1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 25 #define BTF_MAX_NR_TYPES 0x7fffffffU 26 #define BTF_MAX_STR_OFFSET 0x7fffffffU 27 28 static struct btf_type btf_void; 29 30 struct btf { 31 /* raw BTF data in native endianness */ 32 void *raw_data; 33 /* raw BTF data in non-native endianness */ 34 void *raw_data_swapped; 35 __u32 raw_size; 36 /* whether target endianness differs from the native one */ 37 bool swapped_endian; 38 39 /* 40 * When BTF is loaded from an ELF or raw memory it is stored 41 * in a contiguous memory block. The hdr, type_data, and, strs_data 42 * point inside that memory region to their respective parts of BTF 43 * representation: 44 * 45 * +--------------------------------+ 46 * | Header | Types | Strings | 47 * +--------------------------------+ 48 * ^ ^ ^ 49 * | | | 50 * hdr | | 51 * types_data-+ | 52 * strs_data------------+ 53 * 54 * If BTF data is later modified, e.g., due to types added or 55 * removed, BTF deduplication performed, etc, this contiguous 56 * representation is broken up into three independently allocated 57 * memory regions to be able to modify them independently. 58 * raw_data is nulled out at that point, but can be later allocated 59 * and cached again if user calls btf__get_raw_data(), at which point 60 * raw_data will contain a contiguous copy of header, types, and 61 * strings: 62 * 63 * +----------+ +---------+ +-----------+ 64 * | Header | | Types | | Strings | 65 * +----------+ +---------+ +-----------+ 66 * ^ ^ ^ 67 * | | | 68 * hdr | | 69 * types_data----+ | 70 * strs_data------------------+ 71 * 72 * +----------+---------+-----------+ 73 * | Header | Types | Strings | 74 * raw_data----->+----------+---------+-----------+ 75 */ 76 struct btf_header *hdr; 77 78 void *types_data; 79 size_t types_data_cap; /* used size stored in hdr->type_len */ 80 81 /* type ID to `struct btf_type *` lookup index 82 * type_offs[0] corresponds to the first non-VOID type: 83 * - for base BTF it's type [1]; 84 * - for split BTF it's the first non-base BTF type. 85 */ 86 __u32 *type_offs; 87 size_t type_offs_cap; 88 /* number of types in this BTF instance: 89 * - doesn't include special [0] void type; 90 * - for split BTF counts number of types added on top of base BTF. 91 */ 92 __u32 nr_types; 93 /* if not NULL, points to the base BTF on top of which the current 94 * split BTF is based 95 */ 96 struct btf *base_btf; 97 /* BTF type ID of the first type in this BTF instance: 98 * - for base BTF it's equal to 1; 99 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 100 */ 101 int start_id; 102 /* logical string offset of this BTF instance: 103 * - for base BTF it's equal to 0; 104 * - for split BTF it's equal to total size of base BTF's string section size. 105 */ 106 int start_str_off; 107 108 void *strs_data; 109 size_t strs_data_cap; /* used size stored in hdr->str_len */ 110 111 /* lookup index for each unique string in strings section */ 112 struct hashmap *strs_hash; 113 /* whether strings are already deduplicated */ 114 bool strs_deduped; 115 /* extra indirection layer to make strings hashmap work with stable 116 * string offsets and ability to transparently choose between 117 * btf->strs_data or btf_dedup->strs_data as a source of strings. 118 * This is used for BTF strings dedup to transfer deduplicated strings 119 * data back to struct btf without re-building strings index. 120 */ 121 void **strs_data_ptr; 122 123 /* BTF object FD, if loaded into kernel */ 124 int fd; 125 126 /* Pointer size (in bytes) for a target architecture of this BTF */ 127 int ptr_sz; 128 }; 129 130 static inline __u64 ptr_to_u64(const void *ptr) 131 { 132 return (__u64) (unsigned long) ptr; 133 } 134 135 /* Ensure given dynamically allocated memory region pointed to by *data* with 136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 137 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 138 * are already used. At most *max_cnt* elements can be ever allocated. 139 * If necessary, memory is reallocated and all existing data is copied over, 140 * new pointer to the memory region is stored at *data, new memory region 141 * capacity (in number of elements) is stored in *cap. 142 * On success, memory pointer to the beginning of unused memory is returned. 143 * On error, NULL is returned. 144 */ 145 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 146 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 147 { 148 size_t new_cnt; 149 void *new_data; 150 151 if (cur_cnt + add_cnt <= *cap_cnt) 152 return *data + cur_cnt * elem_sz; 153 154 /* requested more than the set limit */ 155 if (cur_cnt + add_cnt > max_cnt) 156 return NULL; 157 158 new_cnt = *cap_cnt; 159 new_cnt += new_cnt / 4; /* expand by 25% */ 160 if (new_cnt < 16) /* but at least 16 elements */ 161 new_cnt = 16; 162 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 163 new_cnt = max_cnt; 164 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 165 new_cnt = cur_cnt + add_cnt; 166 167 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 168 if (!new_data) 169 return NULL; 170 171 /* zero out newly allocated portion of memory */ 172 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 173 174 *data = new_data; 175 *cap_cnt = new_cnt; 176 return new_data + cur_cnt * elem_sz; 177 } 178 179 /* Ensure given dynamically allocated memory region has enough allocated space 180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 181 */ 182 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 183 { 184 void *p; 185 186 if (need_cnt <= *cap_cnt) 187 return 0; 188 189 p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 190 if (!p) 191 return -ENOMEM; 192 193 return 0; 194 } 195 196 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 197 { 198 __u32 *p; 199 200 p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 201 btf->nr_types, BTF_MAX_NR_TYPES, 1); 202 if (!p) 203 return -ENOMEM; 204 205 *p = type_off; 206 return 0; 207 } 208 209 static void btf_bswap_hdr(struct btf_header *h) 210 { 211 h->magic = bswap_16(h->magic); 212 h->hdr_len = bswap_32(h->hdr_len); 213 h->type_off = bswap_32(h->type_off); 214 h->type_len = bswap_32(h->type_len); 215 h->str_off = bswap_32(h->str_off); 216 h->str_len = bswap_32(h->str_len); 217 } 218 219 static int btf_parse_hdr(struct btf *btf) 220 { 221 struct btf_header *hdr = btf->hdr; 222 __u32 meta_left; 223 224 if (btf->raw_size < sizeof(struct btf_header)) { 225 pr_debug("BTF header not found\n"); 226 return -EINVAL; 227 } 228 229 if (hdr->magic == bswap_16(BTF_MAGIC)) { 230 btf->swapped_endian = true; 231 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 232 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 233 bswap_32(hdr->hdr_len)); 234 return -ENOTSUP; 235 } 236 btf_bswap_hdr(hdr); 237 } else if (hdr->magic != BTF_MAGIC) { 238 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 239 return -EINVAL; 240 } 241 242 meta_left = btf->raw_size - sizeof(*hdr); 243 if (!meta_left) { 244 pr_debug("BTF has no data\n"); 245 return -EINVAL; 246 } 247 248 if (meta_left < hdr->str_off + hdr->str_len) { 249 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 250 return -EINVAL; 251 } 252 253 if (hdr->type_off + hdr->type_len > hdr->str_off) { 254 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 255 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 256 return -EINVAL; 257 } 258 259 if (hdr->type_off % 4) { 260 pr_debug("BTF type section is not aligned to 4 bytes\n"); 261 return -EINVAL; 262 } 263 264 return 0; 265 } 266 267 static int btf_parse_str_sec(struct btf *btf) 268 { 269 const struct btf_header *hdr = btf->hdr; 270 const char *start = btf->strs_data; 271 const char *end = start + btf->hdr->str_len; 272 273 if (btf->base_btf && hdr->str_len == 0) 274 return 0; 275 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 276 pr_debug("Invalid BTF string section\n"); 277 return -EINVAL; 278 } 279 if (!btf->base_btf && start[0]) { 280 pr_debug("Invalid BTF string section\n"); 281 return -EINVAL; 282 } 283 return 0; 284 } 285 286 static int btf_type_size(const struct btf_type *t) 287 { 288 const int base_size = sizeof(struct btf_type); 289 __u16 vlen = btf_vlen(t); 290 291 switch (btf_kind(t)) { 292 case BTF_KIND_FWD: 293 case BTF_KIND_CONST: 294 case BTF_KIND_VOLATILE: 295 case BTF_KIND_RESTRICT: 296 case BTF_KIND_PTR: 297 case BTF_KIND_TYPEDEF: 298 case BTF_KIND_FUNC: 299 return base_size; 300 case BTF_KIND_INT: 301 return base_size + sizeof(__u32); 302 case BTF_KIND_ENUM: 303 return base_size + vlen * sizeof(struct btf_enum); 304 case BTF_KIND_ARRAY: 305 return base_size + sizeof(struct btf_array); 306 case BTF_KIND_STRUCT: 307 case BTF_KIND_UNION: 308 return base_size + vlen * sizeof(struct btf_member); 309 case BTF_KIND_FUNC_PROTO: 310 return base_size + vlen * sizeof(struct btf_param); 311 case BTF_KIND_VAR: 312 return base_size + sizeof(struct btf_var); 313 case BTF_KIND_DATASEC: 314 return base_size + vlen * sizeof(struct btf_var_secinfo); 315 default: 316 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 317 return -EINVAL; 318 } 319 } 320 321 static void btf_bswap_type_base(struct btf_type *t) 322 { 323 t->name_off = bswap_32(t->name_off); 324 t->info = bswap_32(t->info); 325 t->type = bswap_32(t->type); 326 } 327 328 static int btf_bswap_type_rest(struct btf_type *t) 329 { 330 struct btf_var_secinfo *v; 331 struct btf_member *m; 332 struct btf_array *a; 333 struct btf_param *p; 334 struct btf_enum *e; 335 __u16 vlen = btf_vlen(t); 336 int i; 337 338 switch (btf_kind(t)) { 339 case BTF_KIND_FWD: 340 case BTF_KIND_CONST: 341 case BTF_KIND_VOLATILE: 342 case BTF_KIND_RESTRICT: 343 case BTF_KIND_PTR: 344 case BTF_KIND_TYPEDEF: 345 case BTF_KIND_FUNC: 346 return 0; 347 case BTF_KIND_INT: 348 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 349 return 0; 350 case BTF_KIND_ENUM: 351 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 352 e->name_off = bswap_32(e->name_off); 353 e->val = bswap_32(e->val); 354 } 355 return 0; 356 case BTF_KIND_ARRAY: 357 a = btf_array(t); 358 a->type = bswap_32(a->type); 359 a->index_type = bswap_32(a->index_type); 360 a->nelems = bswap_32(a->nelems); 361 return 0; 362 case BTF_KIND_STRUCT: 363 case BTF_KIND_UNION: 364 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 365 m->name_off = bswap_32(m->name_off); 366 m->type = bswap_32(m->type); 367 m->offset = bswap_32(m->offset); 368 } 369 return 0; 370 case BTF_KIND_FUNC_PROTO: 371 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 372 p->name_off = bswap_32(p->name_off); 373 p->type = bswap_32(p->type); 374 } 375 return 0; 376 case BTF_KIND_VAR: 377 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 378 return 0; 379 case BTF_KIND_DATASEC: 380 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 381 v->type = bswap_32(v->type); 382 v->offset = bswap_32(v->offset); 383 v->size = bswap_32(v->size); 384 } 385 return 0; 386 default: 387 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 388 return -EINVAL; 389 } 390 } 391 392 static int btf_parse_type_sec(struct btf *btf) 393 { 394 struct btf_header *hdr = btf->hdr; 395 void *next_type = btf->types_data; 396 void *end_type = next_type + hdr->type_len; 397 int err, type_size; 398 399 while (next_type + sizeof(struct btf_type) <= end_type) { 400 if (btf->swapped_endian) 401 btf_bswap_type_base(next_type); 402 403 type_size = btf_type_size(next_type); 404 if (type_size < 0) 405 return type_size; 406 if (next_type + type_size > end_type) { 407 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 408 return -EINVAL; 409 } 410 411 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 412 return -EINVAL; 413 414 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 415 if (err) 416 return err; 417 418 next_type += type_size; 419 btf->nr_types++; 420 } 421 422 if (next_type != end_type) { 423 pr_warn("BTF types data is malformed\n"); 424 return -EINVAL; 425 } 426 427 return 0; 428 } 429 430 __u32 btf__get_nr_types(const struct btf *btf) 431 { 432 return btf->start_id + btf->nr_types - 1; 433 } 434 435 /* internal helper returning non-const pointer to a type */ 436 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 437 { 438 if (type_id == 0) 439 return &btf_void; 440 if (type_id < btf->start_id) 441 return btf_type_by_id(btf->base_btf, type_id); 442 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 443 } 444 445 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 446 { 447 if (type_id >= btf->start_id + btf->nr_types) 448 return NULL; 449 return btf_type_by_id((struct btf *)btf, type_id); 450 } 451 452 static int determine_ptr_size(const struct btf *btf) 453 { 454 const struct btf_type *t; 455 const char *name; 456 int i, n; 457 458 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 459 return btf->base_btf->ptr_sz; 460 461 n = btf__get_nr_types(btf); 462 for (i = 1; i <= n; i++) { 463 t = btf__type_by_id(btf, i); 464 if (!btf_is_int(t)) 465 continue; 466 467 name = btf__name_by_offset(btf, t->name_off); 468 if (!name) 469 continue; 470 471 if (strcmp(name, "long int") == 0 || 472 strcmp(name, "long unsigned int") == 0) { 473 if (t->size != 4 && t->size != 8) 474 continue; 475 return t->size; 476 } 477 } 478 479 return -1; 480 } 481 482 static size_t btf_ptr_sz(const struct btf *btf) 483 { 484 if (!btf->ptr_sz) 485 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 486 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 487 } 488 489 /* Return pointer size this BTF instance assumes. The size is heuristically 490 * determined by looking for 'long' or 'unsigned long' integer type and 491 * recording its size in bytes. If BTF type information doesn't have any such 492 * type, this function returns 0. In the latter case, native architecture's 493 * pointer size is assumed, so will be either 4 or 8, depending on 494 * architecture that libbpf was compiled for. It's possible to override 495 * guessed value by using btf__set_pointer_size() API. 496 */ 497 size_t btf__pointer_size(const struct btf *btf) 498 { 499 if (!btf->ptr_sz) 500 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 501 502 if (btf->ptr_sz < 0) 503 /* not enough BTF type info to guess */ 504 return 0; 505 506 return btf->ptr_sz; 507 } 508 509 /* Override or set pointer size in bytes. Only values of 4 and 8 are 510 * supported. 511 */ 512 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 513 { 514 if (ptr_sz != 4 && ptr_sz != 8) 515 return -EINVAL; 516 btf->ptr_sz = ptr_sz; 517 return 0; 518 } 519 520 static bool is_host_big_endian(void) 521 { 522 #if __BYTE_ORDER == __LITTLE_ENDIAN 523 return false; 524 #elif __BYTE_ORDER == __BIG_ENDIAN 525 return true; 526 #else 527 # error "Unrecognized __BYTE_ORDER__" 528 #endif 529 } 530 531 enum btf_endianness btf__endianness(const struct btf *btf) 532 { 533 if (is_host_big_endian()) 534 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 535 else 536 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 537 } 538 539 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 540 { 541 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 542 return -EINVAL; 543 544 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 545 if (!btf->swapped_endian) { 546 free(btf->raw_data_swapped); 547 btf->raw_data_swapped = NULL; 548 } 549 return 0; 550 } 551 552 static bool btf_type_is_void(const struct btf_type *t) 553 { 554 return t == &btf_void || btf_is_fwd(t); 555 } 556 557 static bool btf_type_is_void_or_null(const struct btf_type *t) 558 { 559 return !t || btf_type_is_void(t); 560 } 561 562 #define MAX_RESOLVE_DEPTH 32 563 564 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 565 { 566 const struct btf_array *array; 567 const struct btf_type *t; 568 __u32 nelems = 1; 569 __s64 size = -1; 570 int i; 571 572 t = btf__type_by_id(btf, type_id); 573 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 574 i++) { 575 switch (btf_kind(t)) { 576 case BTF_KIND_INT: 577 case BTF_KIND_STRUCT: 578 case BTF_KIND_UNION: 579 case BTF_KIND_ENUM: 580 case BTF_KIND_DATASEC: 581 size = t->size; 582 goto done; 583 case BTF_KIND_PTR: 584 size = btf_ptr_sz(btf); 585 goto done; 586 case BTF_KIND_TYPEDEF: 587 case BTF_KIND_VOLATILE: 588 case BTF_KIND_CONST: 589 case BTF_KIND_RESTRICT: 590 case BTF_KIND_VAR: 591 type_id = t->type; 592 break; 593 case BTF_KIND_ARRAY: 594 array = btf_array(t); 595 if (nelems && array->nelems > UINT32_MAX / nelems) 596 return -E2BIG; 597 nelems *= array->nelems; 598 type_id = array->type; 599 break; 600 default: 601 return -EINVAL; 602 } 603 604 t = btf__type_by_id(btf, type_id); 605 } 606 607 done: 608 if (size < 0) 609 return -EINVAL; 610 if (nelems && size > UINT32_MAX / nelems) 611 return -E2BIG; 612 613 return nelems * size; 614 } 615 616 int btf__align_of(const struct btf *btf, __u32 id) 617 { 618 const struct btf_type *t = btf__type_by_id(btf, id); 619 __u16 kind = btf_kind(t); 620 621 switch (kind) { 622 case BTF_KIND_INT: 623 case BTF_KIND_ENUM: 624 return min(btf_ptr_sz(btf), (size_t)t->size); 625 case BTF_KIND_PTR: 626 return btf_ptr_sz(btf); 627 case BTF_KIND_TYPEDEF: 628 case BTF_KIND_VOLATILE: 629 case BTF_KIND_CONST: 630 case BTF_KIND_RESTRICT: 631 return btf__align_of(btf, t->type); 632 case BTF_KIND_ARRAY: 633 return btf__align_of(btf, btf_array(t)->type); 634 case BTF_KIND_STRUCT: 635 case BTF_KIND_UNION: { 636 const struct btf_member *m = btf_members(t); 637 __u16 vlen = btf_vlen(t); 638 int i, max_align = 1, align; 639 640 for (i = 0; i < vlen; i++, m++) { 641 align = btf__align_of(btf, m->type); 642 if (align <= 0) 643 return align; 644 max_align = max(max_align, align); 645 } 646 647 return max_align; 648 } 649 default: 650 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 651 return 0; 652 } 653 } 654 655 int btf__resolve_type(const struct btf *btf, __u32 type_id) 656 { 657 const struct btf_type *t; 658 int depth = 0; 659 660 t = btf__type_by_id(btf, type_id); 661 while (depth < MAX_RESOLVE_DEPTH && 662 !btf_type_is_void_or_null(t) && 663 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 664 type_id = t->type; 665 t = btf__type_by_id(btf, type_id); 666 depth++; 667 } 668 669 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 670 return -EINVAL; 671 672 return type_id; 673 } 674 675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 676 { 677 __u32 i; 678 679 if (!strcmp(type_name, "void")) 680 return 0; 681 682 for (i = 1; i <= btf->nr_types; i++) { 683 const struct btf_type *t = btf__type_by_id(btf, i); 684 const char *name = btf__name_by_offset(btf, t->name_off); 685 686 if (name && !strcmp(type_name, name)) 687 return i; 688 } 689 690 return -ENOENT; 691 } 692 693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 694 __u32 kind) 695 { 696 __u32 i; 697 698 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 699 return 0; 700 701 for (i = 1; i <= btf->nr_types; i++) { 702 const struct btf_type *t = btf__type_by_id(btf, i); 703 const char *name; 704 705 if (btf_kind(t) != kind) 706 continue; 707 name = btf__name_by_offset(btf, t->name_off); 708 if (name && !strcmp(type_name, name)) 709 return i; 710 } 711 712 return -ENOENT; 713 } 714 715 static bool btf_is_modifiable(const struct btf *btf) 716 { 717 return (void *)btf->hdr != btf->raw_data; 718 } 719 720 void btf__free(struct btf *btf) 721 { 722 if (IS_ERR_OR_NULL(btf)) 723 return; 724 725 if (btf->fd >= 0) 726 close(btf->fd); 727 728 if (btf_is_modifiable(btf)) { 729 /* if BTF was modified after loading, it will have a split 730 * in-memory representation for header, types, and strings 731 * sections, so we need to free all of them individually. It 732 * might still have a cached contiguous raw data present, 733 * which will be unconditionally freed below. 734 */ 735 free(btf->hdr); 736 free(btf->types_data); 737 free(btf->strs_data); 738 } 739 free(btf->raw_data); 740 free(btf->raw_data_swapped); 741 free(btf->type_offs); 742 free(btf); 743 } 744 745 static struct btf *btf_new_empty(struct btf *base_btf) 746 { 747 struct btf *btf; 748 749 btf = calloc(1, sizeof(*btf)); 750 if (!btf) 751 return ERR_PTR(-ENOMEM); 752 753 btf->nr_types = 0; 754 btf->start_id = 1; 755 btf->start_str_off = 0; 756 btf->fd = -1; 757 btf->ptr_sz = sizeof(void *); 758 btf->swapped_endian = false; 759 760 if (base_btf) { 761 btf->base_btf = base_btf; 762 btf->start_id = btf__get_nr_types(base_btf) + 1; 763 btf->start_str_off = base_btf->hdr->str_len; 764 } 765 766 /* +1 for empty string at offset 0 */ 767 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 768 btf->raw_data = calloc(1, btf->raw_size); 769 if (!btf->raw_data) { 770 free(btf); 771 return ERR_PTR(-ENOMEM); 772 } 773 774 btf->hdr = btf->raw_data; 775 btf->hdr->hdr_len = sizeof(struct btf_header); 776 btf->hdr->magic = BTF_MAGIC; 777 btf->hdr->version = BTF_VERSION; 778 779 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 780 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 781 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 782 783 return btf; 784 } 785 786 struct btf *btf__new_empty(void) 787 { 788 return btf_new_empty(NULL); 789 } 790 791 struct btf *btf__new_empty_split(struct btf *base_btf) 792 { 793 return btf_new_empty(base_btf); 794 } 795 796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 797 { 798 struct btf *btf; 799 int err; 800 801 btf = calloc(1, sizeof(struct btf)); 802 if (!btf) 803 return ERR_PTR(-ENOMEM); 804 805 btf->nr_types = 0; 806 btf->start_id = 1; 807 btf->start_str_off = 0; 808 809 if (base_btf) { 810 btf->base_btf = base_btf; 811 btf->start_id = btf__get_nr_types(base_btf) + 1; 812 btf->start_str_off = base_btf->hdr->str_len; 813 } 814 815 btf->raw_data = malloc(size); 816 if (!btf->raw_data) { 817 err = -ENOMEM; 818 goto done; 819 } 820 memcpy(btf->raw_data, data, size); 821 btf->raw_size = size; 822 823 btf->hdr = btf->raw_data; 824 err = btf_parse_hdr(btf); 825 if (err) 826 goto done; 827 828 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 829 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 830 831 err = btf_parse_str_sec(btf); 832 err = err ?: btf_parse_type_sec(btf); 833 if (err) 834 goto done; 835 836 btf->fd = -1; 837 838 done: 839 if (err) { 840 btf__free(btf); 841 return ERR_PTR(err); 842 } 843 844 return btf; 845 } 846 847 struct btf *btf__new(const void *data, __u32 size) 848 { 849 return btf_new(data, size, NULL); 850 } 851 852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 853 struct btf_ext **btf_ext) 854 { 855 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 856 int err = 0, fd = -1, idx = 0; 857 struct btf *btf = NULL; 858 Elf_Scn *scn = NULL; 859 Elf *elf = NULL; 860 GElf_Ehdr ehdr; 861 862 if (elf_version(EV_CURRENT) == EV_NONE) { 863 pr_warn("failed to init libelf for %s\n", path); 864 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 865 } 866 867 fd = open(path, O_RDONLY); 868 if (fd < 0) { 869 err = -errno; 870 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 871 return ERR_PTR(err); 872 } 873 874 err = -LIBBPF_ERRNO__FORMAT; 875 876 elf = elf_begin(fd, ELF_C_READ, NULL); 877 if (!elf) { 878 pr_warn("failed to open %s as ELF file\n", path); 879 goto done; 880 } 881 if (!gelf_getehdr(elf, &ehdr)) { 882 pr_warn("failed to get EHDR from %s\n", path); 883 goto done; 884 } 885 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 886 pr_warn("failed to get e_shstrndx from %s\n", path); 887 goto done; 888 } 889 890 while ((scn = elf_nextscn(elf, scn)) != NULL) { 891 GElf_Shdr sh; 892 char *name; 893 894 idx++; 895 if (gelf_getshdr(scn, &sh) != &sh) { 896 pr_warn("failed to get section(%d) header from %s\n", 897 idx, path); 898 goto done; 899 } 900 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 901 if (!name) { 902 pr_warn("failed to get section(%d) name from %s\n", 903 idx, path); 904 goto done; 905 } 906 if (strcmp(name, BTF_ELF_SEC) == 0) { 907 btf_data = elf_getdata(scn, 0); 908 if (!btf_data) { 909 pr_warn("failed to get section(%d, %s) data from %s\n", 910 idx, name, path); 911 goto done; 912 } 913 continue; 914 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 915 btf_ext_data = elf_getdata(scn, 0); 916 if (!btf_ext_data) { 917 pr_warn("failed to get section(%d, %s) data from %s\n", 918 idx, name, path); 919 goto done; 920 } 921 continue; 922 } 923 } 924 925 err = 0; 926 927 if (!btf_data) { 928 err = -ENOENT; 929 goto done; 930 } 931 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 932 if (IS_ERR(btf)) 933 goto done; 934 935 switch (gelf_getclass(elf)) { 936 case ELFCLASS32: 937 btf__set_pointer_size(btf, 4); 938 break; 939 case ELFCLASS64: 940 btf__set_pointer_size(btf, 8); 941 break; 942 default: 943 pr_warn("failed to get ELF class (bitness) for %s\n", path); 944 break; 945 } 946 947 if (btf_ext && btf_ext_data) { 948 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 949 btf_ext_data->d_size); 950 if (IS_ERR(*btf_ext)) 951 goto done; 952 } else if (btf_ext) { 953 *btf_ext = NULL; 954 } 955 done: 956 if (elf) 957 elf_end(elf); 958 close(fd); 959 960 if (err) 961 return ERR_PTR(err); 962 /* 963 * btf is always parsed before btf_ext, so no need to clean up 964 * btf_ext, if btf loading failed 965 */ 966 if (IS_ERR(btf)) 967 return btf; 968 if (btf_ext && IS_ERR(*btf_ext)) { 969 btf__free(btf); 970 err = PTR_ERR(*btf_ext); 971 return ERR_PTR(err); 972 } 973 return btf; 974 } 975 976 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 977 { 978 return btf_parse_elf(path, NULL, btf_ext); 979 } 980 981 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 982 { 983 return btf_parse_elf(path, base_btf, NULL); 984 } 985 986 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 987 { 988 struct btf *btf = NULL; 989 void *data = NULL; 990 FILE *f = NULL; 991 __u16 magic; 992 int err = 0; 993 long sz; 994 995 f = fopen(path, "rb"); 996 if (!f) { 997 err = -errno; 998 goto err_out; 999 } 1000 1001 /* check BTF magic */ 1002 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1003 err = -EIO; 1004 goto err_out; 1005 } 1006 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1007 /* definitely not a raw BTF */ 1008 err = -EPROTO; 1009 goto err_out; 1010 } 1011 1012 /* get file size */ 1013 if (fseek(f, 0, SEEK_END)) { 1014 err = -errno; 1015 goto err_out; 1016 } 1017 sz = ftell(f); 1018 if (sz < 0) { 1019 err = -errno; 1020 goto err_out; 1021 } 1022 /* rewind to the start */ 1023 if (fseek(f, 0, SEEK_SET)) { 1024 err = -errno; 1025 goto err_out; 1026 } 1027 1028 /* pre-alloc memory and read all of BTF data */ 1029 data = malloc(sz); 1030 if (!data) { 1031 err = -ENOMEM; 1032 goto err_out; 1033 } 1034 if (fread(data, 1, sz, f) < sz) { 1035 err = -EIO; 1036 goto err_out; 1037 } 1038 1039 /* finally parse BTF data */ 1040 btf = btf_new(data, sz, base_btf); 1041 1042 err_out: 1043 free(data); 1044 if (f) 1045 fclose(f); 1046 return err ? ERR_PTR(err) : btf; 1047 } 1048 1049 struct btf *btf__parse_raw(const char *path) 1050 { 1051 return btf_parse_raw(path, NULL); 1052 } 1053 1054 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1055 { 1056 return btf_parse_raw(path, base_btf); 1057 } 1058 1059 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1060 { 1061 struct btf *btf; 1062 1063 if (btf_ext) 1064 *btf_ext = NULL; 1065 1066 btf = btf_parse_raw(path, base_btf); 1067 if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) 1068 return btf; 1069 1070 return btf_parse_elf(path, base_btf, btf_ext); 1071 } 1072 1073 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1074 { 1075 return btf_parse(path, NULL, btf_ext); 1076 } 1077 1078 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1079 { 1080 return btf_parse(path, base_btf, NULL); 1081 } 1082 1083 static int compare_vsi_off(const void *_a, const void *_b) 1084 { 1085 const struct btf_var_secinfo *a = _a; 1086 const struct btf_var_secinfo *b = _b; 1087 1088 return a->offset - b->offset; 1089 } 1090 1091 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1092 struct btf_type *t) 1093 { 1094 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1095 const char *name = btf__name_by_offset(btf, t->name_off); 1096 const struct btf_type *t_var; 1097 struct btf_var_secinfo *vsi; 1098 const struct btf_var *var; 1099 int ret; 1100 1101 if (!name) { 1102 pr_debug("No name found in string section for DATASEC kind.\n"); 1103 return -ENOENT; 1104 } 1105 1106 /* .extern datasec size and var offsets were set correctly during 1107 * extern collection step, so just skip straight to sorting variables 1108 */ 1109 if (t->size) 1110 goto sort_vars; 1111 1112 ret = bpf_object__section_size(obj, name, &size); 1113 if (ret || !size || (t->size && t->size != size)) { 1114 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1115 return -ENOENT; 1116 } 1117 1118 t->size = size; 1119 1120 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1121 t_var = btf__type_by_id(btf, vsi->type); 1122 var = btf_var(t_var); 1123 1124 if (!btf_is_var(t_var)) { 1125 pr_debug("Non-VAR type seen in section %s\n", name); 1126 return -EINVAL; 1127 } 1128 1129 if (var->linkage == BTF_VAR_STATIC) 1130 continue; 1131 1132 name = btf__name_by_offset(btf, t_var->name_off); 1133 if (!name) { 1134 pr_debug("No name found in string section for VAR kind\n"); 1135 return -ENOENT; 1136 } 1137 1138 ret = bpf_object__variable_offset(obj, name, &off); 1139 if (ret) { 1140 pr_debug("No offset found in symbol table for VAR %s\n", 1141 name); 1142 return -ENOENT; 1143 } 1144 1145 vsi->offset = off; 1146 } 1147 1148 sort_vars: 1149 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1150 return 0; 1151 } 1152 1153 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1154 { 1155 int err = 0; 1156 __u32 i; 1157 1158 for (i = 1; i <= btf->nr_types; i++) { 1159 struct btf_type *t = btf_type_by_id(btf, i); 1160 1161 /* Loader needs to fix up some of the things compiler 1162 * couldn't get its hands on while emitting BTF. This 1163 * is section size and global variable offset. We use 1164 * the info from the ELF itself for this purpose. 1165 */ 1166 if (btf_is_datasec(t)) { 1167 err = btf_fixup_datasec(obj, btf, t); 1168 if (err) 1169 break; 1170 } 1171 } 1172 1173 return err; 1174 } 1175 1176 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1177 1178 int btf__load(struct btf *btf) 1179 { 1180 __u32 log_buf_size = 0, raw_size; 1181 char *log_buf = NULL; 1182 void *raw_data; 1183 int err = 0; 1184 1185 if (btf->fd >= 0) 1186 return -EEXIST; 1187 1188 retry_load: 1189 if (log_buf_size) { 1190 log_buf = malloc(log_buf_size); 1191 if (!log_buf) 1192 return -ENOMEM; 1193 1194 *log_buf = 0; 1195 } 1196 1197 raw_data = btf_get_raw_data(btf, &raw_size, false); 1198 if (!raw_data) { 1199 err = -ENOMEM; 1200 goto done; 1201 } 1202 /* cache native raw data representation */ 1203 btf->raw_size = raw_size; 1204 btf->raw_data = raw_data; 1205 1206 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1207 if (btf->fd < 0) { 1208 if (!log_buf || errno == ENOSPC) { 1209 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1210 log_buf_size << 1); 1211 free(log_buf); 1212 goto retry_load; 1213 } 1214 1215 err = -errno; 1216 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1217 if (*log_buf) 1218 pr_warn("%s\n", log_buf); 1219 goto done; 1220 } 1221 1222 done: 1223 free(log_buf); 1224 return err; 1225 } 1226 1227 int btf__fd(const struct btf *btf) 1228 { 1229 return btf->fd; 1230 } 1231 1232 void btf__set_fd(struct btf *btf, int fd) 1233 { 1234 btf->fd = fd; 1235 } 1236 1237 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1238 { 1239 struct btf_header *hdr = btf->hdr; 1240 struct btf_type *t; 1241 void *data, *p; 1242 __u32 data_sz; 1243 int i; 1244 1245 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1246 if (data) { 1247 *size = btf->raw_size; 1248 return data; 1249 } 1250 1251 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1252 data = calloc(1, data_sz); 1253 if (!data) 1254 return NULL; 1255 p = data; 1256 1257 memcpy(p, hdr, hdr->hdr_len); 1258 if (swap_endian) 1259 btf_bswap_hdr(p); 1260 p += hdr->hdr_len; 1261 1262 memcpy(p, btf->types_data, hdr->type_len); 1263 if (swap_endian) { 1264 for (i = 0; i < btf->nr_types; i++) { 1265 t = p + btf->type_offs[i]; 1266 /* btf_bswap_type_rest() relies on native t->info, so 1267 * we swap base type info after we swapped all the 1268 * additional information 1269 */ 1270 if (btf_bswap_type_rest(t)) 1271 goto err_out; 1272 btf_bswap_type_base(t); 1273 } 1274 } 1275 p += hdr->type_len; 1276 1277 memcpy(p, btf->strs_data, hdr->str_len); 1278 p += hdr->str_len; 1279 1280 *size = data_sz; 1281 return data; 1282 err_out: 1283 free(data); 1284 return NULL; 1285 } 1286 1287 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1288 { 1289 struct btf *btf = (struct btf *)btf_ro; 1290 __u32 data_sz; 1291 void *data; 1292 1293 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1294 if (!data) 1295 return NULL; 1296 1297 btf->raw_size = data_sz; 1298 if (btf->swapped_endian) 1299 btf->raw_data_swapped = data; 1300 else 1301 btf->raw_data = data; 1302 *size = data_sz; 1303 return data; 1304 } 1305 1306 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1307 { 1308 if (offset < btf->start_str_off) 1309 return btf__str_by_offset(btf->base_btf, offset); 1310 else if (offset - btf->start_str_off < btf->hdr->str_len) 1311 return btf->strs_data + (offset - btf->start_str_off); 1312 else 1313 return NULL; 1314 } 1315 1316 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1317 { 1318 return btf__str_by_offset(btf, offset); 1319 } 1320 1321 int btf__get_from_id(__u32 id, struct btf **btf) 1322 { 1323 struct bpf_btf_info btf_info = { 0 }; 1324 __u32 len = sizeof(btf_info); 1325 __u32 last_size; 1326 int btf_fd; 1327 void *ptr; 1328 int err; 1329 1330 err = 0; 1331 *btf = NULL; 1332 btf_fd = bpf_btf_get_fd_by_id(id); 1333 if (btf_fd < 0) 1334 return 0; 1335 1336 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1337 * let's start with a sane default - 4KiB here - and resize it only if 1338 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1339 */ 1340 btf_info.btf_size = 4096; 1341 last_size = btf_info.btf_size; 1342 ptr = malloc(last_size); 1343 if (!ptr) { 1344 err = -ENOMEM; 1345 goto exit_free; 1346 } 1347 1348 memset(ptr, 0, last_size); 1349 btf_info.btf = ptr_to_u64(ptr); 1350 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1351 1352 if (!err && btf_info.btf_size > last_size) { 1353 void *temp_ptr; 1354 1355 last_size = btf_info.btf_size; 1356 temp_ptr = realloc(ptr, last_size); 1357 if (!temp_ptr) { 1358 err = -ENOMEM; 1359 goto exit_free; 1360 } 1361 ptr = temp_ptr; 1362 memset(ptr, 0, last_size); 1363 btf_info.btf = ptr_to_u64(ptr); 1364 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1365 } 1366 1367 if (err || btf_info.btf_size > last_size) { 1368 err = errno; 1369 goto exit_free; 1370 } 1371 1372 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 1373 if (IS_ERR(*btf)) { 1374 err = PTR_ERR(*btf); 1375 *btf = NULL; 1376 } 1377 1378 exit_free: 1379 close(btf_fd); 1380 free(ptr); 1381 1382 return err; 1383 } 1384 1385 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1386 __u32 expected_key_size, __u32 expected_value_size, 1387 __u32 *key_type_id, __u32 *value_type_id) 1388 { 1389 const struct btf_type *container_type; 1390 const struct btf_member *key, *value; 1391 const size_t max_name = 256; 1392 char container_name[max_name]; 1393 __s64 key_size, value_size; 1394 __s32 container_id; 1395 1396 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 1397 max_name) { 1398 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1399 map_name, map_name); 1400 return -EINVAL; 1401 } 1402 1403 container_id = btf__find_by_name(btf, container_name); 1404 if (container_id < 0) { 1405 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1406 map_name, container_name); 1407 return container_id; 1408 } 1409 1410 container_type = btf__type_by_id(btf, container_id); 1411 if (!container_type) { 1412 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1413 map_name, container_id); 1414 return -EINVAL; 1415 } 1416 1417 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1418 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1419 map_name, container_name); 1420 return -EINVAL; 1421 } 1422 1423 key = btf_members(container_type); 1424 value = key + 1; 1425 1426 key_size = btf__resolve_size(btf, key->type); 1427 if (key_size < 0) { 1428 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1429 return key_size; 1430 } 1431 1432 if (expected_key_size != key_size) { 1433 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1434 map_name, (__u32)key_size, expected_key_size); 1435 return -EINVAL; 1436 } 1437 1438 value_size = btf__resolve_size(btf, value->type); 1439 if (value_size < 0) { 1440 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1441 return value_size; 1442 } 1443 1444 if (expected_value_size != value_size) { 1445 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1446 map_name, (__u32)value_size, expected_value_size); 1447 return -EINVAL; 1448 } 1449 1450 *key_type_id = key->type; 1451 *value_type_id = value->type; 1452 1453 return 0; 1454 } 1455 1456 static size_t strs_hash_fn(const void *key, void *ctx) 1457 { 1458 const struct btf *btf = ctx; 1459 const char *strs = *btf->strs_data_ptr; 1460 const char *str = strs + (long)key; 1461 1462 return str_hash(str); 1463 } 1464 1465 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx) 1466 { 1467 const struct btf *btf = ctx; 1468 const char *strs = *btf->strs_data_ptr; 1469 const char *str1 = strs + (long)key1; 1470 const char *str2 = strs + (long)key2; 1471 1472 return strcmp(str1, str2) == 0; 1473 } 1474 1475 static void btf_invalidate_raw_data(struct btf *btf) 1476 { 1477 if (btf->raw_data) { 1478 free(btf->raw_data); 1479 btf->raw_data = NULL; 1480 } 1481 if (btf->raw_data_swapped) { 1482 free(btf->raw_data_swapped); 1483 btf->raw_data_swapped = NULL; 1484 } 1485 } 1486 1487 /* Ensure BTF is ready to be modified (by splitting into a three memory 1488 * regions for header, types, and strings). Also invalidate cached 1489 * raw_data, if any. 1490 */ 1491 static int btf_ensure_modifiable(struct btf *btf) 1492 { 1493 void *hdr, *types, *strs, *strs_end, *s; 1494 struct hashmap *hash = NULL; 1495 long off; 1496 int err; 1497 1498 if (btf_is_modifiable(btf)) { 1499 /* any BTF modification invalidates raw_data */ 1500 btf_invalidate_raw_data(btf); 1501 return 0; 1502 } 1503 1504 /* split raw data into three memory regions */ 1505 hdr = malloc(btf->hdr->hdr_len); 1506 types = malloc(btf->hdr->type_len); 1507 strs = malloc(btf->hdr->str_len); 1508 if (!hdr || !types || !strs) 1509 goto err_out; 1510 1511 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1512 memcpy(types, btf->types_data, btf->hdr->type_len); 1513 memcpy(strs, btf->strs_data, btf->hdr->str_len); 1514 1515 /* make hashmap below use btf->strs_data as a source of strings */ 1516 btf->strs_data_ptr = &btf->strs_data; 1517 1518 /* build lookup index for all strings */ 1519 hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf); 1520 if (IS_ERR(hash)) { 1521 err = PTR_ERR(hash); 1522 hash = NULL; 1523 goto err_out; 1524 } 1525 1526 strs_end = strs + btf->hdr->str_len; 1527 for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) { 1528 /* hashmap__add() returns EEXIST if string with the same 1529 * content already is in the hash map 1530 */ 1531 err = hashmap__add(hash, (void *)off, (void *)off); 1532 if (err == -EEXIST) 1533 continue; /* duplicate */ 1534 if (err) 1535 goto err_out; 1536 } 1537 1538 /* only when everything was successful, update internal state */ 1539 btf->hdr = hdr; 1540 btf->types_data = types; 1541 btf->types_data_cap = btf->hdr->type_len; 1542 btf->strs_data = strs; 1543 btf->strs_data_cap = btf->hdr->str_len; 1544 btf->strs_hash = hash; 1545 /* if BTF was created from scratch, all strings are guaranteed to be 1546 * unique and deduplicated 1547 */ 1548 if (btf->hdr->str_len == 0) 1549 btf->strs_deduped = true; 1550 if (!btf->base_btf && btf->hdr->str_len == 1) 1551 btf->strs_deduped = true; 1552 1553 /* invalidate raw_data representation */ 1554 btf_invalidate_raw_data(btf); 1555 1556 return 0; 1557 1558 err_out: 1559 hashmap__free(hash); 1560 free(hdr); 1561 free(types); 1562 free(strs); 1563 return -ENOMEM; 1564 } 1565 1566 static void *btf_add_str_mem(struct btf *btf, size_t add_sz) 1567 { 1568 return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1, 1569 btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz); 1570 } 1571 1572 /* Find an offset in BTF string section that corresponds to a given string *s*. 1573 * Returns: 1574 * - >0 offset into string section, if string is found; 1575 * - -ENOENT, if string is not in the string section; 1576 * - <0, on any other error. 1577 */ 1578 int btf__find_str(struct btf *btf, const char *s) 1579 { 1580 long old_off, new_off, len; 1581 void *p; 1582 1583 if (btf->base_btf) { 1584 int ret; 1585 1586 ret = btf__find_str(btf->base_btf, s); 1587 if (ret != -ENOENT) 1588 return ret; 1589 } 1590 1591 /* BTF needs to be in a modifiable state to build string lookup index */ 1592 if (btf_ensure_modifiable(btf)) 1593 return -ENOMEM; 1594 1595 /* see btf__add_str() for why we do this */ 1596 len = strlen(s) + 1; 1597 p = btf_add_str_mem(btf, len); 1598 if (!p) 1599 return -ENOMEM; 1600 1601 new_off = btf->hdr->str_len; 1602 memcpy(p, s, len); 1603 1604 if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off)) 1605 return btf->start_str_off + old_off; 1606 1607 return -ENOENT; 1608 } 1609 1610 /* Add a string s to the BTF string section. 1611 * Returns: 1612 * - > 0 offset into string section, on success; 1613 * - < 0, on error. 1614 */ 1615 int btf__add_str(struct btf *btf, const char *s) 1616 { 1617 long old_off, new_off, len; 1618 void *p; 1619 int err; 1620 1621 if (btf->base_btf) { 1622 int ret; 1623 1624 ret = btf__find_str(btf->base_btf, s); 1625 if (ret != -ENOENT) 1626 return ret; 1627 } 1628 1629 if (btf_ensure_modifiable(btf)) 1630 return -ENOMEM; 1631 1632 /* Hashmap keys are always offsets within btf->strs_data, so to even 1633 * look up some string from the "outside", we need to first append it 1634 * at the end, so that it can be addressed with an offset. Luckily, 1635 * until btf->hdr->str_len is incremented, that string is just a piece 1636 * of garbage for the rest of BTF code, so no harm, no foul. On the 1637 * other hand, if the string is unique, it's already appended and 1638 * ready to be used, only a simple btf->hdr->str_len increment away. 1639 */ 1640 len = strlen(s) + 1; 1641 p = btf_add_str_mem(btf, len); 1642 if (!p) 1643 return -ENOMEM; 1644 1645 new_off = btf->hdr->str_len; 1646 memcpy(p, s, len); 1647 1648 /* Now attempt to add the string, but only if the string with the same 1649 * contents doesn't exist already (HASHMAP_ADD strategy). If such 1650 * string exists, we'll get its offset in old_off (that's old_key). 1651 */ 1652 err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off, 1653 HASHMAP_ADD, (const void **)&old_off, NULL); 1654 if (err == -EEXIST) 1655 return btf->start_str_off + old_off; /* duplicated string, return existing offset */ 1656 if (err) 1657 return err; 1658 1659 btf->hdr->str_len += len; /* new unique string, adjust data length */ 1660 return btf->start_str_off + new_off; 1661 } 1662 1663 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1664 { 1665 return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1666 btf->hdr->type_len, UINT_MAX, add_sz); 1667 } 1668 1669 static __u32 btf_type_info(int kind, int vlen, int kflag) 1670 { 1671 return (kflag << 31) | (kind << 24) | vlen; 1672 } 1673 1674 static void btf_type_inc_vlen(struct btf_type *t) 1675 { 1676 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1677 } 1678 1679 static int btf_commit_type(struct btf *btf, int data_sz) 1680 { 1681 int err; 1682 1683 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1684 if (err) 1685 return err; 1686 1687 btf->hdr->type_len += data_sz; 1688 btf->hdr->str_off += data_sz; 1689 btf->nr_types++; 1690 return btf->start_id + btf->nr_types - 1; 1691 } 1692 1693 /* 1694 * Append new BTF_KIND_INT type with: 1695 * - *name* - non-empty, non-NULL type name; 1696 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1697 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1698 * Returns: 1699 * - >0, type ID of newly added BTF type; 1700 * - <0, on error. 1701 */ 1702 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1703 { 1704 struct btf_type *t; 1705 int sz, name_off; 1706 1707 /* non-empty name */ 1708 if (!name || !name[0]) 1709 return -EINVAL; 1710 /* byte_sz must be power of 2 */ 1711 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1712 return -EINVAL; 1713 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1714 return -EINVAL; 1715 1716 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1717 if (btf_ensure_modifiable(btf)) 1718 return -ENOMEM; 1719 1720 sz = sizeof(struct btf_type) + sizeof(int); 1721 t = btf_add_type_mem(btf, sz); 1722 if (!t) 1723 return -ENOMEM; 1724 1725 /* if something goes wrong later, we might end up with an extra string, 1726 * but that shouldn't be a problem, because BTF can't be constructed 1727 * completely anyway and will most probably be just discarded 1728 */ 1729 name_off = btf__add_str(btf, name); 1730 if (name_off < 0) 1731 return name_off; 1732 1733 t->name_off = name_off; 1734 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1735 t->size = byte_sz; 1736 /* set INT info, we don't allow setting legacy bit offset/size */ 1737 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1738 1739 return btf_commit_type(btf, sz); 1740 } 1741 1742 /* it's completely legal to append BTF types with type IDs pointing forward to 1743 * types that haven't been appended yet, so we only make sure that id looks 1744 * sane, we can't guarantee that ID will always be valid 1745 */ 1746 static int validate_type_id(int id) 1747 { 1748 if (id < 0 || id > BTF_MAX_NR_TYPES) 1749 return -EINVAL; 1750 return 0; 1751 } 1752 1753 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1754 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1755 { 1756 struct btf_type *t; 1757 int sz, name_off = 0; 1758 1759 if (validate_type_id(ref_type_id)) 1760 return -EINVAL; 1761 1762 if (btf_ensure_modifiable(btf)) 1763 return -ENOMEM; 1764 1765 sz = sizeof(struct btf_type); 1766 t = btf_add_type_mem(btf, sz); 1767 if (!t) 1768 return -ENOMEM; 1769 1770 if (name && name[0]) { 1771 name_off = btf__add_str(btf, name); 1772 if (name_off < 0) 1773 return name_off; 1774 } 1775 1776 t->name_off = name_off; 1777 t->info = btf_type_info(kind, 0, 0); 1778 t->type = ref_type_id; 1779 1780 return btf_commit_type(btf, sz); 1781 } 1782 1783 /* 1784 * Append new BTF_KIND_PTR type with: 1785 * - *ref_type_id* - referenced type ID, it might not exist yet; 1786 * Returns: 1787 * - >0, type ID of newly added BTF type; 1788 * - <0, on error. 1789 */ 1790 int btf__add_ptr(struct btf *btf, int ref_type_id) 1791 { 1792 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1793 } 1794 1795 /* 1796 * Append new BTF_KIND_ARRAY type with: 1797 * - *index_type_id* - type ID of the type describing array index; 1798 * - *elem_type_id* - type ID of the type describing array element; 1799 * - *nr_elems* - the size of the array; 1800 * Returns: 1801 * - >0, type ID of newly added BTF type; 1802 * - <0, on error. 1803 */ 1804 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1805 { 1806 struct btf_type *t; 1807 struct btf_array *a; 1808 int sz; 1809 1810 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1811 return -EINVAL; 1812 1813 if (btf_ensure_modifiable(btf)) 1814 return -ENOMEM; 1815 1816 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1817 t = btf_add_type_mem(btf, sz); 1818 if (!t) 1819 return -ENOMEM; 1820 1821 t->name_off = 0; 1822 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1823 t->size = 0; 1824 1825 a = btf_array(t); 1826 a->type = elem_type_id; 1827 a->index_type = index_type_id; 1828 a->nelems = nr_elems; 1829 1830 return btf_commit_type(btf, sz); 1831 } 1832 1833 /* generic STRUCT/UNION append function */ 1834 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1835 { 1836 struct btf_type *t; 1837 int sz, name_off = 0; 1838 1839 if (btf_ensure_modifiable(btf)) 1840 return -ENOMEM; 1841 1842 sz = sizeof(struct btf_type); 1843 t = btf_add_type_mem(btf, sz); 1844 if (!t) 1845 return -ENOMEM; 1846 1847 if (name && name[0]) { 1848 name_off = btf__add_str(btf, name); 1849 if (name_off < 0) 1850 return name_off; 1851 } 1852 1853 /* start out with vlen=0 and no kflag; this will be adjusted when 1854 * adding each member 1855 */ 1856 t->name_off = name_off; 1857 t->info = btf_type_info(kind, 0, 0); 1858 t->size = bytes_sz; 1859 1860 return btf_commit_type(btf, sz); 1861 } 1862 1863 /* 1864 * Append new BTF_KIND_STRUCT type with: 1865 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1866 * - *byte_sz* - size of the struct, in bytes; 1867 * 1868 * Struct initially has no fields in it. Fields can be added by 1869 * btf__add_field() right after btf__add_struct() succeeds. 1870 * 1871 * Returns: 1872 * - >0, type ID of newly added BTF type; 1873 * - <0, on error. 1874 */ 1875 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1876 { 1877 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1878 } 1879 1880 /* 1881 * Append new BTF_KIND_UNION type with: 1882 * - *name* - name of the union, can be NULL or empty for anonymous union; 1883 * - *byte_sz* - size of the union, in bytes; 1884 * 1885 * Union initially has no fields in it. Fields can be added by 1886 * btf__add_field() right after btf__add_union() succeeds. All fields 1887 * should have *bit_offset* of 0. 1888 * 1889 * Returns: 1890 * - >0, type ID of newly added BTF type; 1891 * - <0, on error. 1892 */ 1893 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1894 { 1895 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1896 } 1897 1898 static struct btf_type *btf_last_type(struct btf *btf) 1899 { 1900 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1901 } 1902 1903 /* 1904 * Append new field for the current STRUCT/UNION type with: 1905 * - *name* - name of the field, can be NULL or empty for anonymous field; 1906 * - *type_id* - type ID for the type describing field type; 1907 * - *bit_offset* - bit offset of the start of the field within struct/union; 1908 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1909 * Returns: 1910 * - 0, on success; 1911 * - <0, on error. 1912 */ 1913 int btf__add_field(struct btf *btf, const char *name, int type_id, 1914 __u32 bit_offset, __u32 bit_size) 1915 { 1916 struct btf_type *t; 1917 struct btf_member *m; 1918 bool is_bitfield; 1919 int sz, name_off = 0; 1920 1921 /* last type should be union/struct */ 1922 if (btf->nr_types == 0) 1923 return -EINVAL; 1924 t = btf_last_type(btf); 1925 if (!btf_is_composite(t)) 1926 return -EINVAL; 1927 1928 if (validate_type_id(type_id)) 1929 return -EINVAL; 1930 /* best-effort bit field offset/size enforcement */ 1931 is_bitfield = bit_size || (bit_offset % 8 != 0); 1932 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1933 return -EINVAL; 1934 1935 /* only offset 0 is allowed for unions */ 1936 if (btf_is_union(t) && bit_offset) 1937 return -EINVAL; 1938 1939 /* decompose and invalidate raw data */ 1940 if (btf_ensure_modifiable(btf)) 1941 return -ENOMEM; 1942 1943 sz = sizeof(struct btf_member); 1944 m = btf_add_type_mem(btf, sz); 1945 if (!m) 1946 return -ENOMEM; 1947 1948 if (name && name[0]) { 1949 name_off = btf__add_str(btf, name); 1950 if (name_off < 0) 1951 return name_off; 1952 } 1953 1954 m->name_off = name_off; 1955 m->type = type_id; 1956 m->offset = bit_offset | (bit_size << 24); 1957 1958 /* btf_add_type_mem can invalidate t pointer */ 1959 t = btf_last_type(btf); 1960 /* update parent type's vlen and kflag */ 1961 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1962 1963 btf->hdr->type_len += sz; 1964 btf->hdr->str_off += sz; 1965 return 0; 1966 } 1967 1968 /* 1969 * Append new BTF_KIND_ENUM type with: 1970 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 1971 * - *byte_sz* - size of the enum, in bytes. 1972 * 1973 * Enum initially has no enum values in it (and corresponds to enum forward 1974 * declaration). Enumerator values can be added by btf__add_enum_value() 1975 * immediately after btf__add_enum() succeeds. 1976 * 1977 * Returns: 1978 * - >0, type ID of newly added BTF type; 1979 * - <0, on error. 1980 */ 1981 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 1982 { 1983 struct btf_type *t; 1984 int sz, name_off = 0; 1985 1986 /* byte_sz must be power of 2 */ 1987 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 1988 return -EINVAL; 1989 1990 if (btf_ensure_modifiable(btf)) 1991 return -ENOMEM; 1992 1993 sz = sizeof(struct btf_type); 1994 t = btf_add_type_mem(btf, sz); 1995 if (!t) 1996 return -ENOMEM; 1997 1998 if (name && name[0]) { 1999 name_off = btf__add_str(btf, name); 2000 if (name_off < 0) 2001 return name_off; 2002 } 2003 2004 /* start out with vlen=0; it will be adjusted when adding enum values */ 2005 t->name_off = name_off; 2006 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2007 t->size = byte_sz; 2008 2009 return btf_commit_type(btf, sz); 2010 } 2011 2012 /* 2013 * Append new enum value for the current ENUM type with: 2014 * - *name* - name of the enumerator value, can't be NULL or empty; 2015 * - *value* - integer value corresponding to enum value *name*; 2016 * Returns: 2017 * - 0, on success; 2018 * - <0, on error. 2019 */ 2020 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2021 { 2022 struct btf_type *t; 2023 struct btf_enum *v; 2024 int sz, name_off; 2025 2026 /* last type should be BTF_KIND_ENUM */ 2027 if (btf->nr_types == 0) 2028 return -EINVAL; 2029 t = btf_last_type(btf); 2030 if (!btf_is_enum(t)) 2031 return -EINVAL; 2032 2033 /* non-empty name */ 2034 if (!name || !name[0]) 2035 return -EINVAL; 2036 if (value < INT_MIN || value > UINT_MAX) 2037 return -E2BIG; 2038 2039 /* decompose and invalidate raw data */ 2040 if (btf_ensure_modifiable(btf)) 2041 return -ENOMEM; 2042 2043 sz = sizeof(struct btf_enum); 2044 v = btf_add_type_mem(btf, sz); 2045 if (!v) 2046 return -ENOMEM; 2047 2048 name_off = btf__add_str(btf, name); 2049 if (name_off < 0) 2050 return name_off; 2051 2052 v->name_off = name_off; 2053 v->val = value; 2054 2055 /* update parent type's vlen */ 2056 t = btf_last_type(btf); 2057 btf_type_inc_vlen(t); 2058 2059 btf->hdr->type_len += sz; 2060 btf->hdr->str_off += sz; 2061 return 0; 2062 } 2063 2064 /* 2065 * Append new BTF_KIND_FWD type with: 2066 * - *name*, non-empty/non-NULL name; 2067 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2068 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2069 * Returns: 2070 * - >0, type ID of newly added BTF type; 2071 * - <0, on error. 2072 */ 2073 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2074 { 2075 if (!name || !name[0]) 2076 return -EINVAL; 2077 2078 switch (fwd_kind) { 2079 case BTF_FWD_STRUCT: 2080 case BTF_FWD_UNION: { 2081 struct btf_type *t; 2082 int id; 2083 2084 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2085 if (id <= 0) 2086 return id; 2087 t = btf_type_by_id(btf, id); 2088 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2089 return id; 2090 } 2091 case BTF_FWD_ENUM: 2092 /* enum forward in BTF currently is just an enum with no enum 2093 * values; we also assume a standard 4-byte size for it 2094 */ 2095 return btf__add_enum(btf, name, sizeof(int)); 2096 default: 2097 return -EINVAL; 2098 } 2099 } 2100 2101 /* 2102 * Append new BTF_KING_TYPEDEF type with: 2103 * - *name*, non-empty/non-NULL name; 2104 * - *ref_type_id* - referenced type ID, it might not exist yet; 2105 * Returns: 2106 * - >0, type ID of newly added BTF type; 2107 * - <0, on error. 2108 */ 2109 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2110 { 2111 if (!name || !name[0]) 2112 return -EINVAL; 2113 2114 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2115 } 2116 2117 /* 2118 * Append new BTF_KIND_VOLATILE type with: 2119 * - *ref_type_id* - referenced type ID, it might not exist yet; 2120 * Returns: 2121 * - >0, type ID of newly added BTF type; 2122 * - <0, on error. 2123 */ 2124 int btf__add_volatile(struct btf *btf, int ref_type_id) 2125 { 2126 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2127 } 2128 2129 /* 2130 * Append new BTF_KIND_CONST type with: 2131 * - *ref_type_id* - referenced type ID, it might not exist yet; 2132 * Returns: 2133 * - >0, type ID of newly added BTF type; 2134 * - <0, on error. 2135 */ 2136 int btf__add_const(struct btf *btf, int ref_type_id) 2137 { 2138 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2139 } 2140 2141 /* 2142 * Append new BTF_KIND_RESTRICT type with: 2143 * - *ref_type_id* - referenced type ID, it might not exist yet; 2144 * Returns: 2145 * - >0, type ID of newly added BTF type; 2146 * - <0, on error. 2147 */ 2148 int btf__add_restrict(struct btf *btf, int ref_type_id) 2149 { 2150 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2151 } 2152 2153 /* 2154 * Append new BTF_KIND_FUNC type with: 2155 * - *name*, non-empty/non-NULL name; 2156 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2157 * Returns: 2158 * - >0, type ID of newly added BTF type; 2159 * - <0, on error. 2160 */ 2161 int btf__add_func(struct btf *btf, const char *name, 2162 enum btf_func_linkage linkage, int proto_type_id) 2163 { 2164 int id; 2165 2166 if (!name || !name[0]) 2167 return -EINVAL; 2168 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2169 linkage != BTF_FUNC_EXTERN) 2170 return -EINVAL; 2171 2172 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2173 if (id > 0) { 2174 struct btf_type *t = btf_type_by_id(btf, id); 2175 2176 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2177 } 2178 return id; 2179 } 2180 2181 /* 2182 * Append new BTF_KIND_FUNC_PROTO with: 2183 * - *ret_type_id* - type ID for return result of a function. 2184 * 2185 * Function prototype initially has no arguments, but they can be added by 2186 * btf__add_func_param() one by one, immediately after 2187 * btf__add_func_proto() succeeded. 2188 * 2189 * Returns: 2190 * - >0, type ID of newly added BTF type; 2191 * - <0, on error. 2192 */ 2193 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2194 { 2195 struct btf_type *t; 2196 int sz; 2197 2198 if (validate_type_id(ret_type_id)) 2199 return -EINVAL; 2200 2201 if (btf_ensure_modifiable(btf)) 2202 return -ENOMEM; 2203 2204 sz = sizeof(struct btf_type); 2205 t = btf_add_type_mem(btf, sz); 2206 if (!t) 2207 return -ENOMEM; 2208 2209 /* start out with vlen=0; this will be adjusted when adding enum 2210 * values, if necessary 2211 */ 2212 t->name_off = 0; 2213 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2214 t->type = ret_type_id; 2215 2216 return btf_commit_type(btf, sz); 2217 } 2218 2219 /* 2220 * Append new function parameter for current FUNC_PROTO type with: 2221 * - *name* - parameter name, can be NULL or empty; 2222 * - *type_id* - type ID describing the type of the parameter. 2223 * Returns: 2224 * - 0, on success; 2225 * - <0, on error. 2226 */ 2227 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2228 { 2229 struct btf_type *t; 2230 struct btf_param *p; 2231 int sz, name_off = 0; 2232 2233 if (validate_type_id(type_id)) 2234 return -EINVAL; 2235 2236 /* last type should be BTF_KIND_FUNC_PROTO */ 2237 if (btf->nr_types == 0) 2238 return -EINVAL; 2239 t = btf_last_type(btf); 2240 if (!btf_is_func_proto(t)) 2241 return -EINVAL; 2242 2243 /* decompose and invalidate raw data */ 2244 if (btf_ensure_modifiable(btf)) 2245 return -ENOMEM; 2246 2247 sz = sizeof(struct btf_param); 2248 p = btf_add_type_mem(btf, sz); 2249 if (!p) 2250 return -ENOMEM; 2251 2252 if (name && name[0]) { 2253 name_off = btf__add_str(btf, name); 2254 if (name_off < 0) 2255 return name_off; 2256 } 2257 2258 p->name_off = name_off; 2259 p->type = type_id; 2260 2261 /* update parent type's vlen */ 2262 t = btf_last_type(btf); 2263 btf_type_inc_vlen(t); 2264 2265 btf->hdr->type_len += sz; 2266 btf->hdr->str_off += sz; 2267 return 0; 2268 } 2269 2270 /* 2271 * Append new BTF_KIND_VAR type with: 2272 * - *name* - non-empty/non-NULL name; 2273 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2274 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2275 * - *type_id* - type ID of the type describing the type of the variable. 2276 * Returns: 2277 * - >0, type ID of newly added BTF type; 2278 * - <0, on error. 2279 */ 2280 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2281 { 2282 struct btf_type *t; 2283 struct btf_var *v; 2284 int sz, name_off; 2285 2286 /* non-empty name */ 2287 if (!name || !name[0]) 2288 return -EINVAL; 2289 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2290 linkage != BTF_VAR_GLOBAL_EXTERN) 2291 return -EINVAL; 2292 if (validate_type_id(type_id)) 2293 return -EINVAL; 2294 2295 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2296 if (btf_ensure_modifiable(btf)) 2297 return -ENOMEM; 2298 2299 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2300 t = btf_add_type_mem(btf, sz); 2301 if (!t) 2302 return -ENOMEM; 2303 2304 name_off = btf__add_str(btf, name); 2305 if (name_off < 0) 2306 return name_off; 2307 2308 t->name_off = name_off; 2309 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2310 t->type = type_id; 2311 2312 v = btf_var(t); 2313 v->linkage = linkage; 2314 2315 return btf_commit_type(btf, sz); 2316 } 2317 2318 /* 2319 * Append new BTF_KIND_DATASEC type with: 2320 * - *name* - non-empty/non-NULL name; 2321 * - *byte_sz* - data section size, in bytes. 2322 * 2323 * Data section is initially empty. Variables info can be added with 2324 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2325 * 2326 * Returns: 2327 * - >0, type ID of newly added BTF type; 2328 * - <0, on error. 2329 */ 2330 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2331 { 2332 struct btf_type *t; 2333 int sz, name_off; 2334 2335 /* non-empty name */ 2336 if (!name || !name[0]) 2337 return -EINVAL; 2338 2339 if (btf_ensure_modifiable(btf)) 2340 return -ENOMEM; 2341 2342 sz = sizeof(struct btf_type); 2343 t = btf_add_type_mem(btf, sz); 2344 if (!t) 2345 return -ENOMEM; 2346 2347 name_off = btf__add_str(btf, name); 2348 if (name_off < 0) 2349 return name_off; 2350 2351 /* start with vlen=0, which will be update as var_secinfos are added */ 2352 t->name_off = name_off; 2353 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2354 t->size = byte_sz; 2355 2356 return btf_commit_type(btf, sz); 2357 } 2358 2359 /* 2360 * Append new data section variable information entry for current DATASEC type: 2361 * - *var_type_id* - type ID, describing type of the variable; 2362 * - *offset* - variable offset within data section, in bytes; 2363 * - *byte_sz* - variable size, in bytes. 2364 * 2365 * Returns: 2366 * - 0, on success; 2367 * - <0, on error. 2368 */ 2369 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2370 { 2371 struct btf_type *t; 2372 struct btf_var_secinfo *v; 2373 int sz; 2374 2375 /* last type should be BTF_KIND_DATASEC */ 2376 if (btf->nr_types == 0) 2377 return -EINVAL; 2378 t = btf_last_type(btf); 2379 if (!btf_is_datasec(t)) 2380 return -EINVAL; 2381 2382 if (validate_type_id(var_type_id)) 2383 return -EINVAL; 2384 2385 /* decompose and invalidate raw data */ 2386 if (btf_ensure_modifiable(btf)) 2387 return -ENOMEM; 2388 2389 sz = sizeof(struct btf_var_secinfo); 2390 v = btf_add_type_mem(btf, sz); 2391 if (!v) 2392 return -ENOMEM; 2393 2394 v->type = var_type_id; 2395 v->offset = offset; 2396 v->size = byte_sz; 2397 2398 /* update parent type's vlen */ 2399 t = btf_last_type(btf); 2400 btf_type_inc_vlen(t); 2401 2402 btf->hdr->type_len += sz; 2403 btf->hdr->str_off += sz; 2404 return 0; 2405 } 2406 2407 struct btf_ext_sec_setup_param { 2408 __u32 off; 2409 __u32 len; 2410 __u32 min_rec_size; 2411 struct btf_ext_info *ext_info; 2412 const char *desc; 2413 }; 2414 2415 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2416 struct btf_ext_sec_setup_param *ext_sec) 2417 { 2418 const struct btf_ext_info_sec *sinfo; 2419 struct btf_ext_info *ext_info; 2420 __u32 info_left, record_size; 2421 /* The start of the info sec (including the __u32 record_size). */ 2422 void *info; 2423 2424 if (ext_sec->len == 0) 2425 return 0; 2426 2427 if (ext_sec->off & 0x03) { 2428 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2429 ext_sec->desc); 2430 return -EINVAL; 2431 } 2432 2433 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2434 info_left = ext_sec->len; 2435 2436 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2437 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2438 ext_sec->desc, ext_sec->off, ext_sec->len); 2439 return -EINVAL; 2440 } 2441 2442 /* At least a record size */ 2443 if (info_left < sizeof(__u32)) { 2444 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2445 return -EINVAL; 2446 } 2447 2448 /* The record size needs to meet the minimum standard */ 2449 record_size = *(__u32 *)info; 2450 if (record_size < ext_sec->min_rec_size || 2451 record_size & 0x03) { 2452 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2453 ext_sec->desc, record_size); 2454 return -EINVAL; 2455 } 2456 2457 sinfo = info + sizeof(__u32); 2458 info_left -= sizeof(__u32); 2459 2460 /* If no records, return failure now so .BTF.ext won't be used. */ 2461 if (!info_left) { 2462 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2463 return -EINVAL; 2464 } 2465 2466 while (info_left) { 2467 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2468 __u64 total_record_size; 2469 __u32 num_records; 2470 2471 if (info_left < sec_hdrlen) { 2472 pr_debug("%s section header is not found in .BTF.ext\n", 2473 ext_sec->desc); 2474 return -EINVAL; 2475 } 2476 2477 num_records = sinfo->num_info; 2478 if (num_records == 0) { 2479 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2480 ext_sec->desc); 2481 return -EINVAL; 2482 } 2483 2484 total_record_size = sec_hdrlen + 2485 (__u64)num_records * record_size; 2486 if (info_left < total_record_size) { 2487 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2488 ext_sec->desc); 2489 return -EINVAL; 2490 } 2491 2492 info_left -= total_record_size; 2493 sinfo = (void *)sinfo + total_record_size; 2494 } 2495 2496 ext_info = ext_sec->ext_info; 2497 ext_info->len = ext_sec->len - sizeof(__u32); 2498 ext_info->rec_size = record_size; 2499 ext_info->info = info + sizeof(__u32); 2500 2501 return 0; 2502 } 2503 2504 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2505 { 2506 struct btf_ext_sec_setup_param param = { 2507 .off = btf_ext->hdr->func_info_off, 2508 .len = btf_ext->hdr->func_info_len, 2509 .min_rec_size = sizeof(struct bpf_func_info_min), 2510 .ext_info = &btf_ext->func_info, 2511 .desc = "func_info" 2512 }; 2513 2514 return btf_ext_setup_info(btf_ext, ¶m); 2515 } 2516 2517 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2518 { 2519 struct btf_ext_sec_setup_param param = { 2520 .off = btf_ext->hdr->line_info_off, 2521 .len = btf_ext->hdr->line_info_len, 2522 .min_rec_size = sizeof(struct bpf_line_info_min), 2523 .ext_info = &btf_ext->line_info, 2524 .desc = "line_info", 2525 }; 2526 2527 return btf_ext_setup_info(btf_ext, ¶m); 2528 } 2529 2530 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2531 { 2532 struct btf_ext_sec_setup_param param = { 2533 .off = btf_ext->hdr->core_relo_off, 2534 .len = btf_ext->hdr->core_relo_len, 2535 .min_rec_size = sizeof(struct bpf_core_relo), 2536 .ext_info = &btf_ext->core_relo_info, 2537 .desc = "core_relo", 2538 }; 2539 2540 return btf_ext_setup_info(btf_ext, ¶m); 2541 } 2542 2543 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2544 { 2545 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2546 2547 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2548 data_size < hdr->hdr_len) { 2549 pr_debug("BTF.ext header not found"); 2550 return -EINVAL; 2551 } 2552 2553 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2554 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2555 return -ENOTSUP; 2556 } else if (hdr->magic != BTF_MAGIC) { 2557 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2558 return -EINVAL; 2559 } 2560 2561 if (hdr->version != BTF_VERSION) { 2562 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2563 return -ENOTSUP; 2564 } 2565 2566 if (hdr->flags) { 2567 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2568 return -ENOTSUP; 2569 } 2570 2571 if (data_size == hdr->hdr_len) { 2572 pr_debug("BTF.ext has no data\n"); 2573 return -EINVAL; 2574 } 2575 2576 return 0; 2577 } 2578 2579 void btf_ext__free(struct btf_ext *btf_ext) 2580 { 2581 if (IS_ERR_OR_NULL(btf_ext)) 2582 return; 2583 free(btf_ext->data); 2584 free(btf_ext); 2585 } 2586 2587 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2588 { 2589 struct btf_ext *btf_ext; 2590 int err; 2591 2592 err = btf_ext_parse_hdr(data, size); 2593 if (err) 2594 return ERR_PTR(err); 2595 2596 btf_ext = calloc(1, sizeof(struct btf_ext)); 2597 if (!btf_ext) 2598 return ERR_PTR(-ENOMEM); 2599 2600 btf_ext->data_size = size; 2601 btf_ext->data = malloc(size); 2602 if (!btf_ext->data) { 2603 err = -ENOMEM; 2604 goto done; 2605 } 2606 memcpy(btf_ext->data, data, size); 2607 2608 if (btf_ext->hdr->hdr_len < 2609 offsetofend(struct btf_ext_header, line_info_len)) 2610 goto done; 2611 err = btf_ext_setup_func_info(btf_ext); 2612 if (err) 2613 goto done; 2614 2615 err = btf_ext_setup_line_info(btf_ext); 2616 if (err) 2617 goto done; 2618 2619 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2620 goto done; 2621 err = btf_ext_setup_core_relos(btf_ext); 2622 if (err) 2623 goto done; 2624 2625 done: 2626 if (err) { 2627 btf_ext__free(btf_ext); 2628 return ERR_PTR(err); 2629 } 2630 2631 return btf_ext; 2632 } 2633 2634 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2635 { 2636 *size = btf_ext->data_size; 2637 return btf_ext->data; 2638 } 2639 2640 static int btf_ext_reloc_info(const struct btf *btf, 2641 const struct btf_ext_info *ext_info, 2642 const char *sec_name, __u32 insns_cnt, 2643 void **info, __u32 *cnt) 2644 { 2645 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2646 __u32 i, record_size, existing_len, records_len; 2647 struct btf_ext_info_sec *sinfo; 2648 const char *info_sec_name; 2649 __u64 remain_len; 2650 void *data; 2651 2652 record_size = ext_info->rec_size; 2653 sinfo = ext_info->info; 2654 remain_len = ext_info->len; 2655 while (remain_len > 0) { 2656 records_len = sinfo->num_info * record_size; 2657 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2658 if (strcmp(info_sec_name, sec_name)) { 2659 remain_len -= sec_hdrlen + records_len; 2660 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2661 continue; 2662 } 2663 2664 existing_len = (*cnt) * record_size; 2665 data = realloc(*info, existing_len + records_len); 2666 if (!data) 2667 return -ENOMEM; 2668 2669 memcpy(data + existing_len, sinfo->data, records_len); 2670 /* adjust insn_off only, the rest data will be passed 2671 * to the kernel. 2672 */ 2673 for (i = 0; i < sinfo->num_info; i++) { 2674 __u32 *insn_off; 2675 2676 insn_off = data + existing_len + (i * record_size); 2677 *insn_off = *insn_off / sizeof(struct bpf_insn) + 2678 insns_cnt; 2679 } 2680 *info = data; 2681 *cnt += sinfo->num_info; 2682 return 0; 2683 } 2684 2685 return -ENOENT; 2686 } 2687 2688 int btf_ext__reloc_func_info(const struct btf *btf, 2689 const struct btf_ext *btf_ext, 2690 const char *sec_name, __u32 insns_cnt, 2691 void **func_info, __u32 *cnt) 2692 { 2693 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2694 insns_cnt, func_info, cnt); 2695 } 2696 2697 int btf_ext__reloc_line_info(const struct btf *btf, 2698 const struct btf_ext *btf_ext, 2699 const char *sec_name, __u32 insns_cnt, 2700 void **line_info, __u32 *cnt) 2701 { 2702 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2703 insns_cnt, line_info, cnt); 2704 } 2705 2706 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2707 { 2708 return btf_ext->func_info.rec_size; 2709 } 2710 2711 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2712 { 2713 return btf_ext->line_info.rec_size; 2714 } 2715 2716 struct btf_dedup; 2717 2718 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2719 const struct btf_dedup_opts *opts); 2720 static void btf_dedup_free(struct btf_dedup *d); 2721 static int btf_dedup_prep(struct btf_dedup *d); 2722 static int btf_dedup_strings(struct btf_dedup *d); 2723 static int btf_dedup_prim_types(struct btf_dedup *d); 2724 static int btf_dedup_struct_types(struct btf_dedup *d); 2725 static int btf_dedup_ref_types(struct btf_dedup *d); 2726 static int btf_dedup_compact_types(struct btf_dedup *d); 2727 static int btf_dedup_remap_types(struct btf_dedup *d); 2728 2729 /* 2730 * Deduplicate BTF types and strings. 2731 * 2732 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2733 * section with all BTF type descriptors and string data. It overwrites that 2734 * memory in-place with deduplicated types and strings without any loss of 2735 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2736 * is provided, all the strings referenced from .BTF.ext section are honored 2737 * and updated to point to the right offsets after deduplication. 2738 * 2739 * If function returns with error, type/string data might be garbled and should 2740 * be discarded. 2741 * 2742 * More verbose and detailed description of both problem btf_dedup is solving, 2743 * as well as solution could be found at: 2744 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2745 * 2746 * Problem description and justification 2747 * ===================================== 2748 * 2749 * BTF type information is typically emitted either as a result of conversion 2750 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2751 * unit contains information about a subset of all the types that are used 2752 * in an application. These subsets are frequently overlapping and contain a lot 2753 * of duplicated information when later concatenated together into a single 2754 * binary. This algorithm ensures that each unique type is represented by single 2755 * BTF type descriptor, greatly reducing resulting size of BTF data. 2756 * 2757 * Compilation unit isolation and subsequent duplication of data is not the only 2758 * problem. The same type hierarchy (e.g., struct and all the type that struct 2759 * references) in different compilation units can be represented in BTF to 2760 * various degrees of completeness (or, rather, incompleteness) due to 2761 * struct/union forward declarations. 2762 * 2763 * Let's take a look at an example, that we'll use to better understand the 2764 * problem (and solution). Suppose we have two compilation units, each using 2765 * same `struct S`, but each of them having incomplete type information about 2766 * struct's fields: 2767 * 2768 * // CU #1: 2769 * struct S; 2770 * struct A { 2771 * int a; 2772 * struct A* self; 2773 * struct S* parent; 2774 * }; 2775 * struct B; 2776 * struct S { 2777 * struct A* a_ptr; 2778 * struct B* b_ptr; 2779 * }; 2780 * 2781 * // CU #2: 2782 * struct S; 2783 * struct A; 2784 * struct B { 2785 * int b; 2786 * struct B* self; 2787 * struct S* parent; 2788 * }; 2789 * struct S { 2790 * struct A* a_ptr; 2791 * struct B* b_ptr; 2792 * }; 2793 * 2794 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2795 * more), but will know the complete type information about `struct A`. While 2796 * for CU #2, it will know full type information about `struct B`, but will 2797 * only know about forward declaration of `struct A` (in BTF terms, it will 2798 * have `BTF_KIND_FWD` type descriptor with name `B`). 2799 * 2800 * This compilation unit isolation means that it's possible that there is no 2801 * single CU with complete type information describing structs `S`, `A`, and 2802 * `B`. Also, we might get tons of duplicated and redundant type information. 2803 * 2804 * Additional complication we need to keep in mind comes from the fact that 2805 * types, in general, can form graphs containing cycles, not just DAGs. 2806 * 2807 * While algorithm does deduplication, it also merges and resolves type 2808 * information (unless disabled throught `struct btf_opts`), whenever possible. 2809 * E.g., in the example above with two compilation units having partial type 2810 * information for structs `A` and `B`, the output of algorithm will emit 2811 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2812 * (as well as type information for `int` and pointers), as if they were defined 2813 * in a single compilation unit as: 2814 * 2815 * struct A { 2816 * int a; 2817 * struct A* self; 2818 * struct S* parent; 2819 * }; 2820 * struct B { 2821 * int b; 2822 * struct B* self; 2823 * struct S* parent; 2824 * }; 2825 * struct S { 2826 * struct A* a_ptr; 2827 * struct B* b_ptr; 2828 * }; 2829 * 2830 * Algorithm summary 2831 * ================= 2832 * 2833 * Algorithm completes its work in 6 separate passes: 2834 * 2835 * 1. Strings deduplication. 2836 * 2. Primitive types deduplication (int, enum, fwd). 2837 * 3. Struct/union types deduplication. 2838 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2839 * protos, and const/volatile/restrict modifiers). 2840 * 5. Types compaction. 2841 * 6. Types remapping. 2842 * 2843 * Algorithm determines canonical type descriptor, which is a single 2844 * representative type for each truly unique type. This canonical type is the 2845 * one that will go into final deduplicated BTF type information. For 2846 * struct/unions, it is also the type that algorithm will merge additional type 2847 * information into (while resolving FWDs), as it discovers it from data in 2848 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2849 * that type is canonical, or to some other type, if that type is equivalent 2850 * and was chosen as canonical representative. This mapping is stored in 2851 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2852 * FWD type got resolved to. 2853 * 2854 * To facilitate fast discovery of canonical types, we also maintain canonical 2855 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2856 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2857 * that match that signature. With sufficiently good choice of type signature 2858 * hashing function, we can limit number of canonical types for each unique type 2859 * signature to a very small number, allowing to find canonical type for any 2860 * duplicated type very quickly. 2861 * 2862 * Struct/union deduplication is the most critical part and algorithm for 2863 * deduplicating structs/unions is described in greater details in comments for 2864 * `btf_dedup_is_equiv` function. 2865 */ 2866 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2867 const struct btf_dedup_opts *opts) 2868 { 2869 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2870 int err; 2871 2872 if (IS_ERR(d)) { 2873 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2874 return -EINVAL; 2875 } 2876 2877 if (btf_ensure_modifiable(btf)) 2878 return -ENOMEM; 2879 2880 err = btf_dedup_prep(d); 2881 if (err) { 2882 pr_debug("btf_dedup_prep failed:%d\n", err); 2883 goto done; 2884 } 2885 err = btf_dedup_strings(d); 2886 if (err < 0) { 2887 pr_debug("btf_dedup_strings failed:%d\n", err); 2888 goto done; 2889 } 2890 err = btf_dedup_prim_types(d); 2891 if (err < 0) { 2892 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2893 goto done; 2894 } 2895 err = btf_dedup_struct_types(d); 2896 if (err < 0) { 2897 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2898 goto done; 2899 } 2900 err = btf_dedup_ref_types(d); 2901 if (err < 0) { 2902 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2903 goto done; 2904 } 2905 err = btf_dedup_compact_types(d); 2906 if (err < 0) { 2907 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2908 goto done; 2909 } 2910 err = btf_dedup_remap_types(d); 2911 if (err < 0) { 2912 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2913 goto done; 2914 } 2915 2916 done: 2917 btf_dedup_free(d); 2918 return err; 2919 } 2920 2921 #define BTF_UNPROCESSED_ID ((__u32)-1) 2922 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2923 2924 struct btf_dedup { 2925 /* .BTF section to be deduped in-place */ 2926 struct btf *btf; 2927 /* 2928 * Optional .BTF.ext section. When provided, any strings referenced 2929 * from it will be taken into account when deduping strings 2930 */ 2931 struct btf_ext *btf_ext; 2932 /* 2933 * This is a map from any type's signature hash to a list of possible 2934 * canonical representative type candidates. Hash collisions are 2935 * ignored, so even types of various kinds can share same list of 2936 * candidates, which is fine because we rely on subsequent 2937 * btf_xxx_equal() checks to authoritatively verify type equality. 2938 */ 2939 struct hashmap *dedup_table; 2940 /* Canonical types map */ 2941 __u32 *map; 2942 /* Hypothetical mapping, used during type graph equivalence checks */ 2943 __u32 *hypot_map; 2944 __u32 *hypot_list; 2945 size_t hypot_cnt; 2946 size_t hypot_cap; 2947 /* Whether hypothetical mapping, if successful, would need to adjust 2948 * already canonicalized types (due to a new forward declaration to 2949 * concrete type resolution). In such case, during split BTF dedup 2950 * candidate type would still be considered as different, because base 2951 * BTF is considered to be immutable. 2952 */ 2953 bool hypot_adjust_canon; 2954 /* Various option modifying behavior of algorithm */ 2955 struct btf_dedup_opts opts; 2956 /* temporary strings deduplication state */ 2957 void *strs_data; 2958 size_t strs_cap; 2959 size_t strs_len; 2960 struct hashmap* strs_hash; 2961 }; 2962 2963 static long hash_combine(long h, long value) 2964 { 2965 return h * 31 + value; 2966 } 2967 2968 #define for_each_dedup_cand(d, node, hash) \ 2969 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 2970 2971 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 2972 { 2973 return hashmap__append(d->dedup_table, 2974 (void *)hash, (void *)(long)type_id); 2975 } 2976 2977 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 2978 __u32 from_id, __u32 to_id) 2979 { 2980 if (d->hypot_cnt == d->hypot_cap) { 2981 __u32 *new_list; 2982 2983 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 2984 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 2985 if (!new_list) 2986 return -ENOMEM; 2987 d->hypot_list = new_list; 2988 } 2989 d->hypot_list[d->hypot_cnt++] = from_id; 2990 d->hypot_map[from_id] = to_id; 2991 return 0; 2992 } 2993 2994 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 2995 { 2996 int i; 2997 2998 for (i = 0; i < d->hypot_cnt; i++) 2999 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3000 d->hypot_cnt = 0; 3001 d->hypot_adjust_canon = false; 3002 } 3003 3004 static void btf_dedup_free(struct btf_dedup *d) 3005 { 3006 hashmap__free(d->dedup_table); 3007 d->dedup_table = NULL; 3008 3009 free(d->map); 3010 d->map = NULL; 3011 3012 free(d->hypot_map); 3013 d->hypot_map = NULL; 3014 3015 free(d->hypot_list); 3016 d->hypot_list = NULL; 3017 3018 free(d); 3019 } 3020 3021 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3022 { 3023 return (size_t)key; 3024 } 3025 3026 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3027 { 3028 return 0; 3029 } 3030 3031 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3032 { 3033 return k1 == k2; 3034 } 3035 3036 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3037 const struct btf_dedup_opts *opts) 3038 { 3039 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3040 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3041 int i, err = 0, type_cnt; 3042 3043 if (!d) 3044 return ERR_PTR(-ENOMEM); 3045 3046 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3047 /* dedup_table_size is now used only to force collisions in tests */ 3048 if (opts && opts->dedup_table_size == 1) 3049 hash_fn = btf_dedup_collision_hash_fn; 3050 3051 d->btf = btf; 3052 d->btf_ext = btf_ext; 3053 3054 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3055 if (IS_ERR(d->dedup_table)) { 3056 err = PTR_ERR(d->dedup_table); 3057 d->dedup_table = NULL; 3058 goto done; 3059 } 3060 3061 type_cnt = btf__get_nr_types(btf) + 1; 3062 d->map = malloc(sizeof(__u32) * type_cnt); 3063 if (!d->map) { 3064 err = -ENOMEM; 3065 goto done; 3066 } 3067 /* special BTF "void" type is made canonical immediately */ 3068 d->map[0] = 0; 3069 for (i = 1; i < type_cnt; i++) { 3070 struct btf_type *t = btf_type_by_id(d->btf, i); 3071 3072 /* VAR and DATASEC are never deduped and are self-canonical */ 3073 if (btf_is_var(t) || btf_is_datasec(t)) 3074 d->map[i] = i; 3075 else 3076 d->map[i] = BTF_UNPROCESSED_ID; 3077 } 3078 3079 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3080 if (!d->hypot_map) { 3081 err = -ENOMEM; 3082 goto done; 3083 } 3084 for (i = 0; i < type_cnt; i++) 3085 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3086 3087 done: 3088 if (err) { 3089 btf_dedup_free(d); 3090 return ERR_PTR(err); 3091 } 3092 3093 return d; 3094 } 3095 3096 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 3097 3098 /* 3099 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3100 * string and pass pointer to it to a provided callback `fn`. 3101 */ 3102 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 3103 { 3104 void *line_data_cur, *line_data_end; 3105 int i, j, r, rec_size; 3106 struct btf_type *t; 3107 3108 for (i = 0; i < d->btf->nr_types; i++) { 3109 t = btf_type_by_id(d->btf, d->btf->start_id + i); 3110 r = fn(&t->name_off, ctx); 3111 if (r) 3112 return r; 3113 3114 switch (btf_kind(t)) { 3115 case BTF_KIND_STRUCT: 3116 case BTF_KIND_UNION: { 3117 struct btf_member *m = btf_members(t); 3118 __u16 vlen = btf_vlen(t); 3119 3120 for (j = 0; j < vlen; j++) { 3121 r = fn(&m->name_off, ctx); 3122 if (r) 3123 return r; 3124 m++; 3125 } 3126 break; 3127 } 3128 case BTF_KIND_ENUM: { 3129 struct btf_enum *m = btf_enum(t); 3130 __u16 vlen = btf_vlen(t); 3131 3132 for (j = 0; j < vlen; j++) { 3133 r = fn(&m->name_off, ctx); 3134 if (r) 3135 return r; 3136 m++; 3137 } 3138 break; 3139 } 3140 case BTF_KIND_FUNC_PROTO: { 3141 struct btf_param *m = btf_params(t); 3142 __u16 vlen = btf_vlen(t); 3143 3144 for (j = 0; j < vlen; j++) { 3145 r = fn(&m->name_off, ctx); 3146 if (r) 3147 return r; 3148 m++; 3149 } 3150 break; 3151 } 3152 default: 3153 break; 3154 } 3155 } 3156 3157 if (!d->btf_ext) 3158 return 0; 3159 3160 line_data_cur = d->btf_ext->line_info.info; 3161 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 3162 rec_size = d->btf_ext->line_info.rec_size; 3163 3164 while (line_data_cur < line_data_end) { 3165 struct btf_ext_info_sec *sec = line_data_cur; 3166 struct bpf_line_info_min *line_info; 3167 __u32 num_info = sec->num_info; 3168 3169 r = fn(&sec->sec_name_off, ctx); 3170 if (r) 3171 return r; 3172 3173 line_data_cur += sizeof(struct btf_ext_info_sec); 3174 for (i = 0; i < num_info; i++) { 3175 line_info = line_data_cur; 3176 r = fn(&line_info->file_name_off, ctx); 3177 if (r) 3178 return r; 3179 r = fn(&line_info->line_off, ctx); 3180 if (r) 3181 return r; 3182 line_data_cur += rec_size; 3183 } 3184 } 3185 3186 return 0; 3187 } 3188 3189 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3190 { 3191 struct btf_dedup *d = ctx; 3192 __u32 str_off = *str_off_ptr; 3193 long old_off, new_off, len; 3194 const char *s; 3195 void *p; 3196 int err; 3197 3198 /* don't touch empty string or string in main BTF */ 3199 if (str_off == 0 || str_off < d->btf->start_str_off) 3200 return 0; 3201 3202 s = btf__str_by_offset(d->btf, str_off); 3203 if (d->btf->base_btf) { 3204 err = btf__find_str(d->btf->base_btf, s); 3205 if (err >= 0) { 3206 *str_off_ptr = err; 3207 return 0; 3208 } 3209 if (err != -ENOENT) 3210 return err; 3211 } 3212 3213 len = strlen(s) + 1; 3214 3215 new_off = d->strs_len; 3216 p = btf_add_mem(&d->strs_data, &d->strs_cap, 1, new_off, BTF_MAX_STR_OFFSET, len); 3217 if (!p) 3218 return -ENOMEM; 3219 3220 memcpy(p, s, len); 3221 3222 /* Now attempt to add the string, but only if the string with the same 3223 * contents doesn't exist already (HASHMAP_ADD strategy). If such 3224 * string exists, we'll get its offset in old_off (that's old_key). 3225 */ 3226 err = hashmap__insert(d->strs_hash, (void *)new_off, (void *)new_off, 3227 HASHMAP_ADD, (const void **)&old_off, NULL); 3228 if (err == -EEXIST) { 3229 *str_off_ptr = d->btf->start_str_off + old_off; 3230 } else if (err) { 3231 return err; 3232 } else { 3233 *str_off_ptr = d->btf->start_str_off + new_off; 3234 d->strs_len += len; 3235 } 3236 return 0; 3237 } 3238 3239 /* 3240 * Dedup string and filter out those that are not referenced from either .BTF 3241 * or .BTF.ext (if provided) sections. 3242 * 3243 * This is done by building index of all strings in BTF's string section, 3244 * then iterating over all entities that can reference strings (e.g., type 3245 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3246 * strings as used. After that all used strings are deduped and compacted into 3247 * sequential blob of memory and new offsets are calculated. Then all the string 3248 * references are iterated again and rewritten using new offsets. 3249 */ 3250 static int btf_dedup_strings(struct btf_dedup *d) 3251 { 3252 char *s; 3253 int err; 3254 3255 if (d->btf->strs_deduped) 3256 return 0; 3257 3258 /* temporarily switch to use btf_dedup's strs_data for strings for hash 3259 * functions; later we'll just transfer hashmap to struct btf as is, 3260 * along the strs_data 3261 */ 3262 d->btf->strs_data_ptr = &d->strs_data; 3263 3264 d->strs_hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, d->btf); 3265 if (IS_ERR(d->strs_hash)) { 3266 err = PTR_ERR(d->strs_hash); 3267 d->strs_hash = NULL; 3268 goto err_out; 3269 } 3270 3271 if (!d->btf->base_btf) { 3272 s = btf_add_mem(&d->strs_data, &d->strs_cap, 1, d->strs_len, BTF_MAX_STR_OFFSET, 1); 3273 if (!s) 3274 return -ENOMEM; 3275 /* initial empty string */ 3276 s[0] = 0; 3277 d->strs_len = 1; 3278 3279 /* insert empty string; we won't be looking it up during strings 3280 * dedup, but it's good to have it for generic BTF string lookups 3281 */ 3282 err = hashmap__insert(d->strs_hash, (void *)0, (void *)0, 3283 HASHMAP_ADD, NULL, NULL); 3284 if (err) 3285 goto err_out; 3286 } 3287 3288 /* remap string offsets */ 3289 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3290 if (err) 3291 goto err_out; 3292 3293 /* replace BTF string data and hash with deduped ones */ 3294 free(d->btf->strs_data); 3295 hashmap__free(d->btf->strs_hash); 3296 d->btf->strs_data = d->strs_data; 3297 d->btf->strs_data_cap = d->strs_cap; 3298 d->btf->hdr->str_len = d->strs_len; 3299 d->btf->strs_hash = d->strs_hash; 3300 /* now point strs_data_ptr back to btf->strs_data */ 3301 d->btf->strs_data_ptr = &d->btf->strs_data; 3302 3303 d->strs_data = d->strs_hash = NULL; 3304 d->strs_len = d->strs_cap = 0; 3305 d->btf->strs_deduped = true; 3306 return 0; 3307 3308 err_out: 3309 free(d->strs_data); 3310 hashmap__free(d->strs_hash); 3311 d->strs_data = d->strs_hash = NULL; 3312 d->strs_len = d->strs_cap = 0; 3313 3314 /* restore strings pointer for existing d->btf->strs_hash back */ 3315 d->btf->strs_data_ptr = &d->strs_data; 3316 3317 return err; 3318 } 3319 3320 static long btf_hash_common(struct btf_type *t) 3321 { 3322 long h; 3323 3324 h = hash_combine(0, t->name_off); 3325 h = hash_combine(h, t->info); 3326 h = hash_combine(h, t->size); 3327 return h; 3328 } 3329 3330 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3331 { 3332 return t1->name_off == t2->name_off && 3333 t1->info == t2->info && 3334 t1->size == t2->size; 3335 } 3336 3337 /* Calculate type signature hash of INT. */ 3338 static long btf_hash_int(struct btf_type *t) 3339 { 3340 __u32 info = *(__u32 *)(t + 1); 3341 long h; 3342 3343 h = btf_hash_common(t); 3344 h = hash_combine(h, info); 3345 return h; 3346 } 3347 3348 /* Check structural equality of two INTs. */ 3349 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3350 { 3351 __u32 info1, info2; 3352 3353 if (!btf_equal_common(t1, t2)) 3354 return false; 3355 info1 = *(__u32 *)(t1 + 1); 3356 info2 = *(__u32 *)(t2 + 1); 3357 return info1 == info2; 3358 } 3359 3360 /* Calculate type signature hash of ENUM. */ 3361 static long btf_hash_enum(struct btf_type *t) 3362 { 3363 long h; 3364 3365 /* don't hash vlen and enum members to support enum fwd resolving */ 3366 h = hash_combine(0, t->name_off); 3367 h = hash_combine(h, t->info & ~0xffff); 3368 h = hash_combine(h, t->size); 3369 return h; 3370 } 3371 3372 /* Check structural equality of two ENUMs. */ 3373 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3374 { 3375 const struct btf_enum *m1, *m2; 3376 __u16 vlen; 3377 int i; 3378 3379 if (!btf_equal_common(t1, t2)) 3380 return false; 3381 3382 vlen = btf_vlen(t1); 3383 m1 = btf_enum(t1); 3384 m2 = btf_enum(t2); 3385 for (i = 0; i < vlen; i++) { 3386 if (m1->name_off != m2->name_off || m1->val != m2->val) 3387 return false; 3388 m1++; 3389 m2++; 3390 } 3391 return true; 3392 } 3393 3394 static inline bool btf_is_enum_fwd(struct btf_type *t) 3395 { 3396 return btf_is_enum(t) && btf_vlen(t) == 0; 3397 } 3398 3399 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3400 { 3401 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3402 return btf_equal_enum(t1, t2); 3403 /* ignore vlen when comparing */ 3404 return t1->name_off == t2->name_off && 3405 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3406 t1->size == t2->size; 3407 } 3408 3409 /* 3410 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3411 * as referenced type IDs equivalence is established separately during type 3412 * graph equivalence check algorithm. 3413 */ 3414 static long btf_hash_struct(struct btf_type *t) 3415 { 3416 const struct btf_member *member = btf_members(t); 3417 __u32 vlen = btf_vlen(t); 3418 long h = btf_hash_common(t); 3419 int i; 3420 3421 for (i = 0; i < vlen; i++) { 3422 h = hash_combine(h, member->name_off); 3423 h = hash_combine(h, member->offset); 3424 /* no hashing of referenced type ID, it can be unresolved yet */ 3425 member++; 3426 } 3427 return h; 3428 } 3429 3430 /* 3431 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3432 * IDs. This check is performed during type graph equivalence check and 3433 * referenced types equivalence is checked separately. 3434 */ 3435 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3436 { 3437 const struct btf_member *m1, *m2; 3438 __u16 vlen; 3439 int i; 3440 3441 if (!btf_equal_common(t1, t2)) 3442 return false; 3443 3444 vlen = btf_vlen(t1); 3445 m1 = btf_members(t1); 3446 m2 = btf_members(t2); 3447 for (i = 0; i < vlen; i++) { 3448 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3449 return false; 3450 m1++; 3451 m2++; 3452 } 3453 return true; 3454 } 3455 3456 /* 3457 * Calculate type signature hash of ARRAY, including referenced type IDs, 3458 * under assumption that they were already resolved to canonical type IDs and 3459 * are not going to change. 3460 */ 3461 static long btf_hash_array(struct btf_type *t) 3462 { 3463 const struct btf_array *info = btf_array(t); 3464 long h = btf_hash_common(t); 3465 3466 h = hash_combine(h, info->type); 3467 h = hash_combine(h, info->index_type); 3468 h = hash_combine(h, info->nelems); 3469 return h; 3470 } 3471 3472 /* 3473 * Check exact equality of two ARRAYs, taking into account referenced 3474 * type IDs, under assumption that they were already resolved to canonical 3475 * type IDs and are not going to change. 3476 * This function is called during reference types deduplication to compare 3477 * ARRAY to potential canonical representative. 3478 */ 3479 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3480 { 3481 const struct btf_array *info1, *info2; 3482 3483 if (!btf_equal_common(t1, t2)) 3484 return false; 3485 3486 info1 = btf_array(t1); 3487 info2 = btf_array(t2); 3488 return info1->type == info2->type && 3489 info1->index_type == info2->index_type && 3490 info1->nelems == info2->nelems; 3491 } 3492 3493 /* 3494 * Check structural compatibility of two ARRAYs, ignoring referenced type 3495 * IDs. This check is performed during type graph equivalence check and 3496 * referenced types equivalence is checked separately. 3497 */ 3498 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3499 { 3500 if (!btf_equal_common(t1, t2)) 3501 return false; 3502 3503 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3504 } 3505 3506 /* 3507 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3508 * under assumption that they were already resolved to canonical type IDs and 3509 * are not going to change. 3510 */ 3511 static long btf_hash_fnproto(struct btf_type *t) 3512 { 3513 const struct btf_param *member = btf_params(t); 3514 __u16 vlen = btf_vlen(t); 3515 long h = btf_hash_common(t); 3516 int i; 3517 3518 for (i = 0; i < vlen; i++) { 3519 h = hash_combine(h, member->name_off); 3520 h = hash_combine(h, member->type); 3521 member++; 3522 } 3523 return h; 3524 } 3525 3526 /* 3527 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3528 * type IDs, under assumption that they were already resolved to canonical 3529 * type IDs and are not going to change. 3530 * This function is called during reference types deduplication to compare 3531 * FUNC_PROTO to potential canonical representative. 3532 */ 3533 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3534 { 3535 const struct btf_param *m1, *m2; 3536 __u16 vlen; 3537 int i; 3538 3539 if (!btf_equal_common(t1, t2)) 3540 return false; 3541 3542 vlen = btf_vlen(t1); 3543 m1 = btf_params(t1); 3544 m2 = btf_params(t2); 3545 for (i = 0; i < vlen; i++) { 3546 if (m1->name_off != m2->name_off || m1->type != m2->type) 3547 return false; 3548 m1++; 3549 m2++; 3550 } 3551 return true; 3552 } 3553 3554 /* 3555 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3556 * IDs. This check is performed during type graph equivalence check and 3557 * referenced types equivalence is checked separately. 3558 */ 3559 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3560 { 3561 const struct btf_param *m1, *m2; 3562 __u16 vlen; 3563 int i; 3564 3565 /* skip return type ID */ 3566 if (t1->name_off != t2->name_off || t1->info != t2->info) 3567 return false; 3568 3569 vlen = btf_vlen(t1); 3570 m1 = btf_params(t1); 3571 m2 = btf_params(t2); 3572 for (i = 0; i < vlen; i++) { 3573 if (m1->name_off != m2->name_off) 3574 return false; 3575 m1++; 3576 m2++; 3577 } 3578 return true; 3579 } 3580 3581 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3582 * types and initializing the rest of the state (canonical type mapping) for 3583 * the fixed base BTF part. 3584 */ 3585 static int btf_dedup_prep(struct btf_dedup *d) 3586 { 3587 struct btf_type *t; 3588 int type_id; 3589 long h; 3590 3591 if (!d->btf->base_btf) 3592 return 0; 3593 3594 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3595 t = btf_type_by_id(d->btf, type_id); 3596 3597 /* all base BTF types are self-canonical by definition */ 3598 d->map[type_id] = type_id; 3599 3600 switch (btf_kind(t)) { 3601 case BTF_KIND_VAR: 3602 case BTF_KIND_DATASEC: 3603 /* VAR and DATASEC are never hash/deduplicated */ 3604 continue; 3605 case BTF_KIND_CONST: 3606 case BTF_KIND_VOLATILE: 3607 case BTF_KIND_RESTRICT: 3608 case BTF_KIND_PTR: 3609 case BTF_KIND_FWD: 3610 case BTF_KIND_TYPEDEF: 3611 case BTF_KIND_FUNC: 3612 h = btf_hash_common(t); 3613 break; 3614 case BTF_KIND_INT: 3615 h = btf_hash_int(t); 3616 break; 3617 case BTF_KIND_ENUM: 3618 h = btf_hash_enum(t); 3619 break; 3620 case BTF_KIND_STRUCT: 3621 case BTF_KIND_UNION: 3622 h = btf_hash_struct(t); 3623 break; 3624 case BTF_KIND_ARRAY: 3625 h = btf_hash_array(t); 3626 break; 3627 case BTF_KIND_FUNC_PROTO: 3628 h = btf_hash_fnproto(t); 3629 break; 3630 default: 3631 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3632 return -EINVAL; 3633 } 3634 if (btf_dedup_table_add(d, h, type_id)) 3635 return -ENOMEM; 3636 } 3637 3638 return 0; 3639 } 3640 3641 /* 3642 * Deduplicate primitive types, that can't reference other types, by calculating 3643 * their type signature hash and comparing them with any possible canonical 3644 * candidate. If no canonical candidate matches, type itself is marked as 3645 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3646 */ 3647 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3648 { 3649 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3650 struct hashmap_entry *hash_entry; 3651 struct btf_type *cand; 3652 /* if we don't find equivalent type, then we are canonical */ 3653 __u32 new_id = type_id; 3654 __u32 cand_id; 3655 long h; 3656 3657 switch (btf_kind(t)) { 3658 case BTF_KIND_CONST: 3659 case BTF_KIND_VOLATILE: 3660 case BTF_KIND_RESTRICT: 3661 case BTF_KIND_PTR: 3662 case BTF_KIND_TYPEDEF: 3663 case BTF_KIND_ARRAY: 3664 case BTF_KIND_STRUCT: 3665 case BTF_KIND_UNION: 3666 case BTF_KIND_FUNC: 3667 case BTF_KIND_FUNC_PROTO: 3668 case BTF_KIND_VAR: 3669 case BTF_KIND_DATASEC: 3670 return 0; 3671 3672 case BTF_KIND_INT: 3673 h = btf_hash_int(t); 3674 for_each_dedup_cand(d, hash_entry, h) { 3675 cand_id = (__u32)(long)hash_entry->value; 3676 cand = btf_type_by_id(d->btf, cand_id); 3677 if (btf_equal_int(t, cand)) { 3678 new_id = cand_id; 3679 break; 3680 } 3681 } 3682 break; 3683 3684 case BTF_KIND_ENUM: 3685 h = btf_hash_enum(t); 3686 for_each_dedup_cand(d, hash_entry, h) { 3687 cand_id = (__u32)(long)hash_entry->value; 3688 cand = btf_type_by_id(d->btf, cand_id); 3689 if (btf_equal_enum(t, cand)) { 3690 new_id = cand_id; 3691 break; 3692 } 3693 if (d->opts.dont_resolve_fwds) 3694 continue; 3695 if (btf_compat_enum(t, cand)) { 3696 if (btf_is_enum_fwd(t)) { 3697 /* resolve fwd to full enum */ 3698 new_id = cand_id; 3699 break; 3700 } 3701 /* resolve canonical enum fwd to full enum */ 3702 d->map[cand_id] = type_id; 3703 } 3704 } 3705 break; 3706 3707 case BTF_KIND_FWD: 3708 h = btf_hash_common(t); 3709 for_each_dedup_cand(d, hash_entry, h) { 3710 cand_id = (__u32)(long)hash_entry->value; 3711 cand = btf_type_by_id(d->btf, cand_id); 3712 if (btf_equal_common(t, cand)) { 3713 new_id = cand_id; 3714 break; 3715 } 3716 } 3717 break; 3718 3719 default: 3720 return -EINVAL; 3721 } 3722 3723 d->map[type_id] = new_id; 3724 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3725 return -ENOMEM; 3726 3727 return 0; 3728 } 3729 3730 static int btf_dedup_prim_types(struct btf_dedup *d) 3731 { 3732 int i, err; 3733 3734 for (i = 0; i < d->btf->nr_types; i++) { 3735 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3736 if (err) 3737 return err; 3738 } 3739 return 0; 3740 } 3741 3742 /* 3743 * Check whether type is already mapped into canonical one (could be to itself). 3744 */ 3745 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3746 { 3747 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3748 } 3749 3750 /* 3751 * Resolve type ID into its canonical type ID, if any; otherwise return original 3752 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3753 * STRUCT/UNION link and resolve it into canonical type ID as well. 3754 */ 3755 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3756 { 3757 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3758 type_id = d->map[type_id]; 3759 return type_id; 3760 } 3761 3762 /* 3763 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3764 * type ID. 3765 */ 3766 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3767 { 3768 __u32 orig_type_id = type_id; 3769 3770 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3771 return type_id; 3772 3773 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3774 type_id = d->map[type_id]; 3775 3776 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3777 return type_id; 3778 3779 return orig_type_id; 3780 } 3781 3782 3783 static inline __u16 btf_fwd_kind(struct btf_type *t) 3784 { 3785 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3786 } 3787 3788 /* Check if given two types are identical ARRAY definitions */ 3789 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3790 { 3791 struct btf_type *t1, *t2; 3792 3793 t1 = btf_type_by_id(d->btf, id1); 3794 t2 = btf_type_by_id(d->btf, id2); 3795 if (!btf_is_array(t1) || !btf_is_array(t2)) 3796 return 0; 3797 3798 return btf_equal_array(t1, t2); 3799 } 3800 3801 /* 3802 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3803 * call it "candidate graph" in this description for brevity) to a type graph 3804 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3805 * here, though keep in mind that not all types in canonical graph are 3806 * necessarily canonical representatives themselves, some of them might be 3807 * duplicates or its uniqueness might not have been established yet). 3808 * Returns: 3809 * - >0, if type graphs are equivalent; 3810 * - 0, if not equivalent; 3811 * - <0, on error. 3812 * 3813 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3814 * equivalence of BTF types at each step. If at any point BTF types in candidate 3815 * and canonical graphs are not compatible structurally, whole graphs are 3816 * incompatible. If types are structurally equivalent (i.e., all information 3817 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3818 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3819 * If a type references other types, then those referenced types are checked 3820 * for equivalence recursively. 3821 * 3822 * During DFS traversal, if we find that for current `canon_id` type we 3823 * already have some mapping in hypothetical map, we check for two possible 3824 * situations: 3825 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3826 * happen when type graphs have cycles. In this case we assume those two 3827 * types are equivalent. 3828 * - `canon_id` is mapped to different type. This is contradiction in our 3829 * hypothetical mapping, because same graph in canonical graph corresponds 3830 * to two different types in candidate graph, which for equivalent type 3831 * graphs shouldn't happen. This condition terminates equivalence check 3832 * with negative result. 3833 * 3834 * If type graphs traversal exhausts types to check and find no contradiction, 3835 * then type graphs are equivalent. 3836 * 3837 * When checking types for equivalence, there is one special case: FWD types. 3838 * If FWD type resolution is allowed and one of the types (either from canonical 3839 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3840 * flag) and their names match, hypothetical mapping is updated to point from 3841 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3842 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3843 * 3844 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3845 * if there are two exactly named (or anonymous) structs/unions that are 3846 * compatible structurally, one of which has FWD field, while other is concrete 3847 * STRUCT/UNION, but according to C sources they are different structs/unions 3848 * that are referencing different types with the same name. This is extremely 3849 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3850 * this logic is causing problems. 3851 * 3852 * Doing FWD resolution means that both candidate and/or canonical graphs can 3853 * consists of portions of the graph that come from multiple compilation units. 3854 * This is due to the fact that types within single compilation unit are always 3855 * deduplicated and FWDs are already resolved, if referenced struct/union 3856 * definiton is available. So, if we had unresolved FWD and found corresponding 3857 * STRUCT/UNION, they will be from different compilation units. This 3858 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3859 * type graph will likely have at least two different BTF types that describe 3860 * same type (e.g., most probably there will be two different BTF types for the 3861 * same 'int' primitive type) and could even have "overlapping" parts of type 3862 * graph that describe same subset of types. 3863 * 3864 * This in turn means that our assumption that each type in canonical graph 3865 * must correspond to exactly one type in candidate graph might not hold 3866 * anymore and will make it harder to detect contradictions using hypothetical 3867 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3868 * resolution only in canonical graph. FWDs in candidate graphs are never 3869 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3870 * that can occur: 3871 * - Both types in canonical and candidate graphs are FWDs. If they are 3872 * structurally equivalent, then they can either be both resolved to the 3873 * same STRUCT/UNION or not resolved at all. In both cases they are 3874 * equivalent and there is no need to resolve FWD on candidate side. 3875 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3876 * so nothing to resolve as well, algorithm will check equivalence anyway. 3877 * - Type in canonical graph is FWD, while type in candidate is concrete 3878 * STRUCT/UNION. In this case candidate graph comes from single compilation 3879 * unit, so there is exactly one BTF type for each unique C type. After 3880 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3881 * in canonical graph mapping to single BTF type in candidate graph, but 3882 * because hypothetical mapping maps from canonical to candidate types, it's 3883 * alright, and we still maintain the property of having single `canon_id` 3884 * mapping to single `cand_id` (there could be two different `canon_id` 3885 * mapped to the same `cand_id`, but it's not contradictory). 3886 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3887 * graph is FWD. In this case we are just going to check compatibility of 3888 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3889 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3890 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3891 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3892 * canonical graph. 3893 */ 3894 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3895 __u32 canon_id) 3896 { 3897 struct btf_type *cand_type; 3898 struct btf_type *canon_type; 3899 __u32 hypot_type_id; 3900 __u16 cand_kind; 3901 __u16 canon_kind; 3902 int i, eq; 3903 3904 /* if both resolve to the same canonical, they must be equivalent */ 3905 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3906 return 1; 3907 3908 canon_id = resolve_fwd_id(d, canon_id); 3909 3910 hypot_type_id = d->hypot_map[canon_id]; 3911 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3912 /* In some cases compiler will generate different DWARF types 3913 * for *identical* array type definitions and use them for 3914 * different fields within the *same* struct. This breaks type 3915 * equivalence check, which makes an assumption that candidate 3916 * types sub-graph has a consistent and deduped-by-compiler 3917 * types within a single CU. So work around that by explicitly 3918 * allowing identical array types here. 3919 */ 3920 return hypot_type_id == cand_id || 3921 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3922 } 3923 3924 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3925 return -ENOMEM; 3926 3927 cand_type = btf_type_by_id(d->btf, cand_id); 3928 canon_type = btf_type_by_id(d->btf, canon_id); 3929 cand_kind = btf_kind(cand_type); 3930 canon_kind = btf_kind(canon_type); 3931 3932 if (cand_type->name_off != canon_type->name_off) 3933 return 0; 3934 3935 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3936 if (!d->opts.dont_resolve_fwds 3937 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3938 && cand_kind != canon_kind) { 3939 __u16 real_kind; 3940 __u16 fwd_kind; 3941 3942 if (cand_kind == BTF_KIND_FWD) { 3943 real_kind = canon_kind; 3944 fwd_kind = btf_fwd_kind(cand_type); 3945 } else { 3946 real_kind = cand_kind; 3947 fwd_kind = btf_fwd_kind(canon_type); 3948 /* we'd need to resolve base FWD to STRUCT/UNION */ 3949 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3950 d->hypot_adjust_canon = true; 3951 } 3952 return fwd_kind == real_kind; 3953 } 3954 3955 if (cand_kind != canon_kind) 3956 return 0; 3957 3958 switch (cand_kind) { 3959 case BTF_KIND_INT: 3960 return btf_equal_int(cand_type, canon_type); 3961 3962 case BTF_KIND_ENUM: 3963 if (d->opts.dont_resolve_fwds) 3964 return btf_equal_enum(cand_type, canon_type); 3965 else 3966 return btf_compat_enum(cand_type, canon_type); 3967 3968 case BTF_KIND_FWD: 3969 return btf_equal_common(cand_type, canon_type); 3970 3971 case BTF_KIND_CONST: 3972 case BTF_KIND_VOLATILE: 3973 case BTF_KIND_RESTRICT: 3974 case BTF_KIND_PTR: 3975 case BTF_KIND_TYPEDEF: 3976 case BTF_KIND_FUNC: 3977 if (cand_type->info != canon_type->info) 3978 return 0; 3979 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3980 3981 case BTF_KIND_ARRAY: { 3982 const struct btf_array *cand_arr, *canon_arr; 3983 3984 if (!btf_compat_array(cand_type, canon_type)) 3985 return 0; 3986 cand_arr = btf_array(cand_type); 3987 canon_arr = btf_array(canon_type); 3988 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 3989 if (eq <= 0) 3990 return eq; 3991 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 3992 } 3993 3994 case BTF_KIND_STRUCT: 3995 case BTF_KIND_UNION: { 3996 const struct btf_member *cand_m, *canon_m; 3997 __u16 vlen; 3998 3999 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4000 return 0; 4001 vlen = btf_vlen(cand_type); 4002 cand_m = btf_members(cand_type); 4003 canon_m = btf_members(canon_type); 4004 for (i = 0; i < vlen; i++) { 4005 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4006 if (eq <= 0) 4007 return eq; 4008 cand_m++; 4009 canon_m++; 4010 } 4011 4012 return 1; 4013 } 4014 4015 case BTF_KIND_FUNC_PROTO: { 4016 const struct btf_param *cand_p, *canon_p; 4017 __u16 vlen; 4018 4019 if (!btf_compat_fnproto(cand_type, canon_type)) 4020 return 0; 4021 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4022 if (eq <= 0) 4023 return eq; 4024 vlen = btf_vlen(cand_type); 4025 cand_p = btf_params(cand_type); 4026 canon_p = btf_params(canon_type); 4027 for (i = 0; i < vlen; i++) { 4028 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4029 if (eq <= 0) 4030 return eq; 4031 cand_p++; 4032 canon_p++; 4033 } 4034 return 1; 4035 } 4036 4037 default: 4038 return -EINVAL; 4039 } 4040 return 0; 4041 } 4042 4043 /* 4044 * Use hypothetical mapping, produced by successful type graph equivalence 4045 * check, to augment existing struct/union canonical mapping, where possible. 4046 * 4047 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4048 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4049 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4050 * we are recording the mapping anyway. As opposed to carefulness required 4051 * for struct/union correspondence mapping (described below), for FWD resolution 4052 * it's not important, as by the time that FWD type (reference type) will be 4053 * deduplicated all structs/unions will be deduped already anyway. 4054 * 4055 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4056 * not required for correctness. It needs to be done carefully to ensure that 4057 * struct/union from candidate's type graph is not mapped into corresponding 4058 * struct/union from canonical type graph that itself hasn't been resolved into 4059 * canonical representative. The only guarantee we have is that canonical 4060 * struct/union was determined as canonical and that won't change. But any 4061 * types referenced through that struct/union fields could have been not yet 4062 * resolved, so in case like that it's too early to establish any kind of 4063 * correspondence between structs/unions. 4064 * 4065 * No canonical correspondence is derived for primitive types (they are already 4066 * deduplicated completely already anyway) or reference types (they rely on 4067 * stability of struct/union canonical relationship for equivalence checks). 4068 */ 4069 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4070 { 4071 __u32 canon_type_id, targ_type_id; 4072 __u16 t_kind, c_kind; 4073 __u32 t_id, c_id; 4074 int i; 4075 4076 for (i = 0; i < d->hypot_cnt; i++) { 4077 canon_type_id = d->hypot_list[i]; 4078 targ_type_id = d->hypot_map[canon_type_id]; 4079 t_id = resolve_type_id(d, targ_type_id); 4080 c_id = resolve_type_id(d, canon_type_id); 4081 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4082 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4083 /* 4084 * Resolve FWD into STRUCT/UNION. 4085 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4086 * mapped to canonical representative (as opposed to 4087 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4088 * eventually that struct is going to be mapped and all resolved 4089 * FWDs will automatically resolve to correct canonical 4090 * representative. This will happen before ref type deduping, 4091 * which critically depends on stability of these mapping. This 4092 * stability is not a requirement for STRUCT/UNION equivalence 4093 * checks, though. 4094 */ 4095 4096 /* if it's the split BTF case, we still need to point base FWD 4097 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4098 * will be resolved against base FWD. If we don't point base 4099 * canonical FWD to the resolved STRUCT/UNION, then all the 4100 * FWDs in split BTF won't be correctly resolved to a proper 4101 * STRUCT/UNION. 4102 */ 4103 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4104 d->map[c_id] = t_id; 4105 4106 /* if graph equivalence determined that we'd need to adjust 4107 * base canonical types, then we need to only point base FWDs 4108 * to STRUCTs/UNIONs and do no more modifications. For all 4109 * other purposes the type graphs were not equivalent. 4110 */ 4111 if (d->hypot_adjust_canon) 4112 continue; 4113 4114 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4115 d->map[t_id] = c_id; 4116 4117 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4118 c_kind != BTF_KIND_FWD && 4119 is_type_mapped(d, c_id) && 4120 !is_type_mapped(d, t_id)) { 4121 /* 4122 * as a perf optimization, we can map struct/union 4123 * that's part of type graph we just verified for 4124 * equivalence. We can do that for struct/union that has 4125 * canonical representative only, though. 4126 */ 4127 d->map[t_id] = c_id; 4128 } 4129 } 4130 } 4131 4132 /* 4133 * Deduplicate struct/union types. 4134 * 4135 * For each struct/union type its type signature hash is calculated, taking 4136 * into account type's name, size, number, order and names of fields, but 4137 * ignoring type ID's referenced from fields, because they might not be deduped 4138 * completely until after reference types deduplication phase. This type hash 4139 * is used to iterate over all potential canonical types, sharing same hash. 4140 * For each canonical candidate we check whether type graphs that they form 4141 * (through referenced types in fields and so on) are equivalent using algorithm 4142 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4143 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4144 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4145 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4146 * potentially map other structs/unions to their canonical representatives, 4147 * if such relationship hasn't yet been established. This speeds up algorithm 4148 * by eliminating some of the duplicate work. 4149 * 4150 * If no matching canonical representative was found, struct/union is marked 4151 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4152 * for further look ups. 4153 */ 4154 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4155 { 4156 struct btf_type *cand_type, *t; 4157 struct hashmap_entry *hash_entry; 4158 /* if we don't find equivalent type, then we are canonical */ 4159 __u32 new_id = type_id; 4160 __u16 kind; 4161 long h; 4162 4163 /* already deduped or is in process of deduping (loop detected) */ 4164 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4165 return 0; 4166 4167 t = btf_type_by_id(d->btf, type_id); 4168 kind = btf_kind(t); 4169 4170 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4171 return 0; 4172 4173 h = btf_hash_struct(t); 4174 for_each_dedup_cand(d, hash_entry, h) { 4175 __u32 cand_id = (__u32)(long)hash_entry->value; 4176 int eq; 4177 4178 /* 4179 * Even though btf_dedup_is_equiv() checks for 4180 * btf_shallow_equal_struct() internally when checking two 4181 * structs (unions) for equivalence, we need to guard here 4182 * from picking matching FWD type as a dedup candidate. 4183 * This can happen due to hash collision. In such case just 4184 * relying on btf_dedup_is_equiv() would lead to potentially 4185 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4186 * FWD and compatible STRUCT/UNION are considered equivalent. 4187 */ 4188 cand_type = btf_type_by_id(d->btf, cand_id); 4189 if (!btf_shallow_equal_struct(t, cand_type)) 4190 continue; 4191 4192 btf_dedup_clear_hypot_map(d); 4193 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4194 if (eq < 0) 4195 return eq; 4196 if (!eq) 4197 continue; 4198 btf_dedup_merge_hypot_map(d); 4199 if (d->hypot_adjust_canon) /* not really equivalent */ 4200 continue; 4201 new_id = cand_id; 4202 break; 4203 } 4204 4205 d->map[type_id] = new_id; 4206 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4207 return -ENOMEM; 4208 4209 return 0; 4210 } 4211 4212 static int btf_dedup_struct_types(struct btf_dedup *d) 4213 { 4214 int i, err; 4215 4216 for (i = 0; i < d->btf->nr_types; i++) { 4217 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4218 if (err) 4219 return err; 4220 } 4221 return 0; 4222 } 4223 4224 /* 4225 * Deduplicate reference type. 4226 * 4227 * Once all primitive and struct/union types got deduplicated, we can easily 4228 * deduplicate all other (reference) BTF types. This is done in two steps: 4229 * 4230 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4231 * resolution can be done either immediately for primitive or struct/union types 4232 * (because they were deduped in previous two phases) or recursively for 4233 * reference types. Recursion will always terminate at either primitive or 4234 * struct/union type, at which point we can "unwind" chain of reference types 4235 * one by one. There is no danger of encountering cycles because in C type 4236 * system the only way to form type cycle is through struct/union, so any chain 4237 * of reference types, even those taking part in a type cycle, will inevitably 4238 * reach struct/union at some point. 4239 * 4240 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4241 * becomes "stable", in the sense that no further deduplication will cause 4242 * any changes to it. With that, it's now possible to calculate type's signature 4243 * hash (this time taking into account referenced type IDs) and loop over all 4244 * potential canonical representatives. If no match was found, current type 4245 * will become canonical representative of itself and will be added into 4246 * btf_dedup->dedup_table as another possible canonical representative. 4247 */ 4248 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4249 { 4250 struct hashmap_entry *hash_entry; 4251 __u32 new_id = type_id, cand_id; 4252 struct btf_type *t, *cand; 4253 /* if we don't find equivalent type, then we are representative type */ 4254 int ref_type_id; 4255 long h; 4256 4257 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4258 return -ELOOP; 4259 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4260 return resolve_type_id(d, type_id); 4261 4262 t = btf_type_by_id(d->btf, type_id); 4263 d->map[type_id] = BTF_IN_PROGRESS_ID; 4264 4265 switch (btf_kind(t)) { 4266 case BTF_KIND_CONST: 4267 case BTF_KIND_VOLATILE: 4268 case BTF_KIND_RESTRICT: 4269 case BTF_KIND_PTR: 4270 case BTF_KIND_TYPEDEF: 4271 case BTF_KIND_FUNC: 4272 ref_type_id = btf_dedup_ref_type(d, t->type); 4273 if (ref_type_id < 0) 4274 return ref_type_id; 4275 t->type = ref_type_id; 4276 4277 h = btf_hash_common(t); 4278 for_each_dedup_cand(d, hash_entry, h) { 4279 cand_id = (__u32)(long)hash_entry->value; 4280 cand = btf_type_by_id(d->btf, cand_id); 4281 if (btf_equal_common(t, cand)) { 4282 new_id = cand_id; 4283 break; 4284 } 4285 } 4286 break; 4287 4288 case BTF_KIND_ARRAY: { 4289 struct btf_array *info = btf_array(t); 4290 4291 ref_type_id = btf_dedup_ref_type(d, info->type); 4292 if (ref_type_id < 0) 4293 return ref_type_id; 4294 info->type = ref_type_id; 4295 4296 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4297 if (ref_type_id < 0) 4298 return ref_type_id; 4299 info->index_type = ref_type_id; 4300 4301 h = btf_hash_array(t); 4302 for_each_dedup_cand(d, hash_entry, h) { 4303 cand_id = (__u32)(long)hash_entry->value; 4304 cand = btf_type_by_id(d->btf, cand_id); 4305 if (btf_equal_array(t, cand)) { 4306 new_id = cand_id; 4307 break; 4308 } 4309 } 4310 break; 4311 } 4312 4313 case BTF_KIND_FUNC_PROTO: { 4314 struct btf_param *param; 4315 __u16 vlen; 4316 int i; 4317 4318 ref_type_id = btf_dedup_ref_type(d, t->type); 4319 if (ref_type_id < 0) 4320 return ref_type_id; 4321 t->type = ref_type_id; 4322 4323 vlen = btf_vlen(t); 4324 param = btf_params(t); 4325 for (i = 0; i < vlen; i++) { 4326 ref_type_id = btf_dedup_ref_type(d, param->type); 4327 if (ref_type_id < 0) 4328 return ref_type_id; 4329 param->type = ref_type_id; 4330 param++; 4331 } 4332 4333 h = btf_hash_fnproto(t); 4334 for_each_dedup_cand(d, hash_entry, h) { 4335 cand_id = (__u32)(long)hash_entry->value; 4336 cand = btf_type_by_id(d->btf, cand_id); 4337 if (btf_equal_fnproto(t, cand)) { 4338 new_id = cand_id; 4339 break; 4340 } 4341 } 4342 break; 4343 } 4344 4345 default: 4346 return -EINVAL; 4347 } 4348 4349 d->map[type_id] = new_id; 4350 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4351 return -ENOMEM; 4352 4353 return new_id; 4354 } 4355 4356 static int btf_dedup_ref_types(struct btf_dedup *d) 4357 { 4358 int i, err; 4359 4360 for (i = 0; i < d->btf->nr_types; i++) { 4361 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4362 if (err < 0) 4363 return err; 4364 } 4365 /* we won't need d->dedup_table anymore */ 4366 hashmap__free(d->dedup_table); 4367 d->dedup_table = NULL; 4368 return 0; 4369 } 4370 4371 /* 4372 * Compact types. 4373 * 4374 * After we established for each type its corresponding canonical representative 4375 * type, we now can eliminate types that are not canonical and leave only 4376 * canonical ones layed out sequentially in memory by copying them over 4377 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4378 * a map from original type ID to a new compacted type ID, which will be used 4379 * during next phase to "fix up" type IDs, referenced from struct/union and 4380 * reference types. 4381 */ 4382 static int btf_dedup_compact_types(struct btf_dedup *d) 4383 { 4384 __u32 *new_offs; 4385 __u32 next_type_id = d->btf->start_id; 4386 const struct btf_type *t; 4387 void *p; 4388 int i, id, len; 4389 4390 /* we are going to reuse hypot_map to store compaction remapping */ 4391 d->hypot_map[0] = 0; 4392 /* base BTF types are not renumbered */ 4393 for (id = 1; id < d->btf->start_id; id++) 4394 d->hypot_map[id] = id; 4395 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4396 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4397 4398 p = d->btf->types_data; 4399 4400 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4401 if (d->map[id] != id) 4402 continue; 4403 4404 t = btf__type_by_id(d->btf, id); 4405 len = btf_type_size(t); 4406 if (len < 0) 4407 return len; 4408 4409 memmove(p, t, len); 4410 d->hypot_map[id] = next_type_id; 4411 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4412 p += len; 4413 next_type_id++; 4414 } 4415 4416 /* shrink struct btf's internal types index and update btf_header */ 4417 d->btf->nr_types = next_type_id - d->btf->start_id; 4418 d->btf->type_offs_cap = d->btf->nr_types; 4419 d->btf->hdr->type_len = p - d->btf->types_data; 4420 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4421 sizeof(*new_offs)); 4422 if (d->btf->type_offs_cap && !new_offs) 4423 return -ENOMEM; 4424 d->btf->type_offs = new_offs; 4425 d->btf->hdr->str_off = d->btf->hdr->type_len; 4426 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4427 return 0; 4428 } 4429 4430 /* 4431 * Figure out final (deduplicated and compacted) type ID for provided original 4432 * `type_id` by first resolving it into corresponding canonical type ID and 4433 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4434 * which is populated during compaction phase. 4435 */ 4436 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 4437 { 4438 __u32 resolved_type_id, new_type_id; 4439 4440 resolved_type_id = resolve_type_id(d, type_id); 4441 new_type_id = d->hypot_map[resolved_type_id]; 4442 if (new_type_id > BTF_MAX_NR_TYPES) 4443 return -EINVAL; 4444 return new_type_id; 4445 } 4446 4447 /* 4448 * Remap referenced type IDs into deduped type IDs. 4449 * 4450 * After BTF types are deduplicated and compacted, their final type IDs may 4451 * differ from original ones. The map from original to a corresponding 4452 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4453 * compaction phase. During remapping phase we are rewriting all type IDs 4454 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4455 * their final deduped type IDs. 4456 */ 4457 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 4458 { 4459 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4460 int i, r; 4461 4462 switch (btf_kind(t)) { 4463 case BTF_KIND_INT: 4464 case BTF_KIND_ENUM: 4465 break; 4466 4467 case BTF_KIND_FWD: 4468 case BTF_KIND_CONST: 4469 case BTF_KIND_VOLATILE: 4470 case BTF_KIND_RESTRICT: 4471 case BTF_KIND_PTR: 4472 case BTF_KIND_TYPEDEF: 4473 case BTF_KIND_FUNC: 4474 case BTF_KIND_VAR: 4475 r = btf_dedup_remap_type_id(d, t->type); 4476 if (r < 0) 4477 return r; 4478 t->type = r; 4479 break; 4480 4481 case BTF_KIND_ARRAY: { 4482 struct btf_array *arr_info = btf_array(t); 4483 4484 r = btf_dedup_remap_type_id(d, arr_info->type); 4485 if (r < 0) 4486 return r; 4487 arr_info->type = r; 4488 r = btf_dedup_remap_type_id(d, arr_info->index_type); 4489 if (r < 0) 4490 return r; 4491 arr_info->index_type = r; 4492 break; 4493 } 4494 4495 case BTF_KIND_STRUCT: 4496 case BTF_KIND_UNION: { 4497 struct btf_member *member = btf_members(t); 4498 __u16 vlen = btf_vlen(t); 4499 4500 for (i = 0; i < vlen; i++) { 4501 r = btf_dedup_remap_type_id(d, member->type); 4502 if (r < 0) 4503 return r; 4504 member->type = r; 4505 member++; 4506 } 4507 break; 4508 } 4509 4510 case BTF_KIND_FUNC_PROTO: { 4511 struct btf_param *param = btf_params(t); 4512 __u16 vlen = btf_vlen(t); 4513 4514 r = btf_dedup_remap_type_id(d, t->type); 4515 if (r < 0) 4516 return r; 4517 t->type = r; 4518 4519 for (i = 0; i < vlen; i++) { 4520 r = btf_dedup_remap_type_id(d, param->type); 4521 if (r < 0) 4522 return r; 4523 param->type = r; 4524 param++; 4525 } 4526 break; 4527 } 4528 4529 case BTF_KIND_DATASEC: { 4530 struct btf_var_secinfo *var = btf_var_secinfos(t); 4531 __u16 vlen = btf_vlen(t); 4532 4533 for (i = 0; i < vlen; i++) { 4534 r = btf_dedup_remap_type_id(d, var->type); 4535 if (r < 0) 4536 return r; 4537 var->type = r; 4538 var++; 4539 } 4540 break; 4541 } 4542 4543 default: 4544 return -EINVAL; 4545 } 4546 4547 return 0; 4548 } 4549 4550 static int btf_dedup_remap_types(struct btf_dedup *d) 4551 { 4552 int i, r; 4553 4554 for (i = 0; i < d->btf->nr_types; i++) { 4555 r = btf_dedup_remap_type(d, d->btf->start_id + i); 4556 if (r < 0) 4557 return r; 4558 } 4559 return 0; 4560 } 4561 4562 /* 4563 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4564 * data out of it to use for target BTF. 4565 */ 4566 struct btf *libbpf_find_kernel_btf(void) 4567 { 4568 struct { 4569 const char *path_fmt; 4570 bool raw_btf; 4571 } locations[] = { 4572 /* try canonical vmlinux BTF through sysfs first */ 4573 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4574 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4575 { "/boot/vmlinux-%1$s" }, 4576 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4577 { "/lib/modules/%1$s/build/vmlinux" }, 4578 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4579 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4580 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4581 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4582 }; 4583 char path[PATH_MAX + 1]; 4584 struct utsname buf; 4585 struct btf *btf; 4586 int i; 4587 4588 uname(&buf); 4589 4590 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4591 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4592 4593 if (access(path, R_OK)) 4594 continue; 4595 4596 if (locations[i].raw_btf) 4597 btf = btf__parse_raw(path); 4598 else 4599 btf = btf__parse_elf(path, NULL); 4600 4601 pr_debug("loading kernel BTF '%s': %ld\n", 4602 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 4603 if (IS_ERR(btf)) 4604 continue; 4605 4606 return btf; 4607 } 4608 4609 pr_warn("failed to find valid kernel BTF\n"); 4610 return ERR_PTR(-ESRCH); 4611 } 4612