1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_hdmi_audio.c - Intel HDMI audio driver 4 * 5 * Copyright (C) 2016 Intel Corp 6 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com> 7 * Ramesh Babu K V <ramesh.babu@intel.com> 8 * Vaibhav Agarwal <vaibhav.agarwal@intel.com> 9 * Jerome Anand <jerome.anand@intel.com> 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * ALSA driver for Intel HDMI audio 14 */ 15 16 #include <linux/types.h> 17 #include <linux/platform_device.h> 18 #include <linux/io.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/interrupt.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/delay.h> 25 #include <sound/core.h> 26 #include <sound/asoundef.h> 27 #include <sound/pcm.h> 28 #include <sound/pcm_params.h> 29 #include <sound/initval.h> 30 #include <sound/control.h> 31 #include <sound/jack.h> 32 #include <drm/drm_edid.h> 33 #include <drm/intel_lpe_audio.h> 34 #include "intel_hdmi_audio.h" 35 36 #define for_each_pipe(card_ctx, pipe) \ 37 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++) 38 #define for_each_port(card_ctx, port) \ 39 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++) 40 41 /*standard module options for ALSA. This module supports only one card*/ 42 static int hdmi_card_index = SNDRV_DEFAULT_IDX1; 43 static char *hdmi_card_id = SNDRV_DEFAULT_STR1; 44 static bool single_port; 45 46 module_param_named(index, hdmi_card_index, int, 0444); 47 MODULE_PARM_DESC(index, 48 "Index value for INTEL Intel HDMI Audio controller."); 49 module_param_named(id, hdmi_card_id, charp, 0444); 50 MODULE_PARM_DESC(id, 51 "ID string for INTEL Intel HDMI Audio controller."); 52 module_param(single_port, bool, 0444); 53 MODULE_PARM_DESC(single_port, 54 "Single-port mode (for compatibility)"); 55 56 /* 57 * ELD SA bits in the CEA Speaker Allocation data block 58 */ 59 static const int eld_speaker_allocation_bits[] = { 60 [0] = FL | FR, 61 [1] = LFE, 62 [2] = FC, 63 [3] = RL | RR, 64 [4] = RC, 65 [5] = FLC | FRC, 66 [6] = RLC | RRC, 67 /* the following are not defined in ELD yet */ 68 [7] = 0, 69 }; 70 71 /* 72 * This is an ordered list! 73 * 74 * The preceding ones have better chances to be selected by 75 * hdmi_channel_allocation(). 76 */ 77 static struct cea_channel_speaker_allocation channel_allocations[] = { 78 /* channel: 7 6 5 4 3 2 1 0 */ 79 { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } }, 80 /* 2.1 */ 81 { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } }, 82 /* Dolby Surround */ 83 { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } }, 84 /* surround40 */ 85 { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } }, 86 /* surround41 */ 87 { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } }, 88 /* surround50 */ 89 { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } }, 90 /* surround51 */ 91 { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } }, 92 /* 6.1 */ 93 { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } }, 94 /* surround71 */ 95 { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } }, 96 97 { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } }, 98 { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } }, 99 { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } }, 100 { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } }, 101 { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } }, 102 { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } }, 103 { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } }, 104 { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } }, 105 { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } }, 106 { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } }, 107 { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } }, 108 { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } }, 109 { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } }, 110 { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } }, 111 { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } }, 112 { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } }, 113 { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } }, 114 { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } }, 115 { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } }, 116 { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } }, 117 { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } }, 118 { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } }, 119 { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } }, 120 }; 121 122 static const struct channel_map_table map_tables[] = { 123 { SNDRV_CHMAP_FL, 0x00, FL }, 124 { SNDRV_CHMAP_FR, 0x01, FR }, 125 { SNDRV_CHMAP_RL, 0x04, RL }, 126 { SNDRV_CHMAP_RR, 0x05, RR }, 127 { SNDRV_CHMAP_LFE, 0x02, LFE }, 128 { SNDRV_CHMAP_FC, 0x03, FC }, 129 { SNDRV_CHMAP_RLC, 0x06, RLC }, 130 { SNDRV_CHMAP_RRC, 0x07, RRC }, 131 {} /* terminator */ 132 }; 133 134 /* hardware capability structure */ 135 static const struct snd_pcm_hardware had_pcm_hardware = { 136 .info = (SNDRV_PCM_INFO_INTERLEAVED | 137 SNDRV_PCM_INFO_MMAP | 138 SNDRV_PCM_INFO_MMAP_VALID | 139 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), 140 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 141 SNDRV_PCM_FMTBIT_S24_LE | 142 SNDRV_PCM_FMTBIT_S32_LE), 143 .rates = SNDRV_PCM_RATE_32000 | 144 SNDRV_PCM_RATE_44100 | 145 SNDRV_PCM_RATE_48000 | 146 SNDRV_PCM_RATE_88200 | 147 SNDRV_PCM_RATE_96000 | 148 SNDRV_PCM_RATE_176400 | 149 SNDRV_PCM_RATE_192000, 150 .rate_min = HAD_MIN_RATE, 151 .rate_max = HAD_MAX_RATE, 152 .channels_min = HAD_MIN_CHANNEL, 153 .channels_max = HAD_MAX_CHANNEL, 154 .buffer_bytes_max = HAD_MAX_BUFFER, 155 .period_bytes_min = HAD_MIN_PERIOD_BYTES, 156 .period_bytes_max = HAD_MAX_PERIOD_BYTES, 157 .periods_min = HAD_MIN_PERIODS, 158 .periods_max = HAD_MAX_PERIODS, 159 .fifo_size = HAD_FIFO_SIZE, 160 }; 161 162 /* Get the active PCM substream; 163 * Call had_substream_put() for unreferecing. 164 * Don't call this inside had_spinlock, as it takes by itself 165 */ 166 static struct snd_pcm_substream * 167 had_substream_get(struct snd_intelhad *intelhaddata) 168 { 169 struct snd_pcm_substream *substream; 170 unsigned long flags; 171 172 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 173 substream = intelhaddata->stream_info.substream; 174 if (substream) 175 intelhaddata->stream_info.substream_refcount++; 176 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 177 return substream; 178 } 179 180 /* Unref the active PCM substream; 181 * Don't call this inside had_spinlock, as it takes by itself 182 */ 183 static void had_substream_put(struct snd_intelhad *intelhaddata) 184 { 185 unsigned long flags; 186 187 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 188 intelhaddata->stream_info.substream_refcount--; 189 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 190 } 191 192 static u32 had_config_offset(int pipe) 193 { 194 switch (pipe) { 195 default: 196 case 0: 197 return AUDIO_HDMI_CONFIG_A; 198 case 1: 199 return AUDIO_HDMI_CONFIG_B; 200 case 2: 201 return AUDIO_HDMI_CONFIG_C; 202 } 203 } 204 205 /* Register access functions */ 206 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx, 207 int pipe, u32 reg) 208 { 209 return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg); 210 } 211 212 static void had_write_register_raw(struct snd_intelhad_card *card_ctx, 213 int pipe, u32 reg, u32 val) 214 { 215 iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg); 216 } 217 218 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val) 219 { 220 if (!ctx->connected) 221 *val = 0; 222 else 223 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg); 224 } 225 226 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val) 227 { 228 if (ctx->connected) 229 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val); 230 } 231 232 /* 233 * enable / disable audio configuration 234 * 235 * The normal read/modify should not directly be used on VLV2 for 236 * updating AUD_CONFIG register. 237 * This is because: 238 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2 239 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always 240 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the 241 * register. This field should be 1xy binary for configuration with 6 or 242 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio) 243 * causes the "channels" field to be updated as 0xy binary resulting in 244 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with 245 * appropriate value when doing read-modify of AUD_CONFIG register. 246 */ 247 static void had_enable_audio(struct snd_intelhad *intelhaddata, 248 bool enable) 249 { 250 /* update the cached value */ 251 intelhaddata->aud_config.regx.aud_en = enable; 252 had_write_register(intelhaddata, AUD_CONFIG, 253 intelhaddata->aud_config.regval); 254 } 255 256 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */ 257 static void had_ack_irqs(struct snd_intelhad *ctx) 258 { 259 u32 status_reg; 260 261 if (!ctx->connected) 262 return; 263 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); 264 status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN; 265 had_write_register(ctx, AUD_HDMI_STATUS, status_reg); 266 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); 267 } 268 269 /* Reset buffer pointers */ 270 static void had_reset_audio(struct snd_intelhad *intelhaddata) 271 { 272 had_write_register(intelhaddata, AUD_HDMI_STATUS, 273 AUD_HDMI_STATUSG_MASK_FUNCRST); 274 had_write_register(intelhaddata, AUD_HDMI_STATUS, 0); 275 } 276 277 /* 278 * initialize audio channel status registers 279 * This function is called in the prepare callback 280 */ 281 static int had_prog_status_reg(struct snd_pcm_substream *substream, 282 struct snd_intelhad *intelhaddata) 283 { 284 union aud_ch_status_0 ch_stat0 = {.regval = 0}; 285 union aud_ch_status_1 ch_stat1 = {.regval = 0}; 286 287 ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits & 288 IEC958_AES0_NONAUDIO) >> 1; 289 ch_stat0.regx.clk_acc = (intelhaddata->aes_bits & 290 IEC958_AES3_CON_CLOCK) >> 4; 291 292 switch (substream->runtime->rate) { 293 case AUD_SAMPLE_RATE_32: 294 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ; 295 break; 296 297 case AUD_SAMPLE_RATE_44_1: 298 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ; 299 break; 300 case AUD_SAMPLE_RATE_48: 301 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ; 302 break; 303 case AUD_SAMPLE_RATE_88_2: 304 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ; 305 break; 306 case AUD_SAMPLE_RATE_96: 307 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ; 308 break; 309 case AUD_SAMPLE_RATE_176_4: 310 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ; 311 break; 312 case AUD_SAMPLE_RATE_192: 313 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ; 314 break; 315 316 default: 317 /* control should never come here */ 318 return -EINVAL; 319 } 320 321 had_write_register(intelhaddata, 322 AUD_CH_STATUS_0, ch_stat0.regval); 323 324 switch (substream->runtime->format) { 325 case SNDRV_PCM_FORMAT_S16_LE: 326 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20; 327 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS; 328 break; 329 case SNDRV_PCM_FORMAT_S24_LE: 330 case SNDRV_PCM_FORMAT_S32_LE: 331 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24; 332 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS; 333 break; 334 default: 335 return -EINVAL; 336 } 337 338 had_write_register(intelhaddata, 339 AUD_CH_STATUS_1, ch_stat1.regval); 340 return 0; 341 } 342 343 /* 344 * function to initialize audio 345 * registers and buffer configuration registers 346 * This function is called in the prepare callback 347 */ 348 static int had_init_audio_ctrl(struct snd_pcm_substream *substream, 349 struct snd_intelhad *intelhaddata) 350 { 351 union aud_cfg cfg_val = {.regval = 0}; 352 union aud_buf_config buf_cfg = {.regval = 0}; 353 u8 channels; 354 355 had_prog_status_reg(substream, intelhaddata); 356 357 buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD; 358 buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD; 359 buf_cfg.regx.aud_delay = 0; 360 had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval); 361 362 channels = substream->runtime->channels; 363 cfg_val.regx.num_ch = channels - 2; 364 if (channels <= 2) 365 cfg_val.regx.layout = LAYOUT0; 366 else 367 cfg_val.regx.layout = LAYOUT1; 368 369 if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE) 370 cfg_val.regx.packet_mode = 1; 371 372 if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE) 373 cfg_val.regx.left_align = 1; 374 375 cfg_val.regx.val_bit = 1; 376 377 /* fix up the DP bits */ 378 if (intelhaddata->dp_output) { 379 cfg_val.regx.dp_modei = 1; 380 cfg_val.regx.set = 1; 381 } 382 383 had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval); 384 intelhaddata->aud_config = cfg_val; 385 return 0; 386 } 387 388 /* 389 * Compute derived values in channel_allocations[]. 390 */ 391 static void init_channel_allocations(void) 392 { 393 int i, j; 394 struct cea_channel_speaker_allocation *p; 395 396 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 397 p = channel_allocations + i; 398 p->channels = 0; 399 p->spk_mask = 0; 400 for (j = 0; j < ARRAY_SIZE(p->speakers); j++) 401 if (p->speakers[j]) { 402 p->channels++; 403 p->spk_mask |= p->speakers[j]; 404 } 405 } 406 } 407 408 /* 409 * The transformation takes two steps: 410 * 411 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask 412 * spk_mask => (channel_allocations[]) => ai->CA 413 * 414 * TODO: it could select the wrong CA from multiple candidates. 415 */ 416 static int had_channel_allocation(struct snd_intelhad *intelhaddata, 417 int channels) 418 { 419 int i; 420 int ca = 0; 421 int spk_mask = 0; 422 423 /* 424 * CA defaults to 0 for basic stereo audio 425 */ 426 if (channels <= 2) 427 return 0; 428 429 /* 430 * expand ELD's speaker allocation mask 431 * 432 * ELD tells the speaker mask in a compact(paired) form, 433 * expand ELD's notions to match the ones used by Audio InfoFrame. 434 */ 435 436 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { 437 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) 438 spk_mask |= eld_speaker_allocation_bits[i]; 439 } 440 441 /* search for the first working match in the CA table */ 442 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 443 if (channels == channel_allocations[i].channels && 444 (spk_mask & channel_allocations[i].spk_mask) == 445 channel_allocations[i].spk_mask) { 446 ca = channel_allocations[i].ca_index; 447 break; 448 } 449 } 450 451 dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels); 452 453 return ca; 454 } 455 456 /* from speaker bit mask to ALSA API channel position */ 457 static int spk_to_chmap(int spk) 458 { 459 const struct channel_map_table *t = map_tables; 460 461 for (; t->map; t++) { 462 if (t->spk_mask == spk) 463 return t->map; 464 } 465 return 0; 466 } 467 468 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata) 469 { 470 int i, c; 471 int spk_mask = 0; 472 struct snd_pcm_chmap_elem *chmap; 473 u8 eld_high, eld_high_mask = 0xF0; 474 u8 high_msb; 475 476 kfree(intelhaddata->chmap->chmap); 477 intelhaddata->chmap->chmap = NULL; 478 479 chmap = kzalloc(sizeof(*chmap), GFP_KERNEL); 480 if (!chmap) 481 return; 482 483 dev_dbg(intelhaddata->dev, "eld speaker = %x\n", 484 intelhaddata->eld[DRM_ELD_SPEAKER]); 485 486 /* WA: Fix the max channel supported to 8 */ 487 488 /* 489 * Sink may support more than 8 channels, if eld_high has more than 490 * one bit set. SOC supports max 8 channels. 491 * Refer eld_speaker_allocation_bits, for sink speaker allocation 492 */ 493 494 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */ 495 eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask; 496 if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) { 497 /* eld_high & (eld_high-1): if more than 1 bit set */ 498 /* 0x1F: 7 channels */ 499 for (i = 1; i < 4; i++) { 500 high_msb = eld_high & (0x80 >> i); 501 if (high_msb) { 502 intelhaddata->eld[DRM_ELD_SPEAKER] &= 503 high_msb | 0xF; 504 break; 505 } 506 } 507 } 508 509 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { 510 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) 511 spk_mask |= eld_speaker_allocation_bits[i]; 512 } 513 514 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 515 if (spk_mask == channel_allocations[i].spk_mask) { 516 for (c = 0; c < channel_allocations[i].channels; c++) { 517 chmap->map[c] = spk_to_chmap( 518 channel_allocations[i].speakers[ 519 (MAX_SPEAKERS - 1) - c]); 520 } 521 chmap->channels = channel_allocations[i].channels; 522 intelhaddata->chmap->chmap = chmap; 523 break; 524 } 525 } 526 if (i >= ARRAY_SIZE(channel_allocations)) 527 kfree(chmap); 528 } 529 530 /* 531 * ALSA API channel-map control callbacks 532 */ 533 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol, 534 struct snd_ctl_elem_info *uinfo) 535 { 536 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 537 uinfo->count = HAD_MAX_CHANNEL; 538 uinfo->value.integer.min = 0; 539 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 540 return 0; 541 } 542 543 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol, 544 struct snd_ctl_elem_value *ucontrol) 545 { 546 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 547 struct snd_intelhad *intelhaddata = info->private_data; 548 int i; 549 const struct snd_pcm_chmap_elem *chmap; 550 551 memset(ucontrol->value.integer.value, 0, 552 sizeof(long) * HAD_MAX_CHANNEL); 553 mutex_lock(&intelhaddata->mutex); 554 if (!intelhaddata->chmap->chmap) { 555 mutex_unlock(&intelhaddata->mutex); 556 return 0; 557 } 558 559 chmap = intelhaddata->chmap->chmap; 560 for (i = 0; i < chmap->channels; i++) 561 ucontrol->value.integer.value[i] = chmap->map[i]; 562 mutex_unlock(&intelhaddata->mutex); 563 564 return 0; 565 } 566 567 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata, 568 struct snd_pcm *pcm) 569 { 570 int err; 571 572 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 573 NULL, 0, (unsigned long)intelhaddata, 574 &intelhaddata->chmap); 575 if (err < 0) 576 return err; 577 578 intelhaddata->chmap->private_data = intelhaddata; 579 intelhaddata->chmap->kctl->info = had_chmap_ctl_info; 580 intelhaddata->chmap->kctl->get = had_chmap_ctl_get; 581 intelhaddata->chmap->chmap = NULL; 582 return 0; 583 } 584 585 /* 586 * Initialize Data Island Packets registers 587 * This function is called in the prepare callback 588 */ 589 static void had_prog_dip(struct snd_pcm_substream *substream, 590 struct snd_intelhad *intelhaddata) 591 { 592 int i; 593 union aud_ctrl_st ctrl_state = {.regval = 0}; 594 union aud_info_frame2 frame2 = {.regval = 0}; 595 union aud_info_frame3 frame3 = {.regval = 0}; 596 u8 checksum = 0; 597 u32 info_frame; 598 int channels; 599 int ca; 600 601 channels = substream->runtime->channels; 602 603 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); 604 605 ca = had_channel_allocation(intelhaddata, channels); 606 if (intelhaddata->dp_output) { 607 info_frame = DP_INFO_FRAME_WORD1; 608 frame2.regval = (substream->runtime->channels - 1) | (ca << 24); 609 } else { 610 info_frame = HDMI_INFO_FRAME_WORD1; 611 frame2.regx.chnl_cnt = substream->runtime->channels - 1; 612 frame3.regx.chnl_alloc = ca; 613 614 /* Calculte the byte wide checksum for all valid DIP words */ 615 for (i = 0; i < BYTES_PER_WORD; i++) 616 checksum += (info_frame >> (i * 8)) & 0xff; 617 for (i = 0; i < BYTES_PER_WORD; i++) 618 checksum += (frame2.regval >> (i * 8)) & 0xff; 619 for (i = 0; i < BYTES_PER_WORD; i++) 620 checksum += (frame3.regval >> (i * 8)) & 0xff; 621 622 frame2.regx.chksum = -(checksum); 623 } 624 625 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame); 626 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval); 627 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval); 628 629 /* program remaining DIP words with zero */ 630 for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++) 631 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0); 632 633 ctrl_state.regx.dip_freq = 1; 634 ctrl_state.regx.dip_en_sta = 1; 635 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); 636 } 637 638 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate) 639 { 640 u32 maud_val; 641 642 /* Select maud according to DP 1.2 spec */ 643 if (link_rate == DP_2_7_GHZ) { 644 switch (aud_samp_freq) { 645 case AUD_SAMPLE_RATE_32: 646 maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL; 647 break; 648 649 case AUD_SAMPLE_RATE_44_1: 650 maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL; 651 break; 652 653 case AUD_SAMPLE_RATE_48: 654 maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL; 655 break; 656 657 case AUD_SAMPLE_RATE_88_2: 658 maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL; 659 break; 660 661 case AUD_SAMPLE_RATE_96: 662 maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL; 663 break; 664 665 case AUD_SAMPLE_RATE_176_4: 666 maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL; 667 break; 668 669 case HAD_MAX_RATE: 670 maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL; 671 break; 672 673 default: 674 maud_val = -EINVAL; 675 break; 676 } 677 } else if (link_rate == DP_1_62_GHZ) { 678 switch (aud_samp_freq) { 679 case AUD_SAMPLE_RATE_32: 680 maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL; 681 break; 682 683 case AUD_SAMPLE_RATE_44_1: 684 maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL; 685 break; 686 687 case AUD_SAMPLE_RATE_48: 688 maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL; 689 break; 690 691 case AUD_SAMPLE_RATE_88_2: 692 maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL; 693 break; 694 695 case AUD_SAMPLE_RATE_96: 696 maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL; 697 break; 698 699 case AUD_SAMPLE_RATE_176_4: 700 maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL; 701 break; 702 703 case HAD_MAX_RATE: 704 maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL; 705 break; 706 707 default: 708 maud_val = -EINVAL; 709 break; 710 } 711 } else 712 maud_val = -EINVAL; 713 714 return maud_val; 715 } 716 717 /* 718 * Program HDMI audio CTS value 719 * 720 * @aud_samp_freq: sampling frequency of audio data 721 * @tmds: sampling frequency of the display data 722 * @link_rate: DP link rate 723 * @n_param: N value, depends on aud_samp_freq 724 * @intelhaddata: substream private data 725 * 726 * Program CTS register based on the audio and display sampling frequency 727 */ 728 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate, 729 u32 n_param, struct snd_intelhad *intelhaddata) 730 { 731 u32 cts_val; 732 u64 dividend, divisor; 733 734 if (intelhaddata->dp_output) { 735 /* Substitute cts_val with Maud according to DP 1.2 spec*/ 736 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate); 737 } else { 738 /* Calculate CTS according to HDMI 1.3a spec*/ 739 dividend = (u64)tmds * n_param*1000; 740 divisor = 128 * aud_samp_freq; 741 cts_val = div64_u64(dividend, divisor); 742 } 743 dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n", 744 tmds, n_param, cts_val); 745 had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val)); 746 } 747 748 static int had_calculate_n_value(u32 aud_samp_freq) 749 { 750 int n_val; 751 752 /* Select N according to HDMI 1.3a spec*/ 753 switch (aud_samp_freq) { 754 case AUD_SAMPLE_RATE_32: 755 n_val = 4096; 756 break; 757 758 case AUD_SAMPLE_RATE_44_1: 759 n_val = 6272; 760 break; 761 762 case AUD_SAMPLE_RATE_48: 763 n_val = 6144; 764 break; 765 766 case AUD_SAMPLE_RATE_88_2: 767 n_val = 12544; 768 break; 769 770 case AUD_SAMPLE_RATE_96: 771 n_val = 12288; 772 break; 773 774 case AUD_SAMPLE_RATE_176_4: 775 n_val = 25088; 776 break; 777 778 case HAD_MAX_RATE: 779 n_val = 24576; 780 break; 781 782 default: 783 n_val = -EINVAL; 784 break; 785 } 786 return n_val; 787 } 788 789 /* 790 * Program HDMI audio N value 791 * 792 * @aud_samp_freq: sampling frequency of audio data 793 * @n_param: N value, depends on aud_samp_freq 794 * @intelhaddata: substream private data 795 * 796 * This function is called in the prepare callback. 797 * It programs based on the audio and display sampling frequency 798 */ 799 static int had_prog_n(u32 aud_samp_freq, u32 *n_param, 800 struct snd_intelhad *intelhaddata) 801 { 802 int n_val; 803 804 if (intelhaddata->dp_output) { 805 /* 806 * According to DP specs, Maud and Naud values hold 807 * a relationship, which is stated as: 808 * Maud/Naud = 512 * fs / f_LS_Clk 809 * where, fs is the sampling frequency of the audio stream 810 * and Naud is 32768 for Async clock. 811 */ 812 813 n_val = DP_NAUD_VAL; 814 } else 815 n_val = had_calculate_n_value(aud_samp_freq); 816 817 if (n_val < 0) 818 return n_val; 819 820 had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val)); 821 *n_param = n_val; 822 return 0; 823 } 824 825 /* 826 * PCM ring buffer handling 827 * 828 * The hardware provides a ring buffer with the fixed 4 buffer descriptors 829 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping 830 * moves at each period elapsed. The below illustrates how it works: 831 * 832 * At time=0 833 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 834 * BD | 0 | 1 | 2 | 3 | 835 * 836 * At time=1 (period elapsed) 837 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 838 * BD | 1 | 2 | 3 | 0 | 839 * 840 * At time=2 (second period elapsed) 841 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 842 * BD | 2 | 3 | 0 | 1 | 843 * 844 * The bd_head field points to the index of the BD to be read. It's also the 845 * position to be filled at next. The pcm_head and the pcm_filled fields 846 * point to the indices of the current position and of the next position to 847 * be filled, respectively. For PCM buffer there are both _head and _filled 848 * because they may be difference when nperiods > 4. For example, in the 849 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5: 850 * 851 * pcm_head (=1) --v v-- pcm_filled (=5) 852 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 853 * BD | 1 | 2 | 3 | 0 | 854 * bd_head (=1) --^ ^-- next to fill (= bd_head) 855 * 856 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that 857 * the hardware skips those BDs in the loop. 858 * 859 * An exceptional setup is the case with nperiods=1. Since we have to update 860 * BDs after finishing one BD processing, we'd need at least two BDs, where 861 * both BDs point to the same content, the same address, the same size of the 862 * whole PCM buffer. 863 */ 864 865 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH) 866 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH) 867 868 /* Set up a buffer descriptor at the "filled" position */ 869 static void had_prog_bd(struct snd_pcm_substream *substream, 870 struct snd_intelhad *intelhaddata) 871 { 872 int idx = intelhaddata->bd_head; 873 int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes; 874 u32 addr = substream->runtime->dma_addr + ofs; 875 876 addr |= AUD_BUF_VALID; 877 if (!substream->runtime->no_period_wakeup) 878 addr |= AUD_BUF_INTR_EN; 879 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr); 880 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 881 intelhaddata->period_bytes); 882 883 /* advance the indices to the next */ 884 intelhaddata->bd_head++; 885 intelhaddata->bd_head %= intelhaddata->num_bds; 886 intelhaddata->pcmbuf_filled++; 887 intelhaddata->pcmbuf_filled %= substream->runtime->periods; 888 } 889 890 /* invalidate a buffer descriptor with the given index */ 891 static void had_invalidate_bd(struct snd_intelhad *intelhaddata, 892 int idx) 893 { 894 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0); 895 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0); 896 } 897 898 /* Initial programming of ring buffer */ 899 static void had_init_ringbuf(struct snd_pcm_substream *substream, 900 struct snd_intelhad *intelhaddata) 901 { 902 struct snd_pcm_runtime *runtime = substream->runtime; 903 int i, num_periods; 904 905 num_periods = runtime->periods; 906 intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS); 907 /* set the minimum 2 BDs for num_periods=1 */ 908 intelhaddata->num_bds = max(intelhaddata->num_bds, 2U); 909 intelhaddata->period_bytes = 910 frames_to_bytes(runtime, runtime->period_size); 911 WARN_ON(intelhaddata->period_bytes & 0x3f); 912 913 intelhaddata->bd_head = 0; 914 intelhaddata->pcmbuf_head = 0; 915 intelhaddata->pcmbuf_filled = 0; 916 917 for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) { 918 if (i < intelhaddata->num_bds) 919 had_prog_bd(substream, intelhaddata); 920 else /* invalidate the rest */ 921 had_invalidate_bd(intelhaddata, i); 922 } 923 924 intelhaddata->bd_head = 0; /* reset at head again before starting */ 925 } 926 927 /* process a bd, advance to the next */ 928 static void had_advance_ringbuf(struct snd_pcm_substream *substream, 929 struct snd_intelhad *intelhaddata) 930 { 931 int num_periods = substream->runtime->periods; 932 933 /* reprogram the next buffer */ 934 had_prog_bd(substream, intelhaddata); 935 936 /* proceed to next */ 937 intelhaddata->pcmbuf_head++; 938 intelhaddata->pcmbuf_head %= num_periods; 939 } 940 941 /* process the current BD(s); 942 * returns the current PCM buffer byte position, or -EPIPE for underrun. 943 */ 944 static int had_process_ringbuf(struct snd_pcm_substream *substream, 945 struct snd_intelhad *intelhaddata) 946 { 947 int len, processed; 948 unsigned long flags; 949 950 processed = 0; 951 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 952 for (;;) { 953 /* get the remaining bytes on the buffer */ 954 had_read_register(intelhaddata, 955 AUD_BUF_LEN(intelhaddata->bd_head), 956 &len); 957 if (len < 0 || len > intelhaddata->period_bytes) { 958 dev_dbg(intelhaddata->dev, "Invalid buf length %d\n", 959 len); 960 len = -EPIPE; 961 goto out; 962 } 963 964 if (len > 0) /* OK, this is the current buffer */ 965 break; 966 967 /* len=0 => already empty, check the next buffer */ 968 if (++processed >= intelhaddata->num_bds) { 969 len = -EPIPE; /* all empty? - report underrun */ 970 goto out; 971 } 972 had_advance_ringbuf(substream, intelhaddata); 973 } 974 975 len = intelhaddata->period_bytes - len; 976 len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head; 977 out: 978 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 979 return len; 980 } 981 982 /* called from irq handler */ 983 static void had_process_buffer_done(struct snd_intelhad *intelhaddata) 984 { 985 struct snd_pcm_substream *substream; 986 987 substream = had_substream_get(intelhaddata); 988 if (!substream) 989 return; /* no stream? - bail out */ 990 991 if (!intelhaddata->connected) { 992 snd_pcm_stop_xrun(substream); 993 goto out; /* disconnected? - bail out */ 994 } 995 996 /* process or stop the stream */ 997 if (had_process_ringbuf(substream, intelhaddata) < 0) 998 snd_pcm_stop_xrun(substream); 999 else 1000 snd_pcm_period_elapsed(substream); 1001 1002 out: 1003 had_substream_put(intelhaddata); 1004 } 1005 1006 /* 1007 * The interrupt status 'sticky' bits might not be cleared by 1008 * setting '1' to that bit once... 1009 */ 1010 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata) 1011 { 1012 int i; 1013 u32 val; 1014 1015 for (i = 0; i < 100; i++) { 1016 /* clear bit30, 31 AUD_HDMI_STATUS */ 1017 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val); 1018 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN)) 1019 return; 1020 udelay(100); 1021 cond_resched(); 1022 had_write_register(intelhaddata, AUD_HDMI_STATUS, val); 1023 } 1024 dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n"); 1025 } 1026 1027 /* Perform some reset procedure but only when need_reset is set; 1028 * this is called from prepare or hw_free callbacks once after trigger STOP 1029 * or underrun has been processed in order to settle down the h/w state. 1030 */ 1031 static void had_do_reset(struct snd_intelhad *intelhaddata) 1032 { 1033 if (!intelhaddata->need_reset || !intelhaddata->connected) 1034 return; 1035 1036 /* Reset buffer pointers */ 1037 had_reset_audio(intelhaddata); 1038 wait_clear_underrun_bit(intelhaddata); 1039 intelhaddata->need_reset = false; 1040 } 1041 1042 /* called from irq handler */ 1043 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata) 1044 { 1045 struct snd_pcm_substream *substream; 1046 1047 /* Report UNDERRUN error to above layers */ 1048 substream = had_substream_get(intelhaddata); 1049 if (substream) { 1050 snd_pcm_stop_xrun(substream); 1051 had_substream_put(intelhaddata); 1052 } 1053 intelhaddata->need_reset = true; 1054 } 1055 1056 /* 1057 * ALSA PCM open callback 1058 */ 1059 static int had_pcm_open(struct snd_pcm_substream *substream) 1060 { 1061 struct snd_intelhad *intelhaddata; 1062 struct snd_pcm_runtime *runtime; 1063 int retval; 1064 1065 intelhaddata = snd_pcm_substream_chip(substream); 1066 runtime = substream->runtime; 1067 1068 pm_runtime_get_sync(intelhaddata->dev); 1069 1070 /* set the runtime hw parameter with local snd_pcm_hardware struct */ 1071 runtime->hw = had_pcm_hardware; 1072 1073 retval = snd_pcm_hw_constraint_integer(runtime, 1074 SNDRV_PCM_HW_PARAM_PERIODS); 1075 if (retval < 0) 1076 goto error; 1077 1078 /* Make sure, that the period size is always aligned 1079 * 64byte boundary 1080 */ 1081 retval = snd_pcm_hw_constraint_step(substream->runtime, 0, 1082 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64); 1083 if (retval < 0) 1084 goto error; 1085 1086 retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1087 if (retval < 0) 1088 goto error; 1089 1090 /* expose PCM substream */ 1091 spin_lock_irq(&intelhaddata->had_spinlock); 1092 intelhaddata->stream_info.substream = substream; 1093 intelhaddata->stream_info.substream_refcount++; 1094 spin_unlock_irq(&intelhaddata->had_spinlock); 1095 1096 return retval; 1097 error: 1098 pm_runtime_mark_last_busy(intelhaddata->dev); 1099 pm_runtime_put_autosuspend(intelhaddata->dev); 1100 return retval; 1101 } 1102 1103 /* 1104 * ALSA PCM close callback 1105 */ 1106 static int had_pcm_close(struct snd_pcm_substream *substream) 1107 { 1108 struct snd_intelhad *intelhaddata; 1109 1110 intelhaddata = snd_pcm_substream_chip(substream); 1111 1112 /* unreference and sync with the pending PCM accesses */ 1113 spin_lock_irq(&intelhaddata->had_spinlock); 1114 intelhaddata->stream_info.substream = NULL; 1115 intelhaddata->stream_info.substream_refcount--; 1116 while (intelhaddata->stream_info.substream_refcount > 0) { 1117 spin_unlock_irq(&intelhaddata->had_spinlock); 1118 cpu_relax(); 1119 spin_lock_irq(&intelhaddata->had_spinlock); 1120 } 1121 spin_unlock_irq(&intelhaddata->had_spinlock); 1122 1123 pm_runtime_mark_last_busy(intelhaddata->dev); 1124 pm_runtime_put_autosuspend(intelhaddata->dev); 1125 return 0; 1126 } 1127 1128 /* 1129 * ALSA PCM hw_params callback 1130 */ 1131 static int had_pcm_hw_params(struct snd_pcm_substream *substream, 1132 struct snd_pcm_hw_params *hw_params) 1133 { 1134 struct snd_intelhad *intelhaddata; 1135 int buf_size; 1136 1137 intelhaddata = snd_pcm_substream_chip(substream); 1138 buf_size = params_buffer_bytes(hw_params); 1139 dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n", 1140 __func__, buf_size); 1141 return 0; 1142 } 1143 1144 /* 1145 * ALSA PCM hw_free callback 1146 */ 1147 static int had_pcm_hw_free(struct snd_pcm_substream *substream) 1148 { 1149 struct snd_intelhad *intelhaddata; 1150 1151 intelhaddata = snd_pcm_substream_chip(substream); 1152 had_do_reset(intelhaddata); 1153 1154 return 0; 1155 } 1156 1157 /* 1158 * ALSA PCM trigger callback 1159 */ 1160 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 1161 { 1162 int retval = 0; 1163 struct snd_intelhad *intelhaddata; 1164 1165 intelhaddata = snd_pcm_substream_chip(substream); 1166 1167 spin_lock(&intelhaddata->had_spinlock); 1168 switch (cmd) { 1169 case SNDRV_PCM_TRIGGER_START: 1170 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1171 case SNDRV_PCM_TRIGGER_RESUME: 1172 /* Enable Audio */ 1173 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */ 1174 had_enable_audio(intelhaddata, true); 1175 break; 1176 1177 case SNDRV_PCM_TRIGGER_STOP: 1178 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1179 /* Disable Audio */ 1180 had_enable_audio(intelhaddata, false); 1181 intelhaddata->need_reset = true; 1182 break; 1183 1184 default: 1185 retval = -EINVAL; 1186 } 1187 spin_unlock(&intelhaddata->had_spinlock); 1188 return retval; 1189 } 1190 1191 /* 1192 * ALSA PCM prepare callback 1193 */ 1194 static int had_pcm_prepare(struct snd_pcm_substream *substream) 1195 { 1196 int retval; 1197 u32 disp_samp_freq, n_param; 1198 u32 link_rate = 0; 1199 struct snd_intelhad *intelhaddata; 1200 struct snd_pcm_runtime *runtime; 1201 1202 intelhaddata = snd_pcm_substream_chip(substream); 1203 runtime = substream->runtime; 1204 1205 dev_dbg(intelhaddata->dev, "period_size=%d\n", 1206 (int)frames_to_bytes(runtime, runtime->period_size)); 1207 dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods); 1208 dev_dbg(intelhaddata->dev, "buffer_size=%d\n", 1209 (int)snd_pcm_lib_buffer_bytes(substream)); 1210 dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate); 1211 dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels); 1212 1213 had_do_reset(intelhaddata); 1214 1215 /* Get N value in KHz */ 1216 disp_samp_freq = intelhaddata->tmds_clock_speed; 1217 1218 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); 1219 if (retval) { 1220 dev_err(intelhaddata->dev, 1221 "programming N value failed %#x\n", retval); 1222 goto prep_end; 1223 } 1224 1225 if (intelhaddata->dp_output) 1226 link_rate = intelhaddata->link_rate; 1227 1228 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, 1229 n_param, intelhaddata); 1230 1231 had_prog_dip(substream, intelhaddata); 1232 1233 retval = had_init_audio_ctrl(substream, intelhaddata); 1234 1235 /* Prog buffer address */ 1236 had_init_ringbuf(substream, intelhaddata); 1237 1238 /* 1239 * Program channel mapping in following order: 1240 * FL, FR, C, LFE, RL, RR 1241 */ 1242 1243 had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER); 1244 1245 prep_end: 1246 return retval; 1247 } 1248 1249 /* 1250 * ALSA PCM pointer callback 1251 */ 1252 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream) 1253 { 1254 struct snd_intelhad *intelhaddata; 1255 int len; 1256 1257 intelhaddata = snd_pcm_substream_chip(substream); 1258 1259 if (!intelhaddata->connected) 1260 return SNDRV_PCM_POS_XRUN; 1261 1262 len = had_process_ringbuf(substream, intelhaddata); 1263 if (len < 0) 1264 return SNDRV_PCM_POS_XRUN; 1265 len = bytes_to_frames(substream->runtime, len); 1266 /* wrapping may happen when periods=1 */ 1267 len %= substream->runtime->buffer_size; 1268 return len; 1269 } 1270 1271 /* 1272 * ALSA PCM mmap callback 1273 */ 1274 static int had_pcm_mmap(struct snd_pcm_substream *substream, 1275 struct vm_area_struct *vma) 1276 { 1277 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1278 return remap_pfn_range(vma, vma->vm_start, 1279 substream->dma_buffer.addr >> PAGE_SHIFT, 1280 vma->vm_end - vma->vm_start, vma->vm_page_prot); 1281 } 1282 1283 /* 1284 * ALSA PCM ops 1285 */ 1286 static const struct snd_pcm_ops had_pcm_ops = { 1287 .open = had_pcm_open, 1288 .close = had_pcm_close, 1289 .hw_params = had_pcm_hw_params, 1290 .hw_free = had_pcm_hw_free, 1291 .prepare = had_pcm_prepare, 1292 .trigger = had_pcm_trigger, 1293 .pointer = had_pcm_pointer, 1294 .mmap = had_pcm_mmap, 1295 }; 1296 1297 /* process mode change of the running stream; called in mutex */ 1298 static int had_process_mode_change(struct snd_intelhad *intelhaddata) 1299 { 1300 struct snd_pcm_substream *substream; 1301 int retval = 0; 1302 u32 disp_samp_freq, n_param; 1303 u32 link_rate = 0; 1304 1305 substream = had_substream_get(intelhaddata); 1306 if (!substream) 1307 return 0; 1308 1309 /* Disable Audio */ 1310 had_enable_audio(intelhaddata, false); 1311 1312 /* Update CTS value */ 1313 disp_samp_freq = intelhaddata->tmds_clock_speed; 1314 1315 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); 1316 if (retval) { 1317 dev_err(intelhaddata->dev, 1318 "programming N value failed %#x\n", retval); 1319 goto out; 1320 } 1321 1322 if (intelhaddata->dp_output) 1323 link_rate = intelhaddata->link_rate; 1324 1325 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, 1326 n_param, intelhaddata); 1327 1328 /* Enable Audio */ 1329 had_enable_audio(intelhaddata, true); 1330 1331 out: 1332 had_substream_put(intelhaddata); 1333 return retval; 1334 } 1335 1336 /* process hot plug, called from wq with mutex locked */ 1337 static void had_process_hot_plug(struct snd_intelhad *intelhaddata) 1338 { 1339 struct snd_pcm_substream *substream; 1340 1341 spin_lock_irq(&intelhaddata->had_spinlock); 1342 if (intelhaddata->connected) { 1343 dev_dbg(intelhaddata->dev, "Device already connected\n"); 1344 spin_unlock_irq(&intelhaddata->had_spinlock); 1345 return; 1346 } 1347 1348 /* Disable Audio */ 1349 had_enable_audio(intelhaddata, false); 1350 1351 intelhaddata->connected = true; 1352 dev_dbg(intelhaddata->dev, 1353 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n", 1354 __func__, __LINE__); 1355 spin_unlock_irq(&intelhaddata->had_spinlock); 1356 1357 had_build_channel_allocation_map(intelhaddata); 1358 1359 /* Report to above ALSA layer */ 1360 substream = had_substream_get(intelhaddata); 1361 if (substream) { 1362 snd_pcm_stop_xrun(substream); 1363 had_substream_put(intelhaddata); 1364 } 1365 1366 snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT); 1367 } 1368 1369 /* process hot unplug, called from wq with mutex locked */ 1370 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata) 1371 { 1372 struct snd_pcm_substream *substream; 1373 1374 spin_lock_irq(&intelhaddata->had_spinlock); 1375 if (!intelhaddata->connected) { 1376 dev_dbg(intelhaddata->dev, "Device already disconnected\n"); 1377 spin_unlock_irq(&intelhaddata->had_spinlock); 1378 return; 1379 1380 } 1381 1382 /* Disable Audio */ 1383 had_enable_audio(intelhaddata, false); 1384 1385 intelhaddata->connected = false; 1386 dev_dbg(intelhaddata->dev, 1387 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n", 1388 __func__, __LINE__); 1389 spin_unlock_irq(&intelhaddata->had_spinlock); 1390 1391 kfree(intelhaddata->chmap->chmap); 1392 intelhaddata->chmap->chmap = NULL; 1393 1394 /* Report to above ALSA layer */ 1395 substream = had_substream_get(intelhaddata); 1396 if (substream) { 1397 snd_pcm_stop_xrun(substream); 1398 had_substream_put(intelhaddata); 1399 } 1400 1401 snd_jack_report(intelhaddata->jack, 0); 1402 } 1403 1404 /* 1405 * ALSA iec958 and ELD controls 1406 */ 1407 1408 static int had_iec958_info(struct snd_kcontrol *kcontrol, 1409 struct snd_ctl_elem_info *uinfo) 1410 { 1411 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1412 uinfo->count = 1; 1413 return 0; 1414 } 1415 1416 static int had_iec958_get(struct snd_kcontrol *kcontrol, 1417 struct snd_ctl_elem_value *ucontrol) 1418 { 1419 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1420 1421 mutex_lock(&intelhaddata->mutex); 1422 ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff; 1423 ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff; 1424 ucontrol->value.iec958.status[2] = 1425 (intelhaddata->aes_bits >> 16) & 0xff; 1426 ucontrol->value.iec958.status[3] = 1427 (intelhaddata->aes_bits >> 24) & 0xff; 1428 mutex_unlock(&intelhaddata->mutex); 1429 return 0; 1430 } 1431 1432 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol, 1433 struct snd_ctl_elem_value *ucontrol) 1434 { 1435 ucontrol->value.iec958.status[0] = 0xff; 1436 ucontrol->value.iec958.status[1] = 0xff; 1437 ucontrol->value.iec958.status[2] = 0xff; 1438 ucontrol->value.iec958.status[3] = 0xff; 1439 return 0; 1440 } 1441 1442 static int had_iec958_put(struct snd_kcontrol *kcontrol, 1443 struct snd_ctl_elem_value *ucontrol) 1444 { 1445 unsigned int val; 1446 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1447 int changed = 0; 1448 1449 val = (ucontrol->value.iec958.status[0] << 0) | 1450 (ucontrol->value.iec958.status[1] << 8) | 1451 (ucontrol->value.iec958.status[2] << 16) | 1452 (ucontrol->value.iec958.status[3] << 24); 1453 mutex_lock(&intelhaddata->mutex); 1454 if (intelhaddata->aes_bits != val) { 1455 intelhaddata->aes_bits = val; 1456 changed = 1; 1457 } 1458 mutex_unlock(&intelhaddata->mutex); 1459 return changed; 1460 } 1461 1462 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol, 1463 struct snd_ctl_elem_info *uinfo) 1464 { 1465 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 1466 uinfo->count = HDMI_MAX_ELD_BYTES; 1467 return 0; 1468 } 1469 1470 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol, 1471 struct snd_ctl_elem_value *ucontrol) 1472 { 1473 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1474 1475 mutex_lock(&intelhaddata->mutex); 1476 memcpy(ucontrol->value.bytes.data, intelhaddata->eld, 1477 HDMI_MAX_ELD_BYTES); 1478 mutex_unlock(&intelhaddata->mutex); 1479 return 0; 1480 } 1481 1482 static const struct snd_kcontrol_new had_controls[] = { 1483 { 1484 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1485 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1486 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), 1487 .info = had_iec958_info, /* shared */ 1488 .get = had_iec958_mask_get, 1489 }, 1490 { 1491 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1492 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 1493 .info = had_iec958_info, 1494 .get = had_iec958_get, 1495 .put = had_iec958_put, 1496 }, 1497 { 1498 .access = (SNDRV_CTL_ELEM_ACCESS_READ | 1499 SNDRV_CTL_ELEM_ACCESS_VOLATILE), 1500 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1501 .name = "ELD", 1502 .info = had_ctl_eld_info, 1503 .get = had_ctl_eld_get, 1504 }, 1505 }; 1506 1507 /* 1508 * audio interrupt handler 1509 */ 1510 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id) 1511 { 1512 struct snd_intelhad_card *card_ctx = dev_id; 1513 u32 audio_stat[3] = {}; 1514 int pipe, port; 1515 1516 for_each_pipe(card_ctx, pipe) { 1517 /* use raw register access to ack IRQs even while disconnected */ 1518 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe, 1519 AUD_HDMI_STATUS) & 1520 (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE); 1521 1522 if (audio_stat[pipe]) 1523 had_write_register_raw(card_ctx, pipe, 1524 AUD_HDMI_STATUS, audio_stat[pipe]); 1525 } 1526 1527 for_each_port(card_ctx, port) { 1528 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1529 int pipe = ctx->pipe; 1530 1531 if (pipe < 0) 1532 continue; 1533 1534 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE) 1535 had_process_buffer_done(ctx); 1536 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN) 1537 had_process_buffer_underrun(ctx); 1538 } 1539 1540 return IRQ_HANDLED; 1541 } 1542 1543 /* 1544 * monitor plug/unplug notification from i915; just kick off the work 1545 */ 1546 static void notify_audio_lpe(struct platform_device *pdev, int port) 1547 { 1548 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev); 1549 struct snd_intelhad *ctx; 1550 1551 ctx = &card_ctx->pcm_ctx[single_port ? 0 : port]; 1552 if (single_port) 1553 ctx->port = port; 1554 1555 schedule_work(&ctx->hdmi_audio_wq); 1556 } 1557 1558 /* the work to handle monitor hot plug/unplug */ 1559 static void had_audio_wq(struct work_struct *work) 1560 { 1561 struct snd_intelhad *ctx = 1562 container_of(work, struct snd_intelhad, hdmi_audio_wq); 1563 struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data; 1564 struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port]; 1565 1566 pm_runtime_get_sync(ctx->dev); 1567 mutex_lock(&ctx->mutex); 1568 if (ppdata->pipe < 0) { 1569 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n", 1570 __func__, ctx->port); 1571 1572 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */ 1573 1574 ctx->dp_output = false; 1575 ctx->tmds_clock_speed = 0; 1576 ctx->link_rate = 0; 1577 1578 /* Shut down the stream */ 1579 had_process_hot_unplug(ctx); 1580 1581 ctx->pipe = -1; 1582 } else { 1583 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n", 1584 __func__, ctx->port, ppdata->ls_clock); 1585 1586 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld)); 1587 1588 ctx->dp_output = ppdata->dp_output; 1589 if (ctx->dp_output) { 1590 ctx->tmds_clock_speed = 0; 1591 ctx->link_rate = ppdata->ls_clock; 1592 } else { 1593 ctx->tmds_clock_speed = ppdata->ls_clock; 1594 ctx->link_rate = 0; 1595 } 1596 1597 /* 1598 * Shut down the stream before we change 1599 * the pipe assignment for this pcm device 1600 */ 1601 had_process_hot_plug(ctx); 1602 1603 ctx->pipe = ppdata->pipe; 1604 1605 /* Restart the stream if necessary */ 1606 had_process_mode_change(ctx); 1607 } 1608 1609 mutex_unlock(&ctx->mutex); 1610 pm_runtime_mark_last_busy(ctx->dev); 1611 pm_runtime_put_autosuspend(ctx->dev); 1612 } 1613 1614 /* 1615 * Jack interface 1616 */ 1617 static int had_create_jack(struct snd_intelhad *ctx, 1618 struct snd_pcm *pcm) 1619 { 1620 char hdmi_str[32]; 1621 int err; 1622 1623 snprintf(hdmi_str, sizeof(hdmi_str), 1624 "HDMI/DP,pcm=%d", pcm->device); 1625 1626 err = snd_jack_new(ctx->card_ctx->card, hdmi_str, 1627 SND_JACK_AVOUT, &ctx->jack, 1628 true, false); 1629 if (err < 0) 1630 return err; 1631 ctx->jack->private_data = ctx; 1632 return 0; 1633 } 1634 1635 /* 1636 * PM callbacks 1637 */ 1638 1639 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev) 1640 { 1641 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); 1642 1643 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot); 1644 1645 return 0; 1646 } 1647 1648 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev) 1649 { 1650 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); 1651 1652 pm_runtime_mark_last_busy(dev); 1653 1654 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0); 1655 1656 return 0; 1657 } 1658 1659 /* release resources */ 1660 static void hdmi_lpe_audio_free(struct snd_card *card) 1661 { 1662 struct snd_intelhad_card *card_ctx = card->private_data; 1663 struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data; 1664 int port; 1665 1666 spin_lock_irq(&pdata->lpe_audio_slock); 1667 pdata->notify_audio_lpe = NULL; 1668 spin_unlock_irq(&pdata->lpe_audio_slock); 1669 1670 for_each_port(card_ctx, port) { 1671 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1672 1673 cancel_work_sync(&ctx->hdmi_audio_wq); 1674 } 1675 1676 if (card_ctx->mmio_start) 1677 iounmap(card_ctx->mmio_start); 1678 if (card_ctx->irq >= 0) 1679 free_irq(card_ctx->irq, card_ctx); 1680 } 1681 1682 /* 1683 * hdmi_lpe_audio_probe - start bridge with i915 1684 * 1685 * This function is called when the i915 driver creates the 1686 * hdmi-lpe-audio platform device. 1687 */ 1688 static int hdmi_lpe_audio_probe(struct platform_device *pdev) 1689 { 1690 struct snd_card *card; 1691 struct snd_intelhad_card *card_ctx; 1692 struct snd_intelhad *ctx; 1693 struct snd_pcm *pcm; 1694 struct intel_hdmi_lpe_audio_pdata *pdata; 1695 int irq; 1696 struct resource *res_mmio; 1697 int port, ret; 1698 1699 pdata = pdev->dev.platform_data; 1700 if (!pdata) { 1701 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__); 1702 return -EINVAL; 1703 } 1704 1705 /* get resources */ 1706 irq = platform_get_irq(pdev, 0); 1707 if (irq < 0) 1708 return irq; 1709 1710 res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1711 if (!res_mmio) { 1712 dev_err(&pdev->dev, "Could not get IO_MEM resources\n"); 1713 return -ENXIO; 1714 } 1715 1716 /* create a card instance with ALSA framework */ 1717 ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id, 1718 THIS_MODULE, sizeof(*card_ctx), &card); 1719 if (ret) 1720 return ret; 1721 1722 card_ctx = card->private_data; 1723 card_ctx->dev = &pdev->dev; 1724 card_ctx->card = card; 1725 strcpy(card->driver, INTEL_HAD); 1726 strcpy(card->shortname, "Intel HDMI/DP LPE Audio"); 1727 strcpy(card->longname, "Intel HDMI/DP LPE Audio"); 1728 1729 card_ctx->irq = -1; 1730 1731 card->private_free = hdmi_lpe_audio_free; 1732 1733 platform_set_drvdata(pdev, card_ctx); 1734 1735 card_ctx->num_pipes = pdata->num_pipes; 1736 card_ctx->num_ports = single_port ? 1 : pdata->num_ports; 1737 1738 for_each_port(card_ctx, port) { 1739 ctx = &card_ctx->pcm_ctx[port]; 1740 ctx->card_ctx = card_ctx; 1741 ctx->dev = card_ctx->dev; 1742 ctx->port = single_port ? -1 : port; 1743 ctx->pipe = -1; 1744 1745 spin_lock_init(&ctx->had_spinlock); 1746 mutex_init(&ctx->mutex); 1747 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq); 1748 } 1749 1750 dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n", 1751 __func__, (unsigned int)res_mmio->start, 1752 (unsigned int)res_mmio->end); 1753 1754 card_ctx->mmio_start = ioremap(res_mmio->start, 1755 (size_t)(resource_size(res_mmio))); 1756 if (!card_ctx->mmio_start) { 1757 dev_err(&pdev->dev, "Could not get ioremap\n"); 1758 ret = -EACCES; 1759 goto err; 1760 } 1761 1762 /* setup interrupt handler */ 1763 ret = request_irq(irq, display_pipe_interrupt_handler, 0, 1764 pdev->name, card_ctx); 1765 if (ret < 0) { 1766 dev_err(&pdev->dev, "request_irq failed\n"); 1767 goto err; 1768 } 1769 1770 card_ctx->irq = irq; 1771 1772 /* only 32bit addressable */ 1773 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1774 1775 init_channel_allocations(); 1776 1777 card_ctx->num_pipes = pdata->num_pipes; 1778 card_ctx->num_ports = single_port ? 1 : pdata->num_ports; 1779 1780 for_each_port(card_ctx, port) { 1781 int i; 1782 1783 ctx = &card_ctx->pcm_ctx[port]; 1784 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS, 1785 MAX_CAP_STREAMS, &pcm); 1786 if (ret) 1787 goto err; 1788 1789 /* setup private data which can be retrieved when required */ 1790 pcm->private_data = ctx; 1791 pcm->info_flags = 0; 1792 strscpy(pcm->name, card->shortname, strlen(card->shortname)); 1793 /* setup the ops for playback */ 1794 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops); 1795 1796 /* allocate dma pages; 1797 * try to allocate 600k buffer as default which is large enough 1798 */ 1799 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_UC, 1800 card->dev, HAD_DEFAULT_BUFFER, 1801 HAD_MAX_BUFFER); 1802 1803 /* create controls */ 1804 for (i = 0; i < ARRAY_SIZE(had_controls); i++) { 1805 struct snd_kcontrol *kctl; 1806 1807 kctl = snd_ctl_new1(&had_controls[i], ctx); 1808 if (!kctl) { 1809 ret = -ENOMEM; 1810 goto err; 1811 } 1812 1813 kctl->id.device = pcm->device; 1814 1815 ret = snd_ctl_add(card, kctl); 1816 if (ret < 0) 1817 goto err; 1818 } 1819 1820 /* Register channel map controls */ 1821 ret = had_register_chmap_ctls(ctx, pcm); 1822 if (ret < 0) 1823 goto err; 1824 1825 ret = had_create_jack(ctx, pcm); 1826 if (ret < 0) 1827 goto err; 1828 } 1829 1830 ret = snd_card_register(card); 1831 if (ret) 1832 goto err; 1833 1834 spin_lock_irq(&pdata->lpe_audio_slock); 1835 pdata->notify_audio_lpe = notify_audio_lpe; 1836 spin_unlock_irq(&pdata->lpe_audio_slock); 1837 1838 pm_runtime_use_autosuspend(&pdev->dev); 1839 pm_runtime_mark_last_busy(&pdev->dev); 1840 1841 dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__); 1842 for_each_port(card_ctx, port) { 1843 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1844 1845 schedule_work(&ctx->hdmi_audio_wq); 1846 } 1847 1848 return 0; 1849 1850 err: 1851 snd_card_free(card); 1852 return ret; 1853 } 1854 1855 /* 1856 * hdmi_lpe_audio_remove - stop bridge with i915 1857 * 1858 * This function is called when the platform device is destroyed. 1859 */ 1860 static int hdmi_lpe_audio_remove(struct platform_device *pdev) 1861 { 1862 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev); 1863 1864 snd_card_free(card_ctx->card); 1865 return 0; 1866 } 1867 1868 static const struct dev_pm_ops hdmi_lpe_audio_pm = { 1869 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume) 1870 }; 1871 1872 static struct platform_driver hdmi_lpe_audio_driver = { 1873 .driver = { 1874 .name = "hdmi-lpe-audio", 1875 .pm = &hdmi_lpe_audio_pm, 1876 }, 1877 .probe = hdmi_lpe_audio_probe, 1878 .remove = hdmi_lpe_audio_remove, 1879 }; 1880 1881 module_platform_driver(hdmi_lpe_audio_driver); 1882 MODULE_ALIAS("platform:hdmi_lpe_audio"); 1883 1884 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>"); 1885 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>"); 1886 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>"); 1887 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>"); 1888 MODULE_DESCRIPTION("Intel HDMI Audio driver"); 1889 MODULE_LICENSE("GPL v2"); 1890