1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <endian.h> 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <string.h> 8 #include <fcntl.h> 9 #include <unistd.h> 10 #include <errno.h> 11 #include <linux/err.h> 12 #include <linux/btf.h> 13 #include <gelf.h> 14 #include "btf.h" 15 #include "bpf.h" 16 #include "libbpf.h" 17 #include "libbpf_internal.h" 18 #include "hashmap.h" 19 20 #define BTF_MAX_NR_TYPES 0x7fffffff 21 #define BTF_MAX_STR_OFFSET 0x7fffffff 22 23 #define IS_MODIFIER(k) (((k) == BTF_KIND_TYPEDEF) || \ 24 ((k) == BTF_KIND_VOLATILE) || \ 25 ((k) == BTF_KIND_CONST) || \ 26 ((k) == BTF_KIND_RESTRICT)) 27 28 #define IS_VAR(k) ((k) == BTF_KIND_VAR) 29 30 static struct btf_type btf_void; 31 32 struct btf { 33 union { 34 struct btf_header *hdr; 35 void *data; 36 }; 37 struct btf_type **types; 38 const char *strings; 39 void *nohdr_data; 40 __u32 nr_types; 41 __u32 types_size; 42 __u32 data_size; 43 int fd; 44 }; 45 46 struct btf_ext_info { 47 /* 48 * info points to the individual info section (e.g. func_info and 49 * line_info) from the .BTF.ext. It does not include the __u32 rec_size. 50 */ 51 void *info; 52 __u32 rec_size; 53 __u32 len; 54 }; 55 56 struct btf_ext { 57 union { 58 struct btf_ext_header *hdr; 59 void *data; 60 }; 61 struct btf_ext_info func_info; 62 struct btf_ext_info line_info; 63 __u32 data_size; 64 }; 65 66 struct btf_ext_info_sec { 67 __u32 sec_name_off; 68 __u32 num_info; 69 /* Followed by num_info * record_size number of bytes */ 70 __u8 data[0]; 71 }; 72 73 /* The minimum bpf_func_info checked by the loader */ 74 struct bpf_func_info_min { 75 __u32 insn_off; 76 __u32 type_id; 77 }; 78 79 /* The minimum bpf_line_info checked by the loader */ 80 struct bpf_line_info_min { 81 __u32 insn_off; 82 __u32 file_name_off; 83 __u32 line_off; 84 __u32 line_col; 85 }; 86 87 static inline __u64 ptr_to_u64(const void *ptr) 88 { 89 return (__u64) (unsigned long) ptr; 90 } 91 92 static int btf_add_type(struct btf *btf, struct btf_type *t) 93 { 94 if (btf->types_size - btf->nr_types < 2) { 95 struct btf_type **new_types; 96 __u32 expand_by, new_size; 97 98 if (btf->types_size == BTF_MAX_NR_TYPES) 99 return -E2BIG; 100 101 expand_by = max(btf->types_size >> 2, 16); 102 new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by); 103 104 new_types = realloc(btf->types, sizeof(*new_types) * new_size); 105 if (!new_types) 106 return -ENOMEM; 107 108 if (btf->nr_types == 0) 109 new_types[0] = &btf_void; 110 111 btf->types = new_types; 112 btf->types_size = new_size; 113 } 114 115 btf->types[++(btf->nr_types)] = t; 116 117 return 0; 118 } 119 120 static int btf_parse_hdr(struct btf *btf) 121 { 122 const struct btf_header *hdr = btf->hdr; 123 __u32 meta_left; 124 125 if (btf->data_size < sizeof(struct btf_header)) { 126 pr_debug("BTF header not found\n"); 127 return -EINVAL; 128 } 129 130 if (hdr->magic != BTF_MAGIC) { 131 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 132 return -EINVAL; 133 } 134 135 if (hdr->version != BTF_VERSION) { 136 pr_debug("Unsupported BTF version:%u\n", hdr->version); 137 return -ENOTSUP; 138 } 139 140 if (hdr->flags) { 141 pr_debug("Unsupported BTF flags:%x\n", hdr->flags); 142 return -ENOTSUP; 143 } 144 145 meta_left = btf->data_size - sizeof(*hdr); 146 if (!meta_left) { 147 pr_debug("BTF has no data\n"); 148 return -EINVAL; 149 } 150 151 if (meta_left < hdr->type_off) { 152 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); 153 return -EINVAL; 154 } 155 156 if (meta_left < hdr->str_off) { 157 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); 158 return -EINVAL; 159 } 160 161 if (hdr->type_off >= hdr->str_off) { 162 pr_debug("BTF type section offset >= string section offset. No type?\n"); 163 return -EINVAL; 164 } 165 166 if (hdr->type_off & 0x02) { 167 pr_debug("BTF type section is not aligned to 4 bytes\n"); 168 return -EINVAL; 169 } 170 171 btf->nohdr_data = btf->hdr + 1; 172 173 return 0; 174 } 175 176 static int btf_parse_str_sec(struct btf *btf) 177 { 178 const struct btf_header *hdr = btf->hdr; 179 const char *start = btf->nohdr_data + hdr->str_off; 180 const char *end = start + btf->hdr->str_len; 181 182 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || 183 start[0] || end[-1]) { 184 pr_debug("Invalid BTF string section\n"); 185 return -EINVAL; 186 } 187 188 btf->strings = start; 189 190 return 0; 191 } 192 193 static int btf_type_size(struct btf_type *t) 194 { 195 int base_size = sizeof(struct btf_type); 196 __u16 vlen = BTF_INFO_VLEN(t->info); 197 198 switch (BTF_INFO_KIND(t->info)) { 199 case BTF_KIND_FWD: 200 case BTF_KIND_CONST: 201 case BTF_KIND_VOLATILE: 202 case BTF_KIND_RESTRICT: 203 case BTF_KIND_PTR: 204 case BTF_KIND_TYPEDEF: 205 case BTF_KIND_FUNC: 206 return base_size; 207 case BTF_KIND_INT: 208 return base_size + sizeof(__u32); 209 case BTF_KIND_ENUM: 210 return base_size + vlen * sizeof(struct btf_enum); 211 case BTF_KIND_ARRAY: 212 return base_size + sizeof(struct btf_array); 213 case BTF_KIND_STRUCT: 214 case BTF_KIND_UNION: 215 return base_size + vlen * sizeof(struct btf_member); 216 case BTF_KIND_FUNC_PROTO: 217 return base_size + vlen * sizeof(struct btf_param); 218 case BTF_KIND_VAR: 219 return base_size + sizeof(struct btf_var); 220 case BTF_KIND_DATASEC: 221 return base_size + vlen * sizeof(struct btf_var_secinfo); 222 default: 223 pr_debug("Unsupported BTF_KIND:%u\n", BTF_INFO_KIND(t->info)); 224 return -EINVAL; 225 } 226 } 227 228 static int btf_parse_type_sec(struct btf *btf) 229 { 230 struct btf_header *hdr = btf->hdr; 231 void *nohdr_data = btf->nohdr_data; 232 void *next_type = nohdr_data + hdr->type_off; 233 void *end_type = nohdr_data + hdr->str_off; 234 235 while (next_type < end_type) { 236 struct btf_type *t = next_type; 237 int type_size; 238 int err; 239 240 type_size = btf_type_size(t); 241 if (type_size < 0) 242 return type_size; 243 next_type += type_size; 244 err = btf_add_type(btf, t); 245 if (err) 246 return err; 247 } 248 249 return 0; 250 } 251 252 __u32 btf__get_nr_types(const struct btf *btf) 253 { 254 return btf->nr_types; 255 } 256 257 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 258 { 259 if (type_id > btf->nr_types) 260 return NULL; 261 262 return btf->types[type_id]; 263 } 264 265 static bool btf_type_is_void(const struct btf_type *t) 266 { 267 return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 268 } 269 270 static bool btf_type_is_void_or_null(const struct btf_type *t) 271 { 272 return !t || btf_type_is_void(t); 273 } 274 275 #define MAX_RESOLVE_DEPTH 32 276 277 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 278 { 279 const struct btf_array *array; 280 const struct btf_type *t; 281 __u32 nelems = 1; 282 __s64 size = -1; 283 int i; 284 285 t = btf__type_by_id(btf, type_id); 286 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 287 i++) { 288 switch (BTF_INFO_KIND(t->info)) { 289 case BTF_KIND_INT: 290 case BTF_KIND_STRUCT: 291 case BTF_KIND_UNION: 292 case BTF_KIND_ENUM: 293 case BTF_KIND_DATASEC: 294 size = t->size; 295 goto done; 296 case BTF_KIND_PTR: 297 size = sizeof(void *); 298 goto done; 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_VOLATILE: 301 case BTF_KIND_CONST: 302 case BTF_KIND_RESTRICT: 303 case BTF_KIND_VAR: 304 type_id = t->type; 305 break; 306 case BTF_KIND_ARRAY: 307 array = (const struct btf_array *)(t + 1); 308 if (nelems && array->nelems > UINT32_MAX / nelems) 309 return -E2BIG; 310 nelems *= array->nelems; 311 type_id = array->type; 312 break; 313 default: 314 return -EINVAL; 315 } 316 317 t = btf__type_by_id(btf, type_id); 318 } 319 320 if (size < 0) 321 return -EINVAL; 322 323 done: 324 if (nelems && size > UINT32_MAX / nelems) 325 return -E2BIG; 326 327 return nelems * size; 328 } 329 330 int btf__resolve_type(const struct btf *btf, __u32 type_id) 331 { 332 const struct btf_type *t; 333 int depth = 0; 334 335 t = btf__type_by_id(btf, type_id); 336 while (depth < MAX_RESOLVE_DEPTH && 337 !btf_type_is_void_or_null(t) && 338 (IS_MODIFIER(BTF_INFO_KIND(t->info)) || 339 IS_VAR(BTF_INFO_KIND(t->info)))) { 340 type_id = t->type; 341 t = btf__type_by_id(btf, type_id); 342 depth++; 343 } 344 345 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 346 return -EINVAL; 347 348 return type_id; 349 } 350 351 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 352 { 353 __u32 i; 354 355 if (!strcmp(type_name, "void")) 356 return 0; 357 358 for (i = 1; i <= btf->nr_types; i++) { 359 const struct btf_type *t = btf->types[i]; 360 const char *name = btf__name_by_offset(btf, t->name_off); 361 362 if (name && !strcmp(type_name, name)) 363 return i; 364 } 365 366 return -ENOENT; 367 } 368 369 void btf__free(struct btf *btf) 370 { 371 if (!btf) 372 return; 373 374 if (btf->fd != -1) 375 close(btf->fd); 376 377 free(btf->data); 378 free(btf->types); 379 free(btf); 380 } 381 382 struct btf *btf__new(__u8 *data, __u32 size) 383 { 384 struct btf *btf; 385 int err; 386 387 btf = calloc(1, sizeof(struct btf)); 388 if (!btf) 389 return ERR_PTR(-ENOMEM); 390 391 btf->fd = -1; 392 393 btf->data = malloc(size); 394 if (!btf->data) { 395 err = -ENOMEM; 396 goto done; 397 } 398 399 memcpy(btf->data, data, size); 400 btf->data_size = size; 401 402 err = btf_parse_hdr(btf); 403 if (err) 404 goto done; 405 406 err = btf_parse_str_sec(btf); 407 if (err) 408 goto done; 409 410 err = btf_parse_type_sec(btf); 411 412 done: 413 if (err) { 414 btf__free(btf); 415 return ERR_PTR(err); 416 } 417 418 return btf; 419 } 420 421 static bool btf_check_endianness(const GElf_Ehdr *ehdr) 422 { 423 #if __BYTE_ORDER == __LITTLE_ENDIAN 424 return ehdr->e_ident[EI_DATA] == ELFDATA2LSB; 425 #elif __BYTE_ORDER == __BIG_ENDIAN 426 return ehdr->e_ident[EI_DATA] == ELFDATA2MSB; 427 #else 428 # error "Unrecognized __BYTE_ORDER__" 429 #endif 430 } 431 432 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 433 { 434 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 435 int err = 0, fd = -1, idx = 0; 436 struct btf *btf = NULL; 437 Elf_Scn *scn = NULL; 438 Elf *elf = NULL; 439 GElf_Ehdr ehdr; 440 441 if (elf_version(EV_CURRENT) == EV_NONE) { 442 pr_warning("failed to init libelf for %s\n", path); 443 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 444 } 445 446 fd = open(path, O_RDONLY); 447 if (fd < 0) { 448 err = -errno; 449 pr_warning("failed to open %s: %s\n", path, strerror(errno)); 450 return ERR_PTR(err); 451 } 452 453 err = -LIBBPF_ERRNO__FORMAT; 454 455 elf = elf_begin(fd, ELF_C_READ, NULL); 456 if (!elf) { 457 pr_warning("failed to open %s as ELF file\n", path); 458 goto done; 459 } 460 if (!gelf_getehdr(elf, &ehdr)) { 461 pr_warning("failed to get EHDR from %s\n", path); 462 goto done; 463 } 464 if (!btf_check_endianness(&ehdr)) { 465 pr_warning("non-native ELF endianness is not supported\n"); 466 goto done; 467 } 468 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 469 pr_warning("failed to get e_shstrndx from %s\n", path); 470 goto done; 471 } 472 473 while ((scn = elf_nextscn(elf, scn)) != NULL) { 474 GElf_Shdr sh; 475 char *name; 476 477 idx++; 478 if (gelf_getshdr(scn, &sh) != &sh) { 479 pr_warning("failed to get section(%d) header from %s\n", 480 idx, path); 481 goto done; 482 } 483 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 484 if (!name) { 485 pr_warning("failed to get section(%d) name from %s\n", 486 idx, path); 487 goto done; 488 } 489 if (strcmp(name, BTF_ELF_SEC) == 0) { 490 btf_data = elf_getdata(scn, 0); 491 if (!btf_data) { 492 pr_warning("failed to get section(%d, %s) data from %s\n", 493 idx, name, path); 494 goto done; 495 } 496 continue; 497 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 498 btf_ext_data = elf_getdata(scn, 0); 499 if (!btf_ext_data) { 500 pr_warning("failed to get section(%d, %s) data from %s\n", 501 idx, name, path); 502 goto done; 503 } 504 continue; 505 } 506 } 507 508 err = 0; 509 510 if (!btf_data) { 511 err = -ENOENT; 512 goto done; 513 } 514 btf = btf__new(btf_data->d_buf, btf_data->d_size); 515 if (IS_ERR(btf)) 516 goto done; 517 518 if (btf_ext && btf_ext_data) { 519 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 520 btf_ext_data->d_size); 521 if (IS_ERR(*btf_ext)) 522 goto done; 523 } else if (btf_ext) { 524 *btf_ext = NULL; 525 } 526 done: 527 if (elf) 528 elf_end(elf); 529 close(fd); 530 531 if (err) 532 return ERR_PTR(err); 533 /* 534 * btf is always parsed before btf_ext, so no need to clean up 535 * btf_ext, if btf loading failed 536 */ 537 if (IS_ERR(btf)) 538 return btf; 539 if (btf_ext && IS_ERR(*btf_ext)) { 540 btf__free(btf); 541 err = PTR_ERR(*btf_ext); 542 return ERR_PTR(err); 543 } 544 return btf; 545 } 546 547 static int compare_vsi_off(const void *_a, const void *_b) 548 { 549 const struct btf_var_secinfo *a = _a; 550 const struct btf_var_secinfo *b = _b; 551 552 return a->offset - b->offset; 553 } 554 555 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 556 struct btf_type *t) 557 { 558 __u32 size = 0, off = 0, i, vars = BTF_INFO_VLEN(t->info); 559 const char *name = btf__name_by_offset(btf, t->name_off); 560 const struct btf_type *t_var; 561 struct btf_var_secinfo *vsi; 562 struct btf_var *var; 563 int ret; 564 565 if (!name) { 566 pr_debug("No name found in string section for DATASEC kind.\n"); 567 return -ENOENT; 568 } 569 570 ret = bpf_object__section_size(obj, name, &size); 571 if (ret || !size || (t->size && t->size != size)) { 572 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 573 return -ENOENT; 574 } 575 576 t->size = size; 577 578 for (i = 0, vsi = (struct btf_var_secinfo *)(t + 1); 579 i < vars; i++, vsi++) { 580 t_var = btf__type_by_id(btf, vsi->type); 581 var = (struct btf_var *)(t_var + 1); 582 583 if (BTF_INFO_KIND(t_var->info) != BTF_KIND_VAR) { 584 pr_debug("Non-VAR type seen in section %s\n", name); 585 return -EINVAL; 586 } 587 588 if (var->linkage == BTF_VAR_STATIC) 589 continue; 590 591 name = btf__name_by_offset(btf, t_var->name_off); 592 if (!name) { 593 pr_debug("No name found in string section for VAR kind\n"); 594 return -ENOENT; 595 } 596 597 ret = bpf_object__variable_offset(obj, name, &off); 598 if (ret) { 599 pr_debug("No offset found in symbol table for VAR %s\n", name); 600 return -ENOENT; 601 } 602 603 vsi->offset = off; 604 } 605 606 qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off); 607 return 0; 608 } 609 610 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 611 { 612 int err = 0; 613 __u32 i; 614 615 for (i = 1; i <= btf->nr_types; i++) { 616 struct btf_type *t = btf->types[i]; 617 618 /* Loader needs to fix up some of the things compiler 619 * couldn't get its hands on while emitting BTF. This 620 * is section size and global variable offset. We use 621 * the info from the ELF itself for this purpose. 622 */ 623 if (BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC) { 624 err = btf_fixup_datasec(obj, btf, t); 625 if (err) 626 break; 627 } 628 } 629 630 return err; 631 } 632 633 int btf__load(struct btf *btf) 634 { 635 __u32 log_buf_size = BPF_LOG_BUF_SIZE; 636 char *log_buf = NULL; 637 int err = 0; 638 639 if (btf->fd >= 0) 640 return -EEXIST; 641 642 log_buf = malloc(log_buf_size); 643 if (!log_buf) 644 return -ENOMEM; 645 646 *log_buf = 0; 647 648 btf->fd = bpf_load_btf(btf->data, btf->data_size, 649 log_buf, log_buf_size, false); 650 if (btf->fd < 0) { 651 err = -errno; 652 pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno); 653 if (*log_buf) 654 pr_warning("%s\n", log_buf); 655 goto done; 656 } 657 658 done: 659 free(log_buf); 660 return err; 661 } 662 663 int btf__fd(const struct btf *btf) 664 { 665 return btf->fd; 666 } 667 668 const void *btf__get_raw_data(const struct btf *btf, __u32 *size) 669 { 670 *size = btf->data_size; 671 return btf->data; 672 } 673 674 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 675 { 676 if (offset < btf->hdr->str_len) 677 return &btf->strings[offset]; 678 else 679 return NULL; 680 } 681 682 int btf__get_from_id(__u32 id, struct btf **btf) 683 { 684 struct bpf_btf_info btf_info = { 0 }; 685 __u32 len = sizeof(btf_info); 686 __u32 last_size; 687 int btf_fd; 688 void *ptr; 689 int err; 690 691 err = 0; 692 *btf = NULL; 693 btf_fd = bpf_btf_get_fd_by_id(id); 694 if (btf_fd < 0) 695 return 0; 696 697 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 698 * let's start with a sane default - 4KiB here - and resize it only if 699 * bpf_obj_get_info_by_fd() needs a bigger buffer. 700 */ 701 btf_info.btf_size = 4096; 702 last_size = btf_info.btf_size; 703 ptr = malloc(last_size); 704 if (!ptr) { 705 err = -ENOMEM; 706 goto exit_free; 707 } 708 709 memset(ptr, 0, last_size); 710 btf_info.btf = ptr_to_u64(ptr); 711 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 712 713 if (!err && btf_info.btf_size > last_size) { 714 void *temp_ptr; 715 716 last_size = btf_info.btf_size; 717 temp_ptr = realloc(ptr, last_size); 718 if (!temp_ptr) { 719 err = -ENOMEM; 720 goto exit_free; 721 } 722 ptr = temp_ptr; 723 memset(ptr, 0, last_size); 724 btf_info.btf = ptr_to_u64(ptr); 725 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 726 } 727 728 if (err || btf_info.btf_size > last_size) { 729 err = errno; 730 goto exit_free; 731 } 732 733 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 734 if (IS_ERR(*btf)) { 735 err = PTR_ERR(*btf); 736 *btf = NULL; 737 } 738 739 exit_free: 740 close(btf_fd); 741 free(ptr); 742 743 return err; 744 } 745 746 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 747 __u32 expected_key_size, __u32 expected_value_size, 748 __u32 *key_type_id, __u32 *value_type_id) 749 { 750 const struct btf_type *container_type; 751 const struct btf_member *key, *value; 752 const size_t max_name = 256; 753 char container_name[max_name]; 754 __s64 key_size, value_size; 755 __s32 container_id; 756 757 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 758 max_name) { 759 pr_warning("map:%s length of '____btf_map_%s' is too long\n", 760 map_name, map_name); 761 return -EINVAL; 762 } 763 764 container_id = btf__find_by_name(btf, container_name); 765 if (container_id < 0) { 766 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 767 map_name, container_name); 768 return container_id; 769 } 770 771 container_type = btf__type_by_id(btf, container_id); 772 if (!container_type) { 773 pr_warning("map:%s cannot find BTF type for container_id:%u\n", 774 map_name, container_id); 775 return -EINVAL; 776 } 777 778 if (BTF_INFO_KIND(container_type->info) != BTF_KIND_STRUCT || 779 BTF_INFO_VLEN(container_type->info) < 2) { 780 pr_warning("map:%s container_name:%s is an invalid container struct\n", 781 map_name, container_name); 782 return -EINVAL; 783 } 784 785 key = (struct btf_member *)(container_type + 1); 786 value = key + 1; 787 788 key_size = btf__resolve_size(btf, key->type); 789 if (key_size < 0) { 790 pr_warning("map:%s invalid BTF key_type_size\n", map_name); 791 return key_size; 792 } 793 794 if (expected_key_size != key_size) { 795 pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 796 map_name, (__u32)key_size, expected_key_size); 797 return -EINVAL; 798 } 799 800 value_size = btf__resolve_size(btf, value->type); 801 if (value_size < 0) { 802 pr_warning("map:%s invalid BTF value_type_size\n", map_name); 803 return value_size; 804 } 805 806 if (expected_value_size != value_size) { 807 pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 808 map_name, (__u32)value_size, expected_value_size); 809 return -EINVAL; 810 } 811 812 *key_type_id = key->type; 813 *value_type_id = value->type; 814 815 return 0; 816 } 817 818 struct btf_ext_sec_setup_param { 819 __u32 off; 820 __u32 len; 821 __u32 min_rec_size; 822 struct btf_ext_info *ext_info; 823 const char *desc; 824 }; 825 826 static int btf_ext_setup_info(struct btf_ext *btf_ext, 827 struct btf_ext_sec_setup_param *ext_sec) 828 { 829 const struct btf_ext_info_sec *sinfo; 830 struct btf_ext_info *ext_info; 831 __u32 info_left, record_size; 832 /* The start of the info sec (including the __u32 record_size). */ 833 void *info; 834 835 if (ext_sec->off & 0x03) { 836 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 837 ext_sec->desc); 838 return -EINVAL; 839 } 840 841 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 842 info_left = ext_sec->len; 843 844 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 845 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 846 ext_sec->desc, ext_sec->off, ext_sec->len); 847 return -EINVAL; 848 } 849 850 /* At least a record size */ 851 if (info_left < sizeof(__u32)) { 852 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 853 return -EINVAL; 854 } 855 856 /* The record size needs to meet the minimum standard */ 857 record_size = *(__u32 *)info; 858 if (record_size < ext_sec->min_rec_size || 859 record_size & 0x03) { 860 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 861 ext_sec->desc, record_size); 862 return -EINVAL; 863 } 864 865 sinfo = info + sizeof(__u32); 866 info_left -= sizeof(__u32); 867 868 /* If no records, return failure now so .BTF.ext won't be used. */ 869 if (!info_left) { 870 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 871 return -EINVAL; 872 } 873 874 while (info_left) { 875 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 876 __u64 total_record_size; 877 __u32 num_records; 878 879 if (info_left < sec_hdrlen) { 880 pr_debug("%s section header is not found in .BTF.ext\n", 881 ext_sec->desc); 882 return -EINVAL; 883 } 884 885 num_records = sinfo->num_info; 886 if (num_records == 0) { 887 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 888 ext_sec->desc); 889 return -EINVAL; 890 } 891 892 total_record_size = sec_hdrlen + 893 (__u64)num_records * record_size; 894 if (info_left < total_record_size) { 895 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 896 ext_sec->desc); 897 return -EINVAL; 898 } 899 900 info_left -= total_record_size; 901 sinfo = (void *)sinfo + total_record_size; 902 } 903 904 ext_info = ext_sec->ext_info; 905 ext_info->len = ext_sec->len - sizeof(__u32); 906 ext_info->rec_size = record_size; 907 ext_info->info = info + sizeof(__u32); 908 909 return 0; 910 } 911 912 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 913 { 914 struct btf_ext_sec_setup_param param = { 915 .off = btf_ext->hdr->func_info_off, 916 .len = btf_ext->hdr->func_info_len, 917 .min_rec_size = sizeof(struct bpf_func_info_min), 918 .ext_info = &btf_ext->func_info, 919 .desc = "func_info" 920 }; 921 922 return btf_ext_setup_info(btf_ext, ¶m); 923 } 924 925 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 926 { 927 struct btf_ext_sec_setup_param param = { 928 .off = btf_ext->hdr->line_info_off, 929 .len = btf_ext->hdr->line_info_len, 930 .min_rec_size = sizeof(struct bpf_line_info_min), 931 .ext_info = &btf_ext->line_info, 932 .desc = "line_info", 933 }; 934 935 return btf_ext_setup_info(btf_ext, ¶m); 936 } 937 938 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 939 { 940 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 941 942 if (data_size < offsetof(struct btf_ext_header, func_info_off) || 943 data_size < hdr->hdr_len) { 944 pr_debug("BTF.ext header not found"); 945 return -EINVAL; 946 } 947 948 if (hdr->magic != BTF_MAGIC) { 949 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 950 return -EINVAL; 951 } 952 953 if (hdr->version != BTF_VERSION) { 954 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 955 return -ENOTSUP; 956 } 957 958 if (hdr->flags) { 959 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 960 return -ENOTSUP; 961 } 962 963 if (data_size == hdr->hdr_len) { 964 pr_debug("BTF.ext has no data\n"); 965 return -EINVAL; 966 } 967 968 return 0; 969 } 970 971 void btf_ext__free(struct btf_ext *btf_ext) 972 { 973 if (!btf_ext) 974 return; 975 free(btf_ext->data); 976 free(btf_ext); 977 } 978 979 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 980 { 981 struct btf_ext *btf_ext; 982 int err; 983 984 err = btf_ext_parse_hdr(data, size); 985 if (err) 986 return ERR_PTR(err); 987 988 btf_ext = calloc(1, sizeof(struct btf_ext)); 989 if (!btf_ext) 990 return ERR_PTR(-ENOMEM); 991 992 btf_ext->data_size = size; 993 btf_ext->data = malloc(size); 994 if (!btf_ext->data) { 995 err = -ENOMEM; 996 goto done; 997 } 998 memcpy(btf_ext->data, data, size); 999 1000 err = btf_ext_setup_func_info(btf_ext); 1001 if (err) 1002 goto done; 1003 1004 err = btf_ext_setup_line_info(btf_ext); 1005 if (err) 1006 goto done; 1007 1008 done: 1009 if (err) { 1010 btf_ext__free(btf_ext); 1011 return ERR_PTR(err); 1012 } 1013 1014 return btf_ext; 1015 } 1016 1017 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 1018 { 1019 *size = btf_ext->data_size; 1020 return btf_ext->data; 1021 } 1022 1023 static int btf_ext_reloc_info(const struct btf *btf, 1024 const struct btf_ext_info *ext_info, 1025 const char *sec_name, __u32 insns_cnt, 1026 void **info, __u32 *cnt) 1027 { 1028 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 1029 __u32 i, record_size, existing_len, records_len; 1030 struct btf_ext_info_sec *sinfo; 1031 const char *info_sec_name; 1032 __u64 remain_len; 1033 void *data; 1034 1035 record_size = ext_info->rec_size; 1036 sinfo = ext_info->info; 1037 remain_len = ext_info->len; 1038 while (remain_len > 0) { 1039 records_len = sinfo->num_info * record_size; 1040 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 1041 if (strcmp(info_sec_name, sec_name)) { 1042 remain_len -= sec_hdrlen + records_len; 1043 sinfo = (void *)sinfo + sec_hdrlen + records_len; 1044 continue; 1045 } 1046 1047 existing_len = (*cnt) * record_size; 1048 data = realloc(*info, existing_len + records_len); 1049 if (!data) 1050 return -ENOMEM; 1051 1052 memcpy(data + existing_len, sinfo->data, records_len); 1053 /* adjust insn_off only, the rest data will be passed 1054 * to the kernel. 1055 */ 1056 for (i = 0; i < sinfo->num_info; i++) { 1057 __u32 *insn_off; 1058 1059 insn_off = data + existing_len + (i * record_size); 1060 *insn_off = *insn_off / sizeof(struct bpf_insn) + 1061 insns_cnt; 1062 } 1063 *info = data; 1064 *cnt += sinfo->num_info; 1065 return 0; 1066 } 1067 1068 return -ENOENT; 1069 } 1070 1071 int btf_ext__reloc_func_info(const struct btf *btf, 1072 const struct btf_ext *btf_ext, 1073 const char *sec_name, __u32 insns_cnt, 1074 void **func_info, __u32 *cnt) 1075 { 1076 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 1077 insns_cnt, func_info, cnt); 1078 } 1079 1080 int btf_ext__reloc_line_info(const struct btf *btf, 1081 const struct btf_ext *btf_ext, 1082 const char *sec_name, __u32 insns_cnt, 1083 void **line_info, __u32 *cnt) 1084 { 1085 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 1086 insns_cnt, line_info, cnt); 1087 } 1088 1089 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 1090 { 1091 return btf_ext->func_info.rec_size; 1092 } 1093 1094 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 1095 { 1096 return btf_ext->line_info.rec_size; 1097 } 1098 1099 struct btf_dedup; 1100 1101 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1102 const struct btf_dedup_opts *opts); 1103 static void btf_dedup_free(struct btf_dedup *d); 1104 static int btf_dedup_strings(struct btf_dedup *d); 1105 static int btf_dedup_prim_types(struct btf_dedup *d); 1106 static int btf_dedup_struct_types(struct btf_dedup *d); 1107 static int btf_dedup_ref_types(struct btf_dedup *d); 1108 static int btf_dedup_compact_types(struct btf_dedup *d); 1109 static int btf_dedup_remap_types(struct btf_dedup *d); 1110 1111 /* 1112 * Deduplicate BTF types and strings. 1113 * 1114 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 1115 * section with all BTF type descriptors and string data. It overwrites that 1116 * memory in-place with deduplicated types and strings without any loss of 1117 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 1118 * is provided, all the strings referenced from .BTF.ext section are honored 1119 * and updated to point to the right offsets after deduplication. 1120 * 1121 * If function returns with error, type/string data might be garbled and should 1122 * be discarded. 1123 * 1124 * More verbose and detailed description of both problem btf_dedup is solving, 1125 * as well as solution could be found at: 1126 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 1127 * 1128 * Problem description and justification 1129 * ===================================== 1130 * 1131 * BTF type information is typically emitted either as a result of conversion 1132 * from DWARF to BTF or directly by compiler. In both cases, each compilation 1133 * unit contains information about a subset of all the types that are used 1134 * in an application. These subsets are frequently overlapping and contain a lot 1135 * of duplicated information when later concatenated together into a single 1136 * binary. This algorithm ensures that each unique type is represented by single 1137 * BTF type descriptor, greatly reducing resulting size of BTF data. 1138 * 1139 * Compilation unit isolation and subsequent duplication of data is not the only 1140 * problem. The same type hierarchy (e.g., struct and all the type that struct 1141 * references) in different compilation units can be represented in BTF to 1142 * various degrees of completeness (or, rather, incompleteness) due to 1143 * struct/union forward declarations. 1144 * 1145 * Let's take a look at an example, that we'll use to better understand the 1146 * problem (and solution). Suppose we have two compilation units, each using 1147 * same `struct S`, but each of them having incomplete type information about 1148 * struct's fields: 1149 * 1150 * // CU #1: 1151 * struct S; 1152 * struct A { 1153 * int a; 1154 * struct A* self; 1155 * struct S* parent; 1156 * }; 1157 * struct B; 1158 * struct S { 1159 * struct A* a_ptr; 1160 * struct B* b_ptr; 1161 * }; 1162 * 1163 * // CU #2: 1164 * struct S; 1165 * struct A; 1166 * struct B { 1167 * int b; 1168 * struct B* self; 1169 * struct S* parent; 1170 * }; 1171 * struct S { 1172 * struct A* a_ptr; 1173 * struct B* b_ptr; 1174 * }; 1175 * 1176 * In case of CU #1, BTF data will know only that `struct B` exist (but no 1177 * more), but will know the complete type information about `struct A`. While 1178 * for CU #2, it will know full type information about `struct B`, but will 1179 * only know about forward declaration of `struct A` (in BTF terms, it will 1180 * have `BTF_KIND_FWD` type descriptor with name `B`). 1181 * 1182 * This compilation unit isolation means that it's possible that there is no 1183 * single CU with complete type information describing structs `S`, `A`, and 1184 * `B`. Also, we might get tons of duplicated and redundant type information. 1185 * 1186 * Additional complication we need to keep in mind comes from the fact that 1187 * types, in general, can form graphs containing cycles, not just DAGs. 1188 * 1189 * While algorithm does deduplication, it also merges and resolves type 1190 * information (unless disabled throught `struct btf_opts`), whenever possible. 1191 * E.g., in the example above with two compilation units having partial type 1192 * information for structs `A` and `B`, the output of algorithm will emit 1193 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 1194 * (as well as type information for `int` and pointers), as if they were defined 1195 * in a single compilation unit as: 1196 * 1197 * struct A { 1198 * int a; 1199 * struct A* self; 1200 * struct S* parent; 1201 * }; 1202 * struct B { 1203 * int b; 1204 * struct B* self; 1205 * struct S* parent; 1206 * }; 1207 * struct S { 1208 * struct A* a_ptr; 1209 * struct B* b_ptr; 1210 * }; 1211 * 1212 * Algorithm summary 1213 * ================= 1214 * 1215 * Algorithm completes its work in 6 separate passes: 1216 * 1217 * 1. Strings deduplication. 1218 * 2. Primitive types deduplication (int, enum, fwd). 1219 * 3. Struct/union types deduplication. 1220 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 1221 * protos, and const/volatile/restrict modifiers). 1222 * 5. Types compaction. 1223 * 6. Types remapping. 1224 * 1225 * Algorithm determines canonical type descriptor, which is a single 1226 * representative type for each truly unique type. This canonical type is the 1227 * one that will go into final deduplicated BTF type information. For 1228 * struct/unions, it is also the type that algorithm will merge additional type 1229 * information into (while resolving FWDs), as it discovers it from data in 1230 * other CUs. Each input BTF type eventually gets either mapped to itself, if 1231 * that type is canonical, or to some other type, if that type is equivalent 1232 * and was chosen as canonical representative. This mapping is stored in 1233 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 1234 * FWD type got resolved to. 1235 * 1236 * To facilitate fast discovery of canonical types, we also maintain canonical 1237 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 1238 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 1239 * that match that signature. With sufficiently good choice of type signature 1240 * hashing function, we can limit number of canonical types for each unique type 1241 * signature to a very small number, allowing to find canonical type for any 1242 * duplicated type very quickly. 1243 * 1244 * Struct/union deduplication is the most critical part and algorithm for 1245 * deduplicating structs/unions is described in greater details in comments for 1246 * `btf_dedup_is_equiv` function. 1247 */ 1248 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 1249 const struct btf_dedup_opts *opts) 1250 { 1251 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 1252 int err; 1253 1254 if (IS_ERR(d)) { 1255 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 1256 return -EINVAL; 1257 } 1258 1259 err = btf_dedup_strings(d); 1260 if (err < 0) { 1261 pr_debug("btf_dedup_strings failed:%d\n", err); 1262 goto done; 1263 } 1264 err = btf_dedup_prim_types(d); 1265 if (err < 0) { 1266 pr_debug("btf_dedup_prim_types failed:%d\n", err); 1267 goto done; 1268 } 1269 err = btf_dedup_struct_types(d); 1270 if (err < 0) { 1271 pr_debug("btf_dedup_struct_types failed:%d\n", err); 1272 goto done; 1273 } 1274 err = btf_dedup_ref_types(d); 1275 if (err < 0) { 1276 pr_debug("btf_dedup_ref_types failed:%d\n", err); 1277 goto done; 1278 } 1279 err = btf_dedup_compact_types(d); 1280 if (err < 0) { 1281 pr_debug("btf_dedup_compact_types failed:%d\n", err); 1282 goto done; 1283 } 1284 err = btf_dedup_remap_types(d); 1285 if (err < 0) { 1286 pr_debug("btf_dedup_remap_types failed:%d\n", err); 1287 goto done; 1288 } 1289 1290 done: 1291 btf_dedup_free(d); 1292 return err; 1293 } 1294 1295 #define BTF_UNPROCESSED_ID ((__u32)-1) 1296 #define BTF_IN_PROGRESS_ID ((__u32)-2) 1297 1298 struct btf_dedup { 1299 /* .BTF section to be deduped in-place */ 1300 struct btf *btf; 1301 /* 1302 * Optional .BTF.ext section. When provided, any strings referenced 1303 * from it will be taken into account when deduping strings 1304 */ 1305 struct btf_ext *btf_ext; 1306 /* 1307 * This is a map from any type's signature hash to a list of possible 1308 * canonical representative type candidates. Hash collisions are 1309 * ignored, so even types of various kinds can share same list of 1310 * candidates, which is fine because we rely on subsequent 1311 * btf_xxx_equal() checks to authoritatively verify type equality. 1312 */ 1313 struct hashmap *dedup_table; 1314 /* Canonical types map */ 1315 __u32 *map; 1316 /* Hypothetical mapping, used during type graph equivalence checks */ 1317 __u32 *hypot_map; 1318 __u32 *hypot_list; 1319 size_t hypot_cnt; 1320 size_t hypot_cap; 1321 /* Various option modifying behavior of algorithm */ 1322 struct btf_dedup_opts opts; 1323 }; 1324 1325 struct btf_str_ptr { 1326 const char *str; 1327 __u32 new_off; 1328 bool used; 1329 }; 1330 1331 struct btf_str_ptrs { 1332 struct btf_str_ptr *ptrs; 1333 const char *data; 1334 __u32 cnt; 1335 __u32 cap; 1336 }; 1337 1338 static long hash_combine(long h, long value) 1339 { 1340 return h * 31 + value; 1341 } 1342 1343 #define for_each_dedup_cand(d, node, hash) \ 1344 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 1345 1346 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 1347 { 1348 return hashmap__append(d->dedup_table, 1349 (void *)hash, (void *)(long)type_id); 1350 } 1351 1352 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 1353 __u32 from_id, __u32 to_id) 1354 { 1355 if (d->hypot_cnt == d->hypot_cap) { 1356 __u32 *new_list; 1357 1358 d->hypot_cap += max(16, d->hypot_cap / 2); 1359 new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap); 1360 if (!new_list) 1361 return -ENOMEM; 1362 d->hypot_list = new_list; 1363 } 1364 d->hypot_list[d->hypot_cnt++] = from_id; 1365 d->hypot_map[from_id] = to_id; 1366 return 0; 1367 } 1368 1369 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 1370 { 1371 int i; 1372 1373 for (i = 0; i < d->hypot_cnt; i++) 1374 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 1375 d->hypot_cnt = 0; 1376 } 1377 1378 static void btf_dedup_free(struct btf_dedup *d) 1379 { 1380 hashmap__free(d->dedup_table); 1381 d->dedup_table = NULL; 1382 1383 free(d->map); 1384 d->map = NULL; 1385 1386 free(d->hypot_map); 1387 d->hypot_map = NULL; 1388 1389 free(d->hypot_list); 1390 d->hypot_list = NULL; 1391 1392 free(d); 1393 } 1394 1395 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 1396 { 1397 return (size_t)key; 1398 } 1399 1400 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 1401 { 1402 return 0; 1403 } 1404 1405 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 1406 { 1407 return k1 == k2; 1408 } 1409 1410 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1411 const struct btf_dedup_opts *opts) 1412 { 1413 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 1414 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 1415 int i, err = 0; 1416 1417 if (!d) 1418 return ERR_PTR(-ENOMEM); 1419 1420 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 1421 /* dedup_table_size is now used only to force collisions in tests */ 1422 if (opts && opts->dedup_table_size == 1) 1423 hash_fn = btf_dedup_collision_hash_fn; 1424 1425 d->btf = btf; 1426 d->btf_ext = btf_ext; 1427 1428 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 1429 if (IS_ERR(d->dedup_table)) { 1430 err = PTR_ERR(d->dedup_table); 1431 d->dedup_table = NULL; 1432 goto done; 1433 } 1434 1435 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1436 if (!d->map) { 1437 err = -ENOMEM; 1438 goto done; 1439 } 1440 /* special BTF "void" type is made canonical immediately */ 1441 d->map[0] = 0; 1442 for (i = 1; i <= btf->nr_types; i++) { 1443 struct btf_type *t = d->btf->types[i]; 1444 __u16 kind = BTF_INFO_KIND(t->info); 1445 1446 /* VAR and DATASEC are never deduped and are self-canonical */ 1447 if (kind == BTF_KIND_VAR || kind == BTF_KIND_DATASEC) 1448 d->map[i] = i; 1449 else 1450 d->map[i] = BTF_UNPROCESSED_ID; 1451 } 1452 1453 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1454 if (!d->hypot_map) { 1455 err = -ENOMEM; 1456 goto done; 1457 } 1458 for (i = 0; i <= btf->nr_types; i++) 1459 d->hypot_map[i] = BTF_UNPROCESSED_ID; 1460 1461 done: 1462 if (err) { 1463 btf_dedup_free(d); 1464 return ERR_PTR(err); 1465 } 1466 1467 return d; 1468 } 1469 1470 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 1471 1472 /* 1473 * Iterate over all possible places in .BTF and .BTF.ext that can reference 1474 * string and pass pointer to it to a provided callback `fn`. 1475 */ 1476 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 1477 { 1478 void *line_data_cur, *line_data_end; 1479 int i, j, r, rec_size; 1480 struct btf_type *t; 1481 1482 for (i = 1; i <= d->btf->nr_types; i++) { 1483 t = d->btf->types[i]; 1484 r = fn(&t->name_off, ctx); 1485 if (r) 1486 return r; 1487 1488 switch (BTF_INFO_KIND(t->info)) { 1489 case BTF_KIND_STRUCT: 1490 case BTF_KIND_UNION: { 1491 struct btf_member *m = (struct btf_member *)(t + 1); 1492 __u16 vlen = BTF_INFO_VLEN(t->info); 1493 1494 for (j = 0; j < vlen; j++) { 1495 r = fn(&m->name_off, ctx); 1496 if (r) 1497 return r; 1498 m++; 1499 } 1500 break; 1501 } 1502 case BTF_KIND_ENUM: { 1503 struct btf_enum *m = (struct btf_enum *)(t + 1); 1504 __u16 vlen = BTF_INFO_VLEN(t->info); 1505 1506 for (j = 0; j < vlen; j++) { 1507 r = fn(&m->name_off, ctx); 1508 if (r) 1509 return r; 1510 m++; 1511 } 1512 break; 1513 } 1514 case BTF_KIND_FUNC_PROTO: { 1515 struct btf_param *m = (struct btf_param *)(t + 1); 1516 __u16 vlen = BTF_INFO_VLEN(t->info); 1517 1518 for (j = 0; j < vlen; j++) { 1519 r = fn(&m->name_off, ctx); 1520 if (r) 1521 return r; 1522 m++; 1523 } 1524 break; 1525 } 1526 default: 1527 break; 1528 } 1529 } 1530 1531 if (!d->btf_ext) 1532 return 0; 1533 1534 line_data_cur = d->btf_ext->line_info.info; 1535 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 1536 rec_size = d->btf_ext->line_info.rec_size; 1537 1538 while (line_data_cur < line_data_end) { 1539 struct btf_ext_info_sec *sec = line_data_cur; 1540 struct bpf_line_info_min *line_info; 1541 __u32 num_info = sec->num_info; 1542 1543 r = fn(&sec->sec_name_off, ctx); 1544 if (r) 1545 return r; 1546 1547 line_data_cur += sizeof(struct btf_ext_info_sec); 1548 for (i = 0; i < num_info; i++) { 1549 line_info = line_data_cur; 1550 r = fn(&line_info->file_name_off, ctx); 1551 if (r) 1552 return r; 1553 r = fn(&line_info->line_off, ctx); 1554 if (r) 1555 return r; 1556 line_data_cur += rec_size; 1557 } 1558 } 1559 1560 return 0; 1561 } 1562 1563 static int str_sort_by_content(const void *a1, const void *a2) 1564 { 1565 const struct btf_str_ptr *p1 = a1; 1566 const struct btf_str_ptr *p2 = a2; 1567 1568 return strcmp(p1->str, p2->str); 1569 } 1570 1571 static int str_sort_by_offset(const void *a1, const void *a2) 1572 { 1573 const struct btf_str_ptr *p1 = a1; 1574 const struct btf_str_ptr *p2 = a2; 1575 1576 if (p1->str != p2->str) 1577 return p1->str < p2->str ? -1 : 1; 1578 return 0; 1579 } 1580 1581 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) 1582 { 1583 const struct btf_str_ptr *p = pelem; 1584 1585 if (str_ptr != p->str) 1586 return (const char *)str_ptr < p->str ? -1 : 1; 1587 return 0; 1588 } 1589 1590 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) 1591 { 1592 struct btf_str_ptrs *strs; 1593 struct btf_str_ptr *s; 1594 1595 if (*str_off_ptr == 0) 1596 return 0; 1597 1598 strs = ctx; 1599 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1600 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1601 if (!s) 1602 return -EINVAL; 1603 s->used = true; 1604 return 0; 1605 } 1606 1607 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) 1608 { 1609 struct btf_str_ptrs *strs; 1610 struct btf_str_ptr *s; 1611 1612 if (*str_off_ptr == 0) 1613 return 0; 1614 1615 strs = ctx; 1616 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1617 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1618 if (!s) 1619 return -EINVAL; 1620 *str_off_ptr = s->new_off; 1621 return 0; 1622 } 1623 1624 /* 1625 * Dedup string and filter out those that are not referenced from either .BTF 1626 * or .BTF.ext (if provided) sections. 1627 * 1628 * This is done by building index of all strings in BTF's string section, 1629 * then iterating over all entities that can reference strings (e.g., type 1630 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 1631 * strings as used. After that all used strings are deduped and compacted into 1632 * sequential blob of memory and new offsets are calculated. Then all the string 1633 * references are iterated again and rewritten using new offsets. 1634 */ 1635 static int btf_dedup_strings(struct btf_dedup *d) 1636 { 1637 const struct btf_header *hdr = d->btf->hdr; 1638 char *start = (char *)d->btf->nohdr_data + hdr->str_off; 1639 char *end = start + d->btf->hdr->str_len; 1640 char *p = start, *tmp_strs = NULL; 1641 struct btf_str_ptrs strs = { 1642 .cnt = 0, 1643 .cap = 0, 1644 .ptrs = NULL, 1645 .data = start, 1646 }; 1647 int i, j, err = 0, grp_idx; 1648 bool grp_used; 1649 1650 /* build index of all strings */ 1651 while (p < end) { 1652 if (strs.cnt + 1 > strs.cap) { 1653 struct btf_str_ptr *new_ptrs; 1654 1655 strs.cap += max(strs.cnt / 2, 16); 1656 new_ptrs = realloc(strs.ptrs, 1657 sizeof(strs.ptrs[0]) * strs.cap); 1658 if (!new_ptrs) { 1659 err = -ENOMEM; 1660 goto done; 1661 } 1662 strs.ptrs = new_ptrs; 1663 } 1664 1665 strs.ptrs[strs.cnt].str = p; 1666 strs.ptrs[strs.cnt].used = false; 1667 1668 p += strlen(p) + 1; 1669 strs.cnt++; 1670 } 1671 1672 /* temporary storage for deduplicated strings */ 1673 tmp_strs = malloc(d->btf->hdr->str_len); 1674 if (!tmp_strs) { 1675 err = -ENOMEM; 1676 goto done; 1677 } 1678 1679 /* mark all used strings */ 1680 strs.ptrs[0].used = true; 1681 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); 1682 if (err) 1683 goto done; 1684 1685 /* sort strings by context, so that we can identify duplicates */ 1686 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); 1687 1688 /* 1689 * iterate groups of equal strings and if any instance in a group was 1690 * referenced, emit single instance and remember new offset 1691 */ 1692 p = tmp_strs; 1693 grp_idx = 0; 1694 grp_used = strs.ptrs[0].used; 1695 /* iterate past end to avoid code duplication after loop */ 1696 for (i = 1; i <= strs.cnt; i++) { 1697 /* 1698 * when i == strs.cnt, we want to skip string comparison and go 1699 * straight to handling last group of strings (otherwise we'd 1700 * need to handle last group after the loop w/ duplicated code) 1701 */ 1702 if (i < strs.cnt && 1703 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { 1704 grp_used = grp_used || strs.ptrs[i].used; 1705 continue; 1706 } 1707 1708 /* 1709 * this check would have been required after the loop to handle 1710 * last group of strings, but due to <= condition in a loop 1711 * we avoid that duplication 1712 */ 1713 if (grp_used) { 1714 int new_off = p - tmp_strs; 1715 __u32 len = strlen(strs.ptrs[grp_idx].str); 1716 1717 memmove(p, strs.ptrs[grp_idx].str, len + 1); 1718 for (j = grp_idx; j < i; j++) 1719 strs.ptrs[j].new_off = new_off; 1720 p += len + 1; 1721 } 1722 1723 if (i < strs.cnt) { 1724 grp_idx = i; 1725 grp_used = strs.ptrs[i].used; 1726 } 1727 } 1728 1729 /* replace original strings with deduped ones */ 1730 d->btf->hdr->str_len = p - tmp_strs; 1731 memmove(start, tmp_strs, d->btf->hdr->str_len); 1732 end = start + d->btf->hdr->str_len; 1733 1734 /* restore original order for further binary search lookups */ 1735 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); 1736 1737 /* remap string offsets */ 1738 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); 1739 if (err) 1740 goto done; 1741 1742 d->btf->hdr->str_len = end - start; 1743 1744 done: 1745 free(tmp_strs); 1746 free(strs.ptrs); 1747 return err; 1748 } 1749 1750 static long btf_hash_common(struct btf_type *t) 1751 { 1752 long h; 1753 1754 h = hash_combine(0, t->name_off); 1755 h = hash_combine(h, t->info); 1756 h = hash_combine(h, t->size); 1757 return h; 1758 } 1759 1760 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 1761 { 1762 return t1->name_off == t2->name_off && 1763 t1->info == t2->info && 1764 t1->size == t2->size; 1765 } 1766 1767 /* Calculate type signature hash of INT. */ 1768 static long btf_hash_int(struct btf_type *t) 1769 { 1770 __u32 info = *(__u32 *)(t + 1); 1771 long h; 1772 1773 h = btf_hash_common(t); 1774 h = hash_combine(h, info); 1775 return h; 1776 } 1777 1778 /* Check structural equality of two INTs. */ 1779 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 1780 { 1781 __u32 info1, info2; 1782 1783 if (!btf_equal_common(t1, t2)) 1784 return false; 1785 info1 = *(__u32 *)(t1 + 1); 1786 info2 = *(__u32 *)(t2 + 1); 1787 return info1 == info2; 1788 } 1789 1790 /* Calculate type signature hash of ENUM. */ 1791 static long btf_hash_enum(struct btf_type *t) 1792 { 1793 long h; 1794 1795 /* don't hash vlen and enum members to support enum fwd resolving */ 1796 h = hash_combine(0, t->name_off); 1797 h = hash_combine(h, t->info & ~0xffff); 1798 h = hash_combine(h, t->size); 1799 return h; 1800 } 1801 1802 /* Check structural equality of two ENUMs. */ 1803 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 1804 { 1805 struct btf_enum *m1, *m2; 1806 __u16 vlen; 1807 int i; 1808 1809 if (!btf_equal_common(t1, t2)) 1810 return false; 1811 1812 vlen = BTF_INFO_VLEN(t1->info); 1813 m1 = (struct btf_enum *)(t1 + 1); 1814 m2 = (struct btf_enum *)(t2 + 1); 1815 for (i = 0; i < vlen; i++) { 1816 if (m1->name_off != m2->name_off || m1->val != m2->val) 1817 return false; 1818 m1++; 1819 m2++; 1820 } 1821 return true; 1822 } 1823 1824 static inline bool btf_is_enum_fwd(struct btf_type *t) 1825 { 1826 return BTF_INFO_KIND(t->info) == BTF_KIND_ENUM && 1827 BTF_INFO_VLEN(t->info) == 0; 1828 } 1829 1830 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 1831 { 1832 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 1833 return btf_equal_enum(t1, t2); 1834 /* ignore vlen when comparing */ 1835 return t1->name_off == t2->name_off && 1836 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 1837 t1->size == t2->size; 1838 } 1839 1840 /* 1841 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 1842 * as referenced type IDs equivalence is established separately during type 1843 * graph equivalence check algorithm. 1844 */ 1845 static long btf_hash_struct(struct btf_type *t) 1846 { 1847 struct btf_member *member = (struct btf_member *)(t + 1); 1848 __u32 vlen = BTF_INFO_VLEN(t->info); 1849 long h = btf_hash_common(t); 1850 int i; 1851 1852 for (i = 0; i < vlen; i++) { 1853 h = hash_combine(h, member->name_off); 1854 h = hash_combine(h, member->offset); 1855 /* no hashing of referenced type ID, it can be unresolved yet */ 1856 member++; 1857 } 1858 return h; 1859 } 1860 1861 /* 1862 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 1863 * IDs. This check is performed during type graph equivalence check and 1864 * referenced types equivalence is checked separately. 1865 */ 1866 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 1867 { 1868 struct btf_member *m1, *m2; 1869 __u16 vlen; 1870 int i; 1871 1872 if (!btf_equal_common(t1, t2)) 1873 return false; 1874 1875 vlen = BTF_INFO_VLEN(t1->info); 1876 m1 = (struct btf_member *)(t1 + 1); 1877 m2 = (struct btf_member *)(t2 + 1); 1878 for (i = 0; i < vlen; i++) { 1879 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 1880 return false; 1881 m1++; 1882 m2++; 1883 } 1884 return true; 1885 } 1886 1887 /* 1888 * Calculate type signature hash of ARRAY, including referenced type IDs, 1889 * under assumption that they were already resolved to canonical type IDs and 1890 * are not going to change. 1891 */ 1892 static long btf_hash_array(struct btf_type *t) 1893 { 1894 struct btf_array *info = (struct btf_array *)(t + 1); 1895 long h = btf_hash_common(t); 1896 1897 h = hash_combine(h, info->type); 1898 h = hash_combine(h, info->index_type); 1899 h = hash_combine(h, info->nelems); 1900 return h; 1901 } 1902 1903 /* 1904 * Check exact equality of two ARRAYs, taking into account referenced 1905 * type IDs, under assumption that they were already resolved to canonical 1906 * type IDs and are not going to change. 1907 * This function is called during reference types deduplication to compare 1908 * ARRAY to potential canonical representative. 1909 */ 1910 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 1911 { 1912 struct btf_array *info1, *info2; 1913 1914 if (!btf_equal_common(t1, t2)) 1915 return false; 1916 1917 info1 = (struct btf_array *)(t1 + 1); 1918 info2 = (struct btf_array *)(t2 + 1); 1919 return info1->type == info2->type && 1920 info1->index_type == info2->index_type && 1921 info1->nelems == info2->nelems; 1922 } 1923 1924 /* 1925 * Check structural compatibility of two ARRAYs, ignoring referenced type 1926 * IDs. This check is performed during type graph equivalence check and 1927 * referenced types equivalence is checked separately. 1928 */ 1929 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 1930 { 1931 struct btf_array *info1, *info2; 1932 1933 if (!btf_equal_common(t1, t2)) 1934 return false; 1935 1936 info1 = (struct btf_array *)(t1 + 1); 1937 info2 = (struct btf_array *)(t2 + 1); 1938 return info1->nelems == info2->nelems; 1939 } 1940 1941 /* 1942 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 1943 * under assumption that they were already resolved to canonical type IDs and 1944 * are not going to change. 1945 */ 1946 static long btf_hash_fnproto(struct btf_type *t) 1947 { 1948 struct btf_param *member = (struct btf_param *)(t + 1); 1949 __u16 vlen = BTF_INFO_VLEN(t->info); 1950 long h = btf_hash_common(t); 1951 int i; 1952 1953 for (i = 0; i < vlen; i++) { 1954 h = hash_combine(h, member->name_off); 1955 h = hash_combine(h, member->type); 1956 member++; 1957 } 1958 return h; 1959 } 1960 1961 /* 1962 * Check exact equality of two FUNC_PROTOs, taking into account referenced 1963 * type IDs, under assumption that they were already resolved to canonical 1964 * type IDs and are not going to change. 1965 * This function is called during reference types deduplication to compare 1966 * FUNC_PROTO to potential canonical representative. 1967 */ 1968 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 1969 { 1970 struct btf_param *m1, *m2; 1971 __u16 vlen; 1972 int i; 1973 1974 if (!btf_equal_common(t1, t2)) 1975 return false; 1976 1977 vlen = BTF_INFO_VLEN(t1->info); 1978 m1 = (struct btf_param *)(t1 + 1); 1979 m2 = (struct btf_param *)(t2 + 1); 1980 for (i = 0; i < vlen; i++) { 1981 if (m1->name_off != m2->name_off || m1->type != m2->type) 1982 return false; 1983 m1++; 1984 m2++; 1985 } 1986 return true; 1987 } 1988 1989 /* 1990 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 1991 * IDs. This check is performed during type graph equivalence check and 1992 * referenced types equivalence is checked separately. 1993 */ 1994 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 1995 { 1996 struct btf_param *m1, *m2; 1997 __u16 vlen; 1998 int i; 1999 2000 /* skip return type ID */ 2001 if (t1->name_off != t2->name_off || t1->info != t2->info) 2002 return false; 2003 2004 vlen = BTF_INFO_VLEN(t1->info); 2005 m1 = (struct btf_param *)(t1 + 1); 2006 m2 = (struct btf_param *)(t2 + 1); 2007 for (i = 0; i < vlen; i++) { 2008 if (m1->name_off != m2->name_off) 2009 return false; 2010 m1++; 2011 m2++; 2012 } 2013 return true; 2014 } 2015 2016 /* 2017 * Deduplicate primitive types, that can't reference other types, by calculating 2018 * their type signature hash and comparing them with any possible canonical 2019 * candidate. If no canonical candidate matches, type itself is marked as 2020 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 2021 */ 2022 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 2023 { 2024 struct btf_type *t = d->btf->types[type_id]; 2025 struct hashmap_entry *hash_entry; 2026 struct btf_type *cand; 2027 /* if we don't find equivalent type, then we are canonical */ 2028 __u32 new_id = type_id; 2029 __u32 cand_id; 2030 long h; 2031 2032 switch (BTF_INFO_KIND(t->info)) { 2033 case BTF_KIND_CONST: 2034 case BTF_KIND_VOLATILE: 2035 case BTF_KIND_RESTRICT: 2036 case BTF_KIND_PTR: 2037 case BTF_KIND_TYPEDEF: 2038 case BTF_KIND_ARRAY: 2039 case BTF_KIND_STRUCT: 2040 case BTF_KIND_UNION: 2041 case BTF_KIND_FUNC: 2042 case BTF_KIND_FUNC_PROTO: 2043 case BTF_KIND_VAR: 2044 case BTF_KIND_DATASEC: 2045 return 0; 2046 2047 case BTF_KIND_INT: 2048 h = btf_hash_int(t); 2049 for_each_dedup_cand(d, hash_entry, h) { 2050 cand_id = (__u32)(long)hash_entry->value; 2051 cand = d->btf->types[cand_id]; 2052 if (btf_equal_int(t, cand)) { 2053 new_id = cand_id; 2054 break; 2055 } 2056 } 2057 break; 2058 2059 case BTF_KIND_ENUM: 2060 h = btf_hash_enum(t); 2061 for_each_dedup_cand(d, hash_entry, h) { 2062 cand_id = (__u32)(long)hash_entry->value; 2063 cand = d->btf->types[cand_id]; 2064 if (btf_equal_enum(t, cand)) { 2065 new_id = cand_id; 2066 break; 2067 } 2068 if (d->opts.dont_resolve_fwds) 2069 continue; 2070 if (btf_compat_enum(t, cand)) { 2071 if (btf_is_enum_fwd(t)) { 2072 /* resolve fwd to full enum */ 2073 new_id = cand_id; 2074 break; 2075 } 2076 /* resolve canonical enum fwd to full enum */ 2077 d->map[cand_id] = type_id; 2078 } 2079 } 2080 break; 2081 2082 case BTF_KIND_FWD: 2083 h = btf_hash_common(t); 2084 for_each_dedup_cand(d, hash_entry, h) { 2085 cand_id = (__u32)(long)hash_entry->value; 2086 cand = d->btf->types[cand_id]; 2087 if (btf_equal_common(t, cand)) { 2088 new_id = cand_id; 2089 break; 2090 } 2091 } 2092 break; 2093 2094 default: 2095 return -EINVAL; 2096 } 2097 2098 d->map[type_id] = new_id; 2099 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2100 return -ENOMEM; 2101 2102 return 0; 2103 } 2104 2105 static int btf_dedup_prim_types(struct btf_dedup *d) 2106 { 2107 int i, err; 2108 2109 for (i = 1; i <= d->btf->nr_types; i++) { 2110 err = btf_dedup_prim_type(d, i); 2111 if (err) 2112 return err; 2113 } 2114 return 0; 2115 } 2116 2117 /* 2118 * Check whether type is already mapped into canonical one (could be to itself). 2119 */ 2120 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 2121 { 2122 return d->map[type_id] <= BTF_MAX_NR_TYPES; 2123 } 2124 2125 /* 2126 * Resolve type ID into its canonical type ID, if any; otherwise return original 2127 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 2128 * STRUCT/UNION link and resolve it into canonical type ID as well. 2129 */ 2130 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 2131 { 2132 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2133 type_id = d->map[type_id]; 2134 return type_id; 2135 } 2136 2137 /* 2138 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 2139 * type ID. 2140 */ 2141 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 2142 { 2143 __u32 orig_type_id = type_id; 2144 2145 if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD) 2146 return type_id; 2147 2148 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2149 type_id = d->map[type_id]; 2150 2151 if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD) 2152 return type_id; 2153 2154 return orig_type_id; 2155 } 2156 2157 2158 static inline __u16 btf_fwd_kind(struct btf_type *t) 2159 { 2160 return BTF_INFO_KFLAG(t->info) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 2161 } 2162 2163 /* 2164 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 2165 * call it "candidate graph" in this description for brevity) to a type graph 2166 * formed by (potential) canonical struct/union ("canonical graph" for brevity 2167 * here, though keep in mind that not all types in canonical graph are 2168 * necessarily canonical representatives themselves, some of them might be 2169 * duplicates or its uniqueness might not have been established yet). 2170 * Returns: 2171 * - >0, if type graphs are equivalent; 2172 * - 0, if not equivalent; 2173 * - <0, on error. 2174 * 2175 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 2176 * equivalence of BTF types at each step. If at any point BTF types in candidate 2177 * and canonical graphs are not compatible structurally, whole graphs are 2178 * incompatible. If types are structurally equivalent (i.e., all information 2179 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 2180 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 2181 * If a type references other types, then those referenced types are checked 2182 * for equivalence recursively. 2183 * 2184 * During DFS traversal, if we find that for current `canon_id` type we 2185 * already have some mapping in hypothetical map, we check for two possible 2186 * situations: 2187 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 2188 * happen when type graphs have cycles. In this case we assume those two 2189 * types are equivalent. 2190 * - `canon_id` is mapped to different type. This is contradiction in our 2191 * hypothetical mapping, because same graph in canonical graph corresponds 2192 * to two different types in candidate graph, which for equivalent type 2193 * graphs shouldn't happen. This condition terminates equivalence check 2194 * with negative result. 2195 * 2196 * If type graphs traversal exhausts types to check and find no contradiction, 2197 * then type graphs are equivalent. 2198 * 2199 * When checking types for equivalence, there is one special case: FWD types. 2200 * If FWD type resolution is allowed and one of the types (either from canonical 2201 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 2202 * flag) and their names match, hypothetical mapping is updated to point from 2203 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 2204 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 2205 * 2206 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 2207 * if there are two exactly named (or anonymous) structs/unions that are 2208 * compatible structurally, one of which has FWD field, while other is concrete 2209 * STRUCT/UNION, but according to C sources they are different structs/unions 2210 * that are referencing different types with the same name. This is extremely 2211 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 2212 * this logic is causing problems. 2213 * 2214 * Doing FWD resolution means that both candidate and/or canonical graphs can 2215 * consists of portions of the graph that come from multiple compilation units. 2216 * This is due to the fact that types within single compilation unit are always 2217 * deduplicated and FWDs are already resolved, if referenced struct/union 2218 * definiton is available. So, if we had unresolved FWD and found corresponding 2219 * STRUCT/UNION, they will be from different compilation units. This 2220 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 2221 * type graph will likely have at least two different BTF types that describe 2222 * same type (e.g., most probably there will be two different BTF types for the 2223 * same 'int' primitive type) and could even have "overlapping" parts of type 2224 * graph that describe same subset of types. 2225 * 2226 * This in turn means that our assumption that each type in canonical graph 2227 * must correspond to exactly one type in candidate graph might not hold 2228 * anymore and will make it harder to detect contradictions using hypothetical 2229 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 2230 * resolution only in canonical graph. FWDs in candidate graphs are never 2231 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 2232 * that can occur: 2233 * - Both types in canonical and candidate graphs are FWDs. If they are 2234 * structurally equivalent, then they can either be both resolved to the 2235 * same STRUCT/UNION or not resolved at all. In both cases they are 2236 * equivalent and there is no need to resolve FWD on candidate side. 2237 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 2238 * so nothing to resolve as well, algorithm will check equivalence anyway. 2239 * - Type in canonical graph is FWD, while type in candidate is concrete 2240 * STRUCT/UNION. In this case candidate graph comes from single compilation 2241 * unit, so there is exactly one BTF type for each unique C type. After 2242 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 2243 * in canonical graph mapping to single BTF type in candidate graph, but 2244 * because hypothetical mapping maps from canonical to candidate types, it's 2245 * alright, and we still maintain the property of having single `canon_id` 2246 * mapping to single `cand_id` (there could be two different `canon_id` 2247 * mapped to the same `cand_id`, but it's not contradictory). 2248 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 2249 * graph is FWD. In this case we are just going to check compatibility of 2250 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 2251 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 2252 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 2253 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 2254 * canonical graph. 2255 */ 2256 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 2257 __u32 canon_id) 2258 { 2259 struct btf_type *cand_type; 2260 struct btf_type *canon_type; 2261 __u32 hypot_type_id; 2262 __u16 cand_kind; 2263 __u16 canon_kind; 2264 int i, eq; 2265 2266 /* if both resolve to the same canonical, they must be equivalent */ 2267 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 2268 return 1; 2269 2270 canon_id = resolve_fwd_id(d, canon_id); 2271 2272 hypot_type_id = d->hypot_map[canon_id]; 2273 if (hypot_type_id <= BTF_MAX_NR_TYPES) 2274 return hypot_type_id == cand_id; 2275 2276 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 2277 return -ENOMEM; 2278 2279 cand_type = d->btf->types[cand_id]; 2280 canon_type = d->btf->types[canon_id]; 2281 cand_kind = BTF_INFO_KIND(cand_type->info); 2282 canon_kind = BTF_INFO_KIND(canon_type->info); 2283 2284 if (cand_type->name_off != canon_type->name_off) 2285 return 0; 2286 2287 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 2288 if (!d->opts.dont_resolve_fwds 2289 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 2290 && cand_kind != canon_kind) { 2291 __u16 real_kind; 2292 __u16 fwd_kind; 2293 2294 if (cand_kind == BTF_KIND_FWD) { 2295 real_kind = canon_kind; 2296 fwd_kind = btf_fwd_kind(cand_type); 2297 } else { 2298 real_kind = cand_kind; 2299 fwd_kind = btf_fwd_kind(canon_type); 2300 } 2301 return fwd_kind == real_kind; 2302 } 2303 2304 if (cand_kind != canon_kind) 2305 return 0; 2306 2307 switch (cand_kind) { 2308 case BTF_KIND_INT: 2309 return btf_equal_int(cand_type, canon_type); 2310 2311 case BTF_KIND_ENUM: 2312 if (d->opts.dont_resolve_fwds) 2313 return btf_equal_enum(cand_type, canon_type); 2314 else 2315 return btf_compat_enum(cand_type, canon_type); 2316 2317 case BTF_KIND_FWD: 2318 return btf_equal_common(cand_type, canon_type); 2319 2320 case BTF_KIND_CONST: 2321 case BTF_KIND_VOLATILE: 2322 case BTF_KIND_RESTRICT: 2323 case BTF_KIND_PTR: 2324 case BTF_KIND_TYPEDEF: 2325 case BTF_KIND_FUNC: 2326 if (cand_type->info != canon_type->info) 2327 return 0; 2328 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2329 2330 case BTF_KIND_ARRAY: { 2331 struct btf_array *cand_arr, *canon_arr; 2332 2333 if (!btf_compat_array(cand_type, canon_type)) 2334 return 0; 2335 cand_arr = (struct btf_array *)(cand_type + 1); 2336 canon_arr = (struct btf_array *)(canon_type + 1); 2337 eq = btf_dedup_is_equiv(d, 2338 cand_arr->index_type, canon_arr->index_type); 2339 if (eq <= 0) 2340 return eq; 2341 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 2342 } 2343 2344 case BTF_KIND_STRUCT: 2345 case BTF_KIND_UNION: { 2346 struct btf_member *cand_m, *canon_m; 2347 __u16 vlen; 2348 2349 if (!btf_shallow_equal_struct(cand_type, canon_type)) 2350 return 0; 2351 vlen = BTF_INFO_VLEN(cand_type->info); 2352 cand_m = (struct btf_member *)(cand_type + 1); 2353 canon_m = (struct btf_member *)(canon_type + 1); 2354 for (i = 0; i < vlen; i++) { 2355 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 2356 if (eq <= 0) 2357 return eq; 2358 cand_m++; 2359 canon_m++; 2360 } 2361 2362 return 1; 2363 } 2364 2365 case BTF_KIND_FUNC_PROTO: { 2366 struct btf_param *cand_p, *canon_p; 2367 __u16 vlen; 2368 2369 if (!btf_compat_fnproto(cand_type, canon_type)) 2370 return 0; 2371 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2372 if (eq <= 0) 2373 return eq; 2374 vlen = BTF_INFO_VLEN(cand_type->info); 2375 cand_p = (struct btf_param *)(cand_type + 1); 2376 canon_p = (struct btf_param *)(canon_type + 1); 2377 for (i = 0; i < vlen; i++) { 2378 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 2379 if (eq <= 0) 2380 return eq; 2381 cand_p++; 2382 canon_p++; 2383 } 2384 return 1; 2385 } 2386 2387 default: 2388 return -EINVAL; 2389 } 2390 return 0; 2391 } 2392 2393 /* 2394 * Use hypothetical mapping, produced by successful type graph equivalence 2395 * check, to augment existing struct/union canonical mapping, where possible. 2396 * 2397 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 2398 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 2399 * it doesn't matter if FWD type was part of canonical graph or candidate one, 2400 * we are recording the mapping anyway. As opposed to carefulness required 2401 * for struct/union correspondence mapping (described below), for FWD resolution 2402 * it's not important, as by the time that FWD type (reference type) will be 2403 * deduplicated all structs/unions will be deduped already anyway. 2404 * 2405 * Recording STRUCT/UNION mapping is purely a performance optimization and is 2406 * not required for correctness. It needs to be done carefully to ensure that 2407 * struct/union from candidate's type graph is not mapped into corresponding 2408 * struct/union from canonical type graph that itself hasn't been resolved into 2409 * canonical representative. The only guarantee we have is that canonical 2410 * struct/union was determined as canonical and that won't change. But any 2411 * types referenced through that struct/union fields could have been not yet 2412 * resolved, so in case like that it's too early to establish any kind of 2413 * correspondence between structs/unions. 2414 * 2415 * No canonical correspondence is derived for primitive types (they are already 2416 * deduplicated completely already anyway) or reference types (they rely on 2417 * stability of struct/union canonical relationship for equivalence checks). 2418 */ 2419 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 2420 { 2421 __u32 cand_type_id, targ_type_id; 2422 __u16 t_kind, c_kind; 2423 __u32 t_id, c_id; 2424 int i; 2425 2426 for (i = 0; i < d->hypot_cnt; i++) { 2427 cand_type_id = d->hypot_list[i]; 2428 targ_type_id = d->hypot_map[cand_type_id]; 2429 t_id = resolve_type_id(d, targ_type_id); 2430 c_id = resolve_type_id(d, cand_type_id); 2431 t_kind = BTF_INFO_KIND(d->btf->types[t_id]->info); 2432 c_kind = BTF_INFO_KIND(d->btf->types[c_id]->info); 2433 /* 2434 * Resolve FWD into STRUCT/UNION. 2435 * It's ok to resolve FWD into STRUCT/UNION that's not yet 2436 * mapped to canonical representative (as opposed to 2437 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 2438 * eventually that struct is going to be mapped and all resolved 2439 * FWDs will automatically resolve to correct canonical 2440 * representative. This will happen before ref type deduping, 2441 * which critically depends on stability of these mapping. This 2442 * stability is not a requirement for STRUCT/UNION equivalence 2443 * checks, though. 2444 */ 2445 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 2446 d->map[c_id] = t_id; 2447 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 2448 d->map[t_id] = c_id; 2449 2450 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 2451 c_kind != BTF_KIND_FWD && 2452 is_type_mapped(d, c_id) && 2453 !is_type_mapped(d, t_id)) { 2454 /* 2455 * as a perf optimization, we can map struct/union 2456 * that's part of type graph we just verified for 2457 * equivalence. We can do that for struct/union that has 2458 * canonical representative only, though. 2459 */ 2460 d->map[t_id] = c_id; 2461 } 2462 } 2463 } 2464 2465 /* 2466 * Deduplicate struct/union types. 2467 * 2468 * For each struct/union type its type signature hash is calculated, taking 2469 * into account type's name, size, number, order and names of fields, but 2470 * ignoring type ID's referenced from fields, because they might not be deduped 2471 * completely until after reference types deduplication phase. This type hash 2472 * is used to iterate over all potential canonical types, sharing same hash. 2473 * For each canonical candidate we check whether type graphs that they form 2474 * (through referenced types in fields and so on) are equivalent using algorithm 2475 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 2476 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 2477 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 2478 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 2479 * potentially map other structs/unions to their canonical representatives, 2480 * if such relationship hasn't yet been established. This speeds up algorithm 2481 * by eliminating some of the duplicate work. 2482 * 2483 * If no matching canonical representative was found, struct/union is marked 2484 * as canonical for itself and is added into btf_dedup->dedup_table hash map 2485 * for further look ups. 2486 */ 2487 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 2488 { 2489 struct btf_type *cand_type, *t; 2490 struct hashmap_entry *hash_entry; 2491 /* if we don't find equivalent type, then we are canonical */ 2492 __u32 new_id = type_id; 2493 __u16 kind; 2494 long h; 2495 2496 /* already deduped or is in process of deduping (loop detected) */ 2497 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2498 return 0; 2499 2500 t = d->btf->types[type_id]; 2501 kind = BTF_INFO_KIND(t->info); 2502 2503 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 2504 return 0; 2505 2506 h = btf_hash_struct(t); 2507 for_each_dedup_cand(d, hash_entry, h) { 2508 __u32 cand_id = (__u32)(long)hash_entry->value; 2509 int eq; 2510 2511 /* 2512 * Even though btf_dedup_is_equiv() checks for 2513 * btf_shallow_equal_struct() internally when checking two 2514 * structs (unions) for equivalence, we need to guard here 2515 * from picking matching FWD type as a dedup candidate. 2516 * This can happen due to hash collision. In such case just 2517 * relying on btf_dedup_is_equiv() would lead to potentially 2518 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 2519 * FWD and compatible STRUCT/UNION are considered equivalent. 2520 */ 2521 cand_type = d->btf->types[cand_id]; 2522 if (!btf_shallow_equal_struct(t, cand_type)) 2523 continue; 2524 2525 btf_dedup_clear_hypot_map(d); 2526 eq = btf_dedup_is_equiv(d, type_id, cand_id); 2527 if (eq < 0) 2528 return eq; 2529 if (!eq) 2530 continue; 2531 new_id = cand_id; 2532 btf_dedup_merge_hypot_map(d); 2533 break; 2534 } 2535 2536 d->map[type_id] = new_id; 2537 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2538 return -ENOMEM; 2539 2540 return 0; 2541 } 2542 2543 static int btf_dedup_struct_types(struct btf_dedup *d) 2544 { 2545 int i, err; 2546 2547 for (i = 1; i <= d->btf->nr_types; i++) { 2548 err = btf_dedup_struct_type(d, i); 2549 if (err) 2550 return err; 2551 } 2552 return 0; 2553 } 2554 2555 /* 2556 * Deduplicate reference type. 2557 * 2558 * Once all primitive and struct/union types got deduplicated, we can easily 2559 * deduplicate all other (reference) BTF types. This is done in two steps: 2560 * 2561 * 1. Resolve all referenced type IDs into their canonical type IDs. This 2562 * resolution can be done either immediately for primitive or struct/union types 2563 * (because they were deduped in previous two phases) or recursively for 2564 * reference types. Recursion will always terminate at either primitive or 2565 * struct/union type, at which point we can "unwind" chain of reference types 2566 * one by one. There is no danger of encountering cycles because in C type 2567 * system the only way to form type cycle is through struct/union, so any chain 2568 * of reference types, even those taking part in a type cycle, will inevitably 2569 * reach struct/union at some point. 2570 * 2571 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 2572 * becomes "stable", in the sense that no further deduplication will cause 2573 * any changes to it. With that, it's now possible to calculate type's signature 2574 * hash (this time taking into account referenced type IDs) and loop over all 2575 * potential canonical representatives. If no match was found, current type 2576 * will become canonical representative of itself and will be added into 2577 * btf_dedup->dedup_table as another possible canonical representative. 2578 */ 2579 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 2580 { 2581 struct hashmap_entry *hash_entry; 2582 __u32 new_id = type_id, cand_id; 2583 struct btf_type *t, *cand; 2584 /* if we don't find equivalent type, then we are representative type */ 2585 int ref_type_id; 2586 long h; 2587 2588 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 2589 return -ELOOP; 2590 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2591 return resolve_type_id(d, type_id); 2592 2593 t = d->btf->types[type_id]; 2594 d->map[type_id] = BTF_IN_PROGRESS_ID; 2595 2596 switch (BTF_INFO_KIND(t->info)) { 2597 case BTF_KIND_CONST: 2598 case BTF_KIND_VOLATILE: 2599 case BTF_KIND_RESTRICT: 2600 case BTF_KIND_PTR: 2601 case BTF_KIND_TYPEDEF: 2602 case BTF_KIND_FUNC: 2603 ref_type_id = btf_dedup_ref_type(d, t->type); 2604 if (ref_type_id < 0) 2605 return ref_type_id; 2606 t->type = ref_type_id; 2607 2608 h = btf_hash_common(t); 2609 for_each_dedup_cand(d, hash_entry, h) { 2610 cand_id = (__u32)(long)hash_entry->value; 2611 cand = d->btf->types[cand_id]; 2612 if (btf_equal_common(t, cand)) { 2613 new_id = cand_id; 2614 break; 2615 } 2616 } 2617 break; 2618 2619 case BTF_KIND_ARRAY: { 2620 struct btf_array *info = (struct btf_array *)(t + 1); 2621 2622 ref_type_id = btf_dedup_ref_type(d, info->type); 2623 if (ref_type_id < 0) 2624 return ref_type_id; 2625 info->type = ref_type_id; 2626 2627 ref_type_id = btf_dedup_ref_type(d, info->index_type); 2628 if (ref_type_id < 0) 2629 return ref_type_id; 2630 info->index_type = ref_type_id; 2631 2632 h = btf_hash_array(t); 2633 for_each_dedup_cand(d, hash_entry, h) { 2634 cand_id = (__u32)(long)hash_entry->value; 2635 cand = d->btf->types[cand_id]; 2636 if (btf_equal_array(t, cand)) { 2637 new_id = cand_id; 2638 break; 2639 } 2640 } 2641 break; 2642 } 2643 2644 case BTF_KIND_FUNC_PROTO: { 2645 struct btf_param *param; 2646 __u16 vlen; 2647 int i; 2648 2649 ref_type_id = btf_dedup_ref_type(d, t->type); 2650 if (ref_type_id < 0) 2651 return ref_type_id; 2652 t->type = ref_type_id; 2653 2654 vlen = BTF_INFO_VLEN(t->info); 2655 param = (struct btf_param *)(t + 1); 2656 for (i = 0; i < vlen; i++) { 2657 ref_type_id = btf_dedup_ref_type(d, param->type); 2658 if (ref_type_id < 0) 2659 return ref_type_id; 2660 param->type = ref_type_id; 2661 param++; 2662 } 2663 2664 h = btf_hash_fnproto(t); 2665 for_each_dedup_cand(d, hash_entry, h) { 2666 cand_id = (__u32)(long)hash_entry->value; 2667 cand = d->btf->types[cand_id]; 2668 if (btf_equal_fnproto(t, cand)) { 2669 new_id = cand_id; 2670 break; 2671 } 2672 } 2673 break; 2674 } 2675 2676 default: 2677 return -EINVAL; 2678 } 2679 2680 d->map[type_id] = new_id; 2681 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2682 return -ENOMEM; 2683 2684 return new_id; 2685 } 2686 2687 static int btf_dedup_ref_types(struct btf_dedup *d) 2688 { 2689 int i, err; 2690 2691 for (i = 1; i <= d->btf->nr_types; i++) { 2692 err = btf_dedup_ref_type(d, i); 2693 if (err < 0) 2694 return err; 2695 } 2696 /* we won't need d->dedup_table anymore */ 2697 hashmap__free(d->dedup_table); 2698 d->dedup_table = NULL; 2699 return 0; 2700 } 2701 2702 /* 2703 * Compact types. 2704 * 2705 * After we established for each type its corresponding canonical representative 2706 * type, we now can eliminate types that are not canonical and leave only 2707 * canonical ones layed out sequentially in memory by copying them over 2708 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 2709 * a map from original type ID to a new compacted type ID, which will be used 2710 * during next phase to "fix up" type IDs, referenced from struct/union and 2711 * reference types. 2712 */ 2713 static int btf_dedup_compact_types(struct btf_dedup *d) 2714 { 2715 struct btf_type **new_types; 2716 __u32 next_type_id = 1; 2717 char *types_start, *p; 2718 int i, len; 2719 2720 /* we are going to reuse hypot_map to store compaction remapping */ 2721 d->hypot_map[0] = 0; 2722 for (i = 1; i <= d->btf->nr_types; i++) 2723 d->hypot_map[i] = BTF_UNPROCESSED_ID; 2724 2725 types_start = d->btf->nohdr_data + d->btf->hdr->type_off; 2726 p = types_start; 2727 2728 for (i = 1; i <= d->btf->nr_types; i++) { 2729 if (d->map[i] != i) 2730 continue; 2731 2732 len = btf_type_size(d->btf->types[i]); 2733 if (len < 0) 2734 return len; 2735 2736 memmove(p, d->btf->types[i], len); 2737 d->hypot_map[i] = next_type_id; 2738 d->btf->types[next_type_id] = (struct btf_type *)p; 2739 p += len; 2740 next_type_id++; 2741 } 2742 2743 /* shrink struct btf's internal types index and update btf_header */ 2744 d->btf->nr_types = next_type_id - 1; 2745 d->btf->types_size = d->btf->nr_types; 2746 d->btf->hdr->type_len = p - types_start; 2747 new_types = realloc(d->btf->types, 2748 (1 + d->btf->nr_types) * sizeof(struct btf_type *)); 2749 if (!new_types) 2750 return -ENOMEM; 2751 d->btf->types = new_types; 2752 2753 /* make sure string section follows type information without gaps */ 2754 d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data; 2755 memmove(p, d->btf->strings, d->btf->hdr->str_len); 2756 d->btf->strings = p; 2757 p += d->btf->hdr->str_len; 2758 2759 d->btf->data_size = p - (char *)d->btf->data; 2760 return 0; 2761 } 2762 2763 /* 2764 * Figure out final (deduplicated and compacted) type ID for provided original 2765 * `type_id` by first resolving it into corresponding canonical type ID and 2766 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 2767 * which is populated during compaction phase. 2768 */ 2769 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 2770 { 2771 __u32 resolved_type_id, new_type_id; 2772 2773 resolved_type_id = resolve_type_id(d, type_id); 2774 new_type_id = d->hypot_map[resolved_type_id]; 2775 if (new_type_id > BTF_MAX_NR_TYPES) 2776 return -EINVAL; 2777 return new_type_id; 2778 } 2779 2780 /* 2781 * Remap referenced type IDs into deduped type IDs. 2782 * 2783 * After BTF types are deduplicated and compacted, their final type IDs may 2784 * differ from original ones. The map from original to a corresponding 2785 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 2786 * compaction phase. During remapping phase we are rewriting all type IDs 2787 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 2788 * their final deduped type IDs. 2789 */ 2790 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 2791 { 2792 struct btf_type *t = d->btf->types[type_id]; 2793 int i, r; 2794 2795 switch (BTF_INFO_KIND(t->info)) { 2796 case BTF_KIND_INT: 2797 case BTF_KIND_ENUM: 2798 break; 2799 2800 case BTF_KIND_FWD: 2801 case BTF_KIND_CONST: 2802 case BTF_KIND_VOLATILE: 2803 case BTF_KIND_RESTRICT: 2804 case BTF_KIND_PTR: 2805 case BTF_KIND_TYPEDEF: 2806 case BTF_KIND_FUNC: 2807 case BTF_KIND_VAR: 2808 r = btf_dedup_remap_type_id(d, t->type); 2809 if (r < 0) 2810 return r; 2811 t->type = r; 2812 break; 2813 2814 case BTF_KIND_ARRAY: { 2815 struct btf_array *arr_info = (struct btf_array *)(t + 1); 2816 2817 r = btf_dedup_remap_type_id(d, arr_info->type); 2818 if (r < 0) 2819 return r; 2820 arr_info->type = r; 2821 r = btf_dedup_remap_type_id(d, arr_info->index_type); 2822 if (r < 0) 2823 return r; 2824 arr_info->index_type = r; 2825 break; 2826 } 2827 2828 case BTF_KIND_STRUCT: 2829 case BTF_KIND_UNION: { 2830 struct btf_member *member = (struct btf_member *)(t + 1); 2831 __u16 vlen = BTF_INFO_VLEN(t->info); 2832 2833 for (i = 0; i < vlen; i++) { 2834 r = btf_dedup_remap_type_id(d, member->type); 2835 if (r < 0) 2836 return r; 2837 member->type = r; 2838 member++; 2839 } 2840 break; 2841 } 2842 2843 case BTF_KIND_FUNC_PROTO: { 2844 struct btf_param *param = (struct btf_param *)(t + 1); 2845 __u16 vlen = BTF_INFO_VLEN(t->info); 2846 2847 r = btf_dedup_remap_type_id(d, t->type); 2848 if (r < 0) 2849 return r; 2850 t->type = r; 2851 2852 for (i = 0; i < vlen; i++) { 2853 r = btf_dedup_remap_type_id(d, param->type); 2854 if (r < 0) 2855 return r; 2856 param->type = r; 2857 param++; 2858 } 2859 break; 2860 } 2861 2862 case BTF_KIND_DATASEC: { 2863 struct btf_var_secinfo *var = (struct btf_var_secinfo *)(t + 1); 2864 __u16 vlen = BTF_INFO_VLEN(t->info); 2865 2866 for (i = 0; i < vlen; i++) { 2867 r = btf_dedup_remap_type_id(d, var->type); 2868 if (r < 0) 2869 return r; 2870 var->type = r; 2871 var++; 2872 } 2873 break; 2874 } 2875 2876 default: 2877 return -EINVAL; 2878 } 2879 2880 return 0; 2881 } 2882 2883 static int btf_dedup_remap_types(struct btf_dedup *d) 2884 { 2885 int i, r; 2886 2887 for (i = 1; i <= d->btf->nr_types; i++) { 2888 r = btf_dedup_remap_type(d, i); 2889 if (r < 0) 2890 return r; 2891 } 2892 return 0; 2893 } 2894