xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 04295878beac396dae47ba93141cae0d9386e7ef)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 
25 #define BTF_MAX_NR_TYPES 0x7fffffffU
26 #define BTF_MAX_STR_OFFSET 0x7fffffffU
27 
28 static struct btf_type btf_void;
29 
30 struct btf {
31 	/* raw BTF data in native endianness */
32 	void *raw_data;
33 	/* raw BTF data in non-native endianness */
34 	void *raw_data_swapped;
35 	__u32 raw_size;
36 	/* whether target endianness differs from the native one */
37 	bool swapped_endian;
38 
39 	/*
40 	 * When BTF is loaded from an ELF or raw memory it is stored
41 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
42 	 * point inside that memory region to their respective parts of BTF
43 	 * representation:
44 	 *
45 	 * +--------------------------------+
46 	 * |  Header  |  Types  |  Strings  |
47 	 * +--------------------------------+
48 	 * ^          ^         ^
49 	 * |          |         |
50 	 * hdr        |         |
51 	 * types_data-+         |
52 	 * strs_data------------+
53 	 *
54 	 * If BTF data is later modified, e.g., due to types added or
55 	 * removed, BTF deduplication performed, etc, this contiguous
56 	 * representation is broken up into three independently allocated
57 	 * memory regions to be able to modify them independently.
58 	 * raw_data is nulled out at that point, but can be later allocated
59 	 * and cached again if user calls btf__get_raw_data(), at which point
60 	 * raw_data will contain a contiguous copy of header, types, and
61 	 * strings:
62 	 *
63 	 * +----------+  +---------+  +-----------+
64 	 * |  Header  |  |  Types  |  |  Strings  |
65 	 * +----------+  +---------+  +-----------+
66 	 * ^             ^            ^
67 	 * |             |            |
68 	 * hdr           |            |
69 	 * types_data----+            |
70 	 * strs_data------------------+
71 	 *
72 	 *               +----------+---------+-----------+
73 	 *               |  Header  |  Types  |  Strings  |
74 	 * raw_data----->+----------+---------+-----------+
75 	 */
76 	struct btf_header *hdr;
77 
78 	void *types_data;
79 	size_t types_data_cap; /* used size stored in hdr->type_len */
80 
81 	/* type ID to `struct btf_type *` lookup index
82 	 * type_offs[0] corresponds to the first non-VOID type:
83 	 *   - for base BTF it's type [1];
84 	 *   - for split BTF it's the first non-base BTF type.
85 	 */
86 	__u32 *type_offs;
87 	size_t type_offs_cap;
88 	/* number of types in this BTF instance:
89 	 *   - doesn't include special [0] void type;
90 	 *   - for split BTF counts number of types added on top of base BTF.
91 	 */
92 	__u32 nr_types;
93 	/* if not NULL, points to the base BTF on top of which the current
94 	 * split BTF is based
95 	 */
96 	struct btf *base_btf;
97 	/* BTF type ID of the first type in this BTF instance:
98 	 *   - for base BTF it's equal to 1;
99 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
100 	 */
101 	int start_id;
102 	/* logical string offset of this BTF instance:
103 	 *   - for base BTF it's equal to 0;
104 	 *   - for split BTF it's equal to total size of base BTF's string section size.
105 	 */
106 	int start_str_off;
107 
108 	void *strs_data;
109 	size_t strs_data_cap; /* used size stored in hdr->str_len */
110 
111 	/* lookup index for each unique string in strings section */
112 	struct hashmap *strs_hash;
113 	/* whether strings are already deduplicated */
114 	bool strs_deduped;
115 	/* extra indirection layer to make strings hashmap work with stable
116 	 * string offsets and ability to transparently choose between
117 	 * btf->strs_data or btf_dedup->strs_data as a source of strings.
118 	 * This is used for BTF strings dedup to transfer deduplicated strings
119 	 * data back to struct btf without re-building strings index.
120 	 */
121 	void **strs_data_ptr;
122 
123 	/* BTF object FD, if loaded into kernel */
124 	int fd;
125 
126 	/* Pointer size (in bytes) for a target architecture of this BTF */
127 	int ptr_sz;
128 };
129 
130 static inline __u64 ptr_to_u64(const void *ptr)
131 {
132 	return (__u64) (unsigned long) ptr;
133 }
134 
135 /* Ensure given dynamically allocated memory region pointed to by *data* with
136  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
137  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
138  * are already used. At most *max_cnt* elements can be ever allocated.
139  * If necessary, memory is reallocated and all existing data is copied over,
140  * new pointer to the memory region is stored at *data, new memory region
141  * capacity (in number of elements) is stored in *cap.
142  * On success, memory pointer to the beginning of unused memory is returned.
143  * On error, NULL is returned.
144  */
145 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
146 		  size_t cur_cnt, size_t max_cnt, size_t add_cnt)
147 {
148 	size_t new_cnt;
149 	void *new_data;
150 
151 	if (cur_cnt + add_cnt <= *cap_cnt)
152 		return *data + cur_cnt * elem_sz;
153 
154 	/* requested more than the set limit */
155 	if (cur_cnt + add_cnt > max_cnt)
156 		return NULL;
157 
158 	new_cnt = *cap_cnt;
159 	new_cnt += new_cnt / 4;		  /* expand by 25% */
160 	if (new_cnt < 16)		  /* but at least 16 elements */
161 		new_cnt = 16;
162 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
163 		new_cnt = max_cnt;
164 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
165 		new_cnt = cur_cnt + add_cnt;
166 
167 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
168 	if (!new_data)
169 		return NULL;
170 
171 	/* zero out newly allocated portion of memory */
172 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
173 
174 	*data = new_data;
175 	*cap_cnt = new_cnt;
176 	return new_data + cur_cnt * elem_sz;
177 }
178 
179 /* Ensure given dynamically allocated memory region has enough allocated space
180  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
181  */
182 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
183 {
184 	void *p;
185 
186 	if (need_cnt <= *cap_cnt)
187 		return 0;
188 
189 	p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
190 	if (!p)
191 		return -ENOMEM;
192 
193 	return 0;
194 }
195 
196 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
197 {
198 	__u32 *p;
199 
200 	p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
201 			btf->nr_types, BTF_MAX_NR_TYPES, 1);
202 	if (!p)
203 		return -ENOMEM;
204 
205 	*p = type_off;
206 	return 0;
207 }
208 
209 static void btf_bswap_hdr(struct btf_header *h)
210 {
211 	h->magic = bswap_16(h->magic);
212 	h->hdr_len = bswap_32(h->hdr_len);
213 	h->type_off = bswap_32(h->type_off);
214 	h->type_len = bswap_32(h->type_len);
215 	h->str_off = bswap_32(h->str_off);
216 	h->str_len = bswap_32(h->str_len);
217 }
218 
219 static int btf_parse_hdr(struct btf *btf)
220 {
221 	struct btf_header *hdr = btf->hdr;
222 	__u32 meta_left;
223 
224 	if (btf->raw_size < sizeof(struct btf_header)) {
225 		pr_debug("BTF header not found\n");
226 		return -EINVAL;
227 	}
228 
229 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
230 		btf->swapped_endian = true;
231 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
232 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
233 				bswap_32(hdr->hdr_len));
234 			return -ENOTSUP;
235 		}
236 		btf_bswap_hdr(hdr);
237 	} else if (hdr->magic != BTF_MAGIC) {
238 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
239 		return -EINVAL;
240 	}
241 
242 	meta_left = btf->raw_size - sizeof(*hdr);
243 	if (!meta_left) {
244 		pr_debug("BTF has no data\n");
245 		return -EINVAL;
246 	}
247 
248 	if (meta_left < hdr->str_off + hdr->str_len) {
249 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
250 		return -EINVAL;
251 	}
252 
253 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
254 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
255 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
256 		return -EINVAL;
257 	}
258 
259 	if (hdr->type_off % 4) {
260 		pr_debug("BTF type section is not aligned to 4 bytes\n");
261 		return -EINVAL;
262 	}
263 
264 	return 0;
265 }
266 
267 static int btf_parse_str_sec(struct btf *btf)
268 {
269 	const struct btf_header *hdr = btf->hdr;
270 	const char *start = btf->strs_data;
271 	const char *end = start + btf->hdr->str_len;
272 
273 	if (btf->base_btf && hdr->str_len == 0)
274 		return 0;
275 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
276 		pr_debug("Invalid BTF string section\n");
277 		return -EINVAL;
278 	}
279 	if (!btf->base_btf && start[0]) {
280 		pr_debug("Invalid BTF string section\n");
281 		return -EINVAL;
282 	}
283 	return 0;
284 }
285 
286 static int btf_type_size(const struct btf_type *t)
287 {
288 	const int base_size = sizeof(struct btf_type);
289 	__u16 vlen = btf_vlen(t);
290 
291 	switch (btf_kind(t)) {
292 	case BTF_KIND_FWD:
293 	case BTF_KIND_CONST:
294 	case BTF_KIND_VOLATILE:
295 	case BTF_KIND_RESTRICT:
296 	case BTF_KIND_PTR:
297 	case BTF_KIND_TYPEDEF:
298 	case BTF_KIND_FUNC:
299 		return base_size;
300 	case BTF_KIND_INT:
301 		return base_size + sizeof(__u32);
302 	case BTF_KIND_ENUM:
303 		return base_size + vlen * sizeof(struct btf_enum);
304 	case BTF_KIND_ARRAY:
305 		return base_size + sizeof(struct btf_array);
306 	case BTF_KIND_STRUCT:
307 	case BTF_KIND_UNION:
308 		return base_size + vlen * sizeof(struct btf_member);
309 	case BTF_KIND_FUNC_PROTO:
310 		return base_size + vlen * sizeof(struct btf_param);
311 	case BTF_KIND_VAR:
312 		return base_size + sizeof(struct btf_var);
313 	case BTF_KIND_DATASEC:
314 		return base_size + vlen * sizeof(struct btf_var_secinfo);
315 	default:
316 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
317 		return -EINVAL;
318 	}
319 }
320 
321 static void btf_bswap_type_base(struct btf_type *t)
322 {
323 	t->name_off = bswap_32(t->name_off);
324 	t->info = bswap_32(t->info);
325 	t->type = bswap_32(t->type);
326 }
327 
328 static int btf_bswap_type_rest(struct btf_type *t)
329 {
330 	struct btf_var_secinfo *v;
331 	struct btf_member *m;
332 	struct btf_array *a;
333 	struct btf_param *p;
334 	struct btf_enum *e;
335 	__u16 vlen = btf_vlen(t);
336 	int i;
337 
338 	switch (btf_kind(t)) {
339 	case BTF_KIND_FWD:
340 	case BTF_KIND_CONST:
341 	case BTF_KIND_VOLATILE:
342 	case BTF_KIND_RESTRICT:
343 	case BTF_KIND_PTR:
344 	case BTF_KIND_TYPEDEF:
345 	case BTF_KIND_FUNC:
346 		return 0;
347 	case BTF_KIND_INT:
348 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
349 		return 0;
350 	case BTF_KIND_ENUM:
351 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
352 			e->name_off = bswap_32(e->name_off);
353 			e->val = bswap_32(e->val);
354 		}
355 		return 0;
356 	case BTF_KIND_ARRAY:
357 		a = btf_array(t);
358 		a->type = bswap_32(a->type);
359 		a->index_type = bswap_32(a->index_type);
360 		a->nelems = bswap_32(a->nelems);
361 		return 0;
362 	case BTF_KIND_STRUCT:
363 	case BTF_KIND_UNION:
364 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
365 			m->name_off = bswap_32(m->name_off);
366 			m->type = bswap_32(m->type);
367 			m->offset = bswap_32(m->offset);
368 		}
369 		return 0;
370 	case BTF_KIND_FUNC_PROTO:
371 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
372 			p->name_off = bswap_32(p->name_off);
373 			p->type = bswap_32(p->type);
374 		}
375 		return 0;
376 	case BTF_KIND_VAR:
377 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
378 		return 0;
379 	case BTF_KIND_DATASEC:
380 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
381 			v->type = bswap_32(v->type);
382 			v->offset = bswap_32(v->offset);
383 			v->size = bswap_32(v->size);
384 		}
385 		return 0;
386 	default:
387 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
388 		return -EINVAL;
389 	}
390 }
391 
392 static int btf_parse_type_sec(struct btf *btf)
393 {
394 	struct btf_header *hdr = btf->hdr;
395 	void *next_type = btf->types_data;
396 	void *end_type = next_type + hdr->type_len;
397 	int err, type_size;
398 
399 	while (next_type + sizeof(struct btf_type) <= end_type) {
400 		if (btf->swapped_endian)
401 			btf_bswap_type_base(next_type);
402 
403 		type_size = btf_type_size(next_type);
404 		if (type_size < 0)
405 			return type_size;
406 		if (next_type + type_size > end_type) {
407 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
408 			return -EINVAL;
409 		}
410 
411 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
412 			return -EINVAL;
413 
414 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
415 		if (err)
416 			return err;
417 
418 		next_type += type_size;
419 		btf->nr_types++;
420 	}
421 
422 	if (next_type != end_type) {
423 		pr_warn("BTF types data is malformed\n");
424 		return -EINVAL;
425 	}
426 
427 	return 0;
428 }
429 
430 __u32 btf__get_nr_types(const struct btf *btf)
431 {
432 	return btf->start_id + btf->nr_types - 1;
433 }
434 
435 /* internal helper returning non-const pointer to a type */
436 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
437 {
438 	if (type_id == 0)
439 		return &btf_void;
440 	if (type_id < btf->start_id)
441 		return btf_type_by_id(btf->base_btf, type_id);
442 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
443 }
444 
445 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
446 {
447 	if (type_id >= btf->start_id + btf->nr_types)
448 		return NULL;
449 	return btf_type_by_id((struct btf *)btf, type_id);
450 }
451 
452 static int determine_ptr_size(const struct btf *btf)
453 {
454 	const struct btf_type *t;
455 	const char *name;
456 	int i, n;
457 
458 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
459 		return btf->base_btf->ptr_sz;
460 
461 	n = btf__get_nr_types(btf);
462 	for (i = 1; i <= n; i++) {
463 		t = btf__type_by_id(btf, i);
464 		if (!btf_is_int(t))
465 			continue;
466 
467 		name = btf__name_by_offset(btf, t->name_off);
468 		if (!name)
469 			continue;
470 
471 		if (strcmp(name, "long int") == 0 ||
472 		    strcmp(name, "long unsigned int") == 0) {
473 			if (t->size != 4 && t->size != 8)
474 				continue;
475 			return t->size;
476 		}
477 	}
478 
479 	return -1;
480 }
481 
482 static size_t btf_ptr_sz(const struct btf *btf)
483 {
484 	if (!btf->ptr_sz)
485 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
486 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
487 }
488 
489 /* Return pointer size this BTF instance assumes. The size is heuristically
490  * determined by looking for 'long' or 'unsigned long' integer type and
491  * recording its size in bytes. If BTF type information doesn't have any such
492  * type, this function returns 0. In the latter case, native architecture's
493  * pointer size is assumed, so will be either 4 or 8, depending on
494  * architecture that libbpf was compiled for. It's possible to override
495  * guessed value by using btf__set_pointer_size() API.
496  */
497 size_t btf__pointer_size(const struct btf *btf)
498 {
499 	if (!btf->ptr_sz)
500 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
501 
502 	if (btf->ptr_sz < 0)
503 		/* not enough BTF type info to guess */
504 		return 0;
505 
506 	return btf->ptr_sz;
507 }
508 
509 /* Override or set pointer size in bytes. Only values of 4 and 8 are
510  * supported.
511  */
512 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
513 {
514 	if (ptr_sz != 4 && ptr_sz != 8)
515 		return -EINVAL;
516 	btf->ptr_sz = ptr_sz;
517 	return 0;
518 }
519 
520 static bool is_host_big_endian(void)
521 {
522 #if __BYTE_ORDER == __LITTLE_ENDIAN
523 	return false;
524 #elif __BYTE_ORDER == __BIG_ENDIAN
525 	return true;
526 #else
527 # error "Unrecognized __BYTE_ORDER__"
528 #endif
529 }
530 
531 enum btf_endianness btf__endianness(const struct btf *btf)
532 {
533 	if (is_host_big_endian())
534 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
535 	else
536 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
537 }
538 
539 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
540 {
541 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
542 		return -EINVAL;
543 
544 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
545 	if (!btf->swapped_endian) {
546 		free(btf->raw_data_swapped);
547 		btf->raw_data_swapped = NULL;
548 	}
549 	return 0;
550 }
551 
552 static bool btf_type_is_void(const struct btf_type *t)
553 {
554 	return t == &btf_void || btf_is_fwd(t);
555 }
556 
557 static bool btf_type_is_void_or_null(const struct btf_type *t)
558 {
559 	return !t || btf_type_is_void(t);
560 }
561 
562 #define MAX_RESOLVE_DEPTH 32
563 
564 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
565 {
566 	const struct btf_array *array;
567 	const struct btf_type *t;
568 	__u32 nelems = 1;
569 	__s64 size = -1;
570 	int i;
571 
572 	t = btf__type_by_id(btf, type_id);
573 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
574 	     i++) {
575 		switch (btf_kind(t)) {
576 		case BTF_KIND_INT:
577 		case BTF_KIND_STRUCT:
578 		case BTF_KIND_UNION:
579 		case BTF_KIND_ENUM:
580 		case BTF_KIND_DATASEC:
581 			size = t->size;
582 			goto done;
583 		case BTF_KIND_PTR:
584 			size = btf_ptr_sz(btf);
585 			goto done;
586 		case BTF_KIND_TYPEDEF:
587 		case BTF_KIND_VOLATILE:
588 		case BTF_KIND_CONST:
589 		case BTF_KIND_RESTRICT:
590 		case BTF_KIND_VAR:
591 			type_id = t->type;
592 			break;
593 		case BTF_KIND_ARRAY:
594 			array = btf_array(t);
595 			if (nelems && array->nelems > UINT32_MAX / nelems)
596 				return -E2BIG;
597 			nelems *= array->nelems;
598 			type_id = array->type;
599 			break;
600 		default:
601 			return -EINVAL;
602 		}
603 
604 		t = btf__type_by_id(btf, type_id);
605 	}
606 
607 done:
608 	if (size < 0)
609 		return -EINVAL;
610 	if (nelems && size > UINT32_MAX / nelems)
611 		return -E2BIG;
612 
613 	return nelems * size;
614 }
615 
616 int btf__align_of(const struct btf *btf, __u32 id)
617 {
618 	const struct btf_type *t = btf__type_by_id(btf, id);
619 	__u16 kind = btf_kind(t);
620 
621 	switch (kind) {
622 	case BTF_KIND_INT:
623 	case BTF_KIND_ENUM:
624 		return min(btf_ptr_sz(btf), (size_t)t->size);
625 	case BTF_KIND_PTR:
626 		return btf_ptr_sz(btf);
627 	case BTF_KIND_TYPEDEF:
628 	case BTF_KIND_VOLATILE:
629 	case BTF_KIND_CONST:
630 	case BTF_KIND_RESTRICT:
631 		return btf__align_of(btf, t->type);
632 	case BTF_KIND_ARRAY:
633 		return btf__align_of(btf, btf_array(t)->type);
634 	case BTF_KIND_STRUCT:
635 	case BTF_KIND_UNION: {
636 		const struct btf_member *m = btf_members(t);
637 		__u16 vlen = btf_vlen(t);
638 		int i, max_align = 1, align;
639 
640 		for (i = 0; i < vlen; i++, m++) {
641 			align = btf__align_of(btf, m->type);
642 			if (align <= 0)
643 				return align;
644 			max_align = max(max_align, align);
645 		}
646 
647 		return max_align;
648 	}
649 	default:
650 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
651 		return 0;
652 	}
653 }
654 
655 int btf__resolve_type(const struct btf *btf, __u32 type_id)
656 {
657 	const struct btf_type *t;
658 	int depth = 0;
659 
660 	t = btf__type_by_id(btf, type_id);
661 	while (depth < MAX_RESOLVE_DEPTH &&
662 	       !btf_type_is_void_or_null(t) &&
663 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
664 		type_id = t->type;
665 		t = btf__type_by_id(btf, type_id);
666 		depth++;
667 	}
668 
669 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
670 		return -EINVAL;
671 
672 	return type_id;
673 }
674 
675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
676 {
677 	__u32 i;
678 
679 	if (!strcmp(type_name, "void"))
680 		return 0;
681 
682 	for (i = 1; i <= btf->nr_types; i++) {
683 		const struct btf_type *t = btf__type_by_id(btf, i);
684 		const char *name = btf__name_by_offset(btf, t->name_off);
685 
686 		if (name && !strcmp(type_name, name))
687 			return i;
688 	}
689 
690 	return -ENOENT;
691 }
692 
693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
694 			     __u32 kind)
695 {
696 	__u32 i;
697 
698 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
699 		return 0;
700 
701 	for (i = 1; i <= btf->nr_types; i++) {
702 		const struct btf_type *t = btf__type_by_id(btf, i);
703 		const char *name;
704 
705 		if (btf_kind(t) != kind)
706 			continue;
707 		name = btf__name_by_offset(btf, t->name_off);
708 		if (name && !strcmp(type_name, name))
709 			return i;
710 	}
711 
712 	return -ENOENT;
713 }
714 
715 static bool btf_is_modifiable(const struct btf *btf)
716 {
717 	return (void *)btf->hdr != btf->raw_data;
718 }
719 
720 void btf__free(struct btf *btf)
721 {
722 	if (IS_ERR_OR_NULL(btf))
723 		return;
724 
725 	if (btf->fd >= 0)
726 		close(btf->fd);
727 
728 	if (btf_is_modifiable(btf)) {
729 		/* if BTF was modified after loading, it will have a split
730 		 * in-memory representation for header, types, and strings
731 		 * sections, so we need to free all of them individually. It
732 		 * might still have a cached contiguous raw data present,
733 		 * which will be unconditionally freed below.
734 		 */
735 		free(btf->hdr);
736 		free(btf->types_data);
737 		free(btf->strs_data);
738 	}
739 	free(btf->raw_data);
740 	free(btf->raw_data_swapped);
741 	free(btf->type_offs);
742 	free(btf);
743 }
744 
745 static struct btf *btf_new_empty(struct btf *base_btf)
746 {
747 	struct btf *btf;
748 
749 	btf = calloc(1, sizeof(*btf));
750 	if (!btf)
751 		return ERR_PTR(-ENOMEM);
752 
753 	btf->nr_types = 0;
754 	btf->start_id = 1;
755 	btf->start_str_off = 0;
756 	btf->fd = -1;
757 	btf->ptr_sz = sizeof(void *);
758 	btf->swapped_endian = false;
759 
760 	if (base_btf) {
761 		btf->base_btf = base_btf;
762 		btf->start_id = btf__get_nr_types(base_btf) + 1;
763 		btf->start_str_off = base_btf->hdr->str_len;
764 	}
765 
766 	/* +1 for empty string at offset 0 */
767 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
768 	btf->raw_data = calloc(1, btf->raw_size);
769 	if (!btf->raw_data) {
770 		free(btf);
771 		return ERR_PTR(-ENOMEM);
772 	}
773 
774 	btf->hdr = btf->raw_data;
775 	btf->hdr->hdr_len = sizeof(struct btf_header);
776 	btf->hdr->magic = BTF_MAGIC;
777 	btf->hdr->version = BTF_VERSION;
778 
779 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
781 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
782 
783 	return btf;
784 }
785 
786 struct btf *btf__new_empty(void)
787 {
788 	return btf_new_empty(NULL);
789 }
790 
791 struct btf *btf__new_empty_split(struct btf *base_btf)
792 {
793 	return btf_new_empty(base_btf);
794 }
795 
796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
797 {
798 	struct btf *btf;
799 	int err;
800 
801 	btf = calloc(1, sizeof(struct btf));
802 	if (!btf)
803 		return ERR_PTR(-ENOMEM);
804 
805 	btf->nr_types = 0;
806 	btf->start_id = 1;
807 	btf->start_str_off = 0;
808 
809 	if (base_btf) {
810 		btf->base_btf = base_btf;
811 		btf->start_id = btf__get_nr_types(base_btf) + 1;
812 		btf->start_str_off = base_btf->hdr->str_len;
813 	}
814 
815 	btf->raw_data = malloc(size);
816 	if (!btf->raw_data) {
817 		err = -ENOMEM;
818 		goto done;
819 	}
820 	memcpy(btf->raw_data, data, size);
821 	btf->raw_size = size;
822 
823 	btf->hdr = btf->raw_data;
824 	err = btf_parse_hdr(btf);
825 	if (err)
826 		goto done;
827 
828 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830 
831 	err = btf_parse_str_sec(btf);
832 	err = err ?: btf_parse_type_sec(btf);
833 	if (err)
834 		goto done;
835 
836 	btf->fd = -1;
837 
838 done:
839 	if (err) {
840 		btf__free(btf);
841 		return ERR_PTR(err);
842 	}
843 
844 	return btf;
845 }
846 
847 struct btf *btf__new(const void *data, __u32 size)
848 {
849 	return btf_new(data, size, NULL);
850 }
851 
852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
853 				 struct btf_ext **btf_ext)
854 {
855 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
856 	int err = 0, fd = -1, idx = 0;
857 	struct btf *btf = NULL;
858 	Elf_Scn *scn = NULL;
859 	Elf *elf = NULL;
860 	GElf_Ehdr ehdr;
861 
862 	if (elf_version(EV_CURRENT) == EV_NONE) {
863 		pr_warn("failed to init libelf for %s\n", path);
864 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
865 	}
866 
867 	fd = open(path, O_RDONLY);
868 	if (fd < 0) {
869 		err = -errno;
870 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
871 		return ERR_PTR(err);
872 	}
873 
874 	err = -LIBBPF_ERRNO__FORMAT;
875 
876 	elf = elf_begin(fd, ELF_C_READ, NULL);
877 	if (!elf) {
878 		pr_warn("failed to open %s as ELF file\n", path);
879 		goto done;
880 	}
881 	if (!gelf_getehdr(elf, &ehdr)) {
882 		pr_warn("failed to get EHDR from %s\n", path);
883 		goto done;
884 	}
885 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
886 		pr_warn("failed to get e_shstrndx from %s\n", path);
887 		goto done;
888 	}
889 
890 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
891 		GElf_Shdr sh;
892 		char *name;
893 
894 		idx++;
895 		if (gelf_getshdr(scn, &sh) != &sh) {
896 			pr_warn("failed to get section(%d) header from %s\n",
897 				idx, path);
898 			goto done;
899 		}
900 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
901 		if (!name) {
902 			pr_warn("failed to get section(%d) name from %s\n",
903 				idx, path);
904 			goto done;
905 		}
906 		if (strcmp(name, BTF_ELF_SEC) == 0) {
907 			btf_data = elf_getdata(scn, 0);
908 			if (!btf_data) {
909 				pr_warn("failed to get section(%d, %s) data from %s\n",
910 					idx, name, path);
911 				goto done;
912 			}
913 			continue;
914 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
915 			btf_ext_data = elf_getdata(scn, 0);
916 			if (!btf_ext_data) {
917 				pr_warn("failed to get section(%d, %s) data from %s\n",
918 					idx, name, path);
919 				goto done;
920 			}
921 			continue;
922 		}
923 	}
924 
925 	err = 0;
926 
927 	if (!btf_data) {
928 		err = -ENOENT;
929 		goto done;
930 	}
931 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
932 	if (IS_ERR(btf))
933 		goto done;
934 
935 	switch (gelf_getclass(elf)) {
936 	case ELFCLASS32:
937 		btf__set_pointer_size(btf, 4);
938 		break;
939 	case ELFCLASS64:
940 		btf__set_pointer_size(btf, 8);
941 		break;
942 	default:
943 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
944 		break;
945 	}
946 
947 	if (btf_ext && btf_ext_data) {
948 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
949 					btf_ext_data->d_size);
950 		if (IS_ERR(*btf_ext))
951 			goto done;
952 	} else if (btf_ext) {
953 		*btf_ext = NULL;
954 	}
955 done:
956 	if (elf)
957 		elf_end(elf);
958 	close(fd);
959 
960 	if (err)
961 		return ERR_PTR(err);
962 	/*
963 	 * btf is always parsed before btf_ext, so no need to clean up
964 	 * btf_ext, if btf loading failed
965 	 */
966 	if (IS_ERR(btf))
967 		return btf;
968 	if (btf_ext && IS_ERR(*btf_ext)) {
969 		btf__free(btf);
970 		err = PTR_ERR(*btf_ext);
971 		return ERR_PTR(err);
972 	}
973 	return btf;
974 }
975 
976 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
977 {
978 	return btf_parse_elf(path, NULL, btf_ext);
979 }
980 
981 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
982 {
983 	return btf_parse_elf(path, base_btf, NULL);
984 }
985 
986 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
987 {
988 	struct btf *btf = NULL;
989 	void *data = NULL;
990 	FILE *f = NULL;
991 	__u16 magic;
992 	int err = 0;
993 	long sz;
994 
995 	f = fopen(path, "rb");
996 	if (!f) {
997 		err = -errno;
998 		goto err_out;
999 	}
1000 
1001 	/* check BTF magic */
1002 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1003 		err = -EIO;
1004 		goto err_out;
1005 	}
1006 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1007 		/* definitely not a raw BTF */
1008 		err = -EPROTO;
1009 		goto err_out;
1010 	}
1011 
1012 	/* get file size */
1013 	if (fseek(f, 0, SEEK_END)) {
1014 		err = -errno;
1015 		goto err_out;
1016 	}
1017 	sz = ftell(f);
1018 	if (sz < 0) {
1019 		err = -errno;
1020 		goto err_out;
1021 	}
1022 	/* rewind to the start */
1023 	if (fseek(f, 0, SEEK_SET)) {
1024 		err = -errno;
1025 		goto err_out;
1026 	}
1027 
1028 	/* pre-alloc memory and read all of BTF data */
1029 	data = malloc(sz);
1030 	if (!data) {
1031 		err = -ENOMEM;
1032 		goto err_out;
1033 	}
1034 	if (fread(data, 1, sz, f) < sz) {
1035 		err = -EIO;
1036 		goto err_out;
1037 	}
1038 
1039 	/* finally parse BTF data */
1040 	btf = btf_new(data, sz, base_btf);
1041 
1042 err_out:
1043 	free(data);
1044 	if (f)
1045 		fclose(f);
1046 	return err ? ERR_PTR(err) : btf;
1047 }
1048 
1049 struct btf *btf__parse_raw(const char *path)
1050 {
1051 	return btf_parse_raw(path, NULL);
1052 }
1053 
1054 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1055 {
1056 	return btf_parse_raw(path, base_btf);
1057 }
1058 
1059 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1060 {
1061 	struct btf *btf;
1062 
1063 	if (btf_ext)
1064 		*btf_ext = NULL;
1065 
1066 	btf = btf_parse_raw(path, base_btf);
1067 	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
1068 		return btf;
1069 
1070 	return btf_parse_elf(path, base_btf, btf_ext);
1071 }
1072 
1073 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1074 {
1075 	return btf_parse(path, NULL, btf_ext);
1076 }
1077 
1078 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1079 {
1080 	return btf_parse(path, base_btf, NULL);
1081 }
1082 
1083 static int compare_vsi_off(const void *_a, const void *_b)
1084 {
1085 	const struct btf_var_secinfo *a = _a;
1086 	const struct btf_var_secinfo *b = _b;
1087 
1088 	return a->offset - b->offset;
1089 }
1090 
1091 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1092 			     struct btf_type *t)
1093 {
1094 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1095 	const char *name = btf__name_by_offset(btf, t->name_off);
1096 	const struct btf_type *t_var;
1097 	struct btf_var_secinfo *vsi;
1098 	const struct btf_var *var;
1099 	int ret;
1100 
1101 	if (!name) {
1102 		pr_debug("No name found in string section for DATASEC kind.\n");
1103 		return -ENOENT;
1104 	}
1105 
1106 	/* .extern datasec size and var offsets were set correctly during
1107 	 * extern collection step, so just skip straight to sorting variables
1108 	 */
1109 	if (t->size)
1110 		goto sort_vars;
1111 
1112 	ret = bpf_object__section_size(obj, name, &size);
1113 	if (ret || !size || (t->size && t->size != size)) {
1114 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1115 		return -ENOENT;
1116 	}
1117 
1118 	t->size = size;
1119 
1120 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1121 		t_var = btf__type_by_id(btf, vsi->type);
1122 		var = btf_var(t_var);
1123 
1124 		if (!btf_is_var(t_var)) {
1125 			pr_debug("Non-VAR type seen in section %s\n", name);
1126 			return -EINVAL;
1127 		}
1128 
1129 		if (var->linkage == BTF_VAR_STATIC)
1130 			continue;
1131 
1132 		name = btf__name_by_offset(btf, t_var->name_off);
1133 		if (!name) {
1134 			pr_debug("No name found in string section for VAR kind\n");
1135 			return -ENOENT;
1136 		}
1137 
1138 		ret = bpf_object__variable_offset(obj, name, &off);
1139 		if (ret) {
1140 			pr_debug("No offset found in symbol table for VAR %s\n",
1141 				 name);
1142 			return -ENOENT;
1143 		}
1144 
1145 		vsi->offset = off;
1146 	}
1147 
1148 sort_vars:
1149 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1150 	return 0;
1151 }
1152 
1153 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1154 {
1155 	int err = 0;
1156 	__u32 i;
1157 
1158 	for (i = 1; i <= btf->nr_types; i++) {
1159 		struct btf_type *t = btf_type_by_id(btf, i);
1160 
1161 		/* Loader needs to fix up some of the things compiler
1162 		 * couldn't get its hands on while emitting BTF. This
1163 		 * is section size and global variable offset. We use
1164 		 * the info from the ELF itself for this purpose.
1165 		 */
1166 		if (btf_is_datasec(t)) {
1167 			err = btf_fixup_datasec(obj, btf, t);
1168 			if (err)
1169 				break;
1170 		}
1171 	}
1172 
1173 	return err;
1174 }
1175 
1176 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1177 
1178 int btf__load(struct btf *btf)
1179 {
1180 	__u32 log_buf_size = 0, raw_size;
1181 	char *log_buf = NULL;
1182 	void *raw_data;
1183 	int err = 0;
1184 
1185 	if (btf->fd >= 0)
1186 		return -EEXIST;
1187 
1188 retry_load:
1189 	if (log_buf_size) {
1190 		log_buf = malloc(log_buf_size);
1191 		if (!log_buf)
1192 			return -ENOMEM;
1193 
1194 		*log_buf = 0;
1195 	}
1196 
1197 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1198 	if (!raw_data) {
1199 		err = -ENOMEM;
1200 		goto done;
1201 	}
1202 	/* cache native raw data representation */
1203 	btf->raw_size = raw_size;
1204 	btf->raw_data = raw_data;
1205 
1206 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1207 	if (btf->fd < 0) {
1208 		if (!log_buf || errno == ENOSPC) {
1209 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1210 					   log_buf_size << 1);
1211 			free(log_buf);
1212 			goto retry_load;
1213 		}
1214 
1215 		err = -errno;
1216 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1217 		if (*log_buf)
1218 			pr_warn("%s\n", log_buf);
1219 		goto done;
1220 	}
1221 
1222 done:
1223 	free(log_buf);
1224 	return err;
1225 }
1226 
1227 int btf__fd(const struct btf *btf)
1228 {
1229 	return btf->fd;
1230 }
1231 
1232 void btf__set_fd(struct btf *btf, int fd)
1233 {
1234 	btf->fd = fd;
1235 }
1236 
1237 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1238 {
1239 	struct btf_header *hdr = btf->hdr;
1240 	struct btf_type *t;
1241 	void *data, *p;
1242 	__u32 data_sz;
1243 	int i;
1244 
1245 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1246 	if (data) {
1247 		*size = btf->raw_size;
1248 		return data;
1249 	}
1250 
1251 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1252 	data = calloc(1, data_sz);
1253 	if (!data)
1254 		return NULL;
1255 	p = data;
1256 
1257 	memcpy(p, hdr, hdr->hdr_len);
1258 	if (swap_endian)
1259 		btf_bswap_hdr(p);
1260 	p += hdr->hdr_len;
1261 
1262 	memcpy(p, btf->types_data, hdr->type_len);
1263 	if (swap_endian) {
1264 		for (i = 0; i < btf->nr_types; i++) {
1265 			t = p + btf->type_offs[i];
1266 			/* btf_bswap_type_rest() relies on native t->info, so
1267 			 * we swap base type info after we swapped all the
1268 			 * additional information
1269 			 */
1270 			if (btf_bswap_type_rest(t))
1271 				goto err_out;
1272 			btf_bswap_type_base(t);
1273 		}
1274 	}
1275 	p += hdr->type_len;
1276 
1277 	memcpy(p, btf->strs_data, hdr->str_len);
1278 	p += hdr->str_len;
1279 
1280 	*size = data_sz;
1281 	return data;
1282 err_out:
1283 	free(data);
1284 	return NULL;
1285 }
1286 
1287 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1288 {
1289 	struct btf *btf = (struct btf *)btf_ro;
1290 	__u32 data_sz;
1291 	void *data;
1292 
1293 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1294 	if (!data)
1295 		return NULL;
1296 
1297 	btf->raw_size = data_sz;
1298 	if (btf->swapped_endian)
1299 		btf->raw_data_swapped = data;
1300 	else
1301 		btf->raw_data = data;
1302 	*size = data_sz;
1303 	return data;
1304 }
1305 
1306 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1307 {
1308 	if (offset < btf->start_str_off)
1309 		return btf__str_by_offset(btf->base_btf, offset);
1310 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1311 		return btf->strs_data + (offset - btf->start_str_off);
1312 	else
1313 		return NULL;
1314 }
1315 
1316 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1317 {
1318 	return btf__str_by_offset(btf, offset);
1319 }
1320 
1321 int btf__get_from_id(__u32 id, struct btf **btf)
1322 {
1323 	struct bpf_btf_info btf_info = { 0 };
1324 	__u32 len = sizeof(btf_info);
1325 	__u32 last_size;
1326 	int btf_fd;
1327 	void *ptr;
1328 	int err;
1329 
1330 	err = 0;
1331 	*btf = NULL;
1332 	btf_fd = bpf_btf_get_fd_by_id(id);
1333 	if (btf_fd < 0)
1334 		return 0;
1335 
1336 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1337 	 * let's start with a sane default - 4KiB here - and resize it only if
1338 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1339 	 */
1340 	btf_info.btf_size = 4096;
1341 	last_size = btf_info.btf_size;
1342 	ptr = malloc(last_size);
1343 	if (!ptr) {
1344 		err = -ENOMEM;
1345 		goto exit_free;
1346 	}
1347 
1348 	memset(ptr, 0, last_size);
1349 	btf_info.btf = ptr_to_u64(ptr);
1350 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1351 
1352 	if (!err && btf_info.btf_size > last_size) {
1353 		void *temp_ptr;
1354 
1355 		last_size = btf_info.btf_size;
1356 		temp_ptr = realloc(ptr, last_size);
1357 		if (!temp_ptr) {
1358 			err = -ENOMEM;
1359 			goto exit_free;
1360 		}
1361 		ptr = temp_ptr;
1362 		memset(ptr, 0, last_size);
1363 		btf_info.btf = ptr_to_u64(ptr);
1364 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1365 	}
1366 
1367 	if (err || btf_info.btf_size > last_size) {
1368 		err = errno;
1369 		goto exit_free;
1370 	}
1371 
1372 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
1373 	if (IS_ERR(*btf)) {
1374 		err = PTR_ERR(*btf);
1375 		*btf = NULL;
1376 	}
1377 
1378 exit_free:
1379 	close(btf_fd);
1380 	free(ptr);
1381 
1382 	return err;
1383 }
1384 
1385 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1386 			 __u32 expected_key_size, __u32 expected_value_size,
1387 			 __u32 *key_type_id, __u32 *value_type_id)
1388 {
1389 	const struct btf_type *container_type;
1390 	const struct btf_member *key, *value;
1391 	const size_t max_name = 256;
1392 	char container_name[max_name];
1393 	__s64 key_size, value_size;
1394 	__s32 container_id;
1395 
1396 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1397 	    max_name) {
1398 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1399 			map_name, map_name);
1400 		return -EINVAL;
1401 	}
1402 
1403 	container_id = btf__find_by_name(btf, container_name);
1404 	if (container_id < 0) {
1405 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1406 			 map_name, container_name);
1407 		return container_id;
1408 	}
1409 
1410 	container_type = btf__type_by_id(btf, container_id);
1411 	if (!container_type) {
1412 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1413 			map_name, container_id);
1414 		return -EINVAL;
1415 	}
1416 
1417 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1418 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1419 			map_name, container_name);
1420 		return -EINVAL;
1421 	}
1422 
1423 	key = btf_members(container_type);
1424 	value = key + 1;
1425 
1426 	key_size = btf__resolve_size(btf, key->type);
1427 	if (key_size < 0) {
1428 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1429 		return key_size;
1430 	}
1431 
1432 	if (expected_key_size != key_size) {
1433 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1434 			map_name, (__u32)key_size, expected_key_size);
1435 		return -EINVAL;
1436 	}
1437 
1438 	value_size = btf__resolve_size(btf, value->type);
1439 	if (value_size < 0) {
1440 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1441 		return value_size;
1442 	}
1443 
1444 	if (expected_value_size != value_size) {
1445 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1446 			map_name, (__u32)value_size, expected_value_size);
1447 		return -EINVAL;
1448 	}
1449 
1450 	*key_type_id = key->type;
1451 	*value_type_id = value->type;
1452 
1453 	return 0;
1454 }
1455 
1456 static size_t strs_hash_fn(const void *key, void *ctx)
1457 {
1458 	const struct btf *btf = ctx;
1459 	const char *strs = *btf->strs_data_ptr;
1460 	const char *str = strs + (long)key;
1461 
1462 	return str_hash(str);
1463 }
1464 
1465 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
1466 {
1467 	const struct btf *btf = ctx;
1468 	const char *strs = *btf->strs_data_ptr;
1469 	const char *str1 = strs + (long)key1;
1470 	const char *str2 = strs + (long)key2;
1471 
1472 	return strcmp(str1, str2) == 0;
1473 }
1474 
1475 static void btf_invalidate_raw_data(struct btf *btf)
1476 {
1477 	if (btf->raw_data) {
1478 		free(btf->raw_data);
1479 		btf->raw_data = NULL;
1480 	}
1481 	if (btf->raw_data_swapped) {
1482 		free(btf->raw_data_swapped);
1483 		btf->raw_data_swapped = NULL;
1484 	}
1485 }
1486 
1487 /* Ensure BTF is ready to be modified (by splitting into a three memory
1488  * regions for header, types, and strings). Also invalidate cached
1489  * raw_data, if any.
1490  */
1491 static int btf_ensure_modifiable(struct btf *btf)
1492 {
1493 	void *hdr, *types, *strs, *strs_end, *s;
1494 	struct hashmap *hash = NULL;
1495 	long off;
1496 	int err;
1497 
1498 	if (btf_is_modifiable(btf)) {
1499 		/* any BTF modification invalidates raw_data */
1500 		btf_invalidate_raw_data(btf);
1501 		return 0;
1502 	}
1503 
1504 	/* split raw data into three memory regions */
1505 	hdr = malloc(btf->hdr->hdr_len);
1506 	types = malloc(btf->hdr->type_len);
1507 	strs = malloc(btf->hdr->str_len);
1508 	if (!hdr || !types || !strs)
1509 		goto err_out;
1510 
1511 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1512 	memcpy(types, btf->types_data, btf->hdr->type_len);
1513 	memcpy(strs, btf->strs_data, btf->hdr->str_len);
1514 
1515 	/* make hashmap below use btf->strs_data as a source of strings */
1516 	btf->strs_data_ptr = &btf->strs_data;
1517 
1518 	/* build lookup index for all strings */
1519 	hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
1520 	if (IS_ERR(hash)) {
1521 		err = PTR_ERR(hash);
1522 		hash = NULL;
1523 		goto err_out;
1524 	}
1525 
1526 	strs_end = strs + btf->hdr->str_len;
1527 	for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
1528 		/* hashmap__add() returns EEXIST if string with the same
1529 		 * content already is in the hash map
1530 		 */
1531 		err = hashmap__add(hash, (void *)off, (void *)off);
1532 		if (err == -EEXIST)
1533 			continue; /* duplicate */
1534 		if (err)
1535 			goto err_out;
1536 	}
1537 
1538 	/* only when everything was successful, update internal state */
1539 	btf->hdr = hdr;
1540 	btf->types_data = types;
1541 	btf->types_data_cap = btf->hdr->type_len;
1542 	btf->strs_data = strs;
1543 	btf->strs_data_cap = btf->hdr->str_len;
1544 	btf->strs_hash = hash;
1545 	/* if BTF was created from scratch, all strings are guaranteed to be
1546 	 * unique and deduplicated
1547 	 */
1548 	if (btf->hdr->str_len == 0)
1549 		btf->strs_deduped = true;
1550 	if (!btf->base_btf && btf->hdr->str_len == 1)
1551 		btf->strs_deduped = true;
1552 
1553 	/* invalidate raw_data representation */
1554 	btf_invalidate_raw_data(btf);
1555 
1556 	return 0;
1557 
1558 err_out:
1559 	hashmap__free(hash);
1560 	free(hdr);
1561 	free(types);
1562 	free(strs);
1563 	return -ENOMEM;
1564 }
1565 
1566 static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
1567 {
1568 	return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
1569 			   btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
1570 }
1571 
1572 /* Find an offset in BTF string section that corresponds to a given string *s*.
1573  * Returns:
1574  *   - >0 offset into string section, if string is found;
1575  *   - -ENOENT, if string is not in the string section;
1576  *   - <0, on any other error.
1577  */
1578 int btf__find_str(struct btf *btf, const char *s)
1579 {
1580 	long old_off, new_off, len;
1581 	void *p;
1582 
1583 	if (btf->base_btf) {
1584 		int ret;
1585 
1586 		ret = btf__find_str(btf->base_btf, s);
1587 		if (ret != -ENOENT)
1588 			return ret;
1589 	}
1590 
1591 	/* BTF needs to be in a modifiable state to build string lookup index */
1592 	if (btf_ensure_modifiable(btf))
1593 		return -ENOMEM;
1594 
1595 	/* see btf__add_str() for why we do this */
1596 	len = strlen(s) + 1;
1597 	p = btf_add_str_mem(btf, len);
1598 	if (!p)
1599 		return -ENOMEM;
1600 
1601 	new_off = btf->hdr->str_len;
1602 	memcpy(p, s, len);
1603 
1604 	if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
1605 		return btf->start_str_off + old_off;
1606 
1607 	return -ENOENT;
1608 }
1609 
1610 /* Add a string s to the BTF string section.
1611  * Returns:
1612  *   - > 0 offset into string section, on success;
1613  *   - < 0, on error.
1614  */
1615 int btf__add_str(struct btf *btf, const char *s)
1616 {
1617 	long old_off, new_off, len;
1618 	void *p;
1619 	int err;
1620 
1621 	if (btf->base_btf) {
1622 		int ret;
1623 
1624 		ret = btf__find_str(btf->base_btf, s);
1625 		if (ret != -ENOENT)
1626 			return ret;
1627 	}
1628 
1629 	if (btf_ensure_modifiable(btf))
1630 		return -ENOMEM;
1631 
1632 	/* Hashmap keys are always offsets within btf->strs_data, so to even
1633 	 * look up some string from the "outside", we need to first append it
1634 	 * at the end, so that it can be addressed with an offset. Luckily,
1635 	 * until btf->hdr->str_len is incremented, that string is just a piece
1636 	 * of garbage for the rest of BTF code, so no harm, no foul. On the
1637 	 * other hand, if the string is unique, it's already appended and
1638 	 * ready to be used, only a simple btf->hdr->str_len increment away.
1639 	 */
1640 	len = strlen(s) + 1;
1641 	p = btf_add_str_mem(btf, len);
1642 	if (!p)
1643 		return -ENOMEM;
1644 
1645 	new_off = btf->hdr->str_len;
1646 	memcpy(p, s, len);
1647 
1648 	/* Now attempt to add the string, but only if the string with the same
1649 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1650 	 * string exists, we'll get its offset in old_off (that's old_key).
1651 	 */
1652 	err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
1653 			      HASHMAP_ADD, (const void **)&old_off, NULL);
1654 	if (err == -EEXIST)
1655 		return btf->start_str_off + old_off; /* duplicated string, return existing offset */
1656 	if (err)
1657 		return err;
1658 
1659 	btf->hdr->str_len += len; /* new unique string, adjust data length */
1660 	return btf->start_str_off + new_off;
1661 }
1662 
1663 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1664 {
1665 	return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1666 			   btf->hdr->type_len, UINT_MAX, add_sz);
1667 }
1668 
1669 static __u32 btf_type_info(int kind, int vlen, int kflag)
1670 {
1671 	return (kflag << 31) | (kind << 24) | vlen;
1672 }
1673 
1674 static void btf_type_inc_vlen(struct btf_type *t)
1675 {
1676 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1677 }
1678 
1679 static int btf_commit_type(struct btf *btf, int data_sz)
1680 {
1681 	int err;
1682 
1683 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1684 	if (err)
1685 		return err;
1686 
1687 	btf->hdr->type_len += data_sz;
1688 	btf->hdr->str_off += data_sz;
1689 	btf->nr_types++;
1690 	return btf->start_id + btf->nr_types - 1;
1691 }
1692 
1693 /*
1694  * Append new BTF_KIND_INT type with:
1695  *   - *name* - non-empty, non-NULL type name;
1696  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1697  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1698  * Returns:
1699  *   - >0, type ID of newly added BTF type;
1700  *   - <0, on error.
1701  */
1702 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1703 {
1704 	struct btf_type *t;
1705 	int sz, name_off;
1706 
1707 	/* non-empty name */
1708 	if (!name || !name[0])
1709 		return -EINVAL;
1710 	/* byte_sz must be power of 2 */
1711 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1712 		return -EINVAL;
1713 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1714 		return -EINVAL;
1715 
1716 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1717 	if (btf_ensure_modifiable(btf))
1718 		return -ENOMEM;
1719 
1720 	sz = sizeof(struct btf_type) + sizeof(int);
1721 	t = btf_add_type_mem(btf, sz);
1722 	if (!t)
1723 		return -ENOMEM;
1724 
1725 	/* if something goes wrong later, we might end up with an extra string,
1726 	 * but that shouldn't be a problem, because BTF can't be constructed
1727 	 * completely anyway and will most probably be just discarded
1728 	 */
1729 	name_off = btf__add_str(btf, name);
1730 	if (name_off < 0)
1731 		return name_off;
1732 
1733 	t->name_off = name_off;
1734 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1735 	t->size = byte_sz;
1736 	/* set INT info, we don't allow setting legacy bit offset/size */
1737 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1738 
1739 	return btf_commit_type(btf, sz);
1740 }
1741 
1742 /* it's completely legal to append BTF types with type IDs pointing forward to
1743  * types that haven't been appended yet, so we only make sure that id looks
1744  * sane, we can't guarantee that ID will always be valid
1745  */
1746 static int validate_type_id(int id)
1747 {
1748 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1749 		return -EINVAL;
1750 	return 0;
1751 }
1752 
1753 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1754 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1755 {
1756 	struct btf_type *t;
1757 	int sz, name_off = 0;
1758 
1759 	if (validate_type_id(ref_type_id))
1760 		return -EINVAL;
1761 
1762 	if (btf_ensure_modifiable(btf))
1763 		return -ENOMEM;
1764 
1765 	sz = sizeof(struct btf_type);
1766 	t = btf_add_type_mem(btf, sz);
1767 	if (!t)
1768 		return -ENOMEM;
1769 
1770 	if (name && name[0]) {
1771 		name_off = btf__add_str(btf, name);
1772 		if (name_off < 0)
1773 			return name_off;
1774 	}
1775 
1776 	t->name_off = name_off;
1777 	t->info = btf_type_info(kind, 0, 0);
1778 	t->type = ref_type_id;
1779 
1780 	return btf_commit_type(btf, sz);
1781 }
1782 
1783 /*
1784  * Append new BTF_KIND_PTR type with:
1785  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1786  * Returns:
1787  *   - >0, type ID of newly added BTF type;
1788  *   - <0, on error.
1789  */
1790 int btf__add_ptr(struct btf *btf, int ref_type_id)
1791 {
1792 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1793 }
1794 
1795 /*
1796  * Append new BTF_KIND_ARRAY type with:
1797  *   - *index_type_id* - type ID of the type describing array index;
1798  *   - *elem_type_id* - type ID of the type describing array element;
1799  *   - *nr_elems* - the size of the array;
1800  * Returns:
1801  *   - >0, type ID of newly added BTF type;
1802  *   - <0, on error.
1803  */
1804 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1805 {
1806 	struct btf_type *t;
1807 	struct btf_array *a;
1808 	int sz;
1809 
1810 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1811 		return -EINVAL;
1812 
1813 	if (btf_ensure_modifiable(btf))
1814 		return -ENOMEM;
1815 
1816 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1817 	t = btf_add_type_mem(btf, sz);
1818 	if (!t)
1819 		return -ENOMEM;
1820 
1821 	t->name_off = 0;
1822 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1823 	t->size = 0;
1824 
1825 	a = btf_array(t);
1826 	a->type = elem_type_id;
1827 	a->index_type = index_type_id;
1828 	a->nelems = nr_elems;
1829 
1830 	return btf_commit_type(btf, sz);
1831 }
1832 
1833 /* generic STRUCT/UNION append function */
1834 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1835 {
1836 	struct btf_type *t;
1837 	int sz, name_off = 0;
1838 
1839 	if (btf_ensure_modifiable(btf))
1840 		return -ENOMEM;
1841 
1842 	sz = sizeof(struct btf_type);
1843 	t = btf_add_type_mem(btf, sz);
1844 	if (!t)
1845 		return -ENOMEM;
1846 
1847 	if (name && name[0]) {
1848 		name_off = btf__add_str(btf, name);
1849 		if (name_off < 0)
1850 			return name_off;
1851 	}
1852 
1853 	/* start out with vlen=0 and no kflag; this will be adjusted when
1854 	 * adding each member
1855 	 */
1856 	t->name_off = name_off;
1857 	t->info = btf_type_info(kind, 0, 0);
1858 	t->size = bytes_sz;
1859 
1860 	return btf_commit_type(btf, sz);
1861 }
1862 
1863 /*
1864  * Append new BTF_KIND_STRUCT type with:
1865  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1866  *   - *byte_sz* - size of the struct, in bytes;
1867  *
1868  * Struct initially has no fields in it. Fields can be added by
1869  * btf__add_field() right after btf__add_struct() succeeds.
1870  *
1871  * Returns:
1872  *   - >0, type ID of newly added BTF type;
1873  *   - <0, on error.
1874  */
1875 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1876 {
1877 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1878 }
1879 
1880 /*
1881  * Append new BTF_KIND_UNION type with:
1882  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1883  *   - *byte_sz* - size of the union, in bytes;
1884  *
1885  * Union initially has no fields in it. Fields can be added by
1886  * btf__add_field() right after btf__add_union() succeeds. All fields
1887  * should have *bit_offset* of 0.
1888  *
1889  * Returns:
1890  *   - >0, type ID of newly added BTF type;
1891  *   - <0, on error.
1892  */
1893 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1894 {
1895 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1896 }
1897 
1898 static struct btf_type *btf_last_type(struct btf *btf)
1899 {
1900 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1901 }
1902 
1903 /*
1904  * Append new field for the current STRUCT/UNION type with:
1905  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1906  *   - *type_id* - type ID for the type describing field type;
1907  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1908  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1909  * Returns:
1910  *   -  0, on success;
1911  *   - <0, on error.
1912  */
1913 int btf__add_field(struct btf *btf, const char *name, int type_id,
1914 		   __u32 bit_offset, __u32 bit_size)
1915 {
1916 	struct btf_type *t;
1917 	struct btf_member *m;
1918 	bool is_bitfield;
1919 	int sz, name_off = 0;
1920 
1921 	/* last type should be union/struct */
1922 	if (btf->nr_types == 0)
1923 		return -EINVAL;
1924 	t = btf_last_type(btf);
1925 	if (!btf_is_composite(t))
1926 		return -EINVAL;
1927 
1928 	if (validate_type_id(type_id))
1929 		return -EINVAL;
1930 	/* best-effort bit field offset/size enforcement */
1931 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1932 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1933 		return -EINVAL;
1934 
1935 	/* only offset 0 is allowed for unions */
1936 	if (btf_is_union(t) && bit_offset)
1937 		return -EINVAL;
1938 
1939 	/* decompose and invalidate raw data */
1940 	if (btf_ensure_modifiable(btf))
1941 		return -ENOMEM;
1942 
1943 	sz = sizeof(struct btf_member);
1944 	m = btf_add_type_mem(btf, sz);
1945 	if (!m)
1946 		return -ENOMEM;
1947 
1948 	if (name && name[0]) {
1949 		name_off = btf__add_str(btf, name);
1950 		if (name_off < 0)
1951 			return name_off;
1952 	}
1953 
1954 	m->name_off = name_off;
1955 	m->type = type_id;
1956 	m->offset = bit_offset | (bit_size << 24);
1957 
1958 	/* btf_add_type_mem can invalidate t pointer */
1959 	t = btf_last_type(btf);
1960 	/* update parent type's vlen and kflag */
1961 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1962 
1963 	btf->hdr->type_len += sz;
1964 	btf->hdr->str_off += sz;
1965 	return 0;
1966 }
1967 
1968 /*
1969  * Append new BTF_KIND_ENUM type with:
1970  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1971  *   - *byte_sz* - size of the enum, in bytes.
1972  *
1973  * Enum initially has no enum values in it (and corresponds to enum forward
1974  * declaration). Enumerator values can be added by btf__add_enum_value()
1975  * immediately after btf__add_enum() succeeds.
1976  *
1977  * Returns:
1978  *   - >0, type ID of newly added BTF type;
1979  *   - <0, on error.
1980  */
1981 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
1982 {
1983 	struct btf_type *t;
1984 	int sz, name_off = 0;
1985 
1986 	/* byte_sz must be power of 2 */
1987 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
1988 		return -EINVAL;
1989 
1990 	if (btf_ensure_modifiable(btf))
1991 		return -ENOMEM;
1992 
1993 	sz = sizeof(struct btf_type);
1994 	t = btf_add_type_mem(btf, sz);
1995 	if (!t)
1996 		return -ENOMEM;
1997 
1998 	if (name && name[0]) {
1999 		name_off = btf__add_str(btf, name);
2000 		if (name_off < 0)
2001 			return name_off;
2002 	}
2003 
2004 	/* start out with vlen=0; it will be adjusted when adding enum values */
2005 	t->name_off = name_off;
2006 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2007 	t->size = byte_sz;
2008 
2009 	return btf_commit_type(btf, sz);
2010 }
2011 
2012 /*
2013  * Append new enum value for the current ENUM type with:
2014  *   - *name* - name of the enumerator value, can't be NULL or empty;
2015  *   - *value* - integer value corresponding to enum value *name*;
2016  * Returns:
2017  *   -  0, on success;
2018  *   - <0, on error.
2019  */
2020 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2021 {
2022 	struct btf_type *t;
2023 	struct btf_enum *v;
2024 	int sz, name_off;
2025 
2026 	/* last type should be BTF_KIND_ENUM */
2027 	if (btf->nr_types == 0)
2028 		return -EINVAL;
2029 	t = btf_last_type(btf);
2030 	if (!btf_is_enum(t))
2031 		return -EINVAL;
2032 
2033 	/* non-empty name */
2034 	if (!name || !name[0])
2035 		return -EINVAL;
2036 	if (value < INT_MIN || value > UINT_MAX)
2037 		return -E2BIG;
2038 
2039 	/* decompose and invalidate raw data */
2040 	if (btf_ensure_modifiable(btf))
2041 		return -ENOMEM;
2042 
2043 	sz = sizeof(struct btf_enum);
2044 	v = btf_add_type_mem(btf, sz);
2045 	if (!v)
2046 		return -ENOMEM;
2047 
2048 	name_off = btf__add_str(btf, name);
2049 	if (name_off < 0)
2050 		return name_off;
2051 
2052 	v->name_off = name_off;
2053 	v->val = value;
2054 
2055 	/* update parent type's vlen */
2056 	t = btf_last_type(btf);
2057 	btf_type_inc_vlen(t);
2058 
2059 	btf->hdr->type_len += sz;
2060 	btf->hdr->str_off += sz;
2061 	return 0;
2062 }
2063 
2064 /*
2065  * Append new BTF_KIND_FWD type with:
2066  *   - *name*, non-empty/non-NULL name;
2067  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2068  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2069  * Returns:
2070  *   - >0, type ID of newly added BTF type;
2071  *   - <0, on error.
2072  */
2073 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2074 {
2075 	if (!name || !name[0])
2076 		return -EINVAL;
2077 
2078 	switch (fwd_kind) {
2079 	case BTF_FWD_STRUCT:
2080 	case BTF_FWD_UNION: {
2081 		struct btf_type *t;
2082 		int id;
2083 
2084 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2085 		if (id <= 0)
2086 			return id;
2087 		t = btf_type_by_id(btf, id);
2088 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2089 		return id;
2090 	}
2091 	case BTF_FWD_ENUM:
2092 		/* enum forward in BTF currently is just an enum with no enum
2093 		 * values; we also assume a standard 4-byte size for it
2094 		 */
2095 		return btf__add_enum(btf, name, sizeof(int));
2096 	default:
2097 		return -EINVAL;
2098 	}
2099 }
2100 
2101 /*
2102  * Append new BTF_KING_TYPEDEF type with:
2103  *   - *name*, non-empty/non-NULL name;
2104  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2105  * Returns:
2106  *   - >0, type ID of newly added BTF type;
2107  *   - <0, on error.
2108  */
2109 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2110 {
2111 	if (!name || !name[0])
2112 		return -EINVAL;
2113 
2114 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2115 }
2116 
2117 /*
2118  * Append new BTF_KIND_VOLATILE type with:
2119  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2120  * Returns:
2121  *   - >0, type ID of newly added BTF type;
2122  *   - <0, on error.
2123  */
2124 int btf__add_volatile(struct btf *btf, int ref_type_id)
2125 {
2126 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2127 }
2128 
2129 /*
2130  * Append new BTF_KIND_CONST type with:
2131  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2132  * Returns:
2133  *   - >0, type ID of newly added BTF type;
2134  *   - <0, on error.
2135  */
2136 int btf__add_const(struct btf *btf, int ref_type_id)
2137 {
2138 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2139 }
2140 
2141 /*
2142  * Append new BTF_KIND_RESTRICT type with:
2143  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2144  * Returns:
2145  *   - >0, type ID of newly added BTF type;
2146  *   - <0, on error.
2147  */
2148 int btf__add_restrict(struct btf *btf, int ref_type_id)
2149 {
2150 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2151 }
2152 
2153 /*
2154  * Append new BTF_KIND_FUNC type with:
2155  *   - *name*, non-empty/non-NULL name;
2156  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2157  * Returns:
2158  *   - >0, type ID of newly added BTF type;
2159  *   - <0, on error.
2160  */
2161 int btf__add_func(struct btf *btf, const char *name,
2162 		  enum btf_func_linkage linkage, int proto_type_id)
2163 {
2164 	int id;
2165 
2166 	if (!name || !name[0])
2167 		return -EINVAL;
2168 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2169 	    linkage != BTF_FUNC_EXTERN)
2170 		return -EINVAL;
2171 
2172 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2173 	if (id > 0) {
2174 		struct btf_type *t = btf_type_by_id(btf, id);
2175 
2176 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2177 	}
2178 	return id;
2179 }
2180 
2181 /*
2182  * Append new BTF_KIND_FUNC_PROTO with:
2183  *   - *ret_type_id* - type ID for return result of a function.
2184  *
2185  * Function prototype initially has no arguments, but they can be added by
2186  * btf__add_func_param() one by one, immediately after
2187  * btf__add_func_proto() succeeded.
2188  *
2189  * Returns:
2190  *   - >0, type ID of newly added BTF type;
2191  *   - <0, on error.
2192  */
2193 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2194 {
2195 	struct btf_type *t;
2196 	int sz;
2197 
2198 	if (validate_type_id(ret_type_id))
2199 		return -EINVAL;
2200 
2201 	if (btf_ensure_modifiable(btf))
2202 		return -ENOMEM;
2203 
2204 	sz = sizeof(struct btf_type);
2205 	t = btf_add_type_mem(btf, sz);
2206 	if (!t)
2207 		return -ENOMEM;
2208 
2209 	/* start out with vlen=0; this will be adjusted when adding enum
2210 	 * values, if necessary
2211 	 */
2212 	t->name_off = 0;
2213 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2214 	t->type = ret_type_id;
2215 
2216 	return btf_commit_type(btf, sz);
2217 }
2218 
2219 /*
2220  * Append new function parameter for current FUNC_PROTO type with:
2221  *   - *name* - parameter name, can be NULL or empty;
2222  *   - *type_id* - type ID describing the type of the parameter.
2223  * Returns:
2224  *   -  0, on success;
2225  *   - <0, on error.
2226  */
2227 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2228 {
2229 	struct btf_type *t;
2230 	struct btf_param *p;
2231 	int sz, name_off = 0;
2232 
2233 	if (validate_type_id(type_id))
2234 		return -EINVAL;
2235 
2236 	/* last type should be BTF_KIND_FUNC_PROTO */
2237 	if (btf->nr_types == 0)
2238 		return -EINVAL;
2239 	t = btf_last_type(btf);
2240 	if (!btf_is_func_proto(t))
2241 		return -EINVAL;
2242 
2243 	/* decompose and invalidate raw data */
2244 	if (btf_ensure_modifiable(btf))
2245 		return -ENOMEM;
2246 
2247 	sz = sizeof(struct btf_param);
2248 	p = btf_add_type_mem(btf, sz);
2249 	if (!p)
2250 		return -ENOMEM;
2251 
2252 	if (name && name[0]) {
2253 		name_off = btf__add_str(btf, name);
2254 		if (name_off < 0)
2255 			return name_off;
2256 	}
2257 
2258 	p->name_off = name_off;
2259 	p->type = type_id;
2260 
2261 	/* update parent type's vlen */
2262 	t = btf_last_type(btf);
2263 	btf_type_inc_vlen(t);
2264 
2265 	btf->hdr->type_len += sz;
2266 	btf->hdr->str_off += sz;
2267 	return 0;
2268 }
2269 
2270 /*
2271  * Append new BTF_KIND_VAR type with:
2272  *   - *name* - non-empty/non-NULL name;
2273  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2274  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2275  *   - *type_id* - type ID of the type describing the type of the variable.
2276  * Returns:
2277  *   - >0, type ID of newly added BTF type;
2278  *   - <0, on error.
2279  */
2280 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2281 {
2282 	struct btf_type *t;
2283 	struct btf_var *v;
2284 	int sz, name_off;
2285 
2286 	/* non-empty name */
2287 	if (!name || !name[0])
2288 		return -EINVAL;
2289 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2290 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2291 		return -EINVAL;
2292 	if (validate_type_id(type_id))
2293 		return -EINVAL;
2294 
2295 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2296 	if (btf_ensure_modifiable(btf))
2297 		return -ENOMEM;
2298 
2299 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2300 	t = btf_add_type_mem(btf, sz);
2301 	if (!t)
2302 		return -ENOMEM;
2303 
2304 	name_off = btf__add_str(btf, name);
2305 	if (name_off < 0)
2306 		return name_off;
2307 
2308 	t->name_off = name_off;
2309 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2310 	t->type = type_id;
2311 
2312 	v = btf_var(t);
2313 	v->linkage = linkage;
2314 
2315 	return btf_commit_type(btf, sz);
2316 }
2317 
2318 /*
2319  * Append new BTF_KIND_DATASEC type with:
2320  *   - *name* - non-empty/non-NULL name;
2321  *   - *byte_sz* - data section size, in bytes.
2322  *
2323  * Data section is initially empty. Variables info can be added with
2324  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2325  *
2326  * Returns:
2327  *   - >0, type ID of newly added BTF type;
2328  *   - <0, on error.
2329  */
2330 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2331 {
2332 	struct btf_type *t;
2333 	int sz, name_off;
2334 
2335 	/* non-empty name */
2336 	if (!name || !name[0])
2337 		return -EINVAL;
2338 
2339 	if (btf_ensure_modifiable(btf))
2340 		return -ENOMEM;
2341 
2342 	sz = sizeof(struct btf_type);
2343 	t = btf_add_type_mem(btf, sz);
2344 	if (!t)
2345 		return -ENOMEM;
2346 
2347 	name_off = btf__add_str(btf, name);
2348 	if (name_off < 0)
2349 		return name_off;
2350 
2351 	/* start with vlen=0, which will be update as var_secinfos are added */
2352 	t->name_off = name_off;
2353 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2354 	t->size = byte_sz;
2355 
2356 	return btf_commit_type(btf, sz);
2357 }
2358 
2359 /*
2360  * Append new data section variable information entry for current DATASEC type:
2361  *   - *var_type_id* - type ID, describing type of the variable;
2362  *   - *offset* - variable offset within data section, in bytes;
2363  *   - *byte_sz* - variable size, in bytes.
2364  *
2365  * Returns:
2366  *   -  0, on success;
2367  *   - <0, on error.
2368  */
2369 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2370 {
2371 	struct btf_type *t;
2372 	struct btf_var_secinfo *v;
2373 	int sz;
2374 
2375 	/* last type should be BTF_KIND_DATASEC */
2376 	if (btf->nr_types == 0)
2377 		return -EINVAL;
2378 	t = btf_last_type(btf);
2379 	if (!btf_is_datasec(t))
2380 		return -EINVAL;
2381 
2382 	if (validate_type_id(var_type_id))
2383 		return -EINVAL;
2384 
2385 	/* decompose and invalidate raw data */
2386 	if (btf_ensure_modifiable(btf))
2387 		return -ENOMEM;
2388 
2389 	sz = sizeof(struct btf_var_secinfo);
2390 	v = btf_add_type_mem(btf, sz);
2391 	if (!v)
2392 		return -ENOMEM;
2393 
2394 	v->type = var_type_id;
2395 	v->offset = offset;
2396 	v->size = byte_sz;
2397 
2398 	/* update parent type's vlen */
2399 	t = btf_last_type(btf);
2400 	btf_type_inc_vlen(t);
2401 
2402 	btf->hdr->type_len += sz;
2403 	btf->hdr->str_off += sz;
2404 	return 0;
2405 }
2406 
2407 struct btf_ext_sec_setup_param {
2408 	__u32 off;
2409 	__u32 len;
2410 	__u32 min_rec_size;
2411 	struct btf_ext_info *ext_info;
2412 	const char *desc;
2413 };
2414 
2415 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2416 			      struct btf_ext_sec_setup_param *ext_sec)
2417 {
2418 	const struct btf_ext_info_sec *sinfo;
2419 	struct btf_ext_info *ext_info;
2420 	__u32 info_left, record_size;
2421 	/* The start of the info sec (including the __u32 record_size). */
2422 	void *info;
2423 
2424 	if (ext_sec->len == 0)
2425 		return 0;
2426 
2427 	if (ext_sec->off & 0x03) {
2428 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2429 		     ext_sec->desc);
2430 		return -EINVAL;
2431 	}
2432 
2433 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2434 	info_left = ext_sec->len;
2435 
2436 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2437 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2438 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2439 		return -EINVAL;
2440 	}
2441 
2442 	/* At least a record size */
2443 	if (info_left < sizeof(__u32)) {
2444 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2445 		return -EINVAL;
2446 	}
2447 
2448 	/* The record size needs to meet the minimum standard */
2449 	record_size = *(__u32 *)info;
2450 	if (record_size < ext_sec->min_rec_size ||
2451 	    record_size & 0x03) {
2452 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2453 			 ext_sec->desc, record_size);
2454 		return -EINVAL;
2455 	}
2456 
2457 	sinfo = info + sizeof(__u32);
2458 	info_left -= sizeof(__u32);
2459 
2460 	/* If no records, return failure now so .BTF.ext won't be used. */
2461 	if (!info_left) {
2462 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2463 		return -EINVAL;
2464 	}
2465 
2466 	while (info_left) {
2467 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2468 		__u64 total_record_size;
2469 		__u32 num_records;
2470 
2471 		if (info_left < sec_hdrlen) {
2472 			pr_debug("%s section header is not found in .BTF.ext\n",
2473 			     ext_sec->desc);
2474 			return -EINVAL;
2475 		}
2476 
2477 		num_records = sinfo->num_info;
2478 		if (num_records == 0) {
2479 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2480 			     ext_sec->desc);
2481 			return -EINVAL;
2482 		}
2483 
2484 		total_record_size = sec_hdrlen +
2485 				    (__u64)num_records * record_size;
2486 		if (info_left < total_record_size) {
2487 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2488 			     ext_sec->desc);
2489 			return -EINVAL;
2490 		}
2491 
2492 		info_left -= total_record_size;
2493 		sinfo = (void *)sinfo + total_record_size;
2494 	}
2495 
2496 	ext_info = ext_sec->ext_info;
2497 	ext_info->len = ext_sec->len - sizeof(__u32);
2498 	ext_info->rec_size = record_size;
2499 	ext_info->info = info + sizeof(__u32);
2500 
2501 	return 0;
2502 }
2503 
2504 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2505 {
2506 	struct btf_ext_sec_setup_param param = {
2507 		.off = btf_ext->hdr->func_info_off,
2508 		.len = btf_ext->hdr->func_info_len,
2509 		.min_rec_size = sizeof(struct bpf_func_info_min),
2510 		.ext_info = &btf_ext->func_info,
2511 		.desc = "func_info"
2512 	};
2513 
2514 	return btf_ext_setup_info(btf_ext, &param);
2515 }
2516 
2517 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2518 {
2519 	struct btf_ext_sec_setup_param param = {
2520 		.off = btf_ext->hdr->line_info_off,
2521 		.len = btf_ext->hdr->line_info_len,
2522 		.min_rec_size = sizeof(struct bpf_line_info_min),
2523 		.ext_info = &btf_ext->line_info,
2524 		.desc = "line_info",
2525 	};
2526 
2527 	return btf_ext_setup_info(btf_ext, &param);
2528 }
2529 
2530 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2531 {
2532 	struct btf_ext_sec_setup_param param = {
2533 		.off = btf_ext->hdr->core_relo_off,
2534 		.len = btf_ext->hdr->core_relo_len,
2535 		.min_rec_size = sizeof(struct bpf_core_relo),
2536 		.ext_info = &btf_ext->core_relo_info,
2537 		.desc = "core_relo",
2538 	};
2539 
2540 	return btf_ext_setup_info(btf_ext, &param);
2541 }
2542 
2543 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2544 {
2545 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2546 
2547 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2548 	    data_size < hdr->hdr_len) {
2549 		pr_debug("BTF.ext header not found");
2550 		return -EINVAL;
2551 	}
2552 
2553 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2554 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2555 		return -ENOTSUP;
2556 	} else if (hdr->magic != BTF_MAGIC) {
2557 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2558 		return -EINVAL;
2559 	}
2560 
2561 	if (hdr->version != BTF_VERSION) {
2562 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2563 		return -ENOTSUP;
2564 	}
2565 
2566 	if (hdr->flags) {
2567 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2568 		return -ENOTSUP;
2569 	}
2570 
2571 	if (data_size == hdr->hdr_len) {
2572 		pr_debug("BTF.ext has no data\n");
2573 		return -EINVAL;
2574 	}
2575 
2576 	return 0;
2577 }
2578 
2579 void btf_ext__free(struct btf_ext *btf_ext)
2580 {
2581 	if (IS_ERR_OR_NULL(btf_ext))
2582 		return;
2583 	free(btf_ext->data);
2584 	free(btf_ext);
2585 }
2586 
2587 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2588 {
2589 	struct btf_ext *btf_ext;
2590 	int err;
2591 
2592 	err = btf_ext_parse_hdr(data, size);
2593 	if (err)
2594 		return ERR_PTR(err);
2595 
2596 	btf_ext = calloc(1, sizeof(struct btf_ext));
2597 	if (!btf_ext)
2598 		return ERR_PTR(-ENOMEM);
2599 
2600 	btf_ext->data_size = size;
2601 	btf_ext->data = malloc(size);
2602 	if (!btf_ext->data) {
2603 		err = -ENOMEM;
2604 		goto done;
2605 	}
2606 	memcpy(btf_ext->data, data, size);
2607 
2608 	if (btf_ext->hdr->hdr_len <
2609 	    offsetofend(struct btf_ext_header, line_info_len))
2610 		goto done;
2611 	err = btf_ext_setup_func_info(btf_ext);
2612 	if (err)
2613 		goto done;
2614 
2615 	err = btf_ext_setup_line_info(btf_ext);
2616 	if (err)
2617 		goto done;
2618 
2619 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2620 		goto done;
2621 	err = btf_ext_setup_core_relos(btf_ext);
2622 	if (err)
2623 		goto done;
2624 
2625 done:
2626 	if (err) {
2627 		btf_ext__free(btf_ext);
2628 		return ERR_PTR(err);
2629 	}
2630 
2631 	return btf_ext;
2632 }
2633 
2634 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2635 {
2636 	*size = btf_ext->data_size;
2637 	return btf_ext->data;
2638 }
2639 
2640 static int btf_ext_reloc_info(const struct btf *btf,
2641 			      const struct btf_ext_info *ext_info,
2642 			      const char *sec_name, __u32 insns_cnt,
2643 			      void **info, __u32 *cnt)
2644 {
2645 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2646 	__u32 i, record_size, existing_len, records_len;
2647 	struct btf_ext_info_sec *sinfo;
2648 	const char *info_sec_name;
2649 	__u64 remain_len;
2650 	void *data;
2651 
2652 	record_size = ext_info->rec_size;
2653 	sinfo = ext_info->info;
2654 	remain_len = ext_info->len;
2655 	while (remain_len > 0) {
2656 		records_len = sinfo->num_info * record_size;
2657 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2658 		if (strcmp(info_sec_name, sec_name)) {
2659 			remain_len -= sec_hdrlen + records_len;
2660 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2661 			continue;
2662 		}
2663 
2664 		existing_len = (*cnt) * record_size;
2665 		data = realloc(*info, existing_len + records_len);
2666 		if (!data)
2667 			return -ENOMEM;
2668 
2669 		memcpy(data + existing_len, sinfo->data, records_len);
2670 		/* adjust insn_off only, the rest data will be passed
2671 		 * to the kernel.
2672 		 */
2673 		for (i = 0; i < sinfo->num_info; i++) {
2674 			__u32 *insn_off;
2675 
2676 			insn_off = data + existing_len + (i * record_size);
2677 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2678 				insns_cnt;
2679 		}
2680 		*info = data;
2681 		*cnt += sinfo->num_info;
2682 		return 0;
2683 	}
2684 
2685 	return -ENOENT;
2686 }
2687 
2688 int btf_ext__reloc_func_info(const struct btf *btf,
2689 			     const struct btf_ext *btf_ext,
2690 			     const char *sec_name, __u32 insns_cnt,
2691 			     void **func_info, __u32 *cnt)
2692 {
2693 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2694 				  insns_cnt, func_info, cnt);
2695 }
2696 
2697 int btf_ext__reloc_line_info(const struct btf *btf,
2698 			     const struct btf_ext *btf_ext,
2699 			     const char *sec_name, __u32 insns_cnt,
2700 			     void **line_info, __u32 *cnt)
2701 {
2702 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2703 				  insns_cnt, line_info, cnt);
2704 }
2705 
2706 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2707 {
2708 	return btf_ext->func_info.rec_size;
2709 }
2710 
2711 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2712 {
2713 	return btf_ext->line_info.rec_size;
2714 }
2715 
2716 struct btf_dedup;
2717 
2718 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2719 				       const struct btf_dedup_opts *opts);
2720 static void btf_dedup_free(struct btf_dedup *d);
2721 static int btf_dedup_prep(struct btf_dedup *d);
2722 static int btf_dedup_strings(struct btf_dedup *d);
2723 static int btf_dedup_prim_types(struct btf_dedup *d);
2724 static int btf_dedup_struct_types(struct btf_dedup *d);
2725 static int btf_dedup_ref_types(struct btf_dedup *d);
2726 static int btf_dedup_compact_types(struct btf_dedup *d);
2727 static int btf_dedup_remap_types(struct btf_dedup *d);
2728 
2729 /*
2730  * Deduplicate BTF types and strings.
2731  *
2732  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2733  * section with all BTF type descriptors and string data. It overwrites that
2734  * memory in-place with deduplicated types and strings without any loss of
2735  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2736  * is provided, all the strings referenced from .BTF.ext section are honored
2737  * and updated to point to the right offsets after deduplication.
2738  *
2739  * If function returns with error, type/string data might be garbled and should
2740  * be discarded.
2741  *
2742  * More verbose and detailed description of both problem btf_dedup is solving,
2743  * as well as solution could be found at:
2744  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2745  *
2746  * Problem description and justification
2747  * =====================================
2748  *
2749  * BTF type information is typically emitted either as a result of conversion
2750  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2751  * unit contains information about a subset of all the types that are used
2752  * in an application. These subsets are frequently overlapping and contain a lot
2753  * of duplicated information when later concatenated together into a single
2754  * binary. This algorithm ensures that each unique type is represented by single
2755  * BTF type descriptor, greatly reducing resulting size of BTF data.
2756  *
2757  * Compilation unit isolation and subsequent duplication of data is not the only
2758  * problem. The same type hierarchy (e.g., struct and all the type that struct
2759  * references) in different compilation units can be represented in BTF to
2760  * various degrees of completeness (or, rather, incompleteness) due to
2761  * struct/union forward declarations.
2762  *
2763  * Let's take a look at an example, that we'll use to better understand the
2764  * problem (and solution). Suppose we have two compilation units, each using
2765  * same `struct S`, but each of them having incomplete type information about
2766  * struct's fields:
2767  *
2768  * // CU #1:
2769  * struct S;
2770  * struct A {
2771  *	int a;
2772  *	struct A* self;
2773  *	struct S* parent;
2774  * };
2775  * struct B;
2776  * struct S {
2777  *	struct A* a_ptr;
2778  *	struct B* b_ptr;
2779  * };
2780  *
2781  * // CU #2:
2782  * struct S;
2783  * struct A;
2784  * struct B {
2785  *	int b;
2786  *	struct B* self;
2787  *	struct S* parent;
2788  * };
2789  * struct S {
2790  *	struct A* a_ptr;
2791  *	struct B* b_ptr;
2792  * };
2793  *
2794  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2795  * more), but will know the complete type information about `struct A`. While
2796  * for CU #2, it will know full type information about `struct B`, but will
2797  * only know about forward declaration of `struct A` (in BTF terms, it will
2798  * have `BTF_KIND_FWD` type descriptor with name `B`).
2799  *
2800  * This compilation unit isolation means that it's possible that there is no
2801  * single CU with complete type information describing structs `S`, `A`, and
2802  * `B`. Also, we might get tons of duplicated and redundant type information.
2803  *
2804  * Additional complication we need to keep in mind comes from the fact that
2805  * types, in general, can form graphs containing cycles, not just DAGs.
2806  *
2807  * While algorithm does deduplication, it also merges and resolves type
2808  * information (unless disabled throught `struct btf_opts`), whenever possible.
2809  * E.g., in the example above with two compilation units having partial type
2810  * information for structs `A` and `B`, the output of algorithm will emit
2811  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2812  * (as well as type information for `int` and pointers), as if they were defined
2813  * in a single compilation unit as:
2814  *
2815  * struct A {
2816  *	int a;
2817  *	struct A* self;
2818  *	struct S* parent;
2819  * };
2820  * struct B {
2821  *	int b;
2822  *	struct B* self;
2823  *	struct S* parent;
2824  * };
2825  * struct S {
2826  *	struct A* a_ptr;
2827  *	struct B* b_ptr;
2828  * };
2829  *
2830  * Algorithm summary
2831  * =================
2832  *
2833  * Algorithm completes its work in 6 separate passes:
2834  *
2835  * 1. Strings deduplication.
2836  * 2. Primitive types deduplication (int, enum, fwd).
2837  * 3. Struct/union types deduplication.
2838  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2839  *    protos, and const/volatile/restrict modifiers).
2840  * 5. Types compaction.
2841  * 6. Types remapping.
2842  *
2843  * Algorithm determines canonical type descriptor, which is a single
2844  * representative type for each truly unique type. This canonical type is the
2845  * one that will go into final deduplicated BTF type information. For
2846  * struct/unions, it is also the type that algorithm will merge additional type
2847  * information into (while resolving FWDs), as it discovers it from data in
2848  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2849  * that type is canonical, or to some other type, if that type is equivalent
2850  * and was chosen as canonical representative. This mapping is stored in
2851  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2852  * FWD type got resolved to.
2853  *
2854  * To facilitate fast discovery of canonical types, we also maintain canonical
2855  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2856  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2857  * that match that signature. With sufficiently good choice of type signature
2858  * hashing function, we can limit number of canonical types for each unique type
2859  * signature to a very small number, allowing to find canonical type for any
2860  * duplicated type very quickly.
2861  *
2862  * Struct/union deduplication is the most critical part and algorithm for
2863  * deduplicating structs/unions is described in greater details in comments for
2864  * `btf_dedup_is_equiv` function.
2865  */
2866 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2867 	       const struct btf_dedup_opts *opts)
2868 {
2869 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2870 	int err;
2871 
2872 	if (IS_ERR(d)) {
2873 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2874 		return -EINVAL;
2875 	}
2876 
2877 	if (btf_ensure_modifiable(btf))
2878 		return -ENOMEM;
2879 
2880 	err = btf_dedup_prep(d);
2881 	if (err) {
2882 		pr_debug("btf_dedup_prep failed:%d\n", err);
2883 		goto done;
2884 	}
2885 	err = btf_dedup_strings(d);
2886 	if (err < 0) {
2887 		pr_debug("btf_dedup_strings failed:%d\n", err);
2888 		goto done;
2889 	}
2890 	err = btf_dedup_prim_types(d);
2891 	if (err < 0) {
2892 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2893 		goto done;
2894 	}
2895 	err = btf_dedup_struct_types(d);
2896 	if (err < 0) {
2897 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2898 		goto done;
2899 	}
2900 	err = btf_dedup_ref_types(d);
2901 	if (err < 0) {
2902 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2903 		goto done;
2904 	}
2905 	err = btf_dedup_compact_types(d);
2906 	if (err < 0) {
2907 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2908 		goto done;
2909 	}
2910 	err = btf_dedup_remap_types(d);
2911 	if (err < 0) {
2912 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2913 		goto done;
2914 	}
2915 
2916 done:
2917 	btf_dedup_free(d);
2918 	return err;
2919 }
2920 
2921 #define BTF_UNPROCESSED_ID ((__u32)-1)
2922 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2923 
2924 struct btf_dedup {
2925 	/* .BTF section to be deduped in-place */
2926 	struct btf *btf;
2927 	/*
2928 	 * Optional .BTF.ext section. When provided, any strings referenced
2929 	 * from it will be taken into account when deduping strings
2930 	 */
2931 	struct btf_ext *btf_ext;
2932 	/*
2933 	 * This is a map from any type's signature hash to a list of possible
2934 	 * canonical representative type candidates. Hash collisions are
2935 	 * ignored, so even types of various kinds can share same list of
2936 	 * candidates, which is fine because we rely on subsequent
2937 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2938 	 */
2939 	struct hashmap *dedup_table;
2940 	/* Canonical types map */
2941 	__u32 *map;
2942 	/* Hypothetical mapping, used during type graph equivalence checks */
2943 	__u32 *hypot_map;
2944 	__u32 *hypot_list;
2945 	size_t hypot_cnt;
2946 	size_t hypot_cap;
2947 	/* Whether hypothetical mapping, if successful, would need to adjust
2948 	 * already canonicalized types (due to a new forward declaration to
2949 	 * concrete type resolution). In such case, during split BTF dedup
2950 	 * candidate type would still be considered as different, because base
2951 	 * BTF is considered to be immutable.
2952 	 */
2953 	bool hypot_adjust_canon;
2954 	/* Various option modifying behavior of algorithm */
2955 	struct btf_dedup_opts opts;
2956 	/* temporary strings deduplication state */
2957 	void *strs_data;
2958 	size_t strs_cap;
2959 	size_t strs_len;
2960 	struct hashmap* strs_hash;
2961 };
2962 
2963 static long hash_combine(long h, long value)
2964 {
2965 	return h * 31 + value;
2966 }
2967 
2968 #define for_each_dedup_cand(d, node, hash) \
2969 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2970 
2971 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2972 {
2973 	return hashmap__append(d->dedup_table,
2974 			       (void *)hash, (void *)(long)type_id);
2975 }
2976 
2977 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
2978 				   __u32 from_id, __u32 to_id)
2979 {
2980 	if (d->hypot_cnt == d->hypot_cap) {
2981 		__u32 *new_list;
2982 
2983 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
2984 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
2985 		if (!new_list)
2986 			return -ENOMEM;
2987 		d->hypot_list = new_list;
2988 	}
2989 	d->hypot_list[d->hypot_cnt++] = from_id;
2990 	d->hypot_map[from_id] = to_id;
2991 	return 0;
2992 }
2993 
2994 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
2995 {
2996 	int i;
2997 
2998 	for (i = 0; i < d->hypot_cnt; i++)
2999 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3000 	d->hypot_cnt = 0;
3001 	d->hypot_adjust_canon = false;
3002 }
3003 
3004 static void btf_dedup_free(struct btf_dedup *d)
3005 {
3006 	hashmap__free(d->dedup_table);
3007 	d->dedup_table = NULL;
3008 
3009 	free(d->map);
3010 	d->map = NULL;
3011 
3012 	free(d->hypot_map);
3013 	d->hypot_map = NULL;
3014 
3015 	free(d->hypot_list);
3016 	d->hypot_list = NULL;
3017 
3018 	free(d);
3019 }
3020 
3021 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3022 {
3023 	return (size_t)key;
3024 }
3025 
3026 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3027 {
3028 	return 0;
3029 }
3030 
3031 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3032 {
3033 	return k1 == k2;
3034 }
3035 
3036 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3037 				       const struct btf_dedup_opts *opts)
3038 {
3039 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3040 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3041 	int i, err = 0, type_cnt;
3042 
3043 	if (!d)
3044 		return ERR_PTR(-ENOMEM);
3045 
3046 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3047 	/* dedup_table_size is now used only to force collisions in tests */
3048 	if (opts && opts->dedup_table_size == 1)
3049 		hash_fn = btf_dedup_collision_hash_fn;
3050 
3051 	d->btf = btf;
3052 	d->btf_ext = btf_ext;
3053 
3054 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3055 	if (IS_ERR(d->dedup_table)) {
3056 		err = PTR_ERR(d->dedup_table);
3057 		d->dedup_table = NULL;
3058 		goto done;
3059 	}
3060 
3061 	type_cnt = btf__get_nr_types(btf) + 1;
3062 	d->map = malloc(sizeof(__u32) * type_cnt);
3063 	if (!d->map) {
3064 		err = -ENOMEM;
3065 		goto done;
3066 	}
3067 	/* special BTF "void" type is made canonical immediately */
3068 	d->map[0] = 0;
3069 	for (i = 1; i < type_cnt; i++) {
3070 		struct btf_type *t = btf_type_by_id(d->btf, i);
3071 
3072 		/* VAR and DATASEC are never deduped and are self-canonical */
3073 		if (btf_is_var(t) || btf_is_datasec(t))
3074 			d->map[i] = i;
3075 		else
3076 			d->map[i] = BTF_UNPROCESSED_ID;
3077 	}
3078 
3079 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3080 	if (!d->hypot_map) {
3081 		err = -ENOMEM;
3082 		goto done;
3083 	}
3084 	for (i = 0; i < type_cnt; i++)
3085 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3086 
3087 done:
3088 	if (err) {
3089 		btf_dedup_free(d);
3090 		return ERR_PTR(err);
3091 	}
3092 
3093 	return d;
3094 }
3095 
3096 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
3097 
3098 /*
3099  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3100  * string and pass pointer to it to a provided callback `fn`.
3101  */
3102 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
3103 {
3104 	void *line_data_cur, *line_data_end;
3105 	int i, j, r, rec_size;
3106 	struct btf_type *t;
3107 
3108 	for (i = 0; i < d->btf->nr_types; i++) {
3109 		t = btf_type_by_id(d->btf, d->btf->start_id + i);
3110 		r = fn(&t->name_off, ctx);
3111 		if (r)
3112 			return r;
3113 
3114 		switch (btf_kind(t)) {
3115 		case BTF_KIND_STRUCT:
3116 		case BTF_KIND_UNION: {
3117 			struct btf_member *m = btf_members(t);
3118 			__u16 vlen = btf_vlen(t);
3119 
3120 			for (j = 0; j < vlen; j++) {
3121 				r = fn(&m->name_off, ctx);
3122 				if (r)
3123 					return r;
3124 				m++;
3125 			}
3126 			break;
3127 		}
3128 		case BTF_KIND_ENUM: {
3129 			struct btf_enum *m = btf_enum(t);
3130 			__u16 vlen = btf_vlen(t);
3131 
3132 			for (j = 0; j < vlen; j++) {
3133 				r = fn(&m->name_off, ctx);
3134 				if (r)
3135 					return r;
3136 				m++;
3137 			}
3138 			break;
3139 		}
3140 		case BTF_KIND_FUNC_PROTO: {
3141 			struct btf_param *m = btf_params(t);
3142 			__u16 vlen = btf_vlen(t);
3143 
3144 			for (j = 0; j < vlen; j++) {
3145 				r = fn(&m->name_off, ctx);
3146 				if (r)
3147 					return r;
3148 				m++;
3149 			}
3150 			break;
3151 		}
3152 		default:
3153 			break;
3154 		}
3155 	}
3156 
3157 	if (!d->btf_ext)
3158 		return 0;
3159 
3160 	line_data_cur = d->btf_ext->line_info.info;
3161 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
3162 	rec_size = d->btf_ext->line_info.rec_size;
3163 
3164 	while (line_data_cur < line_data_end) {
3165 		struct btf_ext_info_sec *sec = line_data_cur;
3166 		struct bpf_line_info_min *line_info;
3167 		__u32 num_info = sec->num_info;
3168 
3169 		r = fn(&sec->sec_name_off, ctx);
3170 		if (r)
3171 			return r;
3172 
3173 		line_data_cur += sizeof(struct btf_ext_info_sec);
3174 		for (i = 0; i < num_info; i++) {
3175 			line_info = line_data_cur;
3176 			r = fn(&line_info->file_name_off, ctx);
3177 			if (r)
3178 				return r;
3179 			r = fn(&line_info->line_off, ctx);
3180 			if (r)
3181 				return r;
3182 			line_data_cur += rec_size;
3183 		}
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3190 {
3191 	struct btf_dedup *d = ctx;
3192 	__u32 str_off = *str_off_ptr;
3193 	long old_off, new_off, len;
3194 	const char *s;
3195 	void *p;
3196 	int err;
3197 
3198 	/* don't touch empty string or string in main BTF */
3199 	if (str_off == 0 || str_off < d->btf->start_str_off)
3200 		return 0;
3201 
3202 	s = btf__str_by_offset(d->btf, str_off);
3203 	if (d->btf->base_btf) {
3204 		err = btf__find_str(d->btf->base_btf, s);
3205 		if (err >= 0) {
3206 			*str_off_ptr = err;
3207 			return 0;
3208 		}
3209 		if (err != -ENOENT)
3210 			return err;
3211 	}
3212 
3213 	len = strlen(s) + 1;
3214 
3215 	new_off = d->strs_len;
3216 	p = btf_add_mem(&d->strs_data, &d->strs_cap, 1, new_off, BTF_MAX_STR_OFFSET, len);
3217 	if (!p)
3218 		return -ENOMEM;
3219 
3220 	memcpy(p, s, len);
3221 
3222 	/* Now attempt to add the string, but only if the string with the same
3223 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
3224 	 * string exists, we'll get its offset in old_off (that's old_key).
3225 	 */
3226 	err = hashmap__insert(d->strs_hash, (void *)new_off, (void *)new_off,
3227 			      HASHMAP_ADD, (const void **)&old_off, NULL);
3228 	if (err == -EEXIST) {
3229 		*str_off_ptr = d->btf->start_str_off + old_off;
3230 	} else if (err) {
3231 		return err;
3232 	} else {
3233 		*str_off_ptr = d->btf->start_str_off + new_off;
3234 		d->strs_len += len;
3235 	}
3236 	return 0;
3237 }
3238 
3239 /*
3240  * Dedup string and filter out those that are not referenced from either .BTF
3241  * or .BTF.ext (if provided) sections.
3242  *
3243  * This is done by building index of all strings in BTF's string section,
3244  * then iterating over all entities that can reference strings (e.g., type
3245  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3246  * strings as used. After that all used strings are deduped and compacted into
3247  * sequential blob of memory and new offsets are calculated. Then all the string
3248  * references are iterated again and rewritten using new offsets.
3249  */
3250 static int btf_dedup_strings(struct btf_dedup *d)
3251 {
3252 	char *s;
3253 	int err;
3254 
3255 	if (d->btf->strs_deduped)
3256 		return 0;
3257 
3258 	/* temporarily switch to use btf_dedup's strs_data for strings for hash
3259 	 * functions; later we'll just transfer hashmap to struct btf as is,
3260 	 * along the strs_data
3261 	 */
3262 	d->btf->strs_data_ptr = &d->strs_data;
3263 
3264 	d->strs_hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, d->btf);
3265 	if (IS_ERR(d->strs_hash)) {
3266 		err = PTR_ERR(d->strs_hash);
3267 		d->strs_hash = NULL;
3268 		goto err_out;
3269 	}
3270 
3271 	if (!d->btf->base_btf) {
3272 		s = btf_add_mem(&d->strs_data, &d->strs_cap, 1, d->strs_len, BTF_MAX_STR_OFFSET, 1);
3273 		if (!s)
3274 			return -ENOMEM;
3275 		/* initial empty string */
3276 		s[0] = 0;
3277 		d->strs_len = 1;
3278 
3279 		/* insert empty string; we won't be looking it up during strings
3280 		 * dedup, but it's good to have it for generic BTF string lookups
3281 		 */
3282 		err = hashmap__insert(d->strs_hash, (void *)0, (void *)0,
3283 				      HASHMAP_ADD, NULL, NULL);
3284 		if (err)
3285 			goto err_out;
3286 	}
3287 
3288 	/* remap string offsets */
3289 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3290 	if (err)
3291 		goto err_out;
3292 
3293 	/* replace BTF string data and hash with deduped ones */
3294 	free(d->btf->strs_data);
3295 	hashmap__free(d->btf->strs_hash);
3296 	d->btf->strs_data = d->strs_data;
3297 	d->btf->strs_data_cap = d->strs_cap;
3298 	d->btf->hdr->str_len = d->strs_len;
3299 	d->btf->strs_hash = d->strs_hash;
3300 	/* now point strs_data_ptr back to btf->strs_data */
3301 	d->btf->strs_data_ptr = &d->btf->strs_data;
3302 
3303 	d->strs_data = d->strs_hash = NULL;
3304 	d->strs_len = d->strs_cap = 0;
3305 	d->btf->strs_deduped = true;
3306 	return 0;
3307 
3308 err_out:
3309 	free(d->strs_data);
3310 	hashmap__free(d->strs_hash);
3311 	d->strs_data = d->strs_hash = NULL;
3312 	d->strs_len = d->strs_cap = 0;
3313 
3314 	/* restore strings pointer for existing d->btf->strs_hash back */
3315 	d->btf->strs_data_ptr = &d->strs_data;
3316 
3317 	return err;
3318 }
3319 
3320 static long btf_hash_common(struct btf_type *t)
3321 {
3322 	long h;
3323 
3324 	h = hash_combine(0, t->name_off);
3325 	h = hash_combine(h, t->info);
3326 	h = hash_combine(h, t->size);
3327 	return h;
3328 }
3329 
3330 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3331 {
3332 	return t1->name_off == t2->name_off &&
3333 	       t1->info == t2->info &&
3334 	       t1->size == t2->size;
3335 }
3336 
3337 /* Calculate type signature hash of INT. */
3338 static long btf_hash_int(struct btf_type *t)
3339 {
3340 	__u32 info = *(__u32 *)(t + 1);
3341 	long h;
3342 
3343 	h = btf_hash_common(t);
3344 	h = hash_combine(h, info);
3345 	return h;
3346 }
3347 
3348 /* Check structural equality of two INTs. */
3349 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3350 {
3351 	__u32 info1, info2;
3352 
3353 	if (!btf_equal_common(t1, t2))
3354 		return false;
3355 	info1 = *(__u32 *)(t1 + 1);
3356 	info2 = *(__u32 *)(t2 + 1);
3357 	return info1 == info2;
3358 }
3359 
3360 /* Calculate type signature hash of ENUM. */
3361 static long btf_hash_enum(struct btf_type *t)
3362 {
3363 	long h;
3364 
3365 	/* don't hash vlen and enum members to support enum fwd resolving */
3366 	h = hash_combine(0, t->name_off);
3367 	h = hash_combine(h, t->info & ~0xffff);
3368 	h = hash_combine(h, t->size);
3369 	return h;
3370 }
3371 
3372 /* Check structural equality of two ENUMs. */
3373 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3374 {
3375 	const struct btf_enum *m1, *m2;
3376 	__u16 vlen;
3377 	int i;
3378 
3379 	if (!btf_equal_common(t1, t2))
3380 		return false;
3381 
3382 	vlen = btf_vlen(t1);
3383 	m1 = btf_enum(t1);
3384 	m2 = btf_enum(t2);
3385 	for (i = 0; i < vlen; i++) {
3386 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3387 			return false;
3388 		m1++;
3389 		m2++;
3390 	}
3391 	return true;
3392 }
3393 
3394 static inline bool btf_is_enum_fwd(struct btf_type *t)
3395 {
3396 	return btf_is_enum(t) && btf_vlen(t) == 0;
3397 }
3398 
3399 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3400 {
3401 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3402 		return btf_equal_enum(t1, t2);
3403 	/* ignore vlen when comparing */
3404 	return t1->name_off == t2->name_off &&
3405 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3406 	       t1->size == t2->size;
3407 }
3408 
3409 /*
3410  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3411  * as referenced type IDs equivalence is established separately during type
3412  * graph equivalence check algorithm.
3413  */
3414 static long btf_hash_struct(struct btf_type *t)
3415 {
3416 	const struct btf_member *member = btf_members(t);
3417 	__u32 vlen = btf_vlen(t);
3418 	long h = btf_hash_common(t);
3419 	int i;
3420 
3421 	for (i = 0; i < vlen; i++) {
3422 		h = hash_combine(h, member->name_off);
3423 		h = hash_combine(h, member->offset);
3424 		/* no hashing of referenced type ID, it can be unresolved yet */
3425 		member++;
3426 	}
3427 	return h;
3428 }
3429 
3430 /*
3431  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3432  * IDs. This check is performed during type graph equivalence check and
3433  * referenced types equivalence is checked separately.
3434  */
3435 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3436 {
3437 	const struct btf_member *m1, *m2;
3438 	__u16 vlen;
3439 	int i;
3440 
3441 	if (!btf_equal_common(t1, t2))
3442 		return false;
3443 
3444 	vlen = btf_vlen(t1);
3445 	m1 = btf_members(t1);
3446 	m2 = btf_members(t2);
3447 	for (i = 0; i < vlen; i++) {
3448 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3449 			return false;
3450 		m1++;
3451 		m2++;
3452 	}
3453 	return true;
3454 }
3455 
3456 /*
3457  * Calculate type signature hash of ARRAY, including referenced type IDs,
3458  * under assumption that they were already resolved to canonical type IDs and
3459  * are not going to change.
3460  */
3461 static long btf_hash_array(struct btf_type *t)
3462 {
3463 	const struct btf_array *info = btf_array(t);
3464 	long h = btf_hash_common(t);
3465 
3466 	h = hash_combine(h, info->type);
3467 	h = hash_combine(h, info->index_type);
3468 	h = hash_combine(h, info->nelems);
3469 	return h;
3470 }
3471 
3472 /*
3473  * Check exact equality of two ARRAYs, taking into account referenced
3474  * type IDs, under assumption that they were already resolved to canonical
3475  * type IDs and are not going to change.
3476  * This function is called during reference types deduplication to compare
3477  * ARRAY to potential canonical representative.
3478  */
3479 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3480 {
3481 	const struct btf_array *info1, *info2;
3482 
3483 	if (!btf_equal_common(t1, t2))
3484 		return false;
3485 
3486 	info1 = btf_array(t1);
3487 	info2 = btf_array(t2);
3488 	return info1->type == info2->type &&
3489 	       info1->index_type == info2->index_type &&
3490 	       info1->nelems == info2->nelems;
3491 }
3492 
3493 /*
3494  * Check structural compatibility of two ARRAYs, ignoring referenced type
3495  * IDs. This check is performed during type graph equivalence check and
3496  * referenced types equivalence is checked separately.
3497  */
3498 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3499 {
3500 	if (!btf_equal_common(t1, t2))
3501 		return false;
3502 
3503 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3504 }
3505 
3506 /*
3507  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3508  * under assumption that they were already resolved to canonical type IDs and
3509  * are not going to change.
3510  */
3511 static long btf_hash_fnproto(struct btf_type *t)
3512 {
3513 	const struct btf_param *member = btf_params(t);
3514 	__u16 vlen = btf_vlen(t);
3515 	long h = btf_hash_common(t);
3516 	int i;
3517 
3518 	for (i = 0; i < vlen; i++) {
3519 		h = hash_combine(h, member->name_off);
3520 		h = hash_combine(h, member->type);
3521 		member++;
3522 	}
3523 	return h;
3524 }
3525 
3526 /*
3527  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3528  * type IDs, under assumption that they were already resolved to canonical
3529  * type IDs and are not going to change.
3530  * This function is called during reference types deduplication to compare
3531  * FUNC_PROTO to potential canonical representative.
3532  */
3533 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3534 {
3535 	const struct btf_param *m1, *m2;
3536 	__u16 vlen;
3537 	int i;
3538 
3539 	if (!btf_equal_common(t1, t2))
3540 		return false;
3541 
3542 	vlen = btf_vlen(t1);
3543 	m1 = btf_params(t1);
3544 	m2 = btf_params(t2);
3545 	for (i = 0; i < vlen; i++) {
3546 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3547 			return false;
3548 		m1++;
3549 		m2++;
3550 	}
3551 	return true;
3552 }
3553 
3554 /*
3555  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3556  * IDs. This check is performed during type graph equivalence check and
3557  * referenced types equivalence is checked separately.
3558  */
3559 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3560 {
3561 	const struct btf_param *m1, *m2;
3562 	__u16 vlen;
3563 	int i;
3564 
3565 	/* skip return type ID */
3566 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3567 		return false;
3568 
3569 	vlen = btf_vlen(t1);
3570 	m1 = btf_params(t1);
3571 	m2 = btf_params(t2);
3572 	for (i = 0; i < vlen; i++) {
3573 		if (m1->name_off != m2->name_off)
3574 			return false;
3575 		m1++;
3576 		m2++;
3577 	}
3578 	return true;
3579 }
3580 
3581 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3582  * types and initializing the rest of the state (canonical type mapping) for
3583  * the fixed base BTF part.
3584  */
3585 static int btf_dedup_prep(struct btf_dedup *d)
3586 {
3587 	struct btf_type *t;
3588 	int type_id;
3589 	long h;
3590 
3591 	if (!d->btf->base_btf)
3592 		return 0;
3593 
3594 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3595 		t = btf_type_by_id(d->btf, type_id);
3596 
3597 		/* all base BTF types are self-canonical by definition */
3598 		d->map[type_id] = type_id;
3599 
3600 		switch (btf_kind(t)) {
3601 		case BTF_KIND_VAR:
3602 		case BTF_KIND_DATASEC:
3603 			/* VAR and DATASEC are never hash/deduplicated */
3604 			continue;
3605 		case BTF_KIND_CONST:
3606 		case BTF_KIND_VOLATILE:
3607 		case BTF_KIND_RESTRICT:
3608 		case BTF_KIND_PTR:
3609 		case BTF_KIND_FWD:
3610 		case BTF_KIND_TYPEDEF:
3611 		case BTF_KIND_FUNC:
3612 			h = btf_hash_common(t);
3613 			break;
3614 		case BTF_KIND_INT:
3615 			h = btf_hash_int(t);
3616 			break;
3617 		case BTF_KIND_ENUM:
3618 			h = btf_hash_enum(t);
3619 			break;
3620 		case BTF_KIND_STRUCT:
3621 		case BTF_KIND_UNION:
3622 			h = btf_hash_struct(t);
3623 			break;
3624 		case BTF_KIND_ARRAY:
3625 			h = btf_hash_array(t);
3626 			break;
3627 		case BTF_KIND_FUNC_PROTO:
3628 			h = btf_hash_fnproto(t);
3629 			break;
3630 		default:
3631 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3632 			return -EINVAL;
3633 		}
3634 		if (btf_dedup_table_add(d, h, type_id))
3635 			return -ENOMEM;
3636 	}
3637 
3638 	return 0;
3639 }
3640 
3641 /*
3642  * Deduplicate primitive types, that can't reference other types, by calculating
3643  * their type signature hash and comparing them with any possible canonical
3644  * candidate. If no canonical candidate matches, type itself is marked as
3645  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3646  */
3647 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3648 {
3649 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3650 	struct hashmap_entry *hash_entry;
3651 	struct btf_type *cand;
3652 	/* if we don't find equivalent type, then we are canonical */
3653 	__u32 new_id = type_id;
3654 	__u32 cand_id;
3655 	long h;
3656 
3657 	switch (btf_kind(t)) {
3658 	case BTF_KIND_CONST:
3659 	case BTF_KIND_VOLATILE:
3660 	case BTF_KIND_RESTRICT:
3661 	case BTF_KIND_PTR:
3662 	case BTF_KIND_TYPEDEF:
3663 	case BTF_KIND_ARRAY:
3664 	case BTF_KIND_STRUCT:
3665 	case BTF_KIND_UNION:
3666 	case BTF_KIND_FUNC:
3667 	case BTF_KIND_FUNC_PROTO:
3668 	case BTF_KIND_VAR:
3669 	case BTF_KIND_DATASEC:
3670 		return 0;
3671 
3672 	case BTF_KIND_INT:
3673 		h = btf_hash_int(t);
3674 		for_each_dedup_cand(d, hash_entry, h) {
3675 			cand_id = (__u32)(long)hash_entry->value;
3676 			cand = btf_type_by_id(d->btf, cand_id);
3677 			if (btf_equal_int(t, cand)) {
3678 				new_id = cand_id;
3679 				break;
3680 			}
3681 		}
3682 		break;
3683 
3684 	case BTF_KIND_ENUM:
3685 		h = btf_hash_enum(t);
3686 		for_each_dedup_cand(d, hash_entry, h) {
3687 			cand_id = (__u32)(long)hash_entry->value;
3688 			cand = btf_type_by_id(d->btf, cand_id);
3689 			if (btf_equal_enum(t, cand)) {
3690 				new_id = cand_id;
3691 				break;
3692 			}
3693 			if (d->opts.dont_resolve_fwds)
3694 				continue;
3695 			if (btf_compat_enum(t, cand)) {
3696 				if (btf_is_enum_fwd(t)) {
3697 					/* resolve fwd to full enum */
3698 					new_id = cand_id;
3699 					break;
3700 				}
3701 				/* resolve canonical enum fwd to full enum */
3702 				d->map[cand_id] = type_id;
3703 			}
3704 		}
3705 		break;
3706 
3707 	case BTF_KIND_FWD:
3708 		h = btf_hash_common(t);
3709 		for_each_dedup_cand(d, hash_entry, h) {
3710 			cand_id = (__u32)(long)hash_entry->value;
3711 			cand = btf_type_by_id(d->btf, cand_id);
3712 			if (btf_equal_common(t, cand)) {
3713 				new_id = cand_id;
3714 				break;
3715 			}
3716 		}
3717 		break;
3718 
3719 	default:
3720 		return -EINVAL;
3721 	}
3722 
3723 	d->map[type_id] = new_id;
3724 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3725 		return -ENOMEM;
3726 
3727 	return 0;
3728 }
3729 
3730 static int btf_dedup_prim_types(struct btf_dedup *d)
3731 {
3732 	int i, err;
3733 
3734 	for (i = 0; i < d->btf->nr_types; i++) {
3735 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3736 		if (err)
3737 			return err;
3738 	}
3739 	return 0;
3740 }
3741 
3742 /*
3743  * Check whether type is already mapped into canonical one (could be to itself).
3744  */
3745 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3746 {
3747 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3748 }
3749 
3750 /*
3751  * Resolve type ID into its canonical type ID, if any; otherwise return original
3752  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3753  * STRUCT/UNION link and resolve it into canonical type ID as well.
3754  */
3755 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3756 {
3757 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3758 		type_id = d->map[type_id];
3759 	return type_id;
3760 }
3761 
3762 /*
3763  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3764  * type ID.
3765  */
3766 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3767 {
3768 	__u32 orig_type_id = type_id;
3769 
3770 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3771 		return type_id;
3772 
3773 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3774 		type_id = d->map[type_id];
3775 
3776 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3777 		return type_id;
3778 
3779 	return orig_type_id;
3780 }
3781 
3782 
3783 static inline __u16 btf_fwd_kind(struct btf_type *t)
3784 {
3785 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3786 }
3787 
3788 /* Check if given two types are identical ARRAY definitions */
3789 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3790 {
3791 	struct btf_type *t1, *t2;
3792 
3793 	t1 = btf_type_by_id(d->btf, id1);
3794 	t2 = btf_type_by_id(d->btf, id2);
3795 	if (!btf_is_array(t1) || !btf_is_array(t2))
3796 		return 0;
3797 
3798 	return btf_equal_array(t1, t2);
3799 }
3800 
3801 /*
3802  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3803  * call it "candidate graph" in this description for brevity) to a type graph
3804  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3805  * here, though keep in mind that not all types in canonical graph are
3806  * necessarily canonical representatives themselves, some of them might be
3807  * duplicates or its uniqueness might not have been established yet).
3808  * Returns:
3809  *  - >0, if type graphs are equivalent;
3810  *  -  0, if not equivalent;
3811  *  - <0, on error.
3812  *
3813  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3814  * equivalence of BTF types at each step. If at any point BTF types in candidate
3815  * and canonical graphs are not compatible structurally, whole graphs are
3816  * incompatible. If types are structurally equivalent (i.e., all information
3817  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3818  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3819  * If a type references other types, then those referenced types are checked
3820  * for equivalence recursively.
3821  *
3822  * During DFS traversal, if we find that for current `canon_id` type we
3823  * already have some mapping in hypothetical map, we check for two possible
3824  * situations:
3825  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3826  *     happen when type graphs have cycles. In this case we assume those two
3827  *     types are equivalent.
3828  *   - `canon_id` is mapped to different type. This is contradiction in our
3829  *     hypothetical mapping, because same graph in canonical graph corresponds
3830  *     to two different types in candidate graph, which for equivalent type
3831  *     graphs shouldn't happen. This condition terminates equivalence check
3832  *     with negative result.
3833  *
3834  * If type graphs traversal exhausts types to check and find no contradiction,
3835  * then type graphs are equivalent.
3836  *
3837  * When checking types for equivalence, there is one special case: FWD types.
3838  * If FWD type resolution is allowed and one of the types (either from canonical
3839  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3840  * flag) and their names match, hypothetical mapping is updated to point from
3841  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3842  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3843  *
3844  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3845  * if there are two exactly named (or anonymous) structs/unions that are
3846  * compatible structurally, one of which has FWD field, while other is concrete
3847  * STRUCT/UNION, but according to C sources they are different structs/unions
3848  * that are referencing different types with the same name. This is extremely
3849  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3850  * this logic is causing problems.
3851  *
3852  * Doing FWD resolution means that both candidate and/or canonical graphs can
3853  * consists of portions of the graph that come from multiple compilation units.
3854  * This is due to the fact that types within single compilation unit are always
3855  * deduplicated and FWDs are already resolved, if referenced struct/union
3856  * definiton is available. So, if we had unresolved FWD and found corresponding
3857  * STRUCT/UNION, they will be from different compilation units. This
3858  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3859  * type graph will likely have at least two different BTF types that describe
3860  * same type (e.g., most probably there will be two different BTF types for the
3861  * same 'int' primitive type) and could even have "overlapping" parts of type
3862  * graph that describe same subset of types.
3863  *
3864  * This in turn means that our assumption that each type in canonical graph
3865  * must correspond to exactly one type in candidate graph might not hold
3866  * anymore and will make it harder to detect contradictions using hypothetical
3867  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3868  * resolution only in canonical graph. FWDs in candidate graphs are never
3869  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3870  * that can occur:
3871  *   - Both types in canonical and candidate graphs are FWDs. If they are
3872  *     structurally equivalent, then they can either be both resolved to the
3873  *     same STRUCT/UNION or not resolved at all. In both cases they are
3874  *     equivalent and there is no need to resolve FWD on candidate side.
3875  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3876  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3877  *   - Type in canonical graph is FWD, while type in candidate is concrete
3878  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3879  *     unit, so there is exactly one BTF type for each unique C type. After
3880  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3881  *     in canonical graph mapping to single BTF type in candidate graph, but
3882  *     because hypothetical mapping maps from canonical to candidate types, it's
3883  *     alright, and we still maintain the property of having single `canon_id`
3884  *     mapping to single `cand_id` (there could be two different `canon_id`
3885  *     mapped to the same `cand_id`, but it's not contradictory).
3886  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3887  *     graph is FWD. In this case we are just going to check compatibility of
3888  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3889  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3890  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3891  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3892  *     canonical graph.
3893  */
3894 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3895 			      __u32 canon_id)
3896 {
3897 	struct btf_type *cand_type;
3898 	struct btf_type *canon_type;
3899 	__u32 hypot_type_id;
3900 	__u16 cand_kind;
3901 	__u16 canon_kind;
3902 	int i, eq;
3903 
3904 	/* if both resolve to the same canonical, they must be equivalent */
3905 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3906 		return 1;
3907 
3908 	canon_id = resolve_fwd_id(d, canon_id);
3909 
3910 	hypot_type_id = d->hypot_map[canon_id];
3911 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3912 		/* In some cases compiler will generate different DWARF types
3913 		 * for *identical* array type definitions and use them for
3914 		 * different fields within the *same* struct. This breaks type
3915 		 * equivalence check, which makes an assumption that candidate
3916 		 * types sub-graph has a consistent and deduped-by-compiler
3917 		 * types within a single CU. So work around that by explicitly
3918 		 * allowing identical array types here.
3919 		 */
3920 		return hypot_type_id == cand_id ||
3921 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3922 	}
3923 
3924 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3925 		return -ENOMEM;
3926 
3927 	cand_type = btf_type_by_id(d->btf, cand_id);
3928 	canon_type = btf_type_by_id(d->btf, canon_id);
3929 	cand_kind = btf_kind(cand_type);
3930 	canon_kind = btf_kind(canon_type);
3931 
3932 	if (cand_type->name_off != canon_type->name_off)
3933 		return 0;
3934 
3935 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3936 	if (!d->opts.dont_resolve_fwds
3937 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3938 	    && cand_kind != canon_kind) {
3939 		__u16 real_kind;
3940 		__u16 fwd_kind;
3941 
3942 		if (cand_kind == BTF_KIND_FWD) {
3943 			real_kind = canon_kind;
3944 			fwd_kind = btf_fwd_kind(cand_type);
3945 		} else {
3946 			real_kind = cand_kind;
3947 			fwd_kind = btf_fwd_kind(canon_type);
3948 			/* we'd need to resolve base FWD to STRUCT/UNION */
3949 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3950 				d->hypot_adjust_canon = true;
3951 		}
3952 		return fwd_kind == real_kind;
3953 	}
3954 
3955 	if (cand_kind != canon_kind)
3956 		return 0;
3957 
3958 	switch (cand_kind) {
3959 	case BTF_KIND_INT:
3960 		return btf_equal_int(cand_type, canon_type);
3961 
3962 	case BTF_KIND_ENUM:
3963 		if (d->opts.dont_resolve_fwds)
3964 			return btf_equal_enum(cand_type, canon_type);
3965 		else
3966 			return btf_compat_enum(cand_type, canon_type);
3967 
3968 	case BTF_KIND_FWD:
3969 		return btf_equal_common(cand_type, canon_type);
3970 
3971 	case BTF_KIND_CONST:
3972 	case BTF_KIND_VOLATILE:
3973 	case BTF_KIND_RESTRICT:
3974 	case BTF_KIND_PTR:
3975 	case BTF_KIND_TYPEDEF:
3976 	case BTF_KIND_FUNC:
3977 		if (cand_type->info != canon_type->info)
3978 			return 0;
3979 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3980 
3981 	case BTF_KIND_ARRAY: {
3982 		const struct btf_array *cand_arr, *canon_arr;
3983 
3984 		if (!btf_compat_array(cand_type, canon_type))
3985 			return 0;
3986 		cand_arr = btf_array(cand_type);
3987 		canon_arr = btf_array(canon_type);
3988 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3989 		if (eq <= 0)
3990 			return eq;
3991 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3992 	}
3993 
3994 	case BTF_KIND_STRUCT:
3995 	case BTF_KIND_UNION: {
3996 		const struct btf_member *cand_m, *canon_m;
3997 		__u16 vlen;
3998 
3999 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4000 			return 0;
4001 		vlen = btf_vlen(cand_type);
4002 		cand_m = btf_members(cand_type);
4003 		canon_m = btf_members(canon_type);
4004 		for (i = 0; i < vlen; i++) {
4005 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4006 			if (eq <= 0)
4007 				return eq;
4008 			cand_m++;
4009 			canon_m++;
4010 		}
4011 
4012 		return 1;
4013 	}
4014 
4015 	case BTF_KIND_FUNC_PROTO: {
4016 		const struct btf_param *cand_p, *canon_p;
4017 		__u16 vlen;
4018 
4019 		if (!btf_compat_fnproto(cand_type, canon_type))
4020 			return 0;
4021 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4022 		if (eq <= 0)
4023 			return eq;
4024 		vlen = btf_vlen(cand_type);
4025 		cand_p = btf_params(cand_type);
4026 		canon_p = btf_params(canon_type);
4027 		for (i = 0; i < vlen; i++) {
4028 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4029 			if (eq <= 0)
4030 				return eq;
4031 			cand_p++;
4032 			canon_p++;
4033 		}
4034 		return 1;
4035 	}
4036 
4037 	default:
4038 		return -EINVAL;
4039 	}
4040 	return 0;
4041 }
4042 
4043 /*
4044  * Use hypothetical mapping, produced by successful type graph equivalence
4045  * check, to augment existing struct/union canonical mapping, where possible.
4046  *
4047  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4048  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4049  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4050  * we are recording the mapping anyway. As opposed to carefulness required
4051  * for struct/union correspondence mapping (described below), for FWD resolution
4052  * it's not important, as by the time that FWD type (reference type) will be
4053  * deduplicated all structs/unions will be deduped already anyway.
4054  *
4055  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4056  * not required for correctness. It needs to be done carefully to ensure that
4057  * struct/union from candidate's type graph is not mapped into corresponding
4058  * struct/union from canonical type graph that itself hasn't been resolved into
4059  * canonical representative. The only guarantee we have is that canonical
4060  * struct/union was determined as canonical and that won't change. But any
4061  * types referenced through that struct/union fields could have been not yet
4062  * resolved, so in case like that it's too early to establish any kind of
4063  * correspondence between structs/unions.
4064  *
4065  * No canonical correspondence is derived for primitive types (they are already
4066  * deduplicated completely already anyway) or reference types (they rely on
4067  * stability of struct/union canonical relationship for equivalence checks).
4068  */
4069 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4070 {
4071 	__u32 canon_type_id, targ_type_id;
4072 	__u16 t_kind, c_kind;
4073 	__u32 t_id, c_id;
4074 	int i;
4075 
4076 	for (i = 0; i < d->hypot_cnt; i++) {
4077 		canon_type_id = d->hypot_list[i];
4078 		targ_type_id = d->hypot_map[canon_type_id];
4079 		t_id = resolve_type_id(d, targ_type_id);
4080 		c_id = resolve_type_id(d, canon_type_id);
4081 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4082 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4083 		/*
4084 		 * Resolve FWD into STRUCT/UNION.
4085 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4086 		 * mapped to canonical representative (as opposed to
4087 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4088 		 * eventually that struct is going to be mapped and all resolved
4089 		 * FWDs will automatically resolve to correct canonical
4090 		 * representative. This will happen before ref type deduping,
4091 		 * which critically depends on stability of these mapping. This
4092 		 * stability is not a requirement for STRUCT/UNION equivalence
4093 		 * checks, though.
4094 		 */
4095 
4096 		/* if it's the split BTF case, we still need to point base FWD
4097 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4098 		 * will be resolved against base FWD. If we don't point base
4099 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4100 		 * FWDs in split BTF won't be correctly resolved to a proper
4101 		 * STRUCT/UNION.
4102 		 */
4103 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4104 			d->map[c_id] = t_id;
4105 
4106 		/* if graph equivalence determined that we'd need to adjust
4107 		 * base canonical types, then we need to only point base FWDs
4108 		 * to STRUCTs/UNIONs and do no more modifications. For all
4109 		 * other purposes the type graphs were not equivalent.
4110 		 */
4111 		if (d->hypot_adjust_canon)
4112 			continue;
4113 
4114 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4115 			d->map[t_id] = c_id;
4116 
4117 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4118 		    c_kind != BTF_KIND_FWD &&
4119 		    is_type_mapped(d, c_id) &&
4120 		    !is_type_mapped(d, t_id)) {
4121 			/*
4122 			 * as a perf optimization, we can map struct/union
4123 			 * that's part of type graph we just verified for
4124 			 * equivalence. We can do that for struct/union that has
4125 			 * canonical representative only, though.
4126 			 */
4127 			d->map[t_id] = c_id;
4128 		}
4129 	}
4130 }
4131 
4132 /*
4133  * Deduplicate struct/union types.
4134  *
4135  * For each struct/union type its type signature hash is calculated, taking
4136  * into account type's name, size, number, order and names of fields, but
4137  * ignoring type ID's referenced from fields, because they might not be deduped
4138  * completely until after reference types deduplication phase. This type hash
4139  * is used to iterate over all potential canonical types, sharing same hash.
4140  * For each canonical candidate we check whether type graphs that they form
4141  * (through referenced types in fields and so on) are equivalent using algorithm
4142  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4143  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4144  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4145  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4146  * potentially map other structs/unions to their canonical representatives,
4147  * if such relationship hasn't yet been established. This speeds up algorithm
4148  * by eliminating some of the duplicate work.
4149  *
4150  * If no matching canonical representative was found, struct/union is marked
4151  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4152  * for further look ups.
4153  */
4154 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4155 {
4156 	struct btf_type *cand_type, *t;
4157 	struct hashmap_entry *hash_entry;
4158 	/* if we don't find equivalent type, then we are canonical */
4159 	__u32 new_id = type_id;
4160 	__u16 kind;
4161 	long h;
4162 
4163 	/* already deduped or is in process of deduping (loop detected) */
4164 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4165 		return 0;
4166 
4167 	t = btf_type_by_id(d->btf, type_id);
4168 	kind = btf_kind(t);
4169 
4170 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4171 		return 0;
4172 
4173 	h = btf_hash_struct(t);
4174 	for_each_dedup_cand(d, hash_entry, h) {
4175 		__u32 cand_id = (__u32)(long)hash_entry->value;
4176 		int eq;
4177 
4178 		/*
4179 		 * Even though btf_dedup_is_equiv() checks for
4180 		 * btf_shallow_equal_struct() internally when checking two
4181 		 * structs (unions) for equivalence, we need to guard here
4182 		 * from picking matching FWD type as a dedup candidate.
4183 		 * This can happen due to hash collision. In such case just
4184 		 * relying on btf_dedup_is_equiv() would lead to potentially
4185 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4186 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4187 		 */
4188 		cand_type = btf_type_by_id(d->btf, cand_id);
4189 		if (!btf_shallow_equal_struct(t, cand_type))
4190 			continue;
4191 
4192 		btf_dedup_clear_hypot_map(d);
4193 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4194 		if (eq < 0)
4195 			return eq;
4196 		if (!eq)
4197 			continue;
4198 		btf_dedup_merge_hypot_map(d);
4199 		if (d->hypot_adjust_canon) /* not really equivalent */
4200 			continue;
4201 		new_id = cand_id;
4202 		break;
4203 	}
4204 
4205 	d->map[type_id] = new_id;
4206 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4207 		return -ENOMEM;
4208 
4209 	return 0;
4210 }
4211 
4212 static int btf_dedup_struct_types(struct btf_dedup *d)
4213 {
4214 	int i, err;
4215 
4216 	for (i = 0; i < d->btf->nr_types; i++) {
4217 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4218 		if (err)
4219 			return err;
4220 	}
4221 	return 0;
4222 }
4223 
4224 /*
4225  * Deduplicate reference type.
4226  *
4227  * Once all primitive and struct/union types got deduplicated, we can easily
4228  * deduplicate all other (reference) BTF types. This is done in two steps:
4229  *
4230  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4231  * resolution can be done either immediately for primitive or struct/union types
4232  * (because they were deduped in previous two phases) or recursively for
4233  * reference types. Recursion will always terminate at either primitive or
4234  * struct/union type, at which point we can "unwind" chain of reference types
4235  * one by one. There is no danger of encountering cycles because in C type
4236  * system the only way to form type cycle is through struct/union, so any chain
4237  * of reference types, even those taking part in a type cycle, will inevitably
4238  * reach struct/union at some point.
4239  *
4240  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4241  * becomes "stable", in the sense that no further deduplication will cause
4242  * any changes to it. With that, it's now possible to calculate type's signature
4243  * hash (this time taking into account referenced type IDs) and loop over all
4244  * potential canonical representatives. If no match was found, current type
4245  * will become canonical representative of itself and will be added into
4246  * btf_dedup->dedup_table as another possible canonical representative.
4247  */
4248 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4249 {
4250 	struct hashmap_entry *hash_entry;
4251 	__u32 new_id = type_id, cand_id;
4252 	struct btf_type *t, *cand;
4253 	/* if we don't find equivalent type, then we are representative type */
4254 	int ref_type_id;
4255 	long h;
4256 
4257 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4258 		return -ELOOP;
4259 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4260 		return resolve_type_id(d, type_id);
4261 
4262 	t = btf_type_by_id(d->btf, type_id);
4263 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4264 
4265 	switch (btf_kind(t)) {
4266 	case BTF_KIND_CONST:
4267 	case BTF_KIND_VOLATILE:
4268 	case BTF_KIND_RESTRICT:
4269 	case BTF_KIND_PTR:
4270 	case BTF_KIND_TYPEDEF:
4271 	case BTF_KIND_FUNC:
4272 		ref_type_id = btf_dedup_ref_type(d, t->type);
4273 		if (ref_type_id < 0)
4274 			return ref_type_id;
4275 		t->type = ref_type_id;
4276 
4277 		h = btf_hash_common(t);
4278 		for_each_dedup_cand(d, hash_entry, h) {
4279 			cand_id = (__u32)(long)hash_entry->value;
4280 			cand = btf_type_by_id(d->btf, cand_id);
4281 			if (btf_equal_common(t, cand)) {
4282 				new_id = cand_id;
4283 				break;
4284 			}
4285 		}
4286 		break;
4287 
4288 	case BTF_KIND_ARRAY: {
4289 		struct btf_array *info = btf_array(t);
4290 
4291 		ref_type_id = btf_dedup_ref_type(d, info->type);
4292 		if (ref_type_id < 0)
4293 			return ref_type_id;
4294 		info->type = ref_type_id;
4295 
4296 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4297 		if (ref_type_id < 0)
4298 			return ref_type_id;
4299 		info->index_type = ref_type_id;
4300 
4301 		h = btf_hash_array(t);
4302 		for_each_dedup_cand(d, hash_entry, h) {
4303 			cand_id = (__u32)(long)hash_entry->value;
4304 			cand = btf_type_by_id(d->btf, cand_id);
4305 			if (btf_equal_array(t, cand)) {
4306 				new_id = cand_id;
4307 				break;
4308 			}
4309 		}
4310 		break;
4311 	}
4312 
4313 	case BTF_KIND_FUNC_PROTO: {
4314 		struct btf_param *param;
4315 		__u16 vlen;
4316 		int i;
4317 
4318 		ref_type_id = btf_dedup_ref_type(d, t->type);
4319 		if (ref_type_id < 0)
4320 			return ref_type_id;
4321 		t->type = ref_type_id;
4322 
4323 		vlen = btf_vlen(t);
4324 		param = btf_params(t);
4325 		for (i = 0; i < vlen; i++) {
4326 			ref_type_id = btf_dedup_ref_type(d, param->type);
4327 			if (ref_type_id < 0)
4328 				return ref_type_id;
4329 			param->type = ref_type_id;
4330 			param++;
4331 		}
4332 
4333 		h = btf_hash_fnproto(t);
4334 		for_each_dedup_cand(d, hash_entry, h) {
4335 			cand_id = (__u32)(long)hash_entry->value;
4336 			cand = btf_type_by_id(d->btf, cand_id);
4337 			if (btf_equal_fnproto(t, cand)) {
4338 				new_id = cand_id;
4339 				break;
4340 			}
4341 		}
4342 		break;
4343 	}
4344 
4345 	default:
4346 		return -EINVAL;
4347 	}
4348 
4349 	d->map[type_id] = new_id;
4350 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4351 		return -ENOMEM;
4352 
4353 	return new_id;
4354 }
4355 
4356 static int btf_dedup_ref_types(struct btf_dedup *d)
4357 {
4358 	int i, err;
4359 
4360 	for (i = 0; i < d->btf->nr_types; i++) {
4361 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4362 		if (err < 0)
4363 			return err;
4364 	}
4365 	/* we won't need d->dedup_table anymore */
4366 	hashmap__free(d->dedup_table);
4367 	d->dedup_table = NULL;
4368 	return 0;
4369 }
4370 
4371 /*
4372  * Compact types.
4373  *
4374  * After we established for each type its corresponding canonical representative
4375  * type, we now can eliminate types that are not canonical and leave only
4376  * canonical ones layed out sequentially in memory by copying them over
4377  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4378  * a map from original type ID to a new compacted type ID, which will be used
4379  * during next phase to "fix up" type IDs, referenced from struct/union and
4380  * reference types.
4381  */
4382 static int btf_dedup_compact_types(struct btf_dedup *d)
4383 {
4384 	__u32 *new_offs;
4385 	__u32 next_type_id = d->btf->start_id;
4386 	const struct btf_type *t;
4387 	void *p;
4388 	int i, id, len;
4389 
4390 	/* we are going to reuse hypot_map to store compaction remapping */
4391 	d->hypot_map[0] = 0;
4392 	/* base BTF types are not renumbered */
4393 	for (id = 1; id < d->btf->start_id; id++)
4394 		d->hypot_map[id] = id;
4395 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4396 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4397 
4398 	p = d->btf->types_data;
4399 
4400 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4401 		if (d->map[id] != id)
4402 			continue;
4403 
4404 		t = btf__type_by_id(d->btf, id);
4405 		len = btf_type_size(t);
4406 		if (len < 0)
4407 			return len;
4408 
4409 		memmove(p, t, len);
4410 		d->hypot_map[id] = next_type_id;
4411 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4412 		p += len;
4413 		next_type_id++;
4414 	}
4415 
4416 	/* shrink struct btf's internal types index and update btf_header */
4417 	d->btf->nr_types = next_type_id - d->btf->start_id;
4418 	d->btf->type_offs_cap = d->btf->nr_types;
4419 	d->btf->hdr->type_len = p - d->btf->types_data;
4420 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4421 				       sizeof(*new_offs));
4422 	if (d->btf->type_offs_cap && !new_offs)
4423 		return -ENOMEM;
4424 	d->btf->type_offs = new_offs;
4425 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4426 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4427 	return 0;
4428 }
4429 
4430 /*
4431  * Figure out final (deduplicated and compacted) type ID for provided original
4432  * `type_id` by first resolving it into corresponding canonical type ID and
4433  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4434  * which is populated during compaction phase.
4435  */
4436 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
4437 {
4438 	__u32 resolved_type_id, new_type_id;
4439 
4440 	resolved_type_id = resolve_type_id(d, type_id);
4441 	new_type_id = d->hypot_map[resolved_type_id];
4442 	if (new_type_id > BTF_MAX_NR_TYPES)
4443 		return -EINVAL;
4444 	return new_type_id;
4445 }
4446 
4447 /*
4448  * Remap referenced type IDs into deduped type IDs.
4449  *
4450  * After BTF types are deduplicated and compacted, their final type IDs may
4451  * differ from original ones. The map from original to a corresponding
4452  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4453  * compaction phase. During remapping phase we are rewriting all type IDs
4454  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4455  * their final deduped type IDs.
4456  */
4457 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
4458 {
4459 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4460 	int i, r;
4461 
4462 	switch (btf_kind(t)) {
4463 	case BTF_KIND_INT:
4464 	case BTF_KIND_ENUM:
4465 		break;
4466 
4467 	case BTF_KIND_FWD:
4468 	case BTF_KIND_CONST:
4469 	case BTF_KIND_VOLATILE:
4470 	case BTF_KIND_RESTRICT:
4471 	case BTF_KIND_PTR:
4472 	case BTF_KIND_TYPEDEF:
4473 	case BTF_KIND_FUNC:
4474 	case BTF_KIND_VAR:
4475 		r = btf_dedup_remap_type_id(d, t->type);
4476 		if (r < 0)
4477 			return r;
4478 		t->type = r;
4479 		break;
4480 
4481 	case BTF_KIND_ARRAY: {
4482 		struct btf_array *arr_info = btf_array(t);
4483 
4484 		r = btf_dedup_remap_type_id(d, arr_info->type);
4485 		if (r < 0)
4486 			return r;
4487 		arr_info->type = r;
4488 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
4489 		if (r < 0)
4490 			return r;
4491 		arr_info->index_type = r;
4492 		break;
4493 	}
4494 
4495 	case BTF_KIND_STRUCT:
4496 	case BTF_KIND_UNION: {
4497 		struct btf_member *member = btf_members(t);
4498 		__u16 vlen = btf_vlen(t);
4499 
4500 		for (i = 0; i < vlen; i++) {
4501 			r = btf_dedup_remap_type_id(d, member->type);
4502 			if (r < 0)
4503 				return r;
4504 			member->type = r;
4505 			member++;
4506 		}
4507 		break;
4508 	}
4509 
4510 	case BTF_KIND_FUNC_PROTO: {
4511 		struct btf_param *param = btf_params(t);
4512 		__u16 vlen = btf_vlen(t);
4513 
4514 		r = btf_dedup_remap_type_id(d, t->type);
4515 		if (r < 0)
4516 			return r;
4517 		t->type = r;
4518 
4519 		for (i = 0; i < vlen; i++) {
4520 			r = btf_dedup_remap_type_id(d, param->type);
4521 			if (r < 0)
4522 				return r;
4523 			param->type = r;
4524 			param++;
4525 		}
4526 		break;
4527 	}
4528 
4529 	case BTF_KIND_DATASEC: {
4530 		struct btf_var_secinfo *var = btf_var_secinfos(t);
4531 		__u16 vlen = btf_vlen(t);
4532 
4533 		for (i = 0; i < vlen; i++) {
4534 			r = btf_dedup_remap_type_id(d, var->type);
4535 			if (r < 0)
4536 				return r;
4537 			var->type = r;
4538 			var++;
4539 		}
4540 		break;
4541 	}
4542 
4543 	default:
4544 		return -EINVAL;
4545 	}
4546 
4547 	return 0;
4548 }
4549 
4550 static int btf_dedup_remap_types(struct btf_dedup *d)
4551 {
4552 	int i, r;
4553 
4554 	for (i = 0; i < d->btf->nr_types; i++) {
4555 		r = btf_dedup_remap_type(d, d->btf->start_id + i);
4556 		if (r < 0)
4557 			return r;
4558 	}
4559 	return 0;
4560 }
4561 
4562 /*
4563  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4564  * data out of it to use for target BTF.
4565  */
4566 struct btf *libbpf_find_kernel_btf(void)
4567 {
4568 	struct {
4569 		const char *path_fmt;
4570 		bool raw_btf;
4571 	} locations[] = {
4572 		/* try canonical vmlinux BTF through sysfs first */
4573 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4574 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4575 		{ "/boot/vmlinux-%1$s" },
4576 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4577 		{ "/lib/modules/%1$s/build/vmlinux" },
4578 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4579 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4580 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4581 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4582 	};
4583 	char path[PATH_MAX + 1];
4584 	struct utsname buf;
4585 	struct btf *btf;
4586 	int i;
4587 
4588 	uname(&buf);
4589 
4590 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4591 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4592 
4593 		if (access(path, R_OK))
4594 			continue;
4595 
4596 		if (locations[i].raw_btf)
4597 			btf = btf__parse_raw(path);
4598 		else
4599 			btf = btf__parse_elf(path, NULL);
4600 
4601 		pr_debug("loading kernel BTF '%s': %ld\n",
4602 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4603 		if (IS_ERR(btf))
4604 			continue;
4605 
4606 		return btf;
4607 	}
4608 
4609 	pr_warn("failed to find valid kernel BTF\n");
4610 	return ERR_PTR(-ESRCH);
4611 }
4612