xref: /openbmc/linux/tools/include/uapi/drm/i915_drm.h (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /*
66  * i915_user_extension: Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  */
80 struct i915_user_extension {
81 	__u64 next_extension;
82 	__u32 name;
83 	__u32 flags; /* All undefined bits must be zero. */
84 	__u32 rsvd[4]; /* Reserved for future use; must be zero. */
85 };
86 
87 /*
88  * MOCS indexes used for GPU surfaces, defining the cacheability of the
89  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
90  */
91 enum i915_mocs_table_index {
92 	/*
93 	 * Not cached anywhere, coherency between CPU and GPU accesses is
94 	 * guaranteed.
95 	 */
96 	I915_MOCS_UNCACHED,
97 	/*
98 	 * Cacheability and coherency controlled by the kernel automatically
99 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
100 	 * usage of the surface (used for display scanout or not).
101 	 */
102 	I915_MOCS_PTE,
103 	/*
104 	 * Cached in all GPU caches available on the platform.
105 	 * Coherency between CPU and GPU accesses to the surface is not
106 	 * guaranteed without extra synchronization.
107 	 */
108 	I915_MOCS_CACHED,
109 };
110 
111 /*
112  * Different engines serve different roles, and there may be more than one
113  * engine serving each role. enum drm_i915_gem_engine_class provides a
114  * classification of the role of the engine, which may be used when requesting
115  * operations to be performed on a certain subset of engines, or for providing
116  * information about that group.
117  */
118 enum drm_i915_gem_engine_class {
119 	I915_ENGINE_CLASS_RENDER	= 0,
120 	I915_ENGINE_CLASS_COPY		= 1,
121 	I915_ENGINE_CLASS_VIDEO		= 2,
122 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
123 
124 	/* should be kept compact */
125 
126 	I915_ENGINE_CLASS_INVALID	= -1
127 };
128 
129 /*
130  * There may be more than one engine fulfilling any role within the system.
131  * Each engine of a class is given a unique instance number and therefore
132  * any engine can be specified by its class:instance tuplet. APIs that allow
133  * access to any engine in the system will use struct i915_engine_class_instance
134  * for this identification.
135  */
136 struct i915_engine_class_instance {
137 	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
138 	__u16 engine_instance;
139 #define I915_ENGINE_CLASS_INVALID_NONE -1
140 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
141 };
142 
143 /**
144  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
145  *
146  */
147 
148 enum drm_i915_pmu_engine_sample {
149 	I915_SAMPLE_BUSY = 0,
150 	I915_SAMPLE_WAIT = 1,
151 	I915_SAMPLE_SEMA = 2
152 };
153 
154 #define I915_PMU_SAMPLE_BITS (4)
155 #define I915_PMU_SAMPLE_MASK (0xf)
156 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
157 #define I915_PMU_CLASS_SHIFT \
158 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
159 
160 #define __I915_PMU_ENGINE(class, instance, sample) \
161 	((class) << I915_PMU_CLASS_SHIFT | \
162 	(instance) << I915_PMU_SAMPLE_BITS | \
163 	(sample))
164 
165 #define I915_PMU_ENGINE_BUSY(class, instance) \
166 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
167 
168 #define I915_PMU_ENGINE_WAIT(class, instance) \
169 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
170 
171 #define I915_PMU_ENGINE_SEMA(class, instance) \
172 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
173 
174 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
175 
176 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
177 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
178 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
179 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
180 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
181 
182 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
183 
184 /* Each region is a minimum of 16k, and there are at most 255 of them.
185  */
186 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
187 				 * of chars for next/prev indices */
188 #define I915_LOG_MIN_TEX_REGION_SIZE 14
189 
190 typedef struct _drm_i915_init {
191 	enum {
192 		I915_INIT_DMA = 0x01,
193 		I915_CLEANUP_DMA = 0x02,
194 		I915_RESUME_DMA = 0x03
195 	} func;
196 	unsigned int mmio_offset;
197 	int sarea_priv_offset;
198 	unsigned int ring_start;
199 	unsigned int ring_end;
200 	unsigned int ring_size;
201 	unsigned int front_offset;
202 	unsigned int back_offset;
203 	unsigned int depth_offset;
204 	unsigned int w;
205 	unsigned int h;
206 	unsigned int pitch;
207 	unsigned int pitch_bits;
208 	unsigned int back_pitch;
209 	unsigned int depth_pitch;
210 	unsigned int cpp;
211 	unsigned int chipset;
212 } drm_i915_init_t;
213 
214 typedef struct _drm_i915_sarea {
215 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
216 	int last_upload;	/* last time texture was uploaded */
217 	int last_enqueue;	/* last time a buffer was enqueued */
218 	int last_dispatch;	/* age of the most recently dispatched buffer */
219 	int ctxOwner;		/* last context to upload state */
220 	int texAge;
221 	int pf_enabled;		/* is pageflipping allowed? */
222 	int pf_active;
223 	int pf_current_page;	/* which buffer is being displayed? */
224 	int perf_boxes;		/* performance boxes to be displayed */
225 	int width, height;      /* screen size in pixels */
226 
227 	drm_handle_t front_handle;
228 	int front_offset;
229 	int front_size;
230 
231 	drm_handle_t back_handle;
232 	int back_offset;
233 	int back_size;
234 
235 	drm_handle_t depth_handle;
236 	int depth_offset;
237 	int depth_size;
238 
239 	drm_handle_t tex_handle;
240 	int tex_offset;
241 	int tex_size;
242 	int log_tex_granularity;
243 	int pitch;
244 	int rotation;           /* 0, 90, 180 or 270 */
245 	int rotated_offset;
246 	int rotated_size;
247 	int rotated_pitch;
248 	int virtualX, virtualY;
249 
250 	unsigned int front_tiled;
251 	unsigned int back_tiled;
252 	unsigned int depth_tiled;
253 	unsigned int rotated_tiled;
254 	unsigned int rotated2_tiled;
255 
256 	int pipeA_x;
257 	int pipeA_y;
258 	int pipeA_w;
259 	int pipeA_h;
260 	int pipeB_x;
261 	int pipeB_y;
262 	int pipeB_w;
263 	int pipeB_h;
264 
265 	/* fill out some space for old userspace triple buffer */
266 	drm_handle_t unused_handle;
267 	__u32 unused1, unused2, unused3;
268 
269 	/* buffer object handles for static buffers. May change
270 	 * over the lifetime of the client.
271 	 */
272 	__u32 front_bo_handle;
273 	__u32 back_bo_handle;
274 	__u32 unused_bo_handle;
275 	__u32 depth_bo_handle;
276 
277 } drm_i915_sarea_t;
278 
279 /* due to userspace building against these headers we need some compat here */
280 #define planeA_x pipeA_x
281 #define planeA_y pipeA_y
282 #define planeA_w pipeA_w
283 #define planeA_h pipeA_h
284 #define planeB_x pipeB_x
285 #define planeB_y pipeB_y
286 #define planeB_w pipeB_w
287 #define planeB_h pipeB_h
288 
289 /* Flags for perf_boxes
290  */
291 #define I915_BOX_RING_EMPTY    0x1
292 #define I915_BOX_FLIP          0x2
293 #define I915_BOX_WAIT          0x4
294 #define I915_BOX_TEXTURE_LOAD  0x8
295 #define I915_BOX_LOST_CONTEXT  0x10
296 
297 /*
298  * i915 specific ioctls.
299  *
300  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
301  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
302  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
303  */
304 #define DRM_I915_INIT		0x00
305 #define DRM_I915_FLUSH		0x01
306 #define DRM_I915_FLIP		0x02
307 #define DRM_I915_BATCHBUFFER	0x03
308 #define DRM_I915_IRQ_EMIT	0x04
309 #define DRM_I915_IRQ_WAIT	0x05
310 #define DRM_I915_GETPARAM	0x06
311 #define DRM_I915_SETPARAM	0x07
312 #define DRM_I915_ALLOC		0x08
313 #define DRM_I915_FREE		0x09
314 #define DRM_I915_INIT_HEAP	0x0a
315 #define DRM_I915_CMDBUFFER	0x0b
316 #define DRM_I915_DESTROY_HEAP	0x0c
317 #define DRM_I915_SET_VBLANK_PIPE	0x0d
318 #define DRM_I915_GET_VBLANK_PIPE	0x0e
319 #define DRM_I915_VBLANK_SWAP	0x0f
320 #define DRM_I915_HWS_ADDR	0x11
321 #define DRM_I915_GEM_INIT	0x13
322 #define DRM_I915_GEM_EXECBUFFER	0x14
323 #define DRM_I915_GEM_PIN	0x15
324 #define DRM_I915_GEM_UNPIN	0x16
325 #define DRM_I915_GEM_BUSY	0x17
326 #define DRM_I915_GEM_THROTTLE	0x18
327 #define DRM_I915_GEM_ENTERVT	0x19
328 #define DRM_I915_GEM_LEAVEVT	0x1a
329 #define DRM_I915_GEM_CREATE	0x1b
330 #define DRM_I915_GEM_PREAD	0x1c
331 #define DRM_I915_GEM_PWRITE	0x1d
332 #define DRM_I915_GEM_MMAP	0x1e
333 #define DRM_I915_GEM_SET_DOMAIN	0x1f
334 #define DRM_I915_GEM_SW_FINISH	0x20
335 #define DRM_I915_GEM_SET_TILING	0x21
336 #define DRM_I915_GEM_GET_TILING	0x22
337 #define DRM_I915_GEM_GET_APERTURE 0x23
338 #define DRM_I915_GEM_MMAP_GTT	0x24
339 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
340 #define DRM_I915_GEM_MADVISE	0x26
341 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
342 #define DRM_I915_OVERLAY_ATTRS	0x28
343 #define DRM_I915_GEM_EXECBUFFER2	0x29
344 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
345 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
346 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
347 #define DRM_I915_GEM_WAIT	0x2c
348 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
349 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
350 #define DRM_I915_GEM_SET_CACHING	0x2f
351 #define DRM_I915_GEM_GET_CACHING	0x30
352 #define DRM_I915_REG_READ		0x31
353 #define DRM_I915_GET_RESET_STATS	0x32
354 #define DRM_I915_GEM_USERPTR		0x33
355 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
356 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
357 #define DRM_I915_PERF_OPEN		0x36
358 #define DRM_I915_PERF_ADD_CONFIG	0x37
359 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
360 #define DRM_I915_QUERY			0x39
361 #define DRM_I915_GEM_VM_CREATE		0x3a
362 #define DRM_I915_GEM_VM_DESTROY		0x3b
363 /* Must be kept compact -- no holes */
364 
365 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
366 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
367 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
368 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
369 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
370 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
371 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
372 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
373 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
374 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
375 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
376 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
377 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
378 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
379 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
380 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
381 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
382 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
383 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
384 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
385 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
386 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
387 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
388 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
389 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
390 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
391 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
392 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
393 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
394 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
395 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
396 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
397 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
398 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
399 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
400 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
401 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
402 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
403 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
404 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
405 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
406 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
407 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
408 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
409 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
410 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
411 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
412 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
413 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
414 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
415 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
416 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
417 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
418 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
419 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
420 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
421 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
422 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
423 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
424 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
425 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
426 
427 /* Allow drivers to submit batchbuffers directly to hardware, relying
428  * on the security mechanisms provided by hardware.
429  */
430 typedef struct drm_i915_batchbuffer {
431 	int start;		/* agp offset */
432 	int used;		/* nr bytes in use */
433 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
434 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
435 	int num_cliprects;	/* mulitpass with multiple cliprects? */
436 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
437 } drm_i915_batchbuffer_t;
438 
439 /* As above, but pass a pointer to userspace buffer which can be
440  * validated by the kernel prior to sending to hardware.
441  */
442 typedef struct _drm_i915_cmdbuffer {
443 	char __user *buf;	/* pointer to userspace command buffer */
444 	int sz;			/* nr bytes in buf */
445 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
446 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
447 	int num_cliprects;	/* mulitpass with multiple cliprects? */
448 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
449 } drm_i915_cmdbuffer_t;
450 
451 /* Userspace can request & wait on irq's:
452  */
453 typedef struct drm_i915_irq_emit {
454 	int __user *irq_seq;
455 } drm_i915_irq_emit_t;
456 
457 typedef struct drm_i915_irq_wait {
458 	int irq_seq;
459 } drm_i915_irq_wait_t;
460 
461 /*
462  * Different modes of per-process Graphics Translation Table,
463  * see I915_PARAM_HAS_ALIASING_PPGTT
464  */
465 #define I915_GEM_PPGTT_NONE	0
466 #define I915_GEM_PPGTT_ALIASING	1
467 #define I915_GEM_PPGTT_FULL	2
468 
469 /* Ioctl to query kernel params:
470  */
471 #define I915_PARAM_IRQ_ACTIVE            1
472 #define I915_PARAM_ALLOW_BATCHBUFFER     2
473 #define I915_PARAM_LAST_DISPATCH         3
474 #define I915_PARAM_CHIPSET_ID            4
475 #define I915_PARAM_HAS_GEM               5
476 #define I915_PARAM_NUM_FENCES_AVAIL      6
477 #define I915_PARAM_HAS_OVERLAY           7
478 #define I915_PARAM_HAS_PAGEFLIPPING	 8
479 #define I915_PARAM_HAS_EXECBUF2          9
480 #define I915_PARAM_HAS_BSD		 10
481 #define I915_PARAM_HAS_BLT		 11
482 #define I915_PARAM_HAS_RELAXED_FENCING	 12
483 #define I915_PARAM_HAS_COHERENT_RINGS	 13
484 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
485 #define I915_PARAM_HAS_RELAXED_DELTA	 15
486 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
487 #define I915_PARAM_HAS_LLC     	 	 17
488 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
489 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
490 #define I915_PARAM_HAS_SEMAPHORES	 20
491 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
492 #define I915_PARAM_HAS_VEBOX		 22
493 #define I915_PARAM_HAS_SECURE_BATCHES	 23
494 #define I915_PARAM_HAS_PINNED_BATCHES	 24
495 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
496 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
497 #define I915_PARAM_HAS_WT     	 	 27
498 #define I915_PARAM_CMD_PARSER_VERSION	 28
499 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
500 #define I915_PARAM_MMAP_VERSION          30
501 #define I915_PARAM_HAS_BSD2		 31
502 #define I915_PARAM_REVISION              32
503 #define I915_PARAM_SUBSLICE_TOTAL	 33
504 #define I915_PARAM_EU_TOTAL		 34
505 #define I915_PARAM_HAS_GPU_RESET	 35
506 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
507 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
508 #define I915_PARAM_HAS_POOLED_EU	 38
509 #define I915_PARAM_MIN_EU_IN_POOL	 39
510 #define I915_PARAM_MMAP_GTT_VERSION	 40
511 
512 /*
513  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
514  * priorities and the driver will attempt to execute batches in priority order.
515  * The param returns a capability bitmask, nonzero implies that the scheduler
516  * is enabled, with different features present according to the mask.
517  *
518  * The initial priority for each batch is supplied by the context and is
519  * controlled via I915_CONTEXT_PARAM_PRIORITY.
520  */
521 #define I915_PARAM_HAS_SCHEDULER	 41
522 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
523 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
524 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
525 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
526 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
527 
528 #define I915_PARAM_HUC_STATUS		 42
529 
530 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
531  * synchronisation with implicit fencing on individual objects.
532  * See EXEC_OBJECT_ASYNC.
533  */
534 #define I915_PARAM_HAS_EXEC_ASYNC	 43
535 
536 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
537  * both being able to pass in a sync_file fd to wait upon before executing,
538  * and being able to return a new sync_file fd that is signaled when the
539  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
540  */
541 #define I915_PARAM_HAS_EXEC_FENCE	 44
542 
543 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
544  * user specified bufffers for post-mortem debugging of GPU hangs. See
545  * EXEC_OBJECT_CAPTURE.
546  */
547 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
548 
549 #define I915_PARAM_SLICE_MASK		 46
550 
551 /* Assuming it's uniform for each slice, this queries the mask of subslices
552  * per-slice for this system.
553  */
554 #define I915_PARAM_SUBSLICE_MASK	 47
555 
556 /*
557  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
558  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
559  */
560 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
561 
562 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
563  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
564  */
565 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
566 
567 /*
568  * Query whether every context (both per-file default and user created) is
569  * isolated (insofar as HW supports). If this parameter is not true, then
570  * freshly created contexts may inherit values from an existing context,
571  * rather than default HW values. If true, it also ensures (insofar as HW
572  * supports) that all state set by this context will not leak to any other
573  * context.
574  *
575  * As not every engine across every gen support contexts, the returned
576  * value reports the support of context isolation for individual engines by
577  * returning a bitmask of each engine class set to true if that class supports
578  * isolation.
579  */
580 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
581 
582 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
583  * registers. This used to be fixed per platform but from CNL onwards, this
584  * might vary depending on the parts.
585  */
586 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
587 
588 /*
589  * Once upon a time we supposed that writes through the GGTT would be
590  * immediately in physical memory (once flushed out of the CPU path). However,
591  * on a few different processors and chipsets, this is not necessarily the case
592  * as the writes appear to be buffered internally. Thus a read of the backing
593  * storage (physical memory) via a different path (with different physical tags
594  * to the indirect write via the GGTT) will see stale values from before
595  * the GGTT write. Inside the kernel, we can for the most part keep track of
596  * the different read/write domains in use (e.g. set-domain), but the assumption
597  * of coherency is baked into the ABI, hence reporting its true state in this
598  * parameter.
599  *
600  * Reports true when writes via mmap_gtt are immediately visible following an
601  * lfence to flush the WCB.
602  *
603  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
604  * internal buffer and are _not_ immediately visible to third parties accessing
605  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
606  * communications channel when reporting false is strongly disadvised.
607  */
608 #define I915_PARAM_MMAP_GTT_COHERENT	52
609 
610 /*
611  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
612  * execution through use of explicit fence support.
613  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
614  */
615 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
616 
617 /*
618  * Revision of the i915-perf uAPI. The value returned helps determine what
619  * i915-perf features are available. See drm_i915_perf_property_id.
620  */
621 #define I915_PARAM_PERF_REVISION	54
622 
623 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
624  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
625  * I915_EXEC_USE_EXTENSIONS.
626  */
627 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
628 
629 /* Must be kept compact -- no holes and well documented */
630 
631 typedef struct drm_i915_getparam {
632 	__s32 param;
633 	/*
634 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
635 	 * compat32 code. Don't repeat this mistake.
636 	 */
637 	int __user *value;
638 } drm_i915_getparam_t;
639 
640 /* Ioctl to set kernel params:
641  */
642 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
643 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
644 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
645 #define I915_SETPARAM_NUM_USED_FENCES                     4
646 /* Must be kept compact -- no holes */
647 
648 typedef struct drm_i915_setparam {
649 	int param;
650 	int value;
651 } drm_i915_setparam_t;
652 
653 /* A memory manager for regions of shared memory:
654  */
655 #define I915_MEM_REGION_AGP 1
656 
657 typedef struct drm_i915_mem_alloc {
658 	int region;
659 	int alignment;
660 	int size;
661 	int __user *region_offset;	/* offset from start of fb or agp */
662 } drm_i915_mem_alloc_t;
663 
664 typedef struct drm_i915_mem_free {
665 	int region;
666 	int region_offset;
667 } drm_i915_mem_free_t;
668 
669 typedef struct drm_i915_mem_init_heap {
670 	int region;
671 	int size;
672 	int start;
673 } drm_i915_mem_init_heap_t;
674 
675 /* Allow memory manager to be torn down and re-initialized (eg on
676  * rotate):
677  */
678 typedef struct drm_i915_mem_destroy_heap {
679 	int region;
680 } drm_i915_mem_destroy_heap_t;
681 
682 /* Allow X server to configure which pipes to monitor for vblank signals
683  */
684 #define	DRM_I915_VBLANK_PIPE_A	1
685 #define	DRM_I915_VBLANK_PIPE_B	2
686 
687 typedef struct drm_i915_vblank_pipe {
688 	int pipe;
689 } drm_i915_vblank_pipe_t;
690 
691 /* Schedule buffer swap at given vertical blank:
692  */
693 typedef struct drm_i915_vblank_swap {
694 	drm_drawable_t drawable;
695 	enum drm_vblank_seq_type seqtype;
696 	unsigned int sequence;
697 } drm_i915_vblank_swap_t;
698 
699 typedef struct drm_i915_hws_addr {
700 	__u64 addr;
701 } drm_i915_hws_addr_t;
702 
703 struct drm_i915_gem_init {
704 	/**
705 	 * Beginning offset in the GTT to be managed by the DRM memory
706 	 * manager.
707 	 */
708 	__u64 gtt_start;
709 	/**
710 	 * Ending offset in the GTT to be managed by the DRM memory
711 	 * manager.
712 	 */
713 	__u64 gtt_end;
714 };
715 
716 struct drm_i915_gem_create {
717 	/**
718 	 * Requested size for the object.
719 	 *
720 	 * The (page-aligned) allocated size for the object will be returned.
721 	 */
722 	__u64 size;
723 	/**
724 	 * Returned handle for the object.
725 	 *
726 	 * Object handles are nonzero.
727 	 */
728 	__u32 handle;
729 	__u32 pad;
730 };
731 
732 struct drm_i915_gem_pread {
733 	/** Handle for the object being read. */
734 	__u32 handle;
735 	__u32 pad;
736 	/** Offset into the object to read from */
737 	__u64 offset;
738 	/** Length of data to read */
739 	__u64 size;
740 	/**
741 	 * Pointer to write the data into.
742 	 *
743 	 * This is a fixed-size type for 32/64 compatibility.
744 	 */
745 	__u64 data_ptr;
746 };
747 
748 struct drm_i915_gem_pwrite {
749 	/** Handle for the object being written to. */
750 	__u32 handle;
751 	__u32 pad;
752 	/** Offset into the object to write to */
753 	__u64 offset;
754 	/** Length of data to write */
755 	__u64 size;
756 	/**
757 	 * Pointer to read the data from.
758 	 *
759 	 * This is a fixed-size type for 32/64 compatibility.
760 	 */
761 	__u64 data_ptr;
762 };
763 
764 struct drm_i915_gem_mmap {
765 	/** Handle for the object being mapped. */
766 	__u32 handle;
767 	__u32 pad;
768 	/** Offset in the object to map. */
769 	__u64 offset;
770 	/**
771 	 * Length of data to map.
772 	 *
773 	 * The value will be page-aligned.
774 	 */
775 	__u64 size;
776 	/**
777 	 * Returned pointer the data was mapped at.
778 	 *
779 	 * This is a fixed-size type for 32/64 compatibility.
780 	 */
781 	__u64 addr_ptr;
782 
783 	/**
784 	 * Flags for extended behaviour.
785 	 *
786 	 * Added in version 2.
787 	 */
788 	__u64 flags;
789 #define I915_MMAP_WC 0x1
790 };
791 
792 struct drm_i915_gem_mmap_gtt {
793 	/** Handle for the object being mapped. */
794 	__u32 handle;
795 	__u32 pad;
796 	/**
797 	 * Fake offset to use for subsequent mmap call
798 	 *
799 	 * This is a fixed-size type for 32/64 compatibility.
800 	 */
801 	__u64 offset;
802 };
803 
804 struct drm_i915_gem_mmap_offset {
805 	/** Handle for the object being mapped. */
806 	__u32 handle;
807 	__u32 pad;
808 	/**
809 	 * Fake offset to use for subsequent mmap call
810 	 *
811 	 * This is a fixed-size type for 32/64 compatibility.
812 	 */
813 	__u64 offset;
814 
815 	/**
816 	 * Flags for extended behaviour.
817 	 *
818 	 * It is mandatory that one of the MMAP_OFFSET types
819 	 * (GTT, WC, WB, UC, etc) should be included.
820 	 */
821 	__u64 flags;
822 #define I915_MMAP_OFFSET_GTT 0
823 #define I915_MMAP_OFFSET_WC  1
824 #define I915_MMAP_OFFSET_WB  2
825 #define I915_MMAP_OFFSET_UC  3
826 
827 	/*
828 	 * Zero-terminated chain of extensions.
829 	 *
830 	 * No current extensions defined; mbz.
831 	 */
832 	__u64 extensions;
833 };
834 
835 struct drm_i915_gem_set_domain {
836 	/** Handle for the object */
837 	__u32 handle;
838 
839 	/** New read domains */
840 	__u32 read_domains;
841 
842 	/** New write domain */
843 	__u32 write_domain;
844 };
845 
846 struct drm_i915_gem_sw_finish {
847 	/** Handle for the object */
848 	__u32 handle;
849 };
850 
851 struct drm_i915_gem_relocation_entry {
852 	/**
853 	 * Handle of the buffer being pointed to by this relocation entry.
854 	 *
855 	 * It's appealing to make this be an index into the mm_validate_entry
856 	 * list to refer to the buffer, but this allows the driver to create
857 	 * a relocation list for state buffers and not re-write it per
858 	 * exec using the buffer.
859 	 */
860 	__u32 target_handle;
861 
862 	/**
863 	 * Value to be added to the offset of the target buffer to make up
864 	 * the relocation entry.
865 	 */
866 	__u32 delta;
867 
868 	/** Offset in the buffer the relocation entry will be written into */
869 	__u64 offset;
870 
871 	/**
872 	 * Offset value of the target buffer that the relocation entry was last
873 	 * written as.
874 	 *
875 	 * If the buffer has the same offset as last time, we can skip syncing
876 	 * and writing the relocation.  This value is written back out by
877 	 * the execbuffer ioctl when the relocation is written.
878 	 */
879 	__u64 presumed_offset;
880 
881 	/**
882 	 * Target memory domains read by this operation.
883 	 */
884 	__u32 read_domains;
885 
886 	/**
887 	 * Target memory domains written by this operation.
888 	 *
889 	 * Note that only one domain may be written by the whole
890 	 * execbuffer operation, so that where there are conflicts,
891 	 * the application will get -EINVAL back.
892 	 */
893 	__u32 write_domain;
894 };
895 
896 /** @{
897  * Intel memory domains
898  *
899  * Most of these just align with the various caches in
900  * the system and are used to flush and invalidate as
901  * objects end up cached in different domains.
902  */
903 /** CPU cache */
904 #define I915_GEM_DOMAIN_CPU		0x00000001
905 /** Render cache, used by 2D and 3D drawing */
906 #define I915_GEM_DOMAIN_RENDER		0x00000002
907 /** Sampler cache, used by texture engine */
908 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
909 /** Command queue, used to load batch buffers */
910 #define I915_GEM_DOMAIN_COMMAND		0x00000008
911 /** Instruction cache, used by shader programs */
912 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
913 /** Vertex address cache */
914 #define I915_GEM_DOMAIN_VERTEX		0x00000020
915 /** GTT domain - aperture and scanout */
916 #define I915_GEM_DOMAIN_GTT		0x00000040
917 /** WC domain - uncached access */
918 #define I915_GEM_DOMAIN_WC		0x00000080
919 /** @} */
920 
921 struct drm_i915_gem_exec_object {
922 	/**
923 	 * User's handle for a buffer to be bound into the GTT for this
924 	 * operation.
925 	 */
926 	__u32 handle;
927 
928 	/** Number of relocations to be performed on this buffer */
929 	__u32 relocation_count;
930 	/**
931 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
932 	 * the relocations to be performed in this buffer.
933 	 */
934 	__u64 relocs_ptr;
935 
936 	/** Required alignment in graphics aperture */
937 	__u64 alignment;
938 
939 	/**
940 	 * Returned value of the updated offset of the object, for future
941 	 * presumed_offset writes.
942 	 */
943 	__u64 offset;
944 };
945 
946 struct drm_i915_gem_execbuffer {
947 	/**
948 	 * List of buffers to be validated with their relocations to be
949 	 * performend on them.
950 	 *
951 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
952 	 *
953 	 * These buffers must be listed in an order such that all relocations
954 	 * a buffer is performing refer to buffers that have already appeared
955 	 * in the validate list.
956 	 */
957 	__u64 buffers_ptr;
958 	__u32 buffer_count;
959 
960 	/** Offset in the batchbuffer to start execution from. */
961 	__u32 batch_start_offset;
962 	/** Bytes used in batchbuffer from batch_start_offset */
963 	__u32 batch_len;
964 	__u32 DR1;
965 	__u32 DR4;
966 	__u32 num_cliprects;
967 	/** This is a struct drm_clip_rect *cliprects */
968 	__u64 cliprects_ptr;
969 };
970 
971 struct drm_i915_gem_exec_object2 {
972 	/**
973 	 * User's handle for a buffer to be bound into the GTT for this
974 	 * operation.
975 	 */
976 	__u32 handle;
977 
978 	/** Number of relocations to be performed on this buffer */
979 	__u32 relocation_count;
980 	/**
981 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
982 	 * the relocations to be performed in this buffer.
983 	 */
984 	__u64 relocs_ptr;
985 
986 	/** Required alignment in graphics aperture */
987 	__u64 alignment;
988 
989 	/**
990 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
991 	 * the user with the GTT offset at which this object will be pinned.
992 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
993 	 * presumed_offset of the object.
994 	 * During execbuffer2 the kernel populates it with the value of the
995 	 * current GTT offset of the object, for future presumed_offset writes.
996 	 */
997 	__u64 offset;
998 
999 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1000 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1001 #define EXEC_OBJECT_WRITE		 (1<<2)
1002 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1003 #define EXEC_OBJECT_PINNED		 (1<<4)
1004 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1005 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1006  * synchronises operations with outstanding rendering. This includes
1007  * rendering on other devices if exported via dma-buf. However, sometimes
1008  * this tracking is too coarse and the user knows better. For example,
1009  * if the object is split into non-overlapping ranges shared between different
1010  * clients or engines (i.e. suballocating objects), the implicit tracking
1011  * by kernel assumes that each operation affects the whole object rather
1012  * than an individual range, causing needless synchronisation between clients.
1013  * The kernel will also forgo any CPU cache flushes prior to rendering from
1014  * the object as the client is expected to be also handling such domain
1015  * tracking.
1016  *
1017  * The kernel maintains the implicit tracking in order to manage resources
1018  * used by the GPU - this flag only disables the synchronisation prior to
1019  * rendering with this object in this execbuf.
1020  *
1021  * Opting out of implicit synhronisation requires the user to do its own
1022  * explicit tracking to avoid rendering corruption. See, for example,
1023  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1024  */
1025 #define EXEC_OBJECT_ASYNC		(1<<6)
1026 /* Request that the contents of this execobject be copied into the error
1027  * state upon a GPU hang involving this batch for post-mortem debugging.
1028  * These buffers are recorded in no particular order as "user" in
1029  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1030  * if the kernel supports this flag.
1031  */
1032 #define EXEC_OBJECT_CAPTURE		(1<<7)
1033 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1034 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1035 	__u64 flags;
1036 
1037 	union {
1038 		__u64 rsvd1;
1039 		__u64 pad_to_size;
1040 	};
1041 	__u64 rsvd2;
1042 };
1043 
1044 struct drm_i915_gem_exec_fence {
1045 	/**
1046 	 * User's handle for a drm_syncobj to wait on or signal.
1047 	 */
1048 	__u32 handle;
1049 
1050 #define I915_EXEC_FENCE_WAIT            (1<<0)
1051 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1052 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1053 	__u32 flags;
1054 };
1055 
1056 /**
1057  * See drm_i915_gem_execbuffer_ext_timeline_fences.
1058  */
1059 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1060 
1061 /**
1062  * This structure describes an array of drm_syncobj and associated points for
1063  * timeline variants of drm_syncobj. It is invalid to append this structure to
1064  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1065  */
1066 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1067 	struct i915_user_extension base;
1068 
1069 	/**
1070 	 * Number of element in the handles_ptr & value_ptr arrays.
1071 	 */
1072 	__u64 fence_count;
1073 
1074 	/**
1075 	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1076 	 * fence_count.
1077 	 */
1078 	__u64 handles_ptr;
1079 
1080 	/**
1081 	 * Pointer to an array of u64 values of length fence_count. Values
1082 	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1083 	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1084 	 */
1085 	__u64 values_ptr;
1086 };
1087 
1088 struct drm_i915_gem_execbuffer2 {
1089 	/**
1090 	 * List of gem_exec_object2 structs
1091 	 */
1092 	__u64 buffers_ptr;
1093 	__u32 buffer_count;
1094 
1095 	/** Offset in the batchbuffer to start execution from. */
1096 	__u32 batch_start_offset;
1097 	/** Bytes used in batchbuffer from batch_start_offset */
1098 	__u32 batch_len;
1099 	__u32 DR1;
1100 	__u32 DR4;
1101 	__u32 num_cliprects;
1102 	/**
1103 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1104 	 * & I915_EXEC_USE_EXTENSIONS are not set.
1105 	 *
1106 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1107 	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1108 	 * of the array.
1109 	 *
1110 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1111 	 * single struct i915_user_extension and num_cliprects is 0.
1112 	 */
1113 	__u64 cliprects_ptr;
1114 #define I915_EXEC_RING_MASK              (0x3f)
1115 #define I915_EXEC_DEFAULT                (0<<0)
1116 #define I915_EXEC_RENDER                 (1<<0)
1117 #define I915_EXEC_BSD                    (2<<0)
1118 #define I915_EXEC_BLT                    (3<<0)
1119 #define I915_EXEC_VEBOX                  (4<<0)
1120 
1121 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1122  * Gen6+ only supports relative addressing to dynamic state (default) and
1123  * absolute addressing.
1124  *
1125  * These flags are ignored for the BSD and BLT rings.
1126  */
1127 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1128 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1129 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1130 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1131 	__u64 flags;
1132 	__u64 rsvd1; /* now used for context info */
1133 	__u64 rsvd2;
1134 };
1135 
1136 /** Resets the SO write offset registers for transform feedback on gen7. */
1137 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1138 
1139 /** Request a privileged ("secure") batch buffer. Note only available for
1140  * DRM_ROOT_ONLY | DRM_MASTER processes.
1141  */
1142 #define I915_EXEC_SECURE		(1<<9)
1143 
1144 /** Inform the kernel that the batch is and will always be pinned. This
1145  * negates the requirement for a workaround to be performed to avoid
1146  * an incoherent CS (such as can be found on 830/845). If this flag is
1147  * not passed, the kernel will endeavour to make sure the batch is
1148  * coherent with the CS before execution. If this flag is passed,
1149  * userspace assumes the responsibility for ensuring the same.
1150  */
1151 #define I915_EXEC_IS_PINNED		(1<<10)
1152 
1153 /** Provide a hint to the kernel that the command stream and auxiliary
1154  * state buffers already holds the correct presumed addresses and so the
1155  * relocation process may be skipped if no buffers need to be moved in
1156  * preparation for the execbuffer.
1157  */
1158 #define I915_EXEC_NO_RELOC		(1<<11)
1159 
1160 /** Use the reloc.handle as an index into the exec object array rather
1161  * than as the per-file handle.
1162  */
1163 #define I915_EXEC_HANDLE_LUT		(1<<12)
1164 
1165 /** Used for switching BSD rings on the platforms with two BSD rings */
1166 #define I915_EXEC_BSD_SHIFT	 (13)
1167 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1168 /* default ping-pong mode */
1169 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1170 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1171 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1172 
1173 /** Tell the kernel that the batchbuffer is processed by
1174  *  the resource streamer.
1175  */
1176 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1177 
1178 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1179  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1180  * the batch.
1181  *
1182  * Returns -EINVAL if the sync_file fd cannot be found.
1183  */
1184 #define I915_EXEC_FENCE_IN		(1<<16)
1185 
1186 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1187  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1188  * to the caller, and it should be close() after use. (The fd is a regular
1189  * file descriptor and will be cleaned up on process termination. It holds
1190  * a reference to the request, but nothing else.)
1191  *
1192  * The sync_file fd can be combined with other sync_file and passed either
1193  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1194  * will only occur after this request completes), or to other devices.
1195  *
1196  * Using I915_EXEC_FENCE_OUT requires use of
1197  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1198  * back to userspace. Failure to do so will cause the out-fence to always
1199  * be reported as zero, and the real fence fd to be leaked.
1200  */
1201 #define I915_EXEC_FENCE_OUT		(1<<17)
1202 
1203 /*
1204  * Traditionally the execbuf ioctl has only considered the final element in
1205  * the execobject[] to be the executable batch. Often though, the client
1206  * will known the batch object prior to construction and being able to place
1207  * it into the execobject[] array first can simplify the relocation tracking.
1208  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1209  * execobject[] as the * batch instead (the default is to use the last
1210  * element).
1211  */
1212 #define I915_EXEC_BATCH_FIRST		(1<<18)
1213 
1214 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1215  * define an array of i915_gem_exec_fence structures which specify a set of
1216  * dma fences to wait upon or signal.
1217  */
1218 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1219 
1220 /*
1221  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1222  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1223  * the batch.
1224  *
1225  * Returns -EINVAL if the sync_file fd cannot be found.
1226  */
1227 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1228 
1229 /*
1230  * Setting I915_EXEC_USE_EXTENSIONS implies that
1231  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1232  * list of i915_user_extension. Each i915_user_extension node is the base of a
1233  * larger structure. The list of supported structures are listed in the
1234  * drm_i915_gem_execbuffer_ext enum.
1235  */
1236 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1237 
1238 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1239 
1240 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1241 #define i915_execbuffer2_set_context_id(eb2, context) \
1242 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1243 #define i915_execbuffer2_get_context_id(eb2) \
1244 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1245 
1246 struct drm_i915_gem_pin {
1247 	/** Handle of the buffer to be pinned. */
1248 	__u32 handle;
1249 	__u32 pad;
1250 
1251 	/** alignment required within the aperture */
1252 	__u64 alignment;
1253 
1254 	/** Returned GTT offset of the buffer. */
1255 	__u64 offset;
1256 };
1257 
1258 struct drm_i915_gem_unpin {
1259 	/** Handle of the buffer to be unpinned. */
1260 	__u32 handle;
1261 	__u32 pad;
1262 };
1263 
1264 struct drm_i915_gem_busy {
1265 	/** Handle of the buffer to check for busy */
1266 	__u32 handle;
1267 
1268 	/** Return busy status
1269 	 *
1270 	 * A return of 0 implies that the object is idle (after
1271 	 * having flushed any pending activity), and a non-zero return that
1272 	 * the object is still in-flight on the GPU. (The GPU has not yet
1273 	 * signaled completion for all pending requests that reference the
1274 	 * object.) An object is guaranteed to become idle eventually (so
1275 	 * long as no new GPU commands are executed upon it). Due to the
1276 	 * asynchronous nature of the hardware, an object reported
1277 	 * as busy may become idle before the ioctl is completed.
1278 	 *
1279 	 * Furthermore, if the object is busy, which engine is busy is only
1280 	 * provided as a guide and only indirectly by reporting its class
1281 	 * (there may be more than one engine in each class). There are race
1282 	 * conditions which prevent the report of which engines are busy from
1283 	 * being always accurate.  However, the converse is not true. If the
1284 	 * object is idle, the result of the ioctl, that all engines are idle,
1285 	 * is accurate.
1286 	 *
1287 	 * The returned dword is split into two fields to indicate both
1288 	 * the engine classess on which the object is being read, and the
1289 	 * engine class on which it is currently being written (if any).
1290 	 *
1291 	 * The low word (bits 0:15) indicate if the object is being written
1292 	 * to by any engine (there can only be one, as the GEM implicit
1293 	 * synchronisation rules force writes to be serialised). Only the
1294 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1295 	 * 1 not 0 etc) for the last write is reported.
1296 	 *
1297 	 * The high word (bits 16:31) are a bitmask of which engines classes
1298 	 * are currently reading from the object. Multiple engines may be
1299 	 * reading from the object simultaneously.
1300 	 *
1301 	 * The value of each engine class is the same as specified in the
1302 	 * I915_CONTEXT_SET_ENGINES parameter and via perf, i.e.
1303 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1304 	 * reported as active itself. Some hardware may have parallel
1305 	 * execution engines, e.g. multiple media engines, which are
1306 	 * mapped to the same class identifier and so are not separately
1307 	 * reported for busyness.
1308 	 *
1309 	 * Caveat emptor:
1310 	 * Only the boolean result of this query is reliable; that is whether
1311 	 * the object is idle or busy. The report of which engines are busy
1312 	 * should be only used as a heuristic.
1313 	 */
1314 	__u32 busy;
1315 };
1316 
1317 /**
1318  * I915_CACHING_NONE
1319  *
1320  * GPU access is not coherent with cpu caches. Default for machines without an
1321  * LLC.
1322  */
1323 #define I915_CACHING_NONE		0
1324 /**
1325  * I915_CACHING_CACHED
1326  *
1327  * GPU access is coherent with cpu caches and furthermore the data is cached in
1328  * last-level caches shared between cpu cores and the gpu GT. Default on
1329  * machines with HAS_LLC.
1330  */
1331 #define I915_CACHING_CACHED		1
1332 /**
1333  * I915_CACHING_DISPLAY
1334  *
1335  * Special GPU caching mode which is coherent with the scanout engines.
1336  * Transparently falls back to I915_CACHING_NONE on platforms where no special
1337  * cache mode (like write-through or gfdt flushing) is available. The kernel
1338  * automatically sets this mode when using a buffer as a scanout target.
1339  * Userspace can manually set this mode to avoid a costly stall and clflush in
1340  * the hotpath of drawing the first frame.
1341  */
1342 #define I915_CACHING_DISPLAY		2
1343 
1344 struct drm_i915_gem_caching {
1345 	/**
1346 	 * Handle of the buffer to set/get the caching level of. */
1347 	__u32 handle;
1348 
1349 	/**
1350 	 * Cacheing level to apply or return value
1351 	 *
1352 	 * bits0-15 are for generic caching control (i.e. the above defined
1353 	 * values). bits16-31 are reserved for platform-specific variations
1354 	 * (e.g. l3$ caching on gen7). */
1355 	__u32 caching;
1356 };
1357 
1358 #define I915_TILING_NONE	0
1359 #define I915_TILING_X		1
1360 #define I915_TILING_Y		2
1361 #define I915_TILING_LAST	I915_TILING_Y
1362 
1363 #define I915_BIT_6_SWIZZLE_NONE		0
1364 #define I915_BIT_6_SWIZZLE_9		1
1365 #define I915_BIT_6_SWIZZLE_9_10		2
1366 #define I915_BIT_6_SWIZZLE_9_11		3
1367 #define I915_BIT_6_SWIZZLE_9_10_11	4
1368 /* Not seen by userland */
1369 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1370 /* Seen by userland. */
1371 #define I915_BIT_6_SWIZZLE_9_17		6
1372 #define I915_BIT_6_SWIZZLE_9_10_17	7
1373 
1374 struct drm_i915_gem_set_tiling {
1375 	/** Handle of the buffer to have its tiling state updated */
1376 	__u32 handle;
1377 
1378 	/**
1379 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1380 	 * I915_TILING_Y).
1381 	 *
1382 	 * This value is to be set on request, and will be updated by the
1383 	 * kernel on successful return with the actual chosen tiling layout.
1384 	 *
1385 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1386 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1387 	 *
1388 	 * Buffer contents become undefined when changing tiling_mode.
1389 	 */
1390 	__u32 tiling_mode;
1391 
1392 	/**
1393 	 * Stride in bytes for the object when in I915_TILING_X or
1394 	 * I915_TILING_Y.
1395 	 */
1396 	__u32 stride;
1397 
1398 	/**
1399 	 * Returned address bit 6 swizzling required for CPU access through
1400 	 * mmap mapping.
1401 	 */
1402 	__u32 swizzle_mode;
1403 };
1404 
1405 struct drm_i915_gem_get_tiling {
1406 	/** Handle of the buffer to get tiling state for. */
1407 	__u32 handle;
1408 
1409 	/**
1410 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1411 	 * I915_TILING_Y).
1412 	 */
1413 	__u32 tiling_mode;
1414 
1415 	/**
1416 	 * Returned address bit 6 swizzling required for CPU access through
1417 	 * mmap mapping.
1418 	 */
1419 	__u32 swizzle_mode;
1420 
1421 	/**
1422 	 * Returned address bit 6 swizzling required for CPU access through
1423 	 * mmap mapping whilst bound.
1424 	 */
1425 	__u32 phys_swizzle_mode;
1426 };
1427 
1428 struct drm_i915_gem_get_aperture {
1429 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1430 	__u64 aper_size;
1431 
1432 	/**
1433 	 * Available space in the aperture used by i915_gem_execbuffer, in
1434 	 * bytes
1435 	 */
1436 	__u64 aper_available_size;
1437 };
1438 
1439 struct drm_i915_get_pipe_from_crtc_id {
1440 	/** ID of CRTC being requested **/
1441 	__u32 crtc_id;
1442 
1443 	/** pipe of requested CRTC **/
1444 	__u32 pipe;
1445 };
1446 
1447 #define I915_MADV_WILLNEED 0
1448 #define I915_MADV_DONTNEED 1
1449 #define __I915_MADV_PURGED 2 /* internal state */
1450 
1451 struct drm_i915_gem_madvise {
1452 	/** Handle of the buffer to change the backing store advice */
1453 	__u32 handle;
1454 
1455 	/* Advice: either the buffer will be needed again in the near future,
1456 	 *         or wont be and could be discarded under memory pressure.
1457 	 */
1458 	__u32 madv;
1459 
1460 	/** Whether the backing store still exists. */
1461 	__u32 retained;
1462 };
1463 
1464 /* flags */
1465 #define I915_OVERLAY_TYPE_MASK 		0xff
1466 #define I915_OVERLAY_YUV_PLANAR 	0x01
1467 #define I915_OVERLAY_YUV_PACKED 	0x02
1468 #define I915_OVERLAY_RGB		0x03
1469 
1470 #define I915_OVERLAY_DEPTH_MASK		0xff00
1471 #define I915_OVERLAY_RGB24		0x1000
1472 #define I915_OVERLAY_RGB16		0x2000
1473 #define I915_OVERLAY_RGB15		0x3000
1474 #define I915_OVERLAY_YUV422		0x0100
1475 #define I915_OVERLAY_YUV411		0x0200
1476 #define I915_OVERLAY_YUV420		0x0300
1477 #define I915_OVERLAY_YUV410		0x0400
1478 
1479 #define I915_OVERLAY_SWAP_MASK		0xff0000
1480 #define I915_OVERLAY_NO_SWAP		0x000000
1481 #define I915_OVERLAY_UV_SWAP		0x010000
1482 #define I915_OVERLAY_Y_SWAP		0x020000
1483 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1484 
1485 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1486 #define I915_OVERLAY_ENABLE		0x01000000
1487 
1488 struct drm_intel_overlay_put_image {
1489 	/* various flags and src format description */
1490 	__u32 flags;
1491 	/* source picture description */
1492 	__u32 bo_handle;
1493 	/* stride values and offsets are in bytes, buffer relative */
1494 	__u16 stride_Y; /* stride for packed formats */
1495 	__u16 stride_UV;
1496 	__u32 offset_Y; /* offset for packet formats */
1497 	__u32 offset_U;
1498 	__u32 offset_V;
1499 	/* in pixels */
1500 	__u16 src_width;
1501 	__u16 src_height;
1502 	/* to compensate the scaling factors for partially covered surfaces */
1503 	__u16 src_scan_width;
1504 	__u16 src_scan_height;
1505 	/* output crtc description */
1506 	__u32 crtc_id;
1507 	__u16 dst_x;
1508 	__u16 dst_y;
1509 	__u16 dst_width;
1510 	__u16 dst_height;
1511 };
1512 
1513 /* flags */
1514 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1515 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1516 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1517 struct drm_intel_overlay_attrs {
1518 	__u32 flags;
1519 	__u32 color_key;
1520 	__s32 brightness;
1521 	__u32 contrast;
1522 	__u32 saturation;
1523 	__u32 gamma0;
1524 	__u32 gamma1;
1525 	__u32 gamma2;
1526 	__u32 gamma3;
1527 	__u32 gamma4;
1528 	__u32 gamma5;
1529 };
1530 
1531 /*
1532  * Intel sprite handling
1533  *
1534  * Color keying works with a min/mask/max tuple.  Both source and destination
1535  * color keying is allowed.
1536  *
1537  * Source keying:
1538  * Sprite pixels within the min & max values, masked against the color channels
1539  * specified in the mask field, will be transparent.  All other pixels will
1540  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1541  * and mask fields will be used; ranged compares are not allowed.
1542  *
1543  * Destination keying:
1544  * Primary plane pixels that match the min value, masked against the color
1545  * channels specified in the mask field, will be replaced by corresponding
1546  * pixels from the sprite plane.
1547  *
1548  * Note that source & destination keying are exclusive; only one can be
1549  * active on a given plane.
1550  */
1551 
1552 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1553 						* flags==0 to disable colorkeying.
1554 						*/
1555 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1556 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1557 struct drm_intel_sprite_colorkey {
1558 	__u32 plane_id;
1559 	__u32 min_value;
1560 	__u32 channel_mask;
1561 	__u32 max_value;
1562 	__u32 flags;
1563 };
1564 
1565 struct drm_i915_gem_wait {
1566 	/** Handle of BO we shall wait on */
1567 	__u32 bo_handle;
1568 	__u32 flags;
1569 	/** Number of nanoseconds to wait, Returns time remaining. */
1570 	__s64 timeout_ns;
1571 };
1572 
1573 struct drm_i915_gem_context_create {
1574 	__u32 ctx_id; /* output: id of new context*/
1575 	__u32 pad;
1576 };
1577 
1578 struct drm_i915_gem_context_create_ext {
1579 	__u32 ctx_id; /* output: id of new context*/
1580 	__u32 flags;
1581 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1582 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1583 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1584 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1585 	__u64 extensions;
1586 };
1587 
1588 struct drm_i915_gem_context_param {
1589 	__u32 ctx_id;
1590 	__u32 size;
1591 	__u64 param;
1592 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1593 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1594 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1595 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1596 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1597 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1598 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1599 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1600 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1601 	/*
1602 	 * When using the following param, value should be a pointer to
1603 	 * drm_i915_gem_context_param_sseu.
1604 	 */
1605 #define I915_CONTEXT_PARAM_SSEU		0x7
1606 
1607 /*
1608  * Not all clients may want to attempt automatic recover of a context after
1609  * a hang (for example, some clients may only submit very small incremental
1610  * batches relying on known logical state of previous batches which will never
1611  * recover correctly and each attempt will hang), and so would prefer that
1612  * the context is forever banned instead.
1613  *
1614  * If set to false (0), after a reset, subsequent (and in flight) rendering
1615  * from this context is discarded, and the client will need to create a new
1616  * context to use instead.
1617  *
1618  * If set to true (1), the kernel will automatically attempt to recover the
1619  * context by skipping the hanging batch and executing the next batch starting
1620  * from the default context state (discarding the incomplete logical context
1621  * state lost due to the reset).
1622  *
1623  * On creation, all new contexts are marked as recoverable.
1624  */
1625 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1626 
1627 	/*
1628 	 * The id of the associated virtual memory address space (ppGTT) of
1629 	 * this context. Can be retrieved and passed to another context
1630 	 * (on the same fd) for both to use the same ppGTT and so share
1631 	 * address layouts, and avoid reloading the page tables on context
1632 	 * switches between themselves.
1633 	 *
1634 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1635 	 */
1636 #define I915_CONTEXT_PARAM_VM		0x9
1637 
1638 /*
1639  * I915_CONTEXT_PARAM_ENGINES:
1640  *
1641  * Bind this context to operate on this subset of available engines. Henceforth,
1642  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1643  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1644  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1645  * Use
1646  *	engine_class: I915_ENGINE_CLASS_INVALID,
1647  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1648  * to specify a gap in the array that can be filled in later, e.g. by a
1649  * virtual engine used for load balancing.
1650  *
1651  * Setting the number of engines bound to the context to 0, by passing a zero
1652  * sized argument, will revert back to default settings.
1653  *
1654  * See struct i915_context_param_engines.
1655  *
1656  * Extensions:
1657  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1658  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1659  */
1660 #define I915_CONTEXT_PARAM_ENGINES	0xa
1661 
1662 /*
1663  * I915_CONTEXT_PARAM_PERSISTENCE:
1664  *
1665  * Allow the context and active rendering to survive the process until
1666  * completion. Persistence allows fire-and-forget clients to queue up a
1667  * bunch of work, hand the output over to a display server and then quit.
1668  * If the context is marked as not persistent, upon closing (either via
1669  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1670  * or process termination), the context and any outstanding requests will be
1671  * cancelled (and exported fences for cancelled requests marked as -EIO).
1672  *
1673  * By default, new contexts allow persistence.
1674  */
1675 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1676 
1677 /*
1678  * I915_CONTEXT_PARAM_RINGSIZE:
1679  *
1680  * Sets the size of the CS ringbuffer to use for logical ring contexts. This
1681  * applies a limit of how many batches can be queued to HW before the caller
1682  * is blocked due to lack of space for more commands.
1683  *
1684  * Only reliably possible to be set prior to first use, i.e. during
1685  * construction. At any later point, the current execution must be flushed as
1686  * the ring can only be changed while the context is idle. Note, the ringsize
1687  * can be specified as a constructor property, see
1688  * I915_CONTEXT_CREATE_EXT_SETPARAM, but can also be set later if required.
1689  *
1690  * Only applies to the current set of engine and lost when those engines
1691  * are replaced by a new mapping (see I915_CONTEXT_PARAM_ENGINES).
1692  *
1693  * Must be between 4 - 512 KiB, in intervals of page size [4 KiB].
1694  * Default is 16 KiB.
1695  */
1696 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1697 /* Must be kept compact -- no holes and well documented */
1698 
1699 	__u64 value;
1700 };
1701 
1702 /**
1703  * Context SSEU programming
1704  *
1705  * It may be necessary for either functional or performance reason to configure
1706  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1707  * Sub-slice/EU).
1708  *
1709  * This is done by configuring SSEU configuration using the below
1710  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1711  * userspace intends to use.
1712  *
1713  * Not all GPUs or engines support this functionality in which case an error
1714  * code -ENODEV will be returned.
1715  *
1716  * Also, flexibility of possible SSEU configuration permutations varies between
1717  * GPU generations and software imposed limitations. Requesting such a
1718  * combination will return an error code of -EINVAL.
1719  *
1720  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1721  * favour of a single global setting.
1722  */
1723 struct drm_i915_gem_context_param_sseu {
1724 	/*
1725 	 * Engine class & instance to be configured or queried.
1726 	 */
1727 	struct i915_engine_class_instance engine;
1728 
1729 	/*
1730 	 * Unknown flags must be cleared to zero.
1731 	 */
1732 	__u32 flags;
1733 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1734 
1735 	/*
1736 	 * Mask of slices to enable for the context. Valid values are a subset
1737 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1738 	 */
1739 	__u64 slice_mask;
1740 
1741 	/*
1742 	 * Mask of subslices to enable for the context. Valid values are a
1743 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1744 	 */
1745 	__u64 subslice_mask;
1746 
1747 	/*
1748 	 * Minimum/Maximum number of EUs to enable per subslice for the
1749 	 * context. min_eus_per_subslice must be inferior or equal to
1750 	 * max_eus_per_subslice.
1751 	 */
1752 	__u16 min_eus_per_subslice;
1753 	__u16 max_eus_per_subslice;
1754 
1755 	/*
1756 	 * Unused for now. Must be cleared to zero.
1757 	 */
1758 	__u32 rsvd;
1759 };
1760 
1761 /*
1762  * i915_context_engines_load_balance:
1763  *
1764  * Enable load balancing across this set of engines.
1765  *
1766  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1767  * used will proxy the execbuffer request onto one of the set of engines
1768  * in such a way as to distribute the load evenly across the set.
1769  *
1770  * The set of engines must be compatible (e.g. the same HW class) as they
1771  * will share the same logical GPU context and ring.
1772  *
1773  * To intermix rendering with the virtual engine and direct rendering onto
1774  * the backing engines (bypassing the load balancing proxy), the context must
1775  * be defined to use a single timeline for all engines.
1776  */
1777 struct i915_context_engines_load_balance {
1778 	struct i915_user_extension base;
1779 
1780 	__u16 engine_index;
1781 	__u16 num_siblings;
1782 	__u32 flags; /* all undefined flags must be zero */
1783 
1784 	__u64 mbz64; /* reserved for future use; must be zero */
1785 
1786 	struct i915_engine_class_instance engines[0];
1787 } __attribute__((packed));
1788 
1789 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1790 	struct i915_user_extension base; \
1791 	__u16 engine_index; \
1792 	__u16 num_siblings; \
1793 	__u32 flags; \
1794 	__u64 mbz64; \
1795 	struct i915_engine_class_instance engines[N__]; \
1796 } __attribute__((packed)) name__
1797 
1798 /*
1799  * i915_context_engines_bond:
1800  *
1801  * Constructed bonded pairs for execution within a virtual engine.
1802  *
1803  * All engines are equal, but some are more equal than others. Given
1804  * the distribution of resources in the HW, it may be preferable to run
1805  * a request on a given subset of engines in parallel to a request on a
1806  * specific engine. We enable this selection of engines within a virtual
1807  * engine by specifying bonding pairs, for any given master engine we will
1808  * only execute on one of the corresponding siblings within the virtual engine.
1809  *
1810  * To execute a request in parallel on the master engine and a sibling requires
1811  * coordination with a I915_EXEC_FENCE_SUBMIT.
1812  */
1813 struct i915_context_engines_bond {
1814 	struct i915_user_extension base;
1815 
1816 	struct i915_engine_class_instance master;
1817 
1818 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
1819 	__u16 num_bonds;
1820 
1821 	__u64 flags; /* all undefined flags must be zero */
1822 	__u64 mbz64[4]; /* reserved for future use; must be zero */
1823 
1824 	struct i915_engine_class_instance engines[0];
1825 } __attribute__((packed));
1826 
1827 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
1828 	struct i915_user_extension base; \
1829 	struct i915_engine_class_instance master; \
1830 	__u16 virtual_index; \
1831 	__u16 num_bonds; \
1832 	__u64 flags; \
1833 	__u64 mbz64[4]; \
1834 	struct i915_engine_class_instance engines[N__]; \
1835 } __attribute__((packed)) name__
1836 
1837 struct i915_context_param_engines {
1838 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
1839 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
1840 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
1841 	struct i915_engine_class_instance engines[0];
1842 } __attribute__((packed));
1843 
1844 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
1845 	__u64 extensions; \
1846 	struct i915_engine_class_instance engines[N__]; \
1847 } __attribute__((packed)) name__
1848 
1849 struct drm_i915_gem_context_create_ext_setparam {
1850 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1851 	struct i915_user_extension base;
1852 	struct drm_i915_gem_context_param param;
1853 };
1854 
1855 struct drm_i915_gem_context_create_ext_clone {
1856 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1857 	struct i915_user_extension base;
1858 	__u32 clone_id;
1859 	__u32 flags;
1860 #define I915_CONTEXT_CLONE_ENGINES	(1u << 0)
1861 #define I915_CONTEXT_CLONE_FLAGS	(1u << 1)
1862 #define I915_CONTEXT_CLONE_SCHEDATTR	(1u << 2)
1863 #define I915_CONTEXT_CLONE_SSEU		(1u << 3)
1864 #define I915_CONTEXT_CLONE_TIMELINE	(1u << 4)
1865 #define I915_CONTEXT_CLONE_VM		(1u << 5)
1866 #define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1)
1867 	__u64 rsvd;
1868 };
1869 
1870 struct drm_i915_gem_context_destroy {
1871 	__u32 ctx_id;
1872 	__u32 pad;
1873 };
1874 
1875 /*
1876  * DRM_I915_GEM_VM_CREATE -
1877  *
1878  * Create a new virtual memory address space (ppGTT) for use within a context
1879  * on the same file. Extensions can be provided to configure exactly how the
1880  * address space is setup upon creation.
1881  *
1882  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
1883  * returned in the outparam @id.
1884  *
1885  * No flags are defined, with all bits reserved and must be zero.
1886  *
1887  * An extension chain maybe provided, starting with @extensions, and terminated
1888  * by the @next_extension being 0. Currently, no extensions are defined.
1889  *
1890  * DRM_I915_GEM_VM_DESTROY -
1891  *
1892  * Destroys a previously created VM id, specified in @id.
1893  *
1894  * No extensions or flags are allowed currently, and so must be zero.
1895  */
1896 struct drm_i915_gem_vm_control {
1897 	__u64 extensions;
1898 	__u32 flags;
1899 	__u32 vm_id;
1900 };
1901 
1902 struct drm_i915_reg_read {
1903 	/*
1904 	 * Register offset.
1905 	 * For 64bit wide registers where the upper 32bits don't immediately
1906 	 * follow the lower 32bits, the offset of the lower 32bits must
1907 	 * be specified
1908 	 */
1909 	__u64 offset;
1910 #define I915_REG_READ_8B_WA (1ul << 0)
1911 
1912 	__u64 val; /* Return value */
1913 };
1914 
1915 /* Known registers:
1916  *
1917  * Render engine timestamp - 0x2358 + 64bit - gen7+
1918  * - Note this register returns an invalid value if using the default
1919  *   single instruction 8byte read, in order to workaround that pass
1920  *   flag I915_REG_READ_8B_WA in offset field.
1921  *
1922  */
1923 
1924 struct drm_i915_reset_stats {
1925 	__u32 ctx_id;
1926 	__u32 flags;
1927 
1928 	/* All resets since boot/module reload, for all contexts */
1929 	__u32 reset_count;
1930 
1931 	/* Number of batches lost when active in GPU, for this context */
1932 	__u32 batch_active;
1933 
1934 	/* Number of batches lost pending for execution, for this context */
1935 	__u32 batch_pending;
1936 
1937 	__u32 pad;
1938 };
1939 
1940 struct drm_i915_gem_userptr {
1941 	__u64 user_ptr;
1942 	__u64 user_size;
1943 	__u32 flags;
1944 #define I915_USERPTR_READ_ONLY 0x1
1945 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1946 	/**
1947 	 * Returned handle for the object.
1948 	 *
1949 	 * Object handles are nonzero.
1950 	 */
1951 	__u32 handle;
1952 };
1953 
1954 enum drm_i915_oa_format {
1955 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
1956 	I915_OA_FORMAT_A29,	    /* HSW only */
1957 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
1958 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
1959 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
1960 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
1961 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
1962 
1963 	/* Gen8+ */
1964 	I915_OA_FORMAT_A12,
1965 	I915_OA_FORMAT_A12_B8_C8,
1966 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
1967 
1968 	I915_OA_FORMAT_MAX	    /* non-ABI */
1969 };
1970 
1971 enum drm_i915_perf_property_id {
1972 	/**
1973 	 * Open the stream for a specific context handle (as used with
1974 	 * execbuffer2). A stream opened for a specific context this way
1975 	 * won't typically require root privileges.
1976 	 *
1977 	 * This property is available in perf revision 1.
1978 	 */
1979 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
1980 
1981 	/**
1982 	 * A value of 1 requests the inclusion of raw OA unit reports as
1983 	 * part of stream samples.
1984 	 *
1985 	 * This property is available in perf revision 1.
1986 	 */
1987 	DRM_I915_PERF_PROP_SAMPLE_OA,
1988 
1989 	/**
1990 	 * The value specifies which set of OA unit metrics should be
1991 	 * configured, defining the contents of any OA unit reports.
1992 	 *
1993 	 * This property is available in perf revision 1.
1994 	 */
1995 	DRM_I915_PERF_PROP_OA_METRICS_SET,
1996 
1997 	/**
1998 	 * The value specifies the size and layout of OA unit reports.
1999 	 *
2000 	 * This property is available in perf revision 1.
2001 	 */
2002 	DRM_I915_PERF_PROP_OA_FORMAT,
2003 
2004 	/**
2005 	 * Specifying this property implicitly requests periodic OA unit
2006 	 * sampling and (at least on Haswell) the sampling frequency is derived
2007 	 * from this exponent as follows:
2008 	 *
2009 	 *   80ns * 2^(period_exponent + 1)
2010 	 *
2011 	 * This property is available in perf revision 1.
2012 	 */
2013 	DRM_I915_PERF_PROP_OA_EXPONENT,
2014 
2015 	/**
2016 	 * Specifying this property is only valid when specify a context to
2017 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2018 	 * will hold preemption of the particular context we want to gather
2019 	 * performance data about. The execbuf2 submissions must include a
2020 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2021 	 *
2022 	 * This property is available in perf revision 3.
2023 	 */
2024 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2025 
2026 	/**
2027 	 * Specifying this pins all contexts to the specified SSEU power
2028 	 * configuration for the duration of the recording.
2029 	 *
2030 	 * This parameter's value is a pointer to a struct
2031 	 * drm_i915_gem_context_param_sseu.
2032 	 *
2033 	 * This property is available in perf revision 4.
2034 	 */
2035 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2036 
2037 	/**
2038 	 * This optional parameter specifies the timer interval in nanoseconds
2039 	 * at which the i915 driver will check the OA buffer for available data.
2040 	 * Minimum allowed value is 100 microseconds. A default value is used by
2041 	 * the driver if this parameter is not specified. Note that larger timer
2042 	 * values will reduce cpu consumption during OA perf captures. However,
2043 	 * excessively large values would potentially result in OA buffer
2044 	 * overwrites as captures reach end of the OA buffer.
2045 	 *
2046 	 * This property is available in perf revision 5.
2047 	 */
2048 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2049 
2050 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2051 };
2052 
2053 struct drm_i915_perf_open_param {
2054 	__u32 flags;
2055 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2056 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2057 #define I915_PERF_FLAG_DISABLED		(1<<2)
2058 
2059 	/** The number of u64 (id, value) pairs */
2060 	__u32 num_properties;
2061 
2062 	/**
2063 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2064 	 * to open.
2065 	 */
2066 	__u64 properties_ptr;
2067 };
2068 
2069 /**
2070  * Enable data capture for a stream that was either opened in a disabled state
2071  * via I915_PERF_FLAG_DISABLED or was later disabled via
2072  * I915_PERF_IOCTL_DISABLE.
2073  *
2074  * It is intended to be cheaper to disable and enable a stream than it may be
2075  * to close and re-open a stream with the same configuration.
2076  *
2077  * It's undefined whether any pending data for the stream will be lost.
2078  *
2079  * This ioctl is available in perf revision 1.
2080  */
2081 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2082 
2083 /**
2084  * Disable data capture for a stream.
2085  *
2086  * It is an error to try and read a stream that is disabled.
2087  *
2088  * This ioctl is available in perf revision 1.
2089  */
2090 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2091 
2092 /**
2093  * Change metrics_set captured by a stream.
2094  *
2095  * If the stream is bound to a specific context, the configuration change
2096  * will performed inline with that context such that it takes effect before
2097  * the next execbuf submission.
2098  *
2099  * Returns the previously bound metrics set id, or a negative error code.
2100  *
2101  * This ioctl is available in perf revision 2.
2102  */
2103 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2104 
2105 /**
2106  * Common to all i915 perf records
2107  */
2108 struct drm_i915_perf_record_header {
2109 	__u32 type;
2110 	__u16 pad;
2111 	__u16 size;
2112 };
2113 
2114 enum drm_i915_perf_record_type {
2115 
2116 	/**
2117 	 * Samples are the work horse record type whose contents are extensible
2118 	 * and defined when opening an i915 perf stream based on the given
2119 	 * properties.
2120 	 *
2121 	 * Boolean properties following the naming convention
2122 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2123 	 * every sample.
2124 	 *
2125 	 * The order of these sample properties given by userspace has no
2126 	 * affect on the ordering of data within a sample. The order is
2127 	 * documented here.
2128 	 *
2129 	 * struct {
2130 	 *     struct drm_i915_perf_record_header header;
2131 	 *
2132 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2133 	 * };
2134 	 */
2135 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2136 
2137 	/*
2138 	 * Indicates that one or more OA reports were not written by the
2139 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2140 	 * command collides with periodic sampling - which would be more likely
2141 	 * at higher sampling frequencies.
2142 	 */
2143 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2144 
2145 	/**
2146 	 * An error occurred that resulted in all pending OA reports being lost.
2147 	 */
2148 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2149 
2150 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2151 };
2152 
2153 /**
2154  * Structure to upload perf dynamic configuration into the kernel.
2155  */
2156 struct drm_i915_perf_oa_config {
2157 	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2158 	char uuid[36];
2159 
2160 	__u32 n_mux_regs;
2161 	__u32 n_boolean_regs;
2162 	__u32 n_flex_regs;
2163 
2164 	/*
2165 	 * These fields are pointers to tuples of u32 values (register address,
2166 	 * value). For example the expected length of the buffer pointed by
2167 	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2168 	 */
2169 	__u64 mux_regs_ptr;
2170 	__u64 boolean_regs_ptr;
2171 	__u64 flex_regs_ptr;
2172 };
2173 
2174 struct drm_i915_query_item {
2175 	__u64 query_id;
2176 #define DRM_I915_QUERY_TOPOLOGY_INFO    1
2177 #define DRM_I915_QUERY_ENGINE_INFO	2
2178 #define DRM_I915_QUERY_PERF_CONFIG      3
2179 /* Must be kept compact -- no holes and well documented */
2180 
2181 	/*
2182 	 * When set to zero by userspace, this is filled with the size of the
2183 	 * data to be written at the data_ptr pointer. The kernel sets this
2184 	 * value to a negative value to signal an error on a particular query
2185 	 * item.
2186 	 */
2187 	__s32 length;
2188 
2189 	/*
2190 	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2191 	 *
2192 	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2193 	 * following :
2194 	 *         - DRM_I915_QUERY_PERF_CONFIG_LIST
2195 	 *         - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2196 	 *         - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2197 	 */
2198 	__u32 flags;
2199 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2200 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2201 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2202 
2203 	/*
2204 	 * Data will be written at the location pointed by data_ptr when the
2205 	 * value of length matches the length of the data to be written by the
2206 	 * kernel.
2207 	 */
2208 	__u64 data_ptr;
2209 };
2210 
2211 struct drm_i915_query {
2212 	__u32 num_items;
2213 
2214 	/*
2215 	 * Unused for now. Must be cleared to zero.
2216 	 */
2217 	__u32 flags;
2218 
2219 	/*
2220 	 * This points to an array of num_items drm_i915_query_item structures.
2221 	 */
2222 	__u64 items_ptr;
2223 };
2224 
2225 /*
2226  * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2227  *
2228  * data: contains the 3 pieces of information :
2229  *
2230  * - the slice mask with one bit per slice telling whether a slice is
2231  *   available. The availability of slice X can be queried with the following
2232  *   formula :
2233  *
2234  *           (data[X / 8] >> (X % 8)) & 1
2235  *
2236  * - the subslice mask for each slice with one bit per subslice telling
2237  *   whether a subslice is available. Gen12 has dual-subslices, which are
2238  *   similar to two gen11 subslices. For gen12, this array represents dual-
2239  *   subslices. The availability of subslice Y in slice X can be queried
2240  *   with the following formula :
2241  *
2242  *           (data[subslice_offset +
2243  *                 X * subslice_stride +
2244  *                 Y / 8] >> (Y % 8)) & 1
2245  *
2246  * - the EU mask for each subslice in each slice with one bit per EU telling
2247  *   whether an EU is available. The availability of EU Z in subslice Y in
2248  *   slice X can be queried with the following formula :
2249  *
2250  *           (data[eu_offset +
2251  *                 (X * max_subslices + Y) * eu_stride +
2252  *                 Z / 8] >> (Z % 8)) & 1
2253  */
2254 struct drm_i915_query_topology_info {
2255 	/*
2256 	 * Unused for now. Must be cleared to zero.
2257 	 */
2258 	__u16 flags;
2259 
2260 	__u16 max_slices;
2261 	__u16 max_subslices;
2262 	__u16 max_eus_per_subslice;
2263 
2264 	/*
2265 	 * Offset in data[] at which the subslice masks are stored.
2266 	 */
2267 	__u16 subslice_offset;
2268 
2269 	/*
2270 	 * Stride at which each of the subslice masks for each slice are
2271 	 * stored.
2272 	 */
2273 	__u16 subslice_stride;
2274 
2275 	/*
2276 	 * Offset in data[] at which the EU masks are stored.
2277 	 */
2278 	__u16 eu_offset;
2279 
2280 	/*
2281 	 * Stride at which each of the EU masks for each subslice are stored.
2282 	 */
2283 	__u16 eu_stride;
2284 
2285 	__u8 data[];
2286 };
2287 
2288 /**
2289  * struct drm_i915_engine_info
2290  *
2291  * Describes one engine and it's capabilities as known to the driver.
2292  */
2293 struct drm_i915_engine_info {
2294 	/** Engine class and instance. */
2295 	struct i915_engine_class_instance engine;
2296 
2297 	/** Reserved field. */
2298 	__u32 rsvd0;
2299 
2300 	/** Engine flags. */
2301 	__u64 flags;
2302 
2303 	/** Capabilities of this engine. */
2304 	__u64 capabilities;
2305 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2306 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2307 
2308 	/** Reserved fields. */
2309 	__u64 rsvd1[4];
2310 };
2311 
2312 /**
2313  * struct drm_i915_query_engine_info
2314  *
2315  * Engine info query enumerates all engines known to the driver by filling in
2316  * an array of struct drm_i915_engine_info structures.
2317  */
2318 struct drm_i915_query_engine_info {
2319 	/** Number of struct drm_i915_engine_info structs following. */
2320 	__u32 num_engines;
2321 
2322 	/** MBZ */
2323 	__u32 rsvd[3];
2324 
2325 	/** Marker for drm_i915_engine_info structures. */
2326 	struct drm_i915_engine_info engines[];
2327 };
2328 
2329 /*
2330  * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2331  */
2332 struct drm_i915_query_perf_config {
2333 	union {
2334 		/*
2335 		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2336 		 * this fields to the number of configurations available.
2337 		 */
2338 		__u64 n_configs;
2339 
2340 		/*
2341 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2342 		 * i915 will use the value in this field as configuration
2343 		 * identifier to decide what data to write into config_ptr.
2344 		 */
2345 		__u64 config;
2346 
2347 		/*
2348 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2349 		 * i915 will use the value in this field as configuration
2350 		 * identifier to decide what data to write into config_ptr.
2351 		 *
2352 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2353 		 */
2354 		char uuid[36];
2355 	};
2356 
2357 	/*
2358 	 * Unused for now. Must be cleared to zero.
2359 	 */
2360 	__u32 flags;
2361 
2362 	/*
2363 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2364 	 * write an array of __u64 of configuration identifiers.
2365 	 *
2366 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2367 	 * write a struct drm_i915_perf_oa_config. If the following fields of
2368 	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2369 	 * the associated pointers the values of submitted when the
2370 	 * configuration was created :
2371 	 *
2372 	 *         - n_mux_regs
2373 	 *         - n_boolean_regs
2374 	 *         - n_flex_regs
2375 	 */
2376 	__u8 data[];
2377 };
2378 
2379 #if defined(__cplusplus)
2380 }
2381 #endif
2382 
2383 #endif /* _UAPI_I915_DRM_H_ */
2384