xref: /openbmc/linux/tools/lib/bpf/bpf_core_read.h (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 #ifndef __BPF_CORE_READ_H__
3 #define __BPF_CORE_READ_H__
4 
5 /*
6  * enum bpf_field_info_kind is passed as a second argument into
7  * __builtin_preserve_field_info() built-in to get a specific aspect of
8  * a field, captured as a first argument. __builtin_preserve_field_info(field,
9  * info_kind) returns __u32 integer and produces BTF field relocation, which
10  * is understood and processed by libbpf during BPF object loading. See
11  * selftests/bpf for examples.
12  */
13 enum bpf_field_info_kind {
14 	BPF_FIELD_BYTE_OFFSET = 0,	/* field byte offset */
15 	BPF_FIELD_BYTE_SIZE = 1,
16 	BPF_FIELD_EXISTS = 2,		/* field existence in target kernel */
17 	BPF_FIELD_SIGNED = 3,
18 	BPF_FIELD_LSHIFT_U64 = 4,
19 	BPF_FIELD_RSHIFT_U64 = 5,
20 };
21 
22 #define __CORE_RELO(src, field, info)					      \
23 	__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
24 
25 #if __BYTE_ORDER == __LITTLE_ENDIAN
26 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
27 	bpf_probe_read((void *)dst,					      \
28 		       __CORE_RELO(src, fld, BYTE_SIZE),		      \
29 		       (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
30 #else
31 /* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
32  * for big-endian we need to adjust destination pointer accordingly, based on
33  * field byte size
34  */
35 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
36 	bpf_probe_read((void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)),  \
37 		       __CORE_RELO(src, fld, BYTE_SIZE),		      \
38 		       (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
39 #endif
40 
41 /*
42  * Extract bitfield, identified by s->field, and return its value as u64.
43  * All this is done in relocatable manner, so bitfield changes such as
44  * signedness, bit size, offset changes, this will be handled automatically.
45  * This version of macro is using bpf_probe_read() to read underlying integer
46  * storage. Macro functions as an expression and its return type is
47  * bpf_probe_read()'s return value: 0, on success, <0 on error.
48  */
49 #define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({			      \
50 	unsigned long long val = 0;					      \
51 									      \
52 	__CORE_BITFIELD_PROBE_READ(&val, s, field);			      \
53 	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
54 	if (__CORE_RELO(s, field, SIGNED))				      \
55 		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
56 	else								      \
57 		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
58 	val;								      \
59 })
60 
61 /*
62  * Extract bitfield, identified by s->field, and return its value as u64.
63  * This version of macro is using direct memory reads and should be used from
64  * BPF program types that support such functionality (e.g., typed raw
65  * tracepoints).
66  */
67 #define BPF_CORE_READ_BITFIELD(s, field) ({				      \
68 	const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
69 	unsigned long long val;						      \
70 									      \
71 	switch (__CORE_RELO(s, field, BYTE_SIZE)) {			      \
72 	case 1: val = *(const unsigned char *)p;			      \
73 	case 2: val = *(const unsigned short *)p;			      \
74 	case 4: val = *(const unsigned int *)p;				      \
75 	case 8: val = *(const unsigned long long *)p;			      \
76 	}								      \
77 	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
78 	if (__CORE_RELO(s, field, SIGNED))				      \
79 		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
80 	else								      \
81 		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
82 	val;								      \
83 })
84 
85 /*
86  * Convenience macro to check that field actually exists in target kernel's.
87  * Returns:
88  *    1, if matching field is present in target kernel;
89  *    0, if no matching field found.
90  */
91 #define bpf_core_field_exists(field)					    \
92 	__builtin_preserve_field_info(field, BPF_FIELD_EXISTS)
93 
94 /*
95  * Convenience macro to get byte size of a field. Works for integers,
96  * struct/unions, pointers, arrays, and enums.
97  */
98 #define bpf_core_field_size(field)					    \
99 	__builtin_preserve_field_info(field, BPF_FIELD_BYTE_SIZE)
100 
101 /*
102  * bpf_core_read() abstracts away bpf_probe_read() call and captures offset
103  * relocation for source address using __builtin_preserve_access_index()
104  * built-in, provided by Clang.
105  *
106  * __builtin_preserve_access_index() takes as an argument an expression of
107  * taking an address of a field within struct/union. It makes compiler emit
108  * a relocation, which records BTF type ID describing root struct/union and an
109  * accessor string which describes exact embedded field that was used to take
110  * an address. See detailed description of this relocation format and
111  * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
112  *
113  * This relocation allows libbpf to adjust BPF instruction to use correct
114  * actual field offset, based on target kernel BTF type that matches original
115  * (local) BTF, used to record relocation.
116  */
117 #define bpf_core_read(dst, sz, src)					    \
118 	bpf_probe_read(dst, sz,						    \
119 		       (const void *)__builtin_preserve_access_index(src))
120 
121 /*
122  * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
123  * additionally emitting BPF CO-RE field relocation for specified source
124  * argument.
125  */
126 #define bpf_core_read_str(dst, sz, src)					    \
127 	bpf_probe_read_str(dst, sz,					    \
128 			   (const void *)__builtin_preserve_access_index(src))
129 
130 #define ___concat(a, b) a ## b
131 #define ___apply(fn, n) ___concat(fn, n)
132 #define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
133 
134 /*
135  * return number of provided arguments; used for switch-based variadic macro
136  * definitions (see ___last, ___arrow, etc below)
137  */
138 #define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
139 /*
140  * return 0 if no arguments are passed, N - otherwise; used for
141  * recursively-defined macros to specify termination (0) case, and generic
142  * (N) case (e.g., ___read_ptrs, ___core_read)
143  */
144 #define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
145 
146 #define ___last1(x) x
147 #define ___last2(a, x) x
148 #define ___last3(a, b, x) x
149 #define ___last4(a, b, c, x) x
150 #define ___last5(a, b, c, d, x) x
151 #define ___last6(a, b, c, d, e, x) x
152 #define ___last7(a, b, c, d, e, f, x) x
153 #define ___last8(a, b, c, d, e, f, g, x) x
154 #define ___last9(a, b, c, d, e, f, g, h, x) x
155 #define ___last10(a, b, c, d, e, f, g, h, i, x) x
156 #define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
157 
158 #define ___nolast2(a, _) a
159 #define ___nolast3(a, b, _) a, b
160 #define ___nolast4(a, b, c, _) a, b, c
161 #define ___nolast5(a, b, c, d, _) a, b, c, d
162 #define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
163 #define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
164 #define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
165 #define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
166 #define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
167 #define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
168 
169 #define ___arrow1(a) a
170 #define ___arrow2(a, b) a->b
171 #define ___arrow3(a, b, c) a->b->c
172 #define ___arrow4(a, b, c, d) a->b->c->d
173 #define ___arrow5(a, b, c, d, e) a->b->c->d->e
174 #define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
175 #define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
176 #define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
177 #define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
178 #define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
179 #define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
180 
181 #define ___type(...) typeof(___arrow(__VA_ARGS__))
182 
183 #define ___read(read_fn, dst, src_type, src, accessor)			    \
184 	read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
185 
186 /* "recursively" read a sequence of inner pointers using local __t var */
187 #define ___rd_first(src, a) ___read(bpf_core_read, &__t, ___type(src), src, a);
188 #define ___rd_last(...)							    \
189 	___read(bpf_core_read, &__t,					    \
190 		___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
191 #define ___rd_p1(...) const void *__t; ___rd_first(__VA_ARGS__)
192 #define ___rd_p2(...) ___rd_p1(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
193 #define ___rd_p3(...) ___rd_p2(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
194 #define ___rd_p4(...) ___rd_p3(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
195 #define ___rd_p5(...) ___rd_p4(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
196 #define ___rd_p6(...) ___rd_p5(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
197 #define ___rd_p7(...) ___rd_p6(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
198 #define ___rd_p8(...) ___rd_p7(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
199 #define ___rd_p9(...) ___rd_p8(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
200 #define ___read_ptrs(src, ...)						    \
201 	___apply(___rd_p, ___narg(__VA_ARGS__))(src, __VA_ARGS__)
202 
203 #define ___core_read0(fn, dst, src, a)					    \
204 	___read(fn, dst, ___type(src), src, a);
205 #define ___core_readN(fn, dst, src, ...)				    \
206 	___read_ptrs(src, ___nolast(__VA_ARGS__))			    \
207 	___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t,	    \
208 		___last(__VA_ARGS__));
209 #define ___core_read(fn, dst, src, a, ...)				    \
210 	___apply(___core_read, ___empty(__VA_ARGS__))(fn, dst,		    \
211 						      src, a, ##__VA_ARGS__)
212 
213 /*
214  * BPF_CORE_READ_INTO() is a more performance-conscious variant of
215  * BPF_CORE_READ(), in which final field is read into user-provided storage.
216  * See BPF_CORE_READ() below for more details on general usage.
217  */
218 #define BPF_CORE_READ_INTO(dst, src, a, ...)				    \
219 	({								    \
220 		___core_read(bpf_core_read, dst, src, a, ##__VA_ARGS__)	    \
221 	})
222 
223 /*
224  * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
225  * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
226  * corresponding error code) bpf_core_read_str() for final string read.
227  */
228 #define BPF_CORE_READ_STR_INTO(dst, src, a, ...)			    \
229 	({								    \
230 		___core_read(bpf_core_read_str, dst, src, a, ##__VA_ARGS__) \
231 	})
232 
233 /*
234  * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
235  * when there are few pointer chasing steps.
236  * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
237  *	int x = s->a.b.c->d.e->f->g;
238  * can be succinctly achieved using BPF_CORE_READ as:
239  *	int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
240  *
241  * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
242  * CO-RE relocatable bpf_probe_read() wrapper) calls, logically equivalent to:
243  * 1. const void *__t = s->a.b.c;
244  * 2. __t = __t->d.e;
245  * 3. __t = __t->f;
246  * 4. return __t->g;
247  *
248  * Equivalence is logical, because there is a heavy type casting/preservation
249  * involved, as well as all the reads are happening through bpf_probe_read()
250  * calls using __builtin_preserve_access_index() to emit CO-RE relocations.
251  *
252  * N.B. Only up to 9 "field accessors" are supported, which should be more
253  * than enough for any practical purpose.
254  */
255 #define BPF_CORE_READ(src, a, ...)					    \
256 	({								    \
257 		___type(src, a, ##__VA_ARGS__) __r;			    \
258 		BPF_CORE_READ_INTO(&__r, src, a, ##__VA_ARGS__);	    \
259 		__r;							    \
260 	})
261 
262 #endif
263 
264