xref: /openbmc/linux/tools/lib/bpf/bpf_core_read.h (revision 2dd6532e)
1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 #ifndef __BPF_CORE_READ_H__
3 #define __BPF_CORE_READ_H__
4 
5 /*
6  * enum bpf_field_info_kind is passed as a second argument into
7  * __builtin_preserve_field_info() built-in to get a specific aspect of
8  * a field, captured as a first argument. __builtin_preserve_field_info(field,
9  * info_kind) returns __u32 integer and produces BTF field relocation, which
10  * is understood and processed by libbpf during BPF object loading. See
11  * selftests/bpf for examples.
12  */
13 enum bpf_field_info_kind {
14 	BPF_FIELD_BYTE_OFFSET = 0,	/* field byte offset */
15 	BPF_FIELD_BYTE_SIZE = 1,
16 	BPF_FIELD_EXISTS = 2,		/* field existence in target kernel */
17 	BPF_FIELD_SIGNED = 3,
18 	BPF_FIELD_LSHIFT_U64 = 4,
19 	BPF_FIELD_RSHIFT_U64 = 5,
20 };
21 
22 /* second argument to __builtin_btf_type_id() built-in */
23 enum bpf_type_id_kind {
24 	BPF_TYPE_ID_LOCAL = 0,		/* BTF type ID in local program */
25 	BPF_TYPE_ID_TARGET = 1,		/* BTF type ID in target kernel */
26 };
27 
28 /* second argument to __builtin_preserve_type_info() built-in */
29 enum bpf_type_info_kind {
30 	BPF_TYPE_EXISTS = 0,		/* type existence in target kernel */
31 	BPF_TYPE_SIZE = 1,		/* type size in target kernel */
32 };
33 
34 /* second argument to __builtin_preserve_enum_value() built-in */
35 enum bpf_enum_value_kind {
36 	BPF_ENUMVAL_EXISTS = 0,		/* enum value existence in kernel */
37 	BPF_ENUMVAL_VALUE = 1,		/* enum value value relocation */
38 };
39 
40 #define __CORE_RELO(src, field, info)					      \
41 	__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
42 
43 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
44 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
45 	bpf_probe_read_kernel(						      \
46 			(void *)dst,				      \
47 			__CORE_RELO(src, fld, BYTE_SIZE),		      \
48 			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
49 #else
50 /* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
51  * for big-endian we need to adjust destination pointer accordingly, based on
52  * field byte size
53  */
54 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
55 	bpf_probe_read_kernel(						      \
56 			(void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
57 			__CORE_RELO(src, fld, BYTE_SIZE),		      \
58 			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
59 #endif
60 
61 /*
62  * Extract bitfield, identified by s->field, and return its value as u64.
63  * All this is done in relocatable manner, so bitfield changes such as
64  * signedness, bit size, offset changes, this will be handled automatically.
65  * This version of macro is using bpf_probe_read_kernel() to read underlying
66  * integer storage. Macro functions as an expression and its return type is
67  * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
68  */
69 #define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({			      \
70 	unsigned long long val = 0;					      \
71 									      \
72 	__CORE_BITFIELD_PROBE_READ(&val, s, field);			      \
73 	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
74 	if (__CORE_RELO(s, field, SIGNED))				      \
75 		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
76 	else								      \
77 		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
78 	val;								      \
79 })
80 
81 /*
82  * Extract bitfield, identified by s->field, and return its value as u64.
83  * This version of macro is using direct memory reads and should be used from
84  * BPF program types that support such functionality (e.g., typed raw
85  * tracepoints).
86  */
87 #define BPF_CORE_READ_BITFIELD(s, field) ({				      \
88 	const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
89 	unsigned long long val;						      \
90 									      \
91 	/* This is a so-called barrier_var() operation that makes specified   \
92 	 * variable "a black box" for optimizing compiler.		      \
93 	 * It forces compiler to perform BYTE_OFFSET relocation on p and use  \
94 	 * its calculated value in the switch below, instead of applying      \
95 	 * the same relocation 4 times for each individual memory load.       \
96 	 */								      \
97 	asm volatile("" : "=r"(p) : "0"(p));				      \
98 									      \
99 	switch (__CORE_RELO(s, field, BYTE_SIZE)) {			      \
100 	case 1: val = *(const unsigned char *)p; break;			      \
101 	case 2: val = *(const unsigned short *)p; break;		      \
102 	case 4: val = *(const unsigned int *)p; break;			      \
103 	case 8: val = *(const unsigned long long *)p; break;		      \
104 	}								      \
105 	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
106 	if (__CORE_RELO(s, field, SIGNED))				      \
107 		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
108 	else								      \
109 		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
110 	val;								      \
111 })
112 
113 #define ___bpf_field_ref1(field)	(field)
114 #define ___bpf_field_ref2(type, field)	(((typeof(type) *)0)->field)
115 #define ___bpf_field_ref(args...)					    \
116 	___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args)
117 
118 /*
119  * Convenience macro to check that field actually exists in target kernel's.
120  * Returns:
121  *    1, if matching field is present in target kernel;
122  *    0, if no matching field found.
123  *
124  * Supports two forms:
125  *   - field reference through variable access:
126  *     bpf_core_field_exists(p->my_field);
127  *   - field reference through type and field names:
128  *     bpf_core_field_exists(struct my_type, my_field).
129  */
130 #define bpf_core_field_exists(field...)					    \
131 	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS)
132 
133 /*
134  * Convenience macro to get the byte size of a field. Works for integers,
135  * struct/unions, pointers, arrays, and enums.
136  *
137  * Supports two forms:
138  *   - field reference through variable access:
139  *     bpf_core_field_size(p->my_field);
140  *   - field reference through type and field names:
141  *     bpf_core_field_size(struct my_type, my_field).
142  */
143 #define bpf_core_field_size(field...)					    \
144 	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE)
145 
146 /*
147  * Convenience macro to get field's byte offset.
148  *
149  * Supports two forms:
150  *   - field reference through variable access:
151  *     bpf_core_field_offset(p->my_field);
152  *   - field reference through type and field names:
153  *     bpf_core_field_offset(struct my_type, my_field).
154  */
155 #define bpf_core_field_offset(field...)					    \
156 	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET)
157 
158 /*
159  * Convenience macro to get BTF type ID of a specified type, using a local BTF
160  * information. Return 32-bit unsigned integer with type ID from program's own
161  * BTF. Always succeeds.
162  */
163 #define bpf_core_type_id_local(type)					    \
164 	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL)
165 
166 /*
167  * Convenience macro to get BTF type ID of a target kernel's type that matches
168  * specified local type.
169  * Returns:
170  *    - valid 32-bit unsigned type ID in kernel BTF;
171  *    - 0, if no matching type was found in a target kernel BTF.
172  */
173 #define bpf_core_type_id_kernel(type)					    \
174 	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET)
175 
176 /*
177  * Convenience macro to check that provided named type
178  * (struct/union/enum/typedef) exists in a target kernel.
179  * Returns:
180  *    1, if such type is present in target kernel's BTF;
181  *    0, if no matching type is found.
182  */
183 #define bpf_core_type_exists(type)					    \
184 	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS)
185 
186 /*
187  * Convenience macro to get the byte size of a provided named type
188  * (struct/union/enum/typedef) in a target kernel.
189  * Returns:
190  *    >= 0 size (in bytes), if type is present in target kernel's BTF;
191  *    0, if no matching type is found.
192  */
193 #define bpf_core_type_size(type)					    \
194 	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE)
195 
196 /*
197  * Convenience macro to check that provided enumerator value is defined in
198  * a target kernel.
199  * Returns:
200  *    1, if specified enum type and its enumerator value are present in target
201  *    kernel's BTF;
202  *    0, if no matching enum and/or enum value within that enum is found.
203  */
204 #define bpf_core_enum_value_exists(enum_type, enum_value)		    \
205 	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
206 
207 /*
208  * Convenience macro to get the integer value of an enumerator value in
209  * a target kernel.
210  * Returns:
211  *    64-bit value, if specified enum type and its enumerator value are
212  *    present in target kernel's BTF;
213  *    0, if no matching enum and/or enum value within that enum is found.
214  */
215 #define bpf_core_enum_value(enum_type, enum_value)			    \
216 	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
217 
218 /*
219  * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
220  * offset relocation for source address using __builtin_preserve_access_index()
221  * built-in, provided by Clang.
222  *
223  * __builtin_preserve_access_index() takes as an argument an expression of
224  * taking an address of a field within struct/union. It makes compiler emit
225  * a relocation, which records BTF type ID describing root struct/union and an
226  * accessor string which describes exact embedded field that was used to take
227  * an address. See detailed description of this relocation format and
228  * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
229  *
230  * This relocation allows libbpf to adjust BPF instruction to use correct
231  * actual field offset, based on target kernel BTF type that matches original
232  * (local) BTF, used to record relocation.
233  */
234 #define bpf_core_read(dst, sz, src)					    \
235 	bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src))
236 
237 /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
238 #define bpf_core_read_user(dst, sz, src)				    \
239 	bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src))
240 /*
241  * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
242  * additionally emitting BPF CO-RE field relocation for specified source
243  * argument.
244  */
245 #define bpf_core_read_str(dst, sz, src)					    \
246 	bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
247 
248 /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
249 #define bpf_core_read_user_str(dst, sz, src)				    \
250 	bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
251 
252 #define ___concat(a, b) a ## b
253 #define ___apply(fn, n) ___concat(fn, n)
254 #define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
255 
256 /*
257  * return number of provided arguments; used for switch-based variadic macro
258  * definitions (see ___last, ___arrow, etc below)
259  */
260 #define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
261 /*
262  * return 0 if no arguments are passed, N - otherwise; used for
263  * recursively-defined macros to specify termination (0) case, and generic
264  * (N) case (e.g., ___read_ptrs, ___core_read)
265  */
266 #define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
267 
268 #define ___last1(x) x
269 #define ___last2(a, x) x
270 #define ___last3(a, b, x) x
271 #define ___last4(a, b, c, x) x
272 #define ___last5(a, b, c, d, x) x
273 #define ___last6(a, b, c, d, e, x) x
274 #define ___last7(a, b, c, d, e, f, x) x
275 #define ___last8(a, b, c, d, e, f, g, x) x
276 #define ___last9(a, b, c, d, e, f, g, h, x) x
277 #define ___last10(a, b, c, d, e, f, g, h, i, x) x
278 #define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
279 
280 #define ___nolast2(a, _) a
281 #define ___nolast3(a, b, _) a, b
282 #define ___nolast4(a, b, c, _) a, b, c
283 #define ___nolast5(a, b, c, d, _) a, b, c, d
284 #define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
285 #define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
286 #define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
287 #define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
288 #define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
289 #define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
290 
291 #define ___arrow1(a) a
292 #define ___arrow2(a, b) a->b
293 #define ___arrow3(a, b, c) a->b->c
294 #define ___arrow4(a, b, c, d) a->b->c->d
295 #define ___arrow5(a, b, c, d, e) a->b->c->d->e
296 #define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
297 #define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
298 #define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
299 #define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
300 #define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
301 #define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
302 
303 #define ___type(...) typeof(___arrow(__VA_ARGS__))
304 
305 #define ___read(read_fn, dst, src_type, src, accessor)			    \
306 	read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
307 
308 /* "recursively" read a sequence of inner pointers using local __t var */
309 #define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a);
310 #define ___rd_last(fn, ...)						    \
311 	___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
312 #define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__)
313 #define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
314 #define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
315 #define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
316 #define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
317 #define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
318 #define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
319 #define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
320 #define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
321 #define ___read_ptrs(fn, src, ...)					    \
322 	___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__)
323 
324 #define ___core_read0(fn, fn_ptr, dst, src, a)				    \
325 	___read(fn, dst, ___type(src), src, a);
326 #define ___core_readN(fn, fn_ptr, dst, src, ...)			    \
327 	___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__))		    \
328 	___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t,	    \
329 		___last(__VA_ARGS__));
330 #define ___core_read(fn, fn_ptr, dst, src, a, ...)			    \
331 	___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst,	    \
332 						      src, a, ##__VA_ARGS__)
333 
334 /*
335  * BPF_CORE_READ_INTO() is a more performance-conscious variant of
336  * BPF_CORE_READ(), in which final field is read into user-provided storage.
337  * See BPF_CORE_READ() below for more details on general usage.
338  */
339 #define BPF_CORE_READ_INTO(dst, src, a, ...) ({				    \
340 	___core_read(bpf_core_read, bpf_core_read,			    \
341 		     dst, (src), a, ##__VA_ARGS__)			    \
342 })
343 
344 /*
345  * Variant of BPF_CORE_READ_INTO() for reading from user-space memory.
346  *
347  * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
348  */
349 #define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({			    \
350 	___core_read(bpf_core_read_user, bpf_core_read_user,		    \
351 		     dst, (src), a, ##__VA_ARGS__)			    \
352 })
353 
354 /* Non-CO-RE variant of BPF_CORE_READ_INTO() */
355 #define BPF_PROBE_READ_INTO(dst, src, a, ...) ({			    \
356 	___core_read(bpf_probe_read, bpf_probe_read,			    \
357 		     dst, (src), a, ##__VA_ARGS__)			    \
358 })
359 
360 /* Non-CO-RE variant of BPF_CORE_READ_USER_INTO().
361  *
362  * As no CO-RE relocations are emitted, source types can be arbitrary and are
363  * not restricted to kernel types only.
364  */
365 #define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({			    \
366 	___core_read(bpf_probe_read_user, bpf_probe_read_user,		    \
367 		     dst, (src), a, ##__VA_ARGS__)			    \
368 })
369 
370 /*
371  * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
372  * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
373  * corresponding error code) bpf_core_read_str() for final string read.
374  */
375 #define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({			    \
376 	___core_read(bpf_core_read_str, bpf_core_read,			    \
377 		     dst, (src), a, ##__VA_ARGS__)			    \
378 })
379 
380 /*
381  * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory.
382  *
383  * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
384  */
385 #define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
386 	___core_read(bpf_core_read_user_str, bpf_core_read_user,	    \
387 		     dst, (src), a, ##__VA_ARGS__)			    \
388 })
389 
390 /* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */
391 #define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({			    \
392 	___core_read(bpf_probe_read_str, bpf_probe_read,		    \
393 		     dst, (src), a, ##__VA_ARGS__)			    \
394 })
395 
396 /*
397  * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO().
398  *
399  * As no CO-RE relocations are emitted, source types can be arbitrary and are
400  * not restricted to kernel types only.
401  */
402 #define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
403 	___core_read(bpf_probe_read_user_str, bpf_probe_read_user,	    \
404 		     dst, (src), a, ##__VA_ARGS__)			    \
405 })
406 
407 /*
408  * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
409  * when there are few pointer chasing steps.
410  * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
411  *	int x = s->a.b.c->d.e->f->g;
412  * can be succinctly achieved using BPF_CORE_READ as:
413  *	int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
414  *
415  * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
416  * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
417  * equivalent to:
418  * 1. const void *__t = s->a.b.c;
419  * 2. __t = __t->d.e;
420  * 3. __t = __t->f;
421  * 4. return __t->g;
422  *
423  * Equivalence is logical, because there is a heavy type casting/preservation
424  * involved, as well as all the reads are happening through
425  * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
426  * emit CO-RE relocations.
427  *
428  * N.B. Only up to 9 "field accessors" are supported, which should be more
429  * than enough for any practical purpose.
430  */
431 #define BPF_CORE_READ(src, a, ...) ({					    \
432 	___type((src), a, ##__VA_ARGS__) __r;				    \
433 	BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
434 	__r;								    \
435 })
436 
437 /*
438  * Variant of BPF_CORE_READ() for reading from user-space memory.
439  *
440  * NOTE: all the source types involved are still *kernel types* and need to
441  * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will
442  * fail. Custom user types are not relocatable with CO-RE.
443  * The typical situation in which BPF_CORE_READ_USER() might be used is to
444  * read kernel UAPI types from the user-space memory passed in as a syscall
445  * input argument.
446  */
447 #define BPF_CORE_READ_USER(src, a, ...) ({				    \
448 	___type((src), a, ##__VA_ARGS__) __r;				    \
449 	BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
450 	__r;								    \
451 })
452 
453 /* Non-CO-RE variant of BPF_CORE_READ() */
454 #define BPF_PROBE_READ(src, a, ...) ({					    \
455 	___type((src), a, ##__VA_ARGS__) __r;				    \
456 	BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
457 	__r;								    \
458 })
459 
460 /*
461  * Non-CO-RE variant of BPF_CORE_READ_USER().
462  *
463  * As no CO-RE relocations are emitted, source types can be arbitrary and are
464  * not restricted to kernel types only.
465  */
466 #define BPF_PROBE_READ_USER(src, a, ...) ({				    \
467 	___type((src), a, ##__VA_ARGS__) __r;				    \
468 	BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);	    \
469 	__r;								    \
470 })
471 
472 #endif
473 
474