1================ 2bpftool-gen 3================ 4------------------------------------------------------------------------------- 5tool for BPF code-generation 6------------------------------------------------------------------------------- 7 8:Manual section: 8 9 10SYNOPSIS 11======== 12 13 **bpftool** [*OPTIONS*] **gen** *COMMAND* 14 15 *OPTIONS* := { { **-j** | **--json** } [{ **-p** | **--pretty** }] | { **-d** | **--debug** } | 16 { **-L** | **--use-loader** } } 17 18 *COMMAND* := { **object** | **skeleton** | **help** } 19 20GEN COMMANDS 21============= 22 23| **bpftool** **gen object** *OUTPUT_FILE* *INPUT_FILE* [*INPUT_FILE*...] 24| **bpftool** **gen skeleton** *FILE* [**name** *OBJECT_NAME*] 25| **bpftool** **gen help** 26 27DESCRIPTION 28=========== 29 **bpftool gen object** *OUTPUT_FILE* *INPUT_FILE* [*INPUT_FILE*...] 30 Statically link (combine) together one or more *INPUT_FILE*'s 31 into a single resulting *OUTPUT_FILE*. All the files involved 32 are BPF ELF object files. 33 34 The rules of BPF static linking are mostly the same as for 35 user-space object files, but in addition to combining data 36 and instruction sections, .BTF and .BTF.ext (if present in 37 any of the input files) data are combined together. .BTF 38 data is deduplicated, so all the common types across 39 *INPUT_FILE*'s will only be represented once in the resulting 40 BTF information. 41 42 BPF static linking allows to partition BPF source code into 43 individually compiled files that are then linked into 44 a single resulting BPF object file, which can be used to 45 generated BPF skeleton (with **gen skeleton** command) or 46 passed directly into **libbpf** (using **bpf_object__open()** 47 family of APIs). 48 49 **bpftool gen skeleton** *FILE* 50 Generate BPF skeleton C header file for a given *FILE*. 51 52 BPF skeleton is an alternative interface to existing libbpf 53 APIs for working with BPF objects. Skeleton code is intended 54 to significantly shorten and simplify code to load and work 55 with BPF programs from userspace side. Generated code is 56 tailored to specific input BPF object *FILE*, reflecting its 57 structure by listing out available maps, program, variables, 58 etc. Skeleton eliminates the need to lookup mentioned 59 components by name. Instead, if skeleton instantiation 60 succeeds, they are populated in skeleton structure as valid 61 libbpf types (e.g., **struct bpf_map** pointer) and can be 62 passed to existing generic libbpf APIs. 63 64 In addition to simple and reliable access to maps and 65 programs, skeleton provides a storage for BPF links (**struct 66 bpf_link**) for each BPF program within BPF object. When 67 requested, supported BPF programs will be automatically 68 attached and resulting BPF links stored for further use by 69 user in pre-allocated fields in skeleton struct. For BPF 70 programs that can't be automatically attached by libbpf, 71 user can attach them manually, but store resulting BPF link 72 in per-program link field. All such set up links will be 73 automatically destroyed on BPF skeleton destruction. This 74 eliminates the need for users to manage links manually and 75 rely on libbpf support to detach programs and free up 76 resources. 77 78 Another facility provided by BPF skeleton is an interface to 79 global variables of all supported kinds: mutable, read-only, 80 as well as extern ones. This interface allows to pre-setup 81 initial values of variables before BPF object is loaded and 82 verified by kernel. For non-read-only variables, the same 83 interface can be used to fetch values of global variables on 84 userspace side, even if they are modified by BPF code. 85 86 During skeleton generation, contents of source BPF object 87 *FILE* is embedded within generated code and is thus not 88 necessary to keep around. This ensures skeleton and BPF 89 object file are matching 1-to-1 and always stay in sync. 90 Generated code is dual-licensed under LGPL-2.1 and 91 BSD-2-Clause licenses. 92 93 It is a design goal and guarantee that skeleton interfaces 94 are interoperable with generic libbpf APIs. User should 95 always be able to use skeleton API to create and load BPF 96 object, and later use libbpf APIs to keep working with 97 specific maps, programs, etc. 98 99 As part of skeleton, few custom functions are generated. 100 Each of them is prefixed with object name. Object name can 101 either be derived from object file name, i.e., if BPF object 102 file name is **example.o**, BPF object name will be 103 **example**. Object name can be also specified explicitly 104 through **name** *OBJECT_NAME* parameter. The following 105 custom functions are provided (assuming **example** as 106 the object name): 107 108 - **example__open** and **example__open_opts**. 109 These functions are used to instantiate skeleton. It 110 corresponds to libbpf's **bpf_object__open**\ () API. 111 **_opts** variants accepts extra **bpf_object_open_opts** 112 options. 113 114 - **example__load**. 115 This function creates maps, loads and verifies BPF 116 programs, initializes global data maps. It corresponds to 117 libppf's **bpf_object__load**\ () API. 118 119 - **example__open_and_load** combines **example__open** and 120 **example__load** invocations in one commonly used 121 operation. 122 123 - **example__attach** and **example__detach** 124 This pair of functions allow to attach and detach, 125 correspondingly, already loaded BPF object. Only BPF 126 programs of types supported by libbpf for auto-attachment 127 will be auto-attached and their corresponding BPF links 128 instantiated. For other BPF programs, user can manually 129 create a BPF link and assign it to corresponding fields in 130 skeleton struct. **example__detach** will detach both 131 links created automatically, as well as those populated by 132 user manually. 133 134 - **example__destroy** 135 Detach and unload BPF programs, free up all the resources 136 used by skeleton and BPF object. 137 138 If BPF object has global variables, corresponding structs 139 with memory layout corresponding to global data data section 140 layout will be created. Currently supported ones are: *.data*, 141 *.bss*, *.rodata*, and *.kconfig* structs/data sections. 142 These data sections/structs can be used to set up initial 143 values of variables, if set before **example__load**. 144 Afterwards, if target kernel supports memory-mapped BPF 145 arrays, same structs can be used to fetch and update 146 (non-read-only) data from userspace, with same simplicity 147 as for BPF side. 148 149 **bpftool gen help** 150 Print short help message. 151 152OPTIONS 153======= 154 .. include:: common_options.rst 155 156 -L, --use-loader 157 For skeletons, generate a "light" skeleton (also known as "loader" 158 skeleton). A light skeleton contains a loader eBPF program. It does 159 not use the majority of the libbpf infrastructure, and does not need 160 libelf. 161 162EXAMPLES 163======== 164**$ cat example1.bpf.c** 165 166:: 167 168 #include <stdbool.h> 169 #include <linux/ptrace.h> 170 #include <linux/bpf.h> 171 #include <bpf/bpf_helpers.h> 172 173 const volatile int param1 = 42; 174 bool global_flag = true; 175 struct { int x; } data = {}; 176 177 SEC("raw_tp/sys_enter") 178 int handle_sys_enter(struct pt_regs *ctx) 179 { 180 static long my_static_var; 181 if (global_flag) 182 my_static_var++; 183 else 184 data.x += param1; 185 return 0; 186 } 187 188**$ cat example2.bpf.c** 189 190:: 191 192 #include <linux/ptrace.h> 193 #include <linux/bpf.h> 194 #include <bpf/bpf_helpers.h> 195 196 struct { 197 __uint(type, BPF_MAP_TYPE_HASH); 198 __uint(max_entries, 128); 199 __type(key, int); 200 __type(value, long); 201 } my_map SEC(".maps"); 202 203 SEC("raw_tp/sys_exit") 204 int handle_sys_exit(struct pt_regs *ctx) 205 { 206 int zero = 0; 207 bpf_map_lookup_elem(&my_map, &zero); 208 return 0; 209 } 210 211This is example BPF application with two BPF programs and a mix of BPF maps 212and global variables. Source code is split across two source code files. 213 214**$ clang -target bpf -g example1.bpf.c -o example1.bpf.o** 215**$ clang -target bpf -g example2.bpf.c -o example2.bpf.o** 216**$ bpftool gen object example.bpf.o example1.bpf.o example2.bpf.o** 217 218This set of commands compiles *example1.bpf.c* and *example2.bpf.c* 219individually and then statically links respective object files into the final 220BPF ELF object file *example.bpf.o*. 221 222**$ bpftool gen skeleton example.bpf.o name example | tee example.skel.h** 223 224:: 225 226 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ 227 228 /* THIS FILE IS AUTOGENERATED! */ 229 #ifndef __EXAMPLE_SKEL_H__ 230 #define __EXAMPLE_SKEL_H__ 231 232 #include <stdlib.h> 233 #include <bpf/libbpf.h> 234 235 struct example { 236 struct bpf_object_skeleton *skeleton; 237 struct bpf_object *obj; 238 struct { 239 struct bpf_map *rodata; 240 struct bpf_map *data; 241 struct bpf_map *bss; 242 struct bpf_map *my_map; 243 } maps; 244 struct { 245 struct bpf_program *handle_sys_enter; 246 struct bpf_program *handle_sys_exit; 247 } progs; 248 struct { 249 struct bpf_link *handle_sys_enter; 250 struct bpf_link *handle_sys_exit; 251 } links; 252 struct example__bss { 253 struct { 254 int x; 255 } data; 256 } *bss; 257 struct example__data { 258 _Bool global_flag; 259 long int handle_sys_enter_my_static_var; 260 } *data; 261 struct example__rodata { 262 int param1; 263 } *rodata; 264 }; 265 266 static void example__destroy(struct example *obj); 267 static inline struct example *example__open_opts( 268 const struct bpf_object_open_opts *opts); 269 static inline struct example *example__open(); 270 static inline int example__load(struct example *obj); 271 static inline struct example *example__open_and_load(); 272 static inline int example__attach(struct example *obj); 273 static inline void example__detach(struct example *obj); 274 275 #endif /* __EXAMPLE_SKEL_H__ */ 276 277**$ cat example.c** 278 279:: 280 281 #include "example.skel.h" 282 283 int main() 284 { 285 struct example *skel; 286 int err = 0; 287 288 skel = example__open(); 289 if (!skel) 290 goto cleanup; 291 292 skel->rodata->param1 = 128; 293 294 err = example__load(skel); 295 if (err) 296 goto cleanup; 297 298 err = example__attach(skel); 299 if (err) 300 goto cleanup; 301 302 /* all libbpf APIs are usable */ 303 printf("my_map name: %s\n", bpf_map__name(skel->maps.my_map)); 304 printf("sys_enter prog FD: %d\n", 305 bpf_program__fd(skel->progs.handle_sys_enter)); 306 307 /* detach and re-attach sys_exit program */ 308 bpf_link__destroy(skel->links.handle_sys_exit); 309 skel->links.handle_sys_exit = 310 bpf_program__attach(skel->progs.handle_sys_exit); 311 312 printf("my_static_var: %ld\n", 313 skel->bss->handle_sys_enter_my_static_var); 314 315 cleanup: 316 example__destroy(skel); 317 return err; 318 } 319 320**# ./example** 321 322:: 323 324 my_map name: my_map 325 sys_enter prog FD: 8 326 my_static_var: 7 327 328This is a stripped-out version of skeleton generated for above example code. 329