btf_dedup *d);
2858 static int btf_dedup_remap_types(struct btf_dedup *d);
2859 
2860 /*
2861  * Deduplicate BTF types and strings.
2862  *
2863  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2864  * section with all BTF type descriptors and string data. It overwrites that
2865  * memory in-place with deduplicated types and strings without any loss of
2866  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2867  * is provided, all the strings referenced from .BTF.ext section are honored
2868  * and updated to point to the right offsets after deduplication.
2869  *
2870  * If function returns with error, type/string data might be garbled and should
2871  * be discarded.
2872  *
2873  * More verbose and detailed description of both problem btf_dedup is solving,
2874  * as well as solution could be found at:
2875  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2876  *
2877  * Problem description and justification
2878  * =====================================
2879  *
2880  * BTF type information is typically emitted either as a result of conversion
2881  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2882  * unit contains information about a subset of all the types that are used
2883  * in an application. These subsets are frequently overlapping and contain a lot
2884  * of duplicated information when later concatenated together into a single
2885  * binary. This algorithm ensures that each unique type is represented by single
2886  * BTF type descriptor, greatly reducing resulting size of BTF data.
2887  *
2888  * Compilation unit isolation and subsequent duplication of data is not the only
2889  * problem. The same type hierarchy (e.g., struct and all the type that struct
2890  * references) in different compilation units can be represented in BTF to
2891  * various degrees of completeness (or, rather, incompleteness) due to
2892  * struct/union forward declarations.
2893  *
2894  * Let's take a look at an example, that we'll use to better understand the
2895  * problem (and solution). Suppose we have two compilation units, each using
2896  * same `struct S`, but each of them having incomplete type information about
2897  * struct's fields:
2898  *
2899  * // CU #1:
2900  * struct S;
2901  * struct A {
2902  *	int a;
2903  *	struct A* self;
2904  *	struct S* parent;
2905  * };
2906  * struct B;
2907  * struct S {
2908  *	struct A* a_ptr;
2909  *	struct B* b_ptr;
2910  * };
2911  *
2912  * // CU #2:
2913  * struct S;
2914  * struct A;
2915  * struct B {
2916  *	int b;
2917  *	struct B* self;
2918  *	struct S* parent;
2919  * };
2920  * struct S {
2921  *	struct A* a_ptr;
2922  *	struct B* b_ptr;
2923  * };
2924  *
2925  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2926  * more), but will know the complete type information about `struct A`. While
2927  * for CU #2, it will know full type information about `struct B`, but will
2928  * only know about forward declaration of `struct A` (in BTF terms, it will
2929  * have `BTF_KIND_FWD` type descriptor with name `B`).
2930  *
2931  * This compilation unit isolation means that it's possible that there is no
2932  * single CU with complete type information describing structs `S`, `A`, and
2933  * `B`. Also, we might get tons of duplicated and redundant type information.
2934  *
2935  * Additional complication we need to keep in mind comes from the fact that
2936  * types, in general, can form graphs containing cycles, not just DAGs.
2937  *
2938  * While algorithm does deduplication, it also merges and resolves type
2939  * information (unless disabled throught `struct btf_opts`), whenever possible.
2940  * E.g., in the example above with two compilation units having partial type
2941  * information for structs `A` and `B`, the output of algorithm will emit
2942  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2943  * (as well as type information for `int` and pointers), as if they were defined
2944  * in a single compilation unit as:
2945  *
2946  * struct A {
2947  *	int a;
2948  *	struct A* self;
2949  *	struct S* parent;
2950  * };
2951  * struct B {
2952  *	int b;
2953  *	struct B* self;
2954  *	struct S* parent;
2955  * };
2956  * struct S {
2957  *	struct A* a_ptr;
2958  *	struct B* b_ptr;
2959  * };
2960  *
2961  * Algorithm summary
2962  * =================
2963  *
2964  * Algorithm completes its work in 6 separate passes:
2965  *
2966  * 1. Strings deduplication.
2967  * 2. Primitive types deduplication (int, enum, fwd).
2968  * 3. Struct/union types deduplication.
2969  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2970  *    protos, and const/volatile/restrict modifiers).
2971  * 5. Types compaction.
2972  * 6. Types remapping.
2973  *
2974  * Algorithm determines canonical type descriptor, which is a single
2975  * representative type for each truly unique type. This canonical type is the
2976  * one that will go into final deduplicated BTF type information. For
2977  * struct/unions, it is also the type that algorithm will merge additional type
2978  * information into (while resolving FWDs), as it discovers it from data in
2979  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2980  * that type is canonical, or to some other type, if that type is equivalent
2981  * and was chosen as canonical representative. This mapping is stored in
2982  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2983  * FWD type got resolved to.
2984  *
2985  * To facilitate fast discovery of canonical types, we also maintain canonical
2986  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2987  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2988  * that match that signature. With sufficiently good choice of type signature
2989  * hashing function, we can limit number of canonical types for each unique type
2990  * signature to a very small number, allowing to find canonical type for any
2991  * duplicated type very quickly.
2992  *
2993  * Struct/union deduplication is the most critical part and algorithm for
2994  * deduplicating structs/unions is described in greater details in comments for
2995  * `btf_dedup_is_equiv` function.
2996  */
2997 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2998 	       const struct btf_dedup_opts *opts)
2999 {
3000 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
3001 	int err;
3002 
3003 	if (IS_ERR(d)) {
3004 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3005 		return libbpf_err(-EINVAL);
3006 	}
3007 
3008 	if (btf_ensure_modifiable(btf)) {
3009 		err = -ENOMEM;
3010 		goto done;
3011 	}
3012 
3013 	err = btf_dedup_prep(d);
3014 	if (err) {
3015 		pr_debug("btf_dedup_prep failed:%d\n", err);
3016 		goto done;
3017 	}
3018 	err = btf_dedup_strings(d);
3019 	if (err < 0) {
3020 		pr_debug("btf_dedup_strings failed:%d\n", err);
3021 		goto done;
3022 	}
3023 	err = btf_dedup_prim_types(d);
3024 	if (err < 0) {
3025 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3026 		goto done;
3027 	}
3028 	err = btf_dedup_struct_types(d);
3029 	if (err < 0) {
3030 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3031 		goto done;
3032 	}
3033 	err = btf_dedup_ref_types(d);
3034 	if (err < 0) {
3035 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3036 		goto done;
3037 	}
3038 	err = btf_dedup_compact_types(d);
3039 	if (err < 0) {
3040 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3041 		goto done;
3042 	}
3043 	err = btf_dedup_remap_types(d);
3044 	if (err < 0) {
3045 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3046 		goto done;
3047 	}
3048 
3049 done:
3050 	btf_dedup_free(d);
3051 	return libbpf_err(err);
3052 }
3053 
3054 #define BTF_UNPROCESSED_ID ((__u32)-1)
3055 #define BTF_IN_PROGRESS_ID ((__u32)-2)
3056 
3057 struct btf_dedup {
3058 	/* .BTF section to be deduped in-place */
3059 	struct btf *btf;
3060 	/*
3061 	 * Optional .BTF.ext section. When provided, any strings referenced
3062 	 * from it will be taken into account when deduping strings
3063 	 */
3064 	struct btf_ext *btf_ext;
3065 	/*
3066 	 * This is a map from any type's signature hash to a list of possible
3067 	 * canonical representative type candidates. Hash collisions are
3068 	 * ignored, so even types of various kinds can share same list of
3069 	 * candidates, which is fine because we rely on subsequent
3070 	 * btf_xxx_equal() checks to authoritatively verify type equality.
3071 	 */
3072 	struct hashmap *dedup_table;
3073 	/* Canonical types map */
3074 	__u32 *map;
3075 	/* Hypothetical mapping, used during type graph equivalence checks */
3076 	__u32 *hypot_map;
3077 	__u32 *hypot_list;
3078 	size_t hypot_cnt;
3079 	size_t hypot_cap;
3080 	/* Whether hypothetical mapping, if successful, would need to adjust
3081 	 * already canonicalized types (due to a new forward declaration to
3082 	 * concrete type resolution). In such case, during split BTF dedup
3083 	 * candidate type would still be considered as different, because base
3084 	 * BTF is considered to be immutable.
3085 	 */
3086 	bool hypot_adjust_canon;
3087 	/* Various option modifying behavior of algorithm */
3088 	struct btf_dedup_opts opts;
3089 	/* temporary strings deduplication state */
3090 	struct strset *strs_set;
3091 };
3092 
3093 static long hash_combine(long h, long value)
3094 {
3095 	return h * 31 + value;
3096 }
3097 
3098 #define for_each_dedup_cand(d, node, hash) \
3099 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3100 
3101 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3102 {
3103 	return hashmap__append(d->dedup_table,
3104 			       (void *)hash, (void *)(long)type_id);
3105 }
3106 
3107 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3108 				   __u32 from_id, __u32 to_id)
3109 {
3110 	if (d->hypot_cnt == d->hypot_cap) {
3111 		__u32 *new_list;
3112 
3113 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3114 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3115 		if (!new_list)
3116 			return -ENOMEM;
3117 		d->hypot_list = new_list;
3118 	}
3119 	d->hypot_list[d->hypot_cnt++] = from_id;
3120 	d->hypot_map[from_id] = to_id;
3121 	return 0;
3122 }
3123 
3124 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3125 {
3126 	int i;
3127 
3128 	for (i = 0; i < d->hypot_cnt; i++)
3129 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3130 	d->hypot_cnt = 0;
3131 	d->hypot_adjust_canon = false;
3132 }
3133 
3134 static void btf_dedup_free(struct btf_dedup *d)
3135 {
3136 	hashmap__free(d->dedup_table);
3137 	d->dedup_table = NULL;
3138 
3139 	free(d->map);
3140 	d->map = NULL;
3141 
3142 	free(d->hypot_map);
3143 	d->hypot_map = NULL;
3144 
3145 	free(d->hypot_list);
3146 	d->hypot_list = NULL;
3147 
3148 	free(d);
3149 }
3150 
3151 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3152 {
3153 	return (size_t)key;
3154 }
3155 
3156 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3157 {
3158 	return 0;
3159 }
3160 
3161 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3162 {
3163 	return k1 == k2;
3164 }
3165 
3166 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3167 				       const struct btf_dedup_opts *opts)
3168 {
3169 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3170 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3171 	int i, err = 0, type_cnt;
3172 
3173 	if (!d)
3174 		return ERR_PTR(-ENOMEM);
3175 
3176 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3177 	/* dedup_table_size is now used only to force collisions in tests */
3178 	if (opts && opts->dedup_table_size == 1)
3179 		hash_fn = btf_dedup_collision_hash_fn;
3180 
3181 	d->btf = btf;
3182 	d->btf_ext = btf_ext;
3183 
3184 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3185 	if (IS_ERR(d->dedup_table)) {
3186 		err = PTR_ERR(d->dedup_table);
3187 		d->dedup_table = NULL;
3188 		goto done;
3189 	}
3190 
3191 	type_cnt = btf__type_cnt(btf);
3192 	d->map = malloc(sizeof(__u32) * type_cnt);
3193 	if (!d->map) {
3194 		err = -ENOMEM;
3195 		goto done;
3196 	}
3197 	/* special BTF "void" type is made canonical immediately */
3198 	d->map[0] = 0;
3199 	for (i = 1; i < type_cnt; i++) {
3200 		struct btf_type *t = btf_type_by_id(d->btf, i);
3201 
3202 		/* VAR and DATASEC are never deduped and are self-canonical */
3203 		if (btf_is_var(t) || btf_is_datasec(t))
3204 			d->map[i] = i;
3205 		else
3206 			d->map[i] = BTF_UNPROCESSED_ID;
3207 	}
3208 
3209 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3210 	if (!d->hypot_map) {
3211 		err = -ENOMEM;
3212 		goto done;
3213 	}
3214 	for (i = 0; i < type_cnt; i++)
3215 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3216 
3217 done:
3218 	if (err) {
3219 		btf_dedup_free(d);
3220 		return ERR_PTR(err);
3221 	}
3222 
3223 	return d;
3224 }
3225 
3226 /*
3227  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3228  * string and pass pointer to it to a provided callback `fn`.
3229  */
3230 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3231 {
3232 	int i, r;
3233 
3234 	for (i = 0; i < d->btf->nr_types; i++) {
3235 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3236 
3237 		r = btf_type_visit_str_offs(t, fn, ctx);
3238 		if (r)
3239 			return r;
3240 	}
3241 
3242 	if (!d->btf_ext)
3243 		return 0;
3244 
3245 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3246 	if (r)
3247 		return r;
3248 
3249 	return 0;
3250 }
3251 
3252 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3253 {
3254 	struct btf_dedup *d = ctx;
3255 	__u32 str_off = *str_off_ptr;
3256 	const char *s;
3257 	int off, err;
3258 
3259 	/* don't touch empty string or string in main BTF */
3260 	if (str_off == 0 || str_off < d->btf->start_str_off)
3261 		return 0;
3262 
3263 	s = btf__str_by_offset(d->btf, str_off);
3264 	if (d->btf->base_btf) {
3265 		err = btf__find_str(d->btf->base_btf, s);
3266 		if (err >= 0) {
3267 			*str_off_ptr = err;
3268 			return 0;
3269 		}
3270 		if (err != -ENOENT)
3271 			return err;
3272 	}
3273 
3274 	off = strset__add_str(d->strs_set, s);
3275 	if (off < 0)
3276 		return off;
3277 
3278 	*str_off_ptr = d->btf->start_str_off + off;
3279 	return 0;
3280 }
3281 
3282 /*
3283  * Dedup string and filter out those that are not referenced from either .BTF
3284  * or .BTF.ext (if provided) sections.
3285  *
3286  * This is done by building index of all strings in BTF's string section,
3287  * then iterating over all entities that can reference strings (e.g., type
3288  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3289  * strings as used. After that all used strings are deduped and compacted into
3290  * sequential blob of memory and new offsets are calculated. Then all the string
3291  * references are iterated again and rewritten using new offsets.
3292  */
3293 static int btf_dedup_strings(struct btf_dedup *d)
3294 {
3295 	int err;
3296 
3297 	if (d->btf->strs_deduped)
3298 		return 0;
3299 
3300 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3301 	if (IS_ERR(d->strs_set)) {
3302 		err = PTR_ERR(d->strs_set);
3303 		goto err_out;
3304 	}
3305 
3306 	if (!d->btf->base_btf) {
3307 		/* insert empty string; we won't be looking it up during strings
3308 		 * dedup, but it's good to have it for generic BTF string lookups
3309 		 */
3310 		err = strset__add_str(d->strs_set, "");
3311 		if (err < 0)
3312 			goto err_out;
3313 	}
3314 
3315 	/* remap string offsets */
3316 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3317 	if (err)
3318 		goto err_out;
3319 
3320 	/* replace BTF string data and hash with deduped ones */
3321 	strset__free(d->btf->strs_set);
3322 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3323 	d->btf->strs_set = d->strs_set;
3324 	d->strs_set = NULL;
3325 	d->btf->strs_deduped = true;
3326 	return 0;
3327 
3328 err_out:
3329 	strset__free(d->strs_set);
3330 	d->strs_set = NULL;
3331 
3332 	return err;
3333 }
3334 
3335 static long btf_hash_common(struct btf_type *t)
3336 {
3337 	long h;
3338 
3339 	h = hash_combine(0, t->name_off);
3340 	h = hash_combine(h, t->info);
3341 	h = hash_combine(h, t->size);
3342 	return h;
3343 }
3344 
3345 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3346 {
3347 	return t1->name_off == t2->name_off &&
3348 	       t1->info == t2->info &&
3349 	       t1->size == t2->size;
3350 }
3351 
3352 /* Calculate type signature hash of INT or TAG. */
3353 static long btf_hash_int_decl_tag(struct btf_type *t)
3354 {
3355 	__u32 info = *(__u32 *)(t + 1);
3356 	long h;
3357 
3358 	h = btf_hash_common(t);
3359 	h = hash_combine(h, info);
3360 	return h;
3361 }
3362 
3363 /* Check structural equality of two INTs or TAGs. */
3364 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3365 {
3366 	__u32 info1, info2;
3367 
3368 	if (!btf_equal_common(t1, t2))
3369 		return false;
3370 	info1 = *(__u32 *)(t1 + 1);
3371 	info2 = *(__u32 *)(t2 + 1);
3372 	return info1 == info2;
3373 }
3374 
3375 /* Calculate type signature hash of ENUM. */
3376 static long btf_hash_enum(struct btf_type *t)
3377 {
3378 	long h;
3379 
3380 	/* don't hash vlen and enum members to support enum fwd resolving */
3381 	h = hash_combine(0, t->name_off);
3382 	h = hash_combine(h, t->info & ~0xffff);
3383 	h = hash_combine(h, t->size);
3384 	return h;
3385 }
3386 
3387 /* Check structural equality of two ENUMs. */
3388 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3389 {
3390 	const struct btf_enum *m1, *m2;
3391 	__u16 vlen;
3392 	int i;
3393 
3394 	if (!btf_equal_common(t1, t2))
3395 		return false;
3396 
3397 	vlen = btf_vlen(t1);
3398 	m1 = btf_enum(t1);
3399 	m2 = btf_enum(t2);
3400 	for (i = 0; i < vlen; i++) {
3401 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3402 			return false;
3403 		m1++;
3404 		m2++;
3405 	}
3406 	return true;
3407 }
3408 
3409 static inline bool btf_is_enum_fwd(struct btf_type *t)
3410 {
3411 	return btf_is_enum(t) && btf_vlen(t) == 0;
3412 }
3413 
3414 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3415 {
3416 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3417 		return btf_equal_enum(t1, t2);
3418 	/* ignore vlen when comparing */
3419 	return t1->name_off == t2->name_off &&
3420 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3421 	       t1->size == t2->size;
3422 }
3423 
3424 /*
3425  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3426  * as referenced type IDs equivalence is established separately during type
3427  * graph equivalence check algorithm.
3428  */
3429 static long btf_hash_struct(struct btf_type *t)
3430 {
3431 	const struct btf_member *member = btf_members(t);
3432 	__u32 vlen = btf_vlen(t);
3433 	long h = btf_hash_common(t);
3434 	int i;
3435 
3436 	for (i = 0; i < vlen; i++) {
3437 		h = hash_combine(h, member->name_off);
3438 		h = hash_combine(h, member->offset);
3439 		/* no hashing of referenced type ID, it can be unresolved yet */
3440 		member++;
3441 	}
3442 	return h;
3443 }
3444 
3445 /*
3446  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3447  * IDs. This check is performed during type graph equivalence check and
3448  * referenced types equivalence is checked separately.
3449  */
3450 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3451 {
3452 	const struct btf_member *m1, *m2;
3453 	__u16 vlen;
3454 	int i;
3455 
3456 	if (!btf_equal_common(t1, t2))
3457 		return false;
3458 
3459 	vlen = btf_vlen(t1);
3460 	m1 = btf_members(t1);
3461 	m2 = btf_members(t2);
3462 	for (i = 0; i < vlen; i++) {
3463 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3464 			return false;
3465 		m1++;
3466 		m2++;
3467 	}
3468 	return true;
3469 }
3470 
3471 /*
3472  * Calculate type signature hash of ARRAY, including referenced type IDs,
3473  * under assumption that they were already resolved to canonical type IDs and
3474  * are not going to change.
3475  */
3476 static long btf_hash_array(struct btf_type *t)
3477 {
3478 	const struct btf_array *info = btf_array(t);
3479 	long h = btf_hash_common(t);
3480 
3481 	h = hash_combine(h, info->type);
3482 	h = hash_combine(h, info->index_type);
3483 	h = hash_combine(h, info->nelems);
3484 	return h;
3485 }
3486 
3487 /*
3488  * Check exact equality of two ARRAYs, taking into account referenced
3489  * type IDs, under assumption that they were already resolved to canonical
3490  * type IDs and are not going to change.
3491  * This function is called during reference types deduplication to compare
3492  * ARRAY to potential canonical representative.
3493  */
3494 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3495 {
3496 	const struct btf_array *info1, *info2;
3497 
3498 	if (!btf_equal_common(t1, t2))
3499 		return false;
3500 
3501 	info1 = btf_array(t1);
3502 	info2 = btf_array(t2);
3503 	return info1->type == info2->type &&
3504 	       info1->index_type == info2->index_type &&
3505 	       info1->nelems == info2->nelems;
3506 }
3507 
3508 /*
3509  * Check structural compatibility of two ARRAYs, ignoring referenced type
3510  * IDs. This check is performed during type graph equivalence check and
3511  * referenced types equivalence is checked separately.
3512  */
3513 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3514 {
3515 	if (!btf_equal_common(t1, t2))
3516 		return false;
3517 
3518 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3519 }
3520 
3521 /*
3522  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3523  * under assumption that they were already resolved to canonical type IDs and
3524  * are not going to change.
3525  */
3526 static long btf_hash_fnproto(struct btf_type *t)
3527 {
3528 	const struct btf_param *member = btf_params(t);
3529 	__u16 vlen = btf_vlen(t);
3530 	long h = btf_hash_common(t);
3531 	int i;
3532 
3533 	for (i = 0; i < vlen; i++) {
3534 		h = hash_combine(h, member->name_off);
3535 		h = hash_combine(h, member->type);
3536 		member++;
3537 	}
3538 	return h;
3539 }
3540 
3541 /*
3542  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3543  * type IDs, under assumption that they were already resolved to canonical
3544  * type IDs and are not going to change.
3545  * This function is called during reference types deduplication to compare
3546  * FUNC_PROTO to potential canonical representative.
3547  */
3548 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3549 {
3550 	const struct btf_param *m1, *m2;
3551 	__u16 vlen;
3552 	int i;
3553 
3554 	if (!btf_equal_common(t1, t2))
3555 		return false;
3556 
3557 	vlen = btf_vlen(t1);
3558 	m1 = btf_params(t1);
3559 	m2 = btf_params(t2);
3560 	for (i = 0; i < vlen; i++) {
3561 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3562 			return false;
3563 		m1++;
3564 		m2++;
3565 	}
3566 	return true;
3567 }
3568 
3569 /*
3570  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3571  * IDs. This check is performed during type graph equivalence check and
3572  * referenced types equivalence is checked separately.
3573  */
3574 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3575 {
3576 	const struct btf_param *m1, *m2;
3577 	__u16 vlen;
3578 	int i;
3579 
3580 	/* skip return type ID */
3581 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3582 		return false;
3583 
3584 	vlen = btf_vlen(t1);
3585 	m1 = btf_params(t1);
3586 	m2 = btf_params(t2);
3587 	for (i = 0; i < vlen; i++) {
3588 		if (m1->name_off != m2->name_off)
3589 			return false;
3590 		m1++;
3591 		m2++;
3592 	}
3593 	return true;
3594 }
3595 
3596 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3597  * types and initializing the rest of the state (canonical type mapping) for
3598  * the fixed base BTF part.
3599  */
3600 static int btf_dedup_prep(struct btf_dedup *d)
3601 {
3602 	struct btf_type *t;
3603 	int type_id;
3604 	long h;
3605 
3606 	if (!d->btf->base_btf)
3607 		return 0;
3608 
3609 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3610 		t = btf_type_by_id(d->btf, type_id);
3611 
3612 		/* all base BTF types are self-canonical by definition */
3613 		d->map[type_id] = type_id;
3614 
3615 		switch (btf_kind(t)) {
3616 		case BTF_KIND_VAR:
3617 		case BTF_KIND_DATASEC:
3618 			/* VAR and DATASEC are never hash/deduplicated */
3619 			continue;
3620 		case BTF_KIND_CONST:
3621 		case BTF_KIND_VOLATILE:
3622 		case BTF_KIND_RESTRICT:
3623 		case BTF_KIND_PTR:
3624 		case BTF_KIND_FWD:
3625 		case BTF_KIND_TYPEDEF:
3626 		case BTF_KIND_FUNC:
3627 		case BTF_KIND_FLOAT:
3628 			h = btf_hash_common(t);
3629 			break;
3630 		case BTF_KIND_INT:
3631 		case BTF_KIND_DECL_TAG:
3632 			h = btf_hash_int_decl_tag(t);
3633 			break;
3634 		case BTF_KIND_ENUM:
3635 			h = btf_hash_enum(t);
3636 			break;
3637 		case BTF_KIND_STRUCT:
3638 		case BTF_KIND_UNION:
3639 			h = btf_hash_struct(t);
3640 			break;
3641 		case BTF_KIND_ARRAY:
3642 			h = btf_hash_array(t);
3643 			break;
3644 		case BTF_KIND_FUNC_PROTO:
3645 			h = btf_hash_fnproto(t);
3646 			break;
3647 		default:
3648 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3649 			return -EINVAL;
3650 		}
3651 		if (btf_dedup_table_add(d, h, type_id))
3652 			return -ENOMEM;
3653 	}
3654 
3655 	return 0;
3656 }
3657 
3658 /*
3659  * Deduplicate primitive types, that can't reference other types, by calculating
3660  * their type signature hash and comparing them with any possible canonical
3661  * candidate. If no canonical candidate matches, type itself is marked as
3662  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3663  */
3664 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3665 {
3666 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3667 	struct hashmap_entry *hash_entry;
3668 	struct btf_type *cand;
3669 	/* if we don't find equivalent type, then we are canonical */
3670 	__u32 new_id = type_id;
3671 	__u32 cand_id;
3672 	long h;
3673 
3674 	switch (btf_kind(t)) {
3675 	case BTF_KIND_CONST:
3676 	case BTF_KIND_VOLATILE:
3677 	case BTF_KIND_RESTRICT:
3678 	case BTF_KIND_PTR:
3679 	case BTF_KIND_TYPEDEF:
3680 	case BTF_KIND_ARRAY:
3681 	case BTF_KIND_STRUCT:
3682 	case BTF_KIND_UNION:
3683 	case BTF_KIND_FUNC:
3684 	case BTF_KIND_FUNC_PROTO:
3685 	case BTF_KIND_VAR:
3686 	case BTF_KIND_DATASEC:
3687 	case BTF_KIND_DECL_TAG:
3688 		return 0;
3689 
3690 	case BTF_KIND_INT:
3691 		h = btf_hash_int_decl_tag(t);
3692 		for_each_dedup_cand(d, hash_entry, h) {
3693 			cand_id = (__u32)(long)hash_entry->value;
3694 			cand = btf_type_by_id(d->btf, cand_id);
3695 			if (btf_equal_int_tag(t, cand)) {
3696 				new_id = cand_id;
3697 				break;
3698 			}
3699 		}
3700 		break;
3701 
3702 	case BTF_KIND_ENUM:
3703 		h = btf_hash_enum(t);
3704 		for_each_dedup_cand(d, hash_entry, h) {
3705 			cand_id = (__u32)(long)hash_entry->value;
3706 			cand = btf_type_by_id(d->btf, cand_id);
3707 			if (btf_equal_enum(t, cand)) {
3708 				new_id = cand_id;
3709 				break;
3710 			}
3711 			if (d->opts.dont_resolve_fwds)
3712 				continue;
3713 			if (btf_compat_enum(t, cand)) {
3714 				if (btf_is_enum_fwd(t)) {
3715 					/* resolve fwd to full enum */
3716 					new_id = cand_id;
3717 					break;
3718 				}
3719 				/* resolve canonical enum fwd to full enum */
3720 				d->map[cand_id] = type_id;
3721 			}
3722 		}
3723 		break;
3724 
3725 	case BTF_KIND_FWD:
3726 	case BTF_KIND_FLOAT:
3727 		h = btf_hash_common(t);
3728 		for_each_dedup_cand(d, hash_entry, h) {
3729 			cand_id = (__u32)(long)hash_entry->value;
3730 			cand = btf_type_by_id(d->btf, cand_id);
3731 			if (btf_equal_common(t, cand)) {
3732 				new_id = cand_id;
3733 				break;
3734 			}
3735 		}
3736 		break;
3737 
3738 	default:
3739 		return -EINVAL;
3740 	}
3741 
3742 	d->map[type_id] = new_id;
3743 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3744 		return -ENOMEM;
3745 
3746 	return 0;
3747 }
3748 
3749 static int btf_dedup_prim_types(struct btf_dedup *d)
3750 {
3751 	int i, err;
3752 
3753 	for (i = 0; i < d->btf->nr_types; i++) {
3754 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3755 		if (err)
3756 			return err;
3757 	}
3758 	return 0;
3759 }
3760 
3761 /*
3762  * Check whether type is already mapped into canonical one (could be to itself).
3763  */
3764 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3765 {
3766 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3767 }
3768 
3769 /*
3770  * Resolve type ID into its canonical type ID, if any; otherwise return original
3771  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3772  * STRUCT/UNION link and resolve it into canonical type ID as well.
3773  */
3774 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3775 {
3776 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3777 		type_id = d->map[type_id];
3778 	return type_id;
3779 }
3780 
3781 /*
3782  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3783  * type ID.
3784  */
3785 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3786 {
3787 	__u32 orig_type_id = type_id;
3788 
3789 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3790 		return type_id;
3791 
3792 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3793 		type_id = d->map[type_id];
3794 
3795 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3796 		return type_id;
3797 
3798 	return orig_type_id;
3799 }
3800 
3801 
3802 static inline __u16 btf_fwd_kind(struct btf_type *t)
3803 {
3804 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3805 }
3806 
3807 /* Check if given two types are identical ARRAY definitions */
3808 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3809 {
3810 	struct btf_type *t1, *t2;
3811 
3812 	t1 = btf_type_by_id(d->btf, id1);
3813 	t2 = btf_type_by_id(d->btf, id2);
3814 	if (!btf_is_array(t1) || !btf_is_array(t2))
3815 		return 0;
3816 
3817 	return btf_equal_array(t1, t2);
3818 }
3819 
3820 /*
3821  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3822  * call it "candidate graph" in this description for brevity) to a type graph
3823  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3824  * here, though keep in mind that not all types in canonical graph are
3825  * necessarily canonical representatives themselves, some of them might be
3826  * duplicates or its uniqueness might not have been established yet).
3827  * Returns:
3828  *  - >0, if type graphs are equivalent;
3829  *  -  0, if not equivalent;
3830  *  - <0, on error.
3831  *
3832  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3833  * equivalence of BTF types at each step. If at any point BTF types in candidate
3834  * and canonical graphs are not compatible structurally, whole graphs are
3835  * incompatible. If types are structurally equivalent (i.e., all information
3836  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3837  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3838  * If a type references other types, then those referenced types are checked
3839  * for equivalence recursively.
3840  *
3841  * During DFS traversal, if we find that for current `canon_id` type we
3842  * already have some mapping in hypothetical map, we check for two possible
3843  * situations:
3844  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3845  *     happen when type graphs have cycles. In this case we assume those two
3846  *     types are equivalent.
3847  *   - `canon_id` is mapped to different type. This is contradiction in our
3848  *     hypothetical mapping, because same graph in canonical graph corresponds
3849  *     to two different types in candidate graph, which for equivalent type
3850  *     graphs shouldn't happen. This condition terminates equivalence check
3851  *     with negative result.
3852  *
3853  * If type graphs traversal exhausts types to check and find no contradiction,
3854  * then type graphs are equivalent.
3855  *
3856  * When checking types for equivalence, there is one special case: FWD types.
3857  * If FWD type resolution is allowed and one of the types (either from canonical
3858  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3859  * flag) and their names match, hypothetical mapping is updated to point from
3860  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3861  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3862  *
3863  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3864  * if there are two exactly named (or anonymous) structs/unions that are
3865  * compatible structurally, one of which has FWD field, while other is concrete
3866  * STRUCT/UNION, but according to C sources they are different structs/unions
3867  * that are referencing different types with the same name. This is extremely
3868  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3869  * this logic is causing problems.
3870  *
3871  * Doing FWD resolution means that both candidate and/or canonical graphs can
3872  * consists of portions of the graph that come from multiple compilation units.
3873  * This is due to the fact that types within single compilation unit are always
3874  * deduplicated and FWDs are already resolved, if referenced struct/union
3875  * definiton is available. So, if we had unresolved FWD and found corresponding
3876  * STRUCT/UNION, they will be from different compilation units. This
3877  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3878  * type graph will likely have at least two different BTF types that describe
3879  * same type (e.g., most probably there will be two different BTF types for the
3880  * same 'int' primitive type) and could even have "overlapping" parts of type
3881  * graph that describe same subset of types.
3882  *
3883  * This in turn means that our assumption that each type in canonical graph
3884  * must correspond to exactly one type in candidate graph might not hold
3885  * anymore and will make it harder to detect contradictions using hypothetical
3886  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3887  * resolution only in canonical graph. FWDs in candidate graphs are never
3888  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3889  * that can occur:
3890  *   - Both types in canonical and candidate graphs are FWDs. If they are
3891  *     structurally equivalent, then they can either be both resolved to the
3892  *     same STRUCT/UNION or not resolved at all. In both cases they are
3893  *     equivalent and there is no need to resolve FWD on candidate side.
3894  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3895  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3896  *   - Type in canonical graph is FWD, while type in candidate is concrete
3897  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3898  *     unit, so there is exactly one BTF type for each unique C type. After
3899  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3900  *     in canonical graph mapping to single BTF type in candidate graph, but
3901  *     because hypothetical mapping maps from canonical to candidate types, it's
3902  *     alright, and we still maintain the property of having single `canon_id`
3903  *     mapping to single `cand_id` (there could be two different `canon_id`
3904  *     mapped to the same `cand_id`, but it's not contradictory).
3905  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3906  *     graph is FWD. In this case we are just going to check compatibility of
3907  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3908  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3909  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3910  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3911  *     canonical graph.
3912  */
3913 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3914 			      __u32 canon_id)
3915 {
3916 	struct btf_type *cand_type;
3917 	struct btf_type *canon_type;
3918 	__u32 hypot_type_id;
3919 	__u16 cand_kind;
3920 	__u16 canon_kind;
3921 	int i, eq;
3922 
3923 	/* if both resolve to the same canonical, they must be equivalent */
3924 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3925 		return 1;
3926 
3927 	canon_id = resolve_fwd_id(d, canon_id);
3928 
3929 	hypot_type_id = d->hypot_map[canon_id];
3930 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3931 		/* In some cases compiler will generate different DWARF types
3932 		 * for *identical* array type definitions and use them for
3933 		 * different fields within the *same* struct. This breaks type
3934 		 * equivalence check, which makes an assumption that candidate
3935 		 * types sub-graph has a consistent and deduped-by-compiler
3936 		 * types within a single CU. So work around that by explicitly
3937 		 * allowing identical array types here.
3938 		 */
3939 		return hypot_type_id == cand_id ||
3940 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3941 	}
3942 
3943 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3944 		return -ENOMEM;
3945 
3946 	cand_type = btf_type_by_id(d->btf, cand_id);
3947 	canon_type = btf_type_by_id(d->btf, canon_id);
3948 	cand_kind = btf_kind(cand_type);
3949 	canon_kind = btf_kind(canon_type);
3950 
3951 	if (cand_type->name_off != canon_type->name_off)
3952 		return 0;
3953 
3954 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3955 	if (!d->opts.dont_resolve_fwds
3956 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3957 	    && cand_kind != canon_kind) {
3958 		__u16 real_kind;
3959 		__u16 fwd_kind;
3960 
3961 		if (cand_kind == BTF_KIND_FWD) {
3962 			real_kind = canon_kind;
3963 			fwd_kind = btf_fwd_kind(cand_type);
3964 		} else {
3965 			real_kind = cand_kind;
3966 			fwd_kind = btf_fwd_kind(canon_type);
3967 			/* we'd need to resolve base FWD to STRUCT/UNION */
3968 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3969 				d->hypot_adjust_canon = true;
3970 		}
3971 		return fwd_kind == real_kind;
3972 	}
3973 
3974 	if (cand_kind != canon_kind)
3975 		return 0;
3976 
3977 	switch (cand_kind) {
3978 	case BTF_KIND_INT:
3979 		return btf_equal_int_tag(cand_type, canon_type);
3980 
3981 	case BTF_KIND_ENUM:
3982 		if (d->opts.dont_resolve_fwds)
3983 			return btf_equal_enum(cand_type, canon_type);
3984 		else
3985 			return btf_compat_enum(cand_type, canon_type);
3986 
3987 	case BTF_KIND_FWD:
3988 	case BTF_KIND_FLOAT:
3989 		return btf_equal_common(cand_type, canon_type);
3990 
3991 	case BTF_KIND_CONST:
3992 	case BTF_KIND_VOLATILE:
3993 	case BTF_KIND_RESTRICT:
3994 	case BTF_KIND_PTR:
3995 	case BTF_KIND_TYPEDEF:
3996 	case BTF_KIND_FUNC:
3997 		if (cand_type->info != canon_type->info)
3998 			return 0;
3999 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4000 
4001 	case BTF_KIND_ARRAY: {
4002 		const struct btf_array *cand_arr, *canon_arr;
4003 
4004 		if (!btf_compat_array(cand_type, canon_type))
4005 			return 0;
4006 		cand_arr = btf_array(cand_type);
4007 		canon_arr = btf_array(canon_type);
4008 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4009 		if (eq <= 0)
4010 			return eq;
4011 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4012 	}
4013 
4014 	case BTF_KIND_STRUCT:
4015 	case BTF_KIND_UNION: {
4016 		const struct btf_member *cand_m, *canon_m;
4017 		__u16 vlen;
4018 
4019 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4020 			return 0;
4021 		vlen = btf_vlen(cand_type);
4022 		cand_m = btf_members(cand_type);
4023 		canon_m = btf_members(canon_type);
4024 		for (i = 0; i < vlen; i++) {
4025 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4026 			if (eq <= 0)
4027 				return eq;
4028 			cand_m++;
4029 			canon_m++;
4030 		}
4031 
4032 		return 1;
4033 	}
4034 
4035 	case BTF_KIND_FUNC_PROTO: {
4036 		const struct btf_param *cand_p, *canon_p;
4037 		__u16 vlen;
4038 
4039 		if (!btf_compat_fnproto(cand_type, canon_type))
4040 			return 0;
4041 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4042 		if (eq <= 0)
4043 			return eq;
4044 		vlen = btf_vlen(cand_type);
4045 		cand_p = btf_params(cand_type);
4046 		canon_p = btf_params(canon_type);
4047 		for (i = 0; i < vlen; i++) {
4048 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4049 			if (eq <= 0)
4050 				return eq;
4051 			cand_p++;
4052 			canon_p++;
4053 		}
4054 		return 1;
4055 	}
4056 
4057 	default:
4058 		return -EINVAL;
4059 	}
4060 	return 0;
4061 }
4062 
4063 /*
4064  * Use hypothetical mapping, produced by successful type graph equivalence
4065  * check, to augment existing struct/union canonical mapping, where possible.
4066  *
4067  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4068  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4069  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4070  * we are recording the mapping anyway. As opposed to carefulness required
4071  * for struct/union correspondence mapping (described below), for FWD resolution
4072  * it's not important, as by the time that FWD type (reference type) will be
4073  * deduplicated all structs/unions will be deduped already anyway.
4074  *
4075  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4076  * not required for correctness. It needs to be done carefully to ensure that
4077  * struct/union from candidate's type graph is not mapped into corresponding
4078  * struct/union from canonical type graph that itself hasn't been resolved into
4079  * canonical representative. The only guarantee we have is that canonical
4080  * struct/union was determined as canonical and that won't change. But any
4081  * types referenced through that struct/union fields could have been not yet
4082  * resolved, so in case like that it's too early to establish any kind of
4083  * correspondence between structs/unions.
4084  *
4085  * No canonical correspondence is derived for primitive types (they are already
4086  * deduplicated completely already anyway) or reference types (they rely on
4087  * stability of struct/union canonical relationship for equivalence checks).
4088  */
4089 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4090 {
4091 	__u32 canon_type_id, targ_type_id;
4092 	__u16 t_kind, c_kind;
4093 	__u32 t_id, c_id;
4094 	int i;
4095 
4096 	for (i = 0; i < d->hypot_cnt; i++) {
4097 		canon_type_id = d->hypot_list[i];
4098 		targ_type_id = d->hypot_map[canon_type_id];
4099 		t_id = resolve_type_id(d, targ_type_id);
4100 		c_id = resolve_type_id(d, canon_type_id);
4101 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4102 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4103 		/*
4104 		 * Resolve FWD into STRUCT/UNION.
4105 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4106 		 * mapped to canonical representative (as opposed to
4107 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4108 		 * eventually that struct is going to be mapped and all resolved
4109 		 * FWDs will automatically resolve to correct canonical
4110 		 * representative. This will happen before ref type deduping,
4111 		 * which critically depends on stability of these mapping. This
4112 		 * stability is not a requirement for STRUCT/UNION equivalence
4113 		 * checks, though.
4114 		 */
4115 
4116 		/* if it's the split BTF case, we still need to point base FWD
4117 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4118 		 * will be resolved against base FWD. If we don't point base
4119 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4120 		 * FWDs in split BTF won't be correctly resolved to a proper
4121 		 * STRUCT/UNION.
4122 		 */
4123 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4124 			d->map[c_id] = t_id;
4125 
4126 		/* if graph equivalence determined that we'd need to adjust
4127 		 * base canonical types, then we need to only point base FWDs
4128 		 * to STRUCTs/UNIONs and do no more modifications. For all
4129 		 * other purposes the type graphs were not equivalent.
4130 		 */
4131 		if (d->hypot_adjust_canon)
4132 			continue;
4133 
4134 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4135 			d->map[t_id] = c_id;
4136 
4137 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4138 		    c_kind != BTF_KIND_FWD &&
4139 		    is_type_mapped(d, c_id) &&
4140 		    !is_type_mapped(d, t_id)) {
4141 			/*
4142 			 * as a perf optimization, we can map struct/union
4143 			 * that's part of type graph we just verified for
4144 			 * equivalence. We can do that for struct/union that has
4145 			 * canonical representative only, though.
4146 			 */
4147 			d->map[t_id] = c_id;
4148 		}
4149 	}
4150 }
4151 
4152 /*
4153  * Deduplicate struct/union types.
4154  *
4155  * For each struct/union type its type signature hash is calculated, taking
4156  * into account type's name, size, number, order and names of fields, but
4157  * ignoring type ID's referenced from fields, because they might not be deduped
4158  * completely until after reference types deduplication phase. This type hash
4159  * is used to iterate over all potential canonical types, sharing same hash.
4160  * For each canonical candidate we check whether type graphs that they form
4161  * (through referenced types in fields and so on) are equivalent using algorithm
4162  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4163  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4164  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4165  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4166  * potentially map other structs/unions to their canonical representatives,
4167  * if such relationship hasn't yet been established. This speeds up algorithm
4168  * by eliminating some of the duplicate work.
4169  *
4170  * If no matching canonical representative was found, struct/union is marked
4171  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4172  * for further look ups.
4173  */
4174 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4175 {
4176 	struct btf_type *cand_type, *t;
4177 	struct hashmap_entry *hash_entry;
4178 	/* if we don't find equivalent type, then we are canonical */
4179 	__u32 new_id = type_id;
4180 	__u16 kind;
4181 	long h;
4182 
4183 	/* already deduped or is in process of deduping (loop detected) */
4184 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4185 		return 0;
4186 
4187 	t = btf_type_by_id(d->btf, type_id);
4188 	kind = btf_kind(t);
4189 
4190 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4191 		return 0;
4192 
4193 	h = btf_hash_struct(t);
4194 	for_each_dedup_cand(d, hash_entry, h) {
4195 		__u32 cand_id = (__u32)(long)hash_entry->value;
4196 		int eq;
4197 
4198 		/*
4199 		 * Even though btf_dedup_is_equiv() checks for
4200 		 * btf_shallow_equal_struct() internally when checking two
4201 		 * structs (unions) for equivalence, we need to guard here
4202 		 * from picking matching FWD type as a dedup candidate.
4203 		 * This can happen due to hash collision. In such case just
4204 		 * relying on btf_dedup_is_equiv() would lead to potentially
4205 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4206 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4207 		 */
4208 		cand_type = btf_type_by_id(d->btf, cand_id);
4209 		if (!btf_shallow_equal_struct(t, cand_type))
4210 			continue;
4211 
4212 		btf_dedup_clear_hypot_map(d);
4213 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4214 		if (eq < 0)
4215 			return eq;
4216 		if (!eq)
4217 			continue;
4218 		btf_dedup_merge_hypot_map(d);
4219 		if (d->hypot_adjust_canon) /* not really equivalent */
4220 			continue;
4221 		new_id = cand_id;
4222 		break;
4223 	}
4224 
4225 	d->map[type_id] = new_id;
4226 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4227 		return -ENOMEM;
4228 
4229 	return 0;
4230 }
4231 
4232 static int btf_dedup_struct_types(struct btf_dedup *d)
4233 {
4234 	int i, err;
4235 
4236 	for (i = 0; i < d->btf->nr_types; i++) {
4237 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4238 		if (err)
4239 			return err;
4240 	}
4241 	return 0;
4242 }
4243 
4244 /*
4245  * Deduplicate reference type.
4246  *
4247  * Once all primitive and struct/union types got deduplicated, we can easily
4248  * deduplicate all other (reference) BTF types. This is done in two steps:
4249  *
4250  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4251  * resolution can be done either immediately for primitive or struct/union types
4252  * (because they were deduped in previous two phases) or recursively for
4253  * reference types. Recursion will always terminate at either primitive or
4254  * struct/union type, at which point we can "unwind" chain of reference types
4255  * one by one. There is no danger of encountering cycles because in C type
4256  * system the only way to form type cycle is through struct/union, so any chain
4257  * of reference types, even those taking part in a type cycle, will inevitably
4258  * reach struct/union at some point.
4259  *
4260  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4261  * becomes "stable", in the sense that no further deduplication will cause
4262  * any changes to it. With that, it's now possible to calculate type's signature
4263  * hash (this time taking into account referenced type IDs) and loop over all
4264  * potential canonical representatives. If no match was found, current type
4265  * will become canonical representative of itself and will be added into
4266  * btf_dedup->dedup_table as another possible canonical representative.
4267  */
4268 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4269 {
4270 	struct hashmap_entry *hash_entry;
4271 	__u32 new_id = type_id, cand_id;
4272 	struct btf_type *t, *cand;
4273 	/* if we don't find equivalent type, then we are representative type */
4274 	int ref_type_id;
4275 	long h;
4276 
4277 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4278 		return -ELOOP;
4279 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4280 		return resolve_type_id(d, type_id);
4281 
4282 	t = btf_type_by_id(d->btf, type_id);
4283 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4284 
4285 	switch (btf_kind(t)) {
4286 	case BTF_KIND_CONST:
4287 	case BTF_KIND_VOLATILE:
4288 	case BTF_KIND_RESTRICT:
4289 	case BTF_KIND_PTR:
4290 	case BTF_KIND_TYPEDEF:
4291 	case BTF_KIND_FUNC:
4292 		ref_type_id = btf_dedup_ref_type(d, t->type);
4293 		if (ref_type_id < 0)
4294 			return ref_type_id;
4295 		t->type = ref_type_id;
4296 
4297 		h = btf_hash_common(t);
4298 		for_each_dedup_cand(d, hash_entry, h) {
4299 			cand_id = (__u32)(long)hash_entry->value;
4300 			cand = btf_type_by_id(d->btf, cand_id);
4301 			if (btf_equal_common(t, cand)) {
4302 				new_id = cand_id;
4303 				break;
4304 			}
4305 		}
4306 		break;
4307 
4308 	case BTF_KIND_DECL_TAG:
4309 		ref_type_id = btf_dedup_ref_type(d, t->type);
4310 		if (ref_type_id < 0)
4311 			return ref_type_id;
4312 		t->type = ref_type_id;
4313 
4314 		h = btf_hash_int_decl_tag(t);
4315 		for_each_dedup_cand(d, hash_entry, h) {
4316 			cand_id = (__u32)(long)hash_entry->value;
4317 			cand = btf_type_by_id(d->btf, cand_id);
4318 			if (btf_equal_int_tag(t, cand)) {
4319 				new_id = cand_id;
4320 				break;
4321 			}
4322 		}
4323 		break;
4324 
4325 	case BTF_KIND_ARRAY: {
4326 		struct btf_array *info = btf_array(t);
4327 
4328 		ref_type_id = btf_dedup_ref_type(d, info->type);
4329 		if (ref_type_id < 0)
4330 			return ref_type_id;
4331 		info->type = ref_type_id;
4332 
4333 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4334 		if (ref_type_id < 0)
4335 			return ref_type_id;
4336 		info->index_type = ref_type_id;
4337 
4338 		h = btf_hash_array(t);
4339 		for_each_dedup_cand(d, hash_entry, h) {
4340 			cand_id = (__u32)(long)hash_entry->value;
4341 			cand = btf_type_by_id(d->btf, cand_id);
4342 			if (btf_equal_array(t, cand)) {
4343 				new_id = cand_id;
4344 				break;
4345 			}
4346 		}
4347 		break;
4348 	}
4349 
4350 	case BTF_KIND_FUNC_PROTO: {
4351 		struct btf_param *param;
4352 		__u16 vlen;
4353 		int i;
4354 
4355 		ref_type_id = btf_dedup_ref_type(d, t->type);
4356 		if (ref_type_id < 0)
4357 			return ref_type_id;
4358 		t->type = ref_type_id;
4359 
4360 		vlen = btf_vlen(t);
4361 		param = btf_params(t);
4362 		for (i = 0; i < vlen; i++) {
4363 			ref_type_id = btf_dedup_ref_type(d, param->type);
4364 			if (ref_type_id < 0)
4365 				return ref_type_id;
4366 			param->type = ref_type_id;
4367 			param++;
4368 		}
4369 
4370 		h = btf_hash_fnproto(t);
4371 		for_each_dedup_cand(d, hash_entry, h) {
4372 			cand_id = (__u32)(long)hash_entry->value;
4373 			cand = btf_type_by_id(d->btf, cand_id);
4374 			if (btf_equal_fnproto(t, cand)) {
4375 				new_id = cand_id;
4376 				break;
4377 			}
4378 		}
4379 		break;
4380 	}
4381 
4382 	default:
4383 		return -EINVAL;
4384 	}
4385 
4386 	d->map[type_id] = new_id;
4387 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4388 		return -ENOMEM;
4389 
4390 	return new_id;
4391 }
4392 
4393 static int btf_dedup_ref_types(struct btf_dedup *d)
4394 {
4395 	int i, err;
4396 
4397 	for (i = 0; i < d->btf->nr_types; i++) {
4398 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4399 		if (err < 0)
4400 			return err;
4401 	}
4402 	/* we won't need d->dedup_table anymore */
4403 	hashmap__free(d->dedup_table);
4404 	d->dedup_table = NULL;
4405 	return 0;
4406 }
4407 
4408 /*
4409  * Compact types.
4410  *
4411  * After we established for each type its corresponding canonical representative
4412  * type, we now can eliminate types that are not canonical and leave only
4413  * canonical ones layed out sequentially in memory by copying them over
4414  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4415  * a map from original type ID to a new compacted type ID, which will be used
4416  * during next phase to "fix up" type IDs, referenced from struct/union and
4417  * reference types.
4418  */
4419 static int btf_dedup_compact_types(struct btf_dedup *d)
4420 {
4421 	__u32 *new_offs;
4422 	__u32 next_type_id = d->btf->start_id;
4423 	const struct btf_type *t;
4424 	void *p;
4425 	int i, id, len;
4426 
4427 	/* we are going to reuse hypot_map to store compaction remapping */
4428 	d->hypot_map[0] = 0;
4429 	/* base BTF types are not renumbered */
4430 	for (id = 1; id < d->btf->start_id; id++)
4431 		d->hypot_map[id] = id;
4432 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4433 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4434 
4435 	p = d->btf->types_data;
4436 
4437 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4438 		if (d->map[id] != id)
4439 			continue;
4440 
4441 		t = btf__type_by_id(d->btf, id);
4442 		len = btf_type_size(t);
4443 		if (len < 0)
4444 			return len;
4445 
4446 		memmove(p, t, len);
4447 		d->hypot_map[id] = next_type_id;
4448 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4449 		p += len;
4450 		next_type_id++;
4451 	}
4452 
4453 	/* shrink struct btf's internal types index and update btf_header */
4454 	d->btf->nr_types = next_type_id - d->btf->start_id;
4455 	d->btf->type_offs_cap = d->btf->nr_types;
4456 	d->btf->hdr->type_len = p - d->btf->types_data;
4457 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4458 				       sizeof(*new_offs));
4459 	if (d->btf->type_offs_cap && !new_offs)
4460 		return -ENOMEM;
4461 	d->btf->type_offs = new_offs;
4462 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4463 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4464 	return 0;
4465 }
4466 
4467 /*
4468  * Figure out final (deduplicated and compacted) type ID for provided original
4469  * `type_id` by first resolving it into corresponding canonical type ID and
4470  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4471  * which is populated during compaction phase.
4472  */
4473 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4474 {
4475 	struct btf_dedup *d = ctx;
4476 	__u32 resolved_type_id, new_type_id;
4477 
4478 	resolved_type_id = resolve_type_id(d, *type_id);
4479 	new_type_id = d->hypot_map[resolved_type_id];
4480 	if (new_type_id > BTF_MAX_NR_TYPES)
4481 		return -EINVAL;
4482 
4483 	*type_id = new_type_id;
4484 	return 0;
4485 }
4486 
4487 /*
4488  * Remap referenced type IDs into deduped type IDs.
4489  *
4490  * After BTF types are deduplicated and compacted, their final type IDs may
4491  * differ from original ones. The map from original to a corresponding
4492  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4493  * compaction phase. During remapping phase we are rewriting all type IDs
4494  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4495  * their final deduped type IDs.
4496  */
4497 static int btf_dedup_remap_types(struct btf_dedup *d)
4498 {
4499 	int i, r;
4500 
4501 	for (i = 0; i < d->btf->nr_types; i++) {
4502 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4503 
4504 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4505 		if (r)
4506 			return r;
4507 	}
4508 
4509 	if (!d->btf_ext)
4510 		return 0;
4511 
4512 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4513 	if (r)
4514 		return r;
4515 
4516 	return 0;
4517 }
4518 
4519 /*
4520  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4521  * data out of it to use for target BTF.
4522  */
4523 struct btf *btf__load_vmlinux_btf(void)
4524 {
4525 	struct {
4526 		const char *path_fmt;
4527 		bool raw_btf;
4528 	} locations[] = {
4529 		/* try canonical vmlinux BTF through sysfs first */
4530 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4531 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4532 		{ "/boot/vmlinux-%1$s" },
4533 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4534 		{ "/lib/modules/%1$s/build/vmlinux" },
4535 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4536 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4537 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4538 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4539 	};
4540 	char path[PATH_MAX + 1];
4541 	struct utsname buf;
4542 	struct btf *btf;
4543 	int i, err;
4544 
4545 	uname(&buf);
4546 
4547 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4548 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4549 
4550 		if (access(path, R_OK))
4551 			continue;
4552 
4553 		if (locations[i].raw_btf)
4554 			btf = btf__parse_raw(path);
4555 		else
4556 			btf = btf__parse_elf(path, NULL);
4557 		err = libbpf_get_error(btf);
4558 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4559 		if (err)
4560 			continue;
4561 
4562 		return btf;
4563 	}
4564 
4565 	pr_warn("failed to find valid kernel BTF\n");
4566 	return libbpf_err_ptr(-ESRCH);
4567 }
4568 
4569 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4570 
4571 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4572 {
4573 	char path[80];
4574 
4575 	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4576 	return btf__parse_split(path, vmlinux_btf);
4577 }
4578 
4579 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4580 {
4581 	int i, n, err;
4582 
4583 	switch (btf_kind(t)) {
4584 	case BTF_KIND_INT:
4585 	case BTF_KIND_FLOAT:
4586 	case BTF_KIND_ENUM:
4587 		return 0;
4588 
4589 	case BTF_KIND_FWD:
4590 	case BTF_KIND_CONST:
4591 	case BTF_KIND_VOLATILE:
4592 	case BTF_KIND_RESTRICT:
4593 	case BTF_KIND_PTR:
4594 	case BTF_KIND_TYPEDEF:
4595 	case BTF_KIND_FUNC:
4596 	case BTF_KIND_VAR:
4597 	case BTF_KIND_DECL_TAG:
4598 		return visit(&t->type, ctx);
4599 
4600 	case BTF_KIND_ARRAY: {
4601 		struct btf_array *a = btf_array(t);
4602 
4603 		err = visit(&a->type, ctx);
4604 		err = err ?: visit(&a->index_type, ctx);
4605 		return err;
4606 	}
4607 
4608 	case BTF_KIND_STRUCT:
4609 	case BTF_KIND_UNION: {
4610 		struct btf_member *m = btf_members(t);
4611 
4612 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4613 			err = visit(&m->type, ctx);
4614 			if (err)
4615 				return err;
4616 		}
4617 		return 0;
4618 	}
4619 
4620 	case BTF_KIND_FUNC_PROTO: {
4621 		struct btf_param *m = btf_params(t);
4622 
4623 		err = visit(&t->type, ctx);
4624 		if (err)
4625 			return err;
4626 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4627 			err = visit(&m->type, ctx);
4628 			if (err)
4629 				return err;
4630 		}
4631 		return 0;
4632 	}
4633 
4634 	case BTF_KIND_DATASEC: {
4635 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4636 
4637 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4638 			err = visit(&m->type, ctx);
4639 			if (err)
4640 				return err;
4641 		}
4642 		return 0;
4643 	}
4644 
4645 	default:
4646 		return -EINVAL;
4647 	}
4648 }
4649 
4650 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4651 {
4652 	int i, n, err;
4653 
4654 	err = visit(&t->name_off, ctx);
4655 	if (err)
4656 		return err;
4657 
4658 	switch (btf_kind(t)) {
4659 	case BTF_KIND_STRUCT:
4660 	case BTF_KIND_UNION: {
4661 		struct btf_member *m = btf_members(t);
4662 
4663 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4664 			err = visit(&m->name_off, ctx);
4665 			if (err)
4666 				return err;
4667 		}
4668 		break;
4669 	}
4670 	case BTF_KIND_ENUM: {
4671 		struct btf_enum *m = btf_enum(t);
4672 
4673 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4674 			err = visit(&m->name_off, ctx);
4675 			if (err)
4676 				return err;
4677 		}
4678 		break;
4679 	}
4680 	case BTF_KIND_FUNC_PROTO: {
4681 		struct btf_param *m = btf_params(t);
4682 
4683 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4684 			err = visit(&m->name_off, ctx);
4685 			if (err)
4686 				return err;
4687 		}
4688 		break;
4689 	}
4690 	default:
4691 		break;
4692 	}
4693 
4694 	return 0;
4695 }
4696 
4697 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4698 {
4699 	const struct btf_ext_info *seg;
4700 	struct btf_ext_info_sec *sec;
4701 	int i, err;
4702 
4703 	seg = &btf_ext->func_info;
4704 	for_each_btf_ext_sec(seg, sec) {
4705 		struct bpf_func_info_min *rec;
4706 
4707 		for_each_btf_ext_rec(seg, sec, i, rec) {
4708 			err = visit(&rec->type_id, ctx);
4709 			if (err < 0)
4710 				return err;
4711 		}
4712 	}
4713 
4714 	seg = &btf_ext->core_relo_info;
4715 	for_each_btf_ext_sec(seg, sec) {
4716 		struct bpf_core_relo *rec;
4717 
4718 		for_each_btf_ext_rec(seg, sec, i, rec) {
4719 			err = visit(&rec->type_id, ctx);
4720 			if (err < 0)
4721 				return err;
4722 		}
4723 	}
4724 
4725 	return 0;
4726 }
4727 
4728 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4729 {
4730 	const struct btf_ext_info *seg;
4731 	struct btf_ext_info_sec *sec;
4732 	int i, err;
4733 
4734 	seg = &btf_ext->func_info;
4735 	for_each_btf_ext_sec(seg, sec) {
4736 		err = visit(&sec->sec_name_off, ctx);
4737 		if (err)
4738 			return err;
4739 	}
4740 
4741 	seg = &btf_ext->line_info;
4742 	for_each_btf_ext_sec(seg, sec) {
4743 		struct bpf_line_info_min *rec;
4744 
4745 		err = visit(&sec->sec_name_off, ctx);
4746 		if (err)
4747 			return err;
4748 
4749 		for_each_btf_ext_rec(seg, sec, i, rec) {
4750 			err = visit(&rec->file_name_off, ctx);
4751 			if (err)
4752 				return err;
4753 			err = visit(&rec->line_off, ctx);
4754 			if (err)
4755 				return err;
4756 		}
4757 	}
4758 
4759 	seg = &btf_ext->core_relo_info;
4760 	for_each_btf_ext_sec(seg, sec) {
4761 		struct bpf_core_relo *rec;
4762 
4763 		err = visit(&sec->sec_name_off, ctx);
4764 		if (err)
4765 			return err;
4766 
4767 		for_each_btf_ext_rec(seg, sec, i, rec) {
4768 			err = visit(&rec->access_str_off, ctx);
4769 			if (err)
4770 				return err;
4771 		}
4772 	}
4773 
4774 	return 0;
4775 }
4776