xref: /openbmc/linux/sound/x86/intel_hdmi_audio.c (revision 9fb29c73)
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *		Ramesh Babu K V	<ramesh.babu@intel.com>
7  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *		Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23 
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <sound/core.h>
34 #include <sound/asoundef.h>
35 #include <sound/pcm.h>
36 #include <sound/pcm_params.h>
37 #include <sound/initval.h>
38 #include <sound/control.h>
39 #include <sound/jack.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel_lpe_audio.h>
42 #include "intel_hdmi_audio.h"
43 
44 #define for_each_pipe(card_ctx, pipe) \
45 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
46 #define for_each_port(card_ctx, port) \
47 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
48 
49 /*standard module options for ALSA. This module supports only one card*/
50 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
51 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
52 static bool single_port;
53 
54 module_param_named(index, hdmi_card_index, int, 0444);
55 MODULE_PARM_DESC(index,
56 		"Index value for INTEL Intel HDMI Audio controller.");
57 module_param_named(id, hdmi_card_id, charp, 0444);
58 MODULE_PARM_DESC(id,
59 		"ID string for INTEL Intel HDMI Audio controller.");
60 module_param(single_port, bool, 0444);
61 MODULE_PARM_DESC(single_port,
62 		"Single-port mode (for compatibility)");
63 
64 /*
65  * ELD SA bits in the CEA Speaker Allocation data block
66  */
67 static const int eld_speaker_allocation_bits[] = {
68 	[0] = FL | FR,
69 	[1] = LFE,
70 	[2] = FC,
71 	[3] = RL | RR,
72 	[4] = RC,
73 	[5] = FLC | FRC,
74 	[6] = RLC | RRC,
75 	/* the following are not defined in ELD yet */
76 	[7] = 0,
77 };
78 
79 /*
80  * This is an ordered list!
81  *
82  * The preceding ones have better chances to be selected by
83  * hdmi_channel_allocation().
84  */
85 static struct cea_channel_speaker_allocation channel_allocations[] = {
86 /*                        channel:   7     6    5    4    3     2    1    0  */
87 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
88 				/* 2.1 */
89 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
90 				/* Dolby Surround */
91 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
92 				/* surround40 */
93 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
94 				/* surround41 */
95 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
96 				/* surround50 */
97 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
98 				/* surround51 */
99 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
100 				/* 6.1 */
101 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
102 				/* surround71 */
103 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
104 
105 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
106 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
107 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
108 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
109 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
110 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
111 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
112 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
113 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
114 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
115 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
116 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
117 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
118 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
119 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
120 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
121 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
122 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
123 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
124 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
125 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
126 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
127 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
128 };
129 
130 static const struct channel_map_table map_tables[] = {
131 	{ SNDRV_CHMAP_FL,       0x00,   FL },
132 	{ SNDRV_CHMAP_FR,       0x01,   FR },
133 	{ SNDRV_CHMAP_RL,       0x04,   RL },
134 	{ SNDRV_CHMAP_RR,       0x05,   RR },
135 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
136 	{ SNDRV_CHMAP_FC,       0x03,   FC },
137 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
138 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
139 	{} /* terminator */
140 };
141 
142 /* hardware capability structure */
143 static const struct snd_pcm_hardware had_pcm_hardware = {
144 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
145 		SNDRV_PCM_INFO_MMAP |
146 		SNDRV_PCM_INFO_MMAP_VALID |
147 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
148 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
149 		    SNDRV_PCM_FMTBIT_S24_LE |
150 		    SNDRV_PCM_FMTBIT_S32_LE),
151 	.rates = SNDRV_PCM_RATE_32000 |
152 		SNDRV_PCM_RATE_44100 |
153 		SNDRV_PCM_RATE_48000 |
154 		SNDRV_PCM_RATE_88200 |
155 		SNDRV_PCM_RATE_96000 |
156 		SNDRV_PCM_RATE_176400 |
157 		SNDRV_PCM_RATE_192000,
158 	.rate_min = HAD_MIN_RATE,
159 	.rate_max = HAD_MAX_RATE,
160 	.channels_min = HAD_MIN_CHANNEL,
161 	.channels_max = HAD_MAX_CHANNEL,
162 	.buffer_bytes_max = HAD_MAX_BUFFER,
163 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
164 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
165 	.periods_min = HAD_MIN_PERIODS,
166 	.periods_max = HAD_MAX_PERIODS,
167 	.fifo_size = HAD_FIFO_SIZE,
168 };
169 
170 /* Get the active PCM substream;
171  * Call had_substream_put() for unreferecing.
172  * Don't call this inside had_spinlock, as it takes by itself
173  */
174 static struct snd_pcm_substream *
175 had_substream_get(struct snd_intelhad *intelhaddata)
176 {
177 	struct snd_pcm_substream *substream;
178 	unsigned long flags;
179 
180 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
181 	substream = intelhaddata->stream_info.substream;
182 	if (substream)
183 		intelhaddata->stream_info.substream_refcount++;
184 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
185 	return substream;
186 }
187 
188 /* Unref the active PCM substream;
189  * Don't call this inside had_spinlock, as it takes by itself
190  */
191 static void had_substream_put(struct snd_intelhad *intelhaddata)
192 {
193 	unsigned long flags;
194 
195 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
196 	intelhaddata->stream_info.substream_refcount--;
197 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
198 }
199 
200 static u32 had_config_offset(int pipe)
201 {
202 	switch (pipe) {
203 	default:
204 	case 0:
205 		return AUDIO_HDMI_CONFIG_A;
206 	case 1:
207 		return AUDIO_HDMI_CONFIG_B;
208 	case 2:
209 		return AUDIO_HDMI_CONFIG_C;
210 	}
211 }
212 
213 /* Register access functions */
214 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
215 				 int pipe, u32 reg)
216 {
217 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
218 }
219 
220 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
221 				   int pipe, u32 reg, u32 val)
222 {
223 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
224 }
225 
226 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
227 {
228 	if (!ctx->connected)
229 		*val = 0;
230 	else
231 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
232 }
233 
234 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
235 {
236 	if (ctx->connected)
237 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
238 }
239 
240 /*
241  * enable / disable audio configuration
242  *
243  * The normal read/modify should not directly be used on VLV2 for
244  * updating AUD_CONFIG register.
245  * This is because:
246  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
247  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
248  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
249  * register. This field should be 1xy binary for configuration with 6 or
250  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
251  * causes the "channels" field to be updated as 0xy binary resulting in
252  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
253  * appropriate value when doing read-modify of AUD_CONFIG register.
254  */
255 static void had_enable_audio(struct snd_intelhad *intelhaddata,
256 			     bool enable)
257 {
258 	/* update the cached value */
259 	intelhaddata->aud_config.regx.aud_en = enable;
260 	had_write_register(intelhaddata, AUD_CONFIG,
261 			   intelhaddata->aud_config.regval);
262 }
263 
264 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
265 static void had_ack_irqs(struct snd_intelhad *ctx)
266 {
267 	u32 status_reg;
268 
269 	if (!ctx->connected)
270 		return;
271 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
272 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
273 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
274 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
275 }
276 
277 /* Reset buffer pointers */
278 static void had_reset_audio(struct snd_intelhad *intelhaddata)
279 {
280 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
281 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
282 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
283 }
284 
285 /*
286  * initialize audio channel status registers
287  * This function is called in the prepare callback
288  */
289 static int had_prog_status_reg(struct snd_pcm_substream *substream,
290 			struct snd_intelhad *intelhaddata)
291 {
292 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
293 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
294 
295 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
296 					  IEC958_AES0_NONAUDIO) >> 1;
297 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
298 					  IEC958_AES3_CON_CLOCK) >> 4;
299 
300 	switch (substream->runtime->rate) {
301 	case AUD_SAMPLE_RATE_32:
302 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
303 		break;
304 
305 	case AUD_SAMPLE_RATE_44_1:
306 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
307 		break;
308 	case AUD_SAMPLE_RATE_48:
309 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
310 		break;
311 	case AUD_SAMPLE_RATE_88_2:
312 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
313 		break;
314 	case AUD_SAMPLE_RATE_96:
315 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
316 		break;
317 	case AUD_SAMPLE_RATE_176_4:
318 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
319 		break;
320 	case AUD_SAMPLE_RATE_192:
321 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
322 		break;
323 
324 	default:
325 		/* control should never come here */
326 		return -EINVAL;
327 	}
328 
329 	had_write_register(intelhaddata,
330 			   AUD_CH_STATUS_0, ch_stat0.regval);
331 
332 	switch (substream->runtime->format) {
333 	case SNDRV_PCM_FORMAT_S16_LE:
334 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
335 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
336 		break;
337 	case SNDRV_PCM_FORMAT_S24_LE:
338 	case SNDRV_PCM_FORMAT_S32_LE:
339 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
340 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
341 		break;
342 	default:
343 		return -EINVAL;
344 	}
345 
346 	had_write_register(intelhaddata,
347 			   AUD_CH_STATUS_1, ch_stat1.regval);
348 	return 0;
349 }
350 
351 /*
352  * function to initialize audio
353  * registers and buffer confgiuration registers
354  * This function is called in the prepare callback
355  */
356 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
357 			       struct snd_intelhad *intelhaddata)
358 {
359 	union aud_cfg cfg_val = {.regval = 0};
360 	union aud_buf_config buf_cfg = {.regval = 0};
361 	u8 channels;
362 
363 	had_prog_status_reg(substream, intelhaddata);
364 
365 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
366 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
367 	buf_cfg.regx.aud_delay = 0;
368 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
369 
370 	channels = substream->runtime->channels;
371 	cfg_val.regx.num_ch = channels - 2;
372 	if (channels <= 2)
373 		cfg_val.regx.layout = LAYOUT0;
374 	else
375 		cfg_val.regx.layout = LAYOUT1;
376 
377 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
378 		cfg_val.regx.packet_mode = 1;
379 
380 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
381 		cfg_val.regx.left_align = 1;
382 
383 	cfg_val.regx.val_bit = 1;
384 
385 	/* fix up the DP bits */
386 	if (intelhaddata->dp_output) {
387 		cfg_val.regx.dp_modei = 1;
388 		cfg_val.regx.set = 1;
389 	}
390 
391 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
392 	intelhaddata->aud_config = cfg_val;
393 	return 0;
394 }
395 
396 /*
397  * Compute derived values in channel_allocations[].
398  */
399 static void init_channel_allocations(void)
400 {
401 	int i, j;
402 	struct cea_channel_speaker_allocation *p;
403 
404 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
405 		p = channel_allocations + i;
406 		p->channels = 0;
407 		p->spk_mask = 0;
408 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
409 			if (p->speakers[j]) {
410 				p->channels++;
411 				p->spk_mask |= p->speakers[j];
412 			}
413 	}
414 }
415 
416 /*
417  * The transformation takes two steps:
418  *
419  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
420  *            spk_mask => (channel_allocations[])         => ai->CA
421  *
422  * TODO: it could select the wrong CA from multiple candidates.
423  */
424 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
425 				  int channels)
426 {
427 	int i;
428 	int ca = 0;
429 	int spk_mask = 0;
430 
431 	/*
432 	 * CA defaults to 0 for basic stereo audio
433 	 */
434 	if (channels <= 2)
435 		return 0;
436 
437 	/*
438 	 * expand ELD's speaker allocation mask
439 	 *
440 	 * ELD tells the speaker mask in a compact(paired) form,
441 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
442 	 */
443 
444 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
445 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
446 			spk_mask |= eld_speaker_allocation_bits[i];
447 	}
448 
449 	/* search for the first working match in the CA table */
450 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
451 		if (channels == channel_allocations[i].channels &&
452 		(spk_mask & channel_allocations[i].spk_mask) ==
453 				channel_allocations[i].spk_mask) {
454 			ca = channel_allocations[i].ca_index;
455 			break;
456 		}
457 	}
458 
459 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
460 
461 	return ca;
462 }
463 
464 /* from speaker bit mask to ALSA API channel position */
465 static int spk_to_chmap(int spk)
466 {
467 	const struct channel_map_table *t = map_tables;
468 
469 	for (; t->map; t++) {
470 		if (t->spk_mask == spk)
471 			return t->map;
472 	}
473 	return 0;
474 }
475 
476 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
477 {
478 	int i, c;
479 	int spk_mask = 0;
480 	struct snd_pcm_chmap_elem *chmap;
481 	u8 eld_high, eld_high_mask = 0xF0;
482 	u8 high_msb;
483 
484 	kfree(intelhaddata->chmap->chmap);
485 	intelhaddata->chmap->chmap = NULL;
486 
487 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
488 	if (!chmap)
489 		return;
490 
491 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
492 		intelhaddata->eld[DRM_ELD_SPEAKER]);
493 
494 	/* WA: Fix the max channel supported to 8 */
495 
496 	/*
497 	 * Sink may support more than 8 channels, if eld_high has more than
498 	 * one bit set. SOC supports max 8 channels.
499 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
500 	 */
501 
502 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
503 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
504 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
505 		/* eld_high & (eld_high-1): if more than 1 bit set */
506 		/* 0x1F: 7 channels */
507 		for (i = 1; i < 4; i++) {
508 			high_msb = eld_high & (0x80 >> i);
509 			if (high_msb) {
510 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
511 					high_msb | 0xF;
512 				break;
513 			}
514 		}
515 	}
516 
517 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
518 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
519 			spk_mask |= eld_speaker_allocation_bits[i];
520 	}
521 
522 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
523 		if (spk_mask == channel_allocations[i].spk_mask) {
524 			for (c = 0; c < channel_allocations[i].channels; c++) {
525 				chmap->map[c] = spk_to_chmap(
526 					channel_allocations[i].speakers[
527 						(MAX_SPEAKERS - 1) - c]);
528 			}
529 			chmap->channels = channel_allocations[i].channels;
530 			intelhaddata->chmap->chmap = chmap;
531 			break;
532 		}
533 	}
534 	if (i >= ARRAY_SIZE(channel_allocations))
535 		kfree(chmap);
536 }
537 
538 /*
539  * ALSA API channel-map control callbacks
540  */
541 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
542 				struct snd_ctl_elem_info *uinfo)
543 {
544 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
545 	uinfo->count = HAD_MAX_CHANNEL;
546 	uinfo->value.integer.min = 0;
547 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
548 	return 0;
549 }
550 
551 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
552 				struct snd_ctl_elem_value *ucontrol)
553 {
554 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
555 	struct snd_intelhad *intelhaddata = info->private_data;
556 	int i;
557 	const struct snd_pcm_chmap_elem *chmap;
558 
559 	memset(ucontrol->value.integer.value, 0,
560 	       sizeof(long) * HAD_MAX_CHANNEL);
561 	mutex_lock(&intelhaddata->mutex);
562 	if (!intelhaddata->chmap->chmap) {
563 		mutex_unlock(&intelhaddata->mutex);
564 		return 0;
565 	}
566 
567 	chmap = intelhaddata->chmap->chmap;
568 	for (i = 0; i < chmap->channels; i++)
569 		ucontrol->value.integer.value[i] = chmap->map[i];
570 	mutex_unlock(&intelhaddata->mutex);
571 
572 	return 0;
573 }
574 
575 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
576 						struct snd_pcm *pcm)
577 {
578 	int err;
579 
580 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
581 			NULL, 0, (unsigned long)intelhaddata,
582 			&intelhaddata->chmap);
583 	if (err < 0)
584 		return err;
585 
586 	intelhaddata->chmap->private_data = intelhaddata;
587 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
588 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
589 	intelhaddata->chmap->chmap = NULL;
590 	return 0;
591 }
592 
593 /*
594  * Initialize Data Island Packets registers
595  * This function is called in the prepare callback
596  */
597 static void had_prog_dip(struct snd_pcm_substream *substream,
598 			 struct snd_intelhad *intelhaddata)
599 {
600 	int i;
601 	union aud_ctrl_st ctrl_state = {.regval = 0};
602 	union aud_info_frame2 frame2 = {.regval = 0};
603 	union aud_info_frame3 frame3 = {.regval = 0};
604 	u8 checksum = 0;
605 	u32 info_frame;
606 	int channels;
607 	int ca;
608 
609 	channels = substream->runtime->channels;
610 
611 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
612 
613 	ca = had_channel_allocation(intelhaddata, channels);
614 	if (intelhaddata->dp_output) {
615 		info_frame = DP_INFO_FRAME_WORD1;
616 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
617 	} else {
618 		info_frame = HDMI_INFO_FRAME_WORD1;
619 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
620 		frame3.regx.chnl_alloc = ca;
621 
622 		/* Calculte the byte wide checksum for all valid DIP words */
623 		for (i = 0; i < BYTES_PER_WORD; i++)
624 			checksum += (info_frame >> (i * 8)) & 0xff;
625 		for (i = 0; i < BYTES_PER_WORD; i++)
626 			checksum += (frame2.regval >> (i * 8)) & 0xff;
627 		for (i = 0; i < BYTES_PER_WORD; i++)
628 			checksum += (frame3.regval >> (i * 8)) & 0xff;
629 
630 		frame2.regx.chksum = -(checksum);
631 	}
632 
633 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
634 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
635 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
636 
637 	/* program remaining DIP words with zero */
638 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
639 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
640 
641 	ctrl_state.regx.dip_freq = 1;
642 	ctrl_state.regx.dip_en_sta = 1;
643 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
644 }
645 
646 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
647 {
648 	u32 maud_val;
649 
650 	/* Select maud according to DP 1.2 spec */
651 	if (link_rate == DP_2_7_GHZ) {
652 		switch (aud_samp_freq) {
653 		case AUD_SAMPLE_RATE_32:
654 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
655 			break;
656 
657 		case AUD_SAMPLE_RATE_44_1:
658 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
659 			break;
660 
661 		case AUD_SAMPLE_RATE_48:
662 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
663 			break;
664 
665 		case AUD_SAMPLE_RATE_88_2:
666 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
667 			break;
668 
669 		case AUD_SAMPLE_RATE_96:
670 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
671 			break;
672 
673 		case AUD_SAMPLE_RATE_176_4:
674 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
675 			break;
676 
677 		case HAD_MAX_RATE:
678 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
679 			break;
680 
681 		default:
682 			maud_val = -EINVAL;
683 			break;
684 		}
685 	} else if (link_rate == DP_1_62_GHZ) {
686 		switch (aud_samp_freq) {
687 		case AUD_SAMPLE_RATE_32:
688 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
689 			break;
690 
691 		case AUD_SAMPLE_RATE_44_1:
692 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
693 			break;
694 
695 		case AUD_SAMPLE_RATE_48:
696 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
697 			break;
698 
699 		case AUD_SAMPLE_RATE_88_2:
700 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
701 			break;
702 
703 		case AUD_SAMPLE_RATE_96:
704 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
705 			break;
706 
707 		case AUD_SAMPLE_RATE_176_4:
708 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
709 			break;
710 
711 		case HAD_MAX_RATE:
712 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
713 			break;
714 
715 		default:
716 			maud_val = -EINVAL;
717 			break;
718 		}
719 	} else
720 		maud_val = -EINVAL;
721 
722 	return maud_val;
723 }
724 
725 /*
726  * Program HDMI audio CTS value
727  *
728  * @aud_samp_freq: sampling frequency of audio data
729  * @tmds: sampling frequency of the display data
730  * @link_rate: DP link rate
731  * @n_param: N value, depends on aud_samp_freq
732  * @intelhaddata: substream private data
733  *
734  * Program CTS register based on the audio and display sampling frequency
735  */
736 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
737 			 u32 n_param, struct snd_intelhad *intelhaddata)
738 {
739 	u32 cts_val;
740 	u64 dividend, divisor;
741 
742 	if (intelhaddata->dp_output) {
743 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
744 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
745 	} else {
746 		/* Calculate CTS according to HDMI 1.3a spec*/
747 		dividend = (u64)tmds * n_param*1000;
748 		divisor = 128 * aud_samp_freq;
749 		cts_val = div64_u64(dividend, divisor);
750 	}
751 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
752 		 tmds, n_param, cts_val);
753 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
754 }
755 
756 static int had_calculate_n_value(u32 aud_samp_freq)
757 {
758 	int n_val;
759 
760 	/* Select N according to HDMI 1.3a spec*/
761 	switch (aud_samp_freq) {
762 	case AUD_SAMPLE_RATE_32:
763 		n_val = 4096;
764 		break;
765 
766 	case AUD_SAMPLE_RATE_44_1:
767 		n_val = 6272;
768 		break;
769 
770 	case AUD_SAMPLE_RATE_48:
771 		n_val = 6144;
772 		break;
773 
774 	case AUD_SAMPLE_RATE_88_2:
775 		n_val = 12544;
776 		break;
777 
778 	case AUD_SAMPLE_RATE_96:
779 		n_val = 12288;
780 		break;
781 
782 	case AUD_SAMPLE_RATE_176_4:
783 		n_val = 25088;
784 		break;
785 
786 	case HAD_MAX_RATE:
787 		n_val = 24576;
788 		break;
789 
790 	default:
791 		n_val = -EINVAL;
792 		break;
793 	}
794 	return n_val;
795 }
796 
797 /*
798  * Program HDMI audio N value
799  *
800  * @aud_samp_freq: sampling frequency of audio data
801  * @n_param: N value, depends on aud_samp_freq
802  * @intelhaddata: substream private data
803  *
804  * This function is called in the prepare callback.
805  * It programs based on the audio and display sampling frequency
806  */
807 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
808 		      struct snd_intelhad *intelhaddata)
809 {
810 	int n_val;
811 
812 	if (intelhaddata->dp_output) {
813 		/*
814 		 * According to DP specs, Maud and Naud values hold
815 		 * a relationship, which is stated as:
816 		 * Maud/Naud = 512 * fs / f_LS_Clk
817 		 * where, fs is the sampling frequency of the audio stream
818 		 * and Naud is 32768 for Async clock.
819 		 */
820 
821 		n_val = DP_NAUD_VAL;
822 	} else
823 		n_val =	had_calculate_n_value(aud_samp_freq);
824 
825 	if (n_val < 0)
826 		return n_val;
827 
828 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
829 	*n_param = n_val;
830 	return 0;
831 }
832 
833 /*
834  * PCM ring buffer handling
835  *
836  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
837  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
838  * moves at each period elapsed.  The below illustrates how it works:
839  *
840  * At time=0
841  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842  *  BD  | 0 | 1 | 2 | 3 |
843  *
844  * At time=1 (period elapsed)
845  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
846  *  BD      | 1 | 2 | 3 | 0 |
847  *
848  * At time=2 (second period elapsed)
849  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
850  *  BD          | 2 | 3 | 0 | 1 |
851  *
852  * The bd_head field points to the index of the BD to be read.  It's also the
853  * position to be filled at next.  The pcm_head and the pcm_filled fields
854  * point to the indices of the current position and of the next position to
855  * be filled, respectively.  For PCM buffer there are both _head and _filled
856  * because they may be difference when nperiods > 4.  For example, in the
857  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
858  *
859  * pcm_head (=1) --v               v-- pcm_filled (=5)
860  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
861  *       BD      | 1 | 2 | 3 | 0 |
862  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
863  *
864  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
865  * the hardware skips those BDs in the loop.
866  *
867  * An exceptional setup is the case with nperiods=1.  Since we have to update
868  * BDs after finishing one BD processing, we'd need at least two BDs, where
869  * both BDs point to the same content, the same address, the same size of the
870  * whole PCM buffer.
871  */
872 
873 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
874 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
875 
876 /* Set up a buffer descriptor at the "filled" position */
877 static void had_prog_bd(struct snd_pcm_substream *substream,
878 			struct snd_intelhad *intelhaddata)
879 {
880 	int idx = intelhaddata->bd_head;
881 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
882 	u32 addr = substream->runtime->dma_addr + ofs;
883 
884 	addr |= AUD_BUF_VALID;
885 	if (!substream->runtime->no_period_wakeup)
886 		addr |= AUD_BUF_INTR_EN;
887 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
888 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
889 			   intelhaddata->period_bytes);
890 
891 	/* advance the indices to the next */
892 	intelhaddata->bd_head++;
893 	intelhaddata->bd_head %= intelhaddata->num_bds;
894 	intelhaddata->pcmbuf_filled++;
895 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
896 }
897 
898 /* invalidate a buffer descriptor with the given index */
899 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
900 			      int idx)
901 {
902 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
903 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
904 }
905 
906 /* Initial programming of ring buffer */
907 static void had_init_ringbuf(struct snd_pcm_substream *substream,
908 			     struct snd_intelhad *intelhaddata)
909 {
910 	struct snd_pcm_runtime *runtime = substream->runtime;
911 	int i, num_periods;
912 
913 	num_periods = runtime->periods;
914 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
915 	/* set the minimum 2 BDs for num_periods=1 */
916 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
917 	intelhaddata->period_bytes =
918 		frames_to_bytes(runtime, runtime->period_size);
919 	WARN_ON(intelhaddata->period_bytes & 0x3f);
920 
921 	intelhaddata->bd_head = 0;
922 	intelhaddata->pcmbuf_head = 0;
923 	intelhaddata->pcmbuf_filled = 0;
924 
925 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
926 		if (i < intelhaddata->num_bds)
927 			had_prog_bd(substream, intelhaddata);
928 		else /* invalidate the rest */
929 			had_invalidate_bd(intelhaddata, i);
930 	}
931 
932 	intelhaddata->bd_head = 0; /* reset at head again before starting */
933 }
934 
935 /* process a bd, advance to the next */
936 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
937 				struct snd_intelhad *intelhaddata)
938 {
939 	int num_periods = substream->runtime->periods;
940 
941 	/* reprogram the next buffer */
942 	had_prog_bd(substream, intelhaddata);
943 
944 	/* proceed to next */
945 	intelhaddata->pcmbuf_head++;
946 	intelhaddata->pcmbuf_head %= num_periods;
947 }
948 
949 /* process the current BD(s);
950  * returns the current PCM buffer byte position, or -EPIPE for underrun.
951  */
952 static int had_process_ringbuf(struct snd_pcm_substream *substream,
953 			       struct snd_intelhad *intelhaddata)
954 {
955 	int len, processed;
956 	unsigned long flags;
957 
958 	processed = 0;
959 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
960 	for (;;) {
961 		/* get the remaining bytes on the buffer */
962 		had_read_register(intelhaddata,
963 				  AUD_BUF_LEN(intelhaddata->bd_head),
964 				  &len);
965 		if (len < 0 || len > intelhaddata->period_bytes) {
966 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
967 				len);
968 			len = -EPIPE;
969 			goto out;
970 		}
971 
972 		if (len > 0) /* OK, this is the current buffer */
973 			break;
974 
975 		/* len=0 => already empty, check the next buffer */
976 		if (++processed >= intelhaddata->num_bds) {
977 			len = -EPIPE; /* all empty? - report underrun */
978 			goto out;
979 		}
980 		had_advance_ringbuf(substream, intelhaddata);
981 	}
982 
983 	len = intelhaddata->period_bytes - len;
984 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
985  out:
986 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
987 	return len;
988 }
989 
990 /* called from irq handler */
991 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
992 {
993 	struct snd_pcm_substream *substream;
994 
995 	substream = had_substream_get(intelhaddata);
996 	if (!substream)
997 		return; /* no stream? - bail out */
998 
999 	if (!intelhaddata->connected) {
1000 		snd_pcm_stop_xrun(substream);
1001 		goto out; /* disconnected? - bail out */
1002 	}
1003 
1004 	/* process or stop the stream */
1005 	if (had_process_ringbuf(substream, intelhaddata) < 0)
1006 		snd_pcm_stop_xrun(substream);
1007 	else
1008 		snd_pcm_period_elapsed(substream);
1009 
1010  out:
1011 	had_substream_put(intelhaddata);
1012 }
1013 
1014 /*
1015  * The interrupt status 'sticky' bits might not be cleared by
1016  * setting '1' to that bit once...
1017  */
1018 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1019 {
1020 	int i;
1021 	u32 val;
1022 
1023 	for (i = 0; i < 100; i++) {
1024 		/* clear bit30, 31 AUD_HDMI_STATUS */
1025 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1026 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1027 			return;
1028 		udelay(100);
1029 		cond_resched();
1030 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1031 	}
1032 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1033 }
1034 
1035 /* Perform some reset procedure but only when need_reset is set;
1036  * this is called from prepare or hw_free callbacks once after trigger STOP
1037  * or underrun has been processed in order to settle down the h/w state.
1038  */
1039 static void had_do_reset(struct snd_intelhad *intelhaddata)
1040 {
1041 	if (!intelhaddata->need_reset || !intelhaddata->connected)
1042 		return;
1043 
1044 	/* Reset buffer pointers */
1045 	had_reset_audio(intelhaddata);
1046 	wait_clear_underrun_bit(intelhaddata);
1047 	intelhaddata->need_reset = false;
1048 }
1049 
1050 /* called from irq handler */
1051 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1052 {
1053 	struct snd_pcm_substream *substream;
1054 
1055 	/* Report UNDERRUN error to above layers */
1056 	substream = had_substream_get(intelhaddata);
1057 	if (substream) {
1058 		snd_pcm_stop_xrun(substream);
1059 		had_substream_put(intelhaddata);
1060 	}
1061 	intelhaddata->need_reset = true;
1062 }
1063 
1064 /*
1065  * ALSA PCM open callback
1066  */
1067 static int had_pcm_open(struct snd_pcm_substream *substream)
1068 {
1069 	struct snd_intelhad *intelhaddata;
1070 	struct snd_pcm_runtime *runtime;
1071 	int retval;
1072 
1073 	intelhaddata = snd_pcm_substream_chip(substream);
1074 	runtime = substream->runtime;
1075 
1076 	pm_runtime_get_sync(intelhaddata->dev);
1077 
1078 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1079 	runtime->hw = had_pcm_hardware;
1080 
1081 	retval = snd_pcm_hw_constraint_integer(runtime,
1082 			 SNDRV_PCM_HW_PARAM_PERIODS);
1083 	if (retval < 0)
1084 		goto error;
1085 
1086 	/* Make sure, that the period size is always aligned
1087 	 * 64byte boundary
1088 	 */
1089 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1090 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1091 	if (retval < 0)
1092 		goto error;
1093 
1094 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1095 	if (retval < 0)
1096 		goto error;
1097 
1098 	/* expose PCM substream */
1099 	spin_lock_irq(&intelhaddata->had_spinlock);
1100 	intelhaddata->stream_info.substream = substream;
1101 	intelhaddata->stream_info.substream_refcount++;
1102 	spin_unlock_irq(&intelhaddata->had_spinlock);
1103 
1104 	return retval;
1105  error:
1106 	pm_runtime_mark_last_busy(intelhaddata->dev);
1107 	pm_runtime_put_autosuspend(intelhaddata->dev);
1108 	return retval;
1109 }
1110 
1111 /*
1112  * ALSA PCM close callback
1113  */
1114 static int had_pcm_close(struct snd_pcm_substream *substream)
1115 {
1116 	struct snd_intelhad *intelhaddata;
1117 
1118 	intelhaddata = snd_pcm_substream_chip(substream);
1119 
1120 	/* unreference and sync with the pending PCM accesses */
1121 	spin_lock_irq(&intelhaddata->had_spinlock);
1122 	intelhaddata->stream_info.substream = NULL;
1123 	intelhaddata->stream_info.substream_refcount--;
1124 	while (intelhaddata->stream_info.substream_refcount > 0) {
1125 		spin_unlock_irq(&intelhaddata->had_spinlock);
1126 		cpu_relax();
1127 		spin_lock_irq(&intelhaddata->had_spinlock);
1128 	}
1129 	spin_unlock_irq(&intelhaddata->had_spinlock);
1130 
1131 	pm_runtime_mark_last_busy(intelhaddata->dev);
1132 	pm_runtime_put_autosuspend(intelhaddata->dev);
1133 	return 0;
1134 }
1135 
1136 /*
1137  * ALSA PCM hw_params callback
1138  */
1139 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1140 			     struct snd_pcm_hw_params *hw_params)
1141 {
1142 	struct snd_intelhad *intelhaddata;
1143 	int buf_size, retval;
1144 
1145 	intelhaddata = snd_pcm_substream_chip(substream);
1146 	buf_size = params_buffer_bytes(hw_params);
1147 	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1148 	if (retval < 0)
1149 		return retval;
1150 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1151 		__func__, buf_size);
1152 	return retval;
1153 }
1154 
1155 /*
1156  * ALSA PCM hw_free callback
1157  */
1158 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1159 {
1160 	struct snd_intelhad *intelhaddata;
1161 
1162 	intelhaddata = snd_pcm_substream_chip(substream);
1163 	had_do_reset(intelhaddata);
1164 
1165 	return snd_pcm_lib_free_pages(substream);
1166 }
1167 
1168 /*
1169  * ALSA PCM trigger callback
1170  */
1171 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1172 {
1173 	int retval = 0;
1174 	struct snd_intelhad *intelhaddata;
1175 
1176 	intelhaddata = snd_pcm_substream_chip(substream);
1177 
1178 	spin_lock(&intelhaddata->had_spinlock);
1179 	switch (cmd) {
1180 	case SNDRV_PCM_TRIGGER_START:
1181 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1182 	case SNDRV_PCM_TRIGGER_RESUME:
1183 		/* Enable Audio */
1184 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1185 		had_enable_audio(intelhaddata, true);
1186 		break;
1187 
1188 	case SNDRV_PCM_TRIGGER_STOP:
1189 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1190 		/* Disable Audio */
1191 		had_enable_audio(intelhaddata, false);
1192 		intelhaddata->need_reset = true;
1193 		break;
1194 
1195 	default:
1196 		retval = -EINVAL;
1197 	}
1198 	spin_unlock(&intelhaddata->had_spinlock);
1199 	return retval;
1200 }
1201 
1202 /*
1203  * ALSA PCM prepare callback
1204  */
1205 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1206 {
1207 	int retval;
1208 	u32 disp_samp_freq, n_param;
1209 	u32 link_rate = 0;
1210 	struct snd_intelhad *intelhaddata;
1211 	struct snd_pcm_runtime *runtime;
1212 
1213 	intelhaddata = snd_pcm_substream_chip(substream);
1214 	runtime = substream->runtime;
1215 
1216 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1217 		(int)frames_to_bytes(runtime, runtime->period_size));
1218 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1219 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1220 		(int)snd_pcm_lib_buffer_bytes(substream));
1221 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1222 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1223 
1224 	had_do_reset(intelhaddata);
1225 
1226 	/* Get N value in KHz */
1227 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1228 
1229 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1230 	if (retval) {
1231 		dev_err(intelhaddata->dev,
1232 			"programming N value failed %#x\n", retval);
1233 		goto prep_end;
1234 	}
1235 
1236 	if (intelhaddata->dp_output)
1237 		link_rate = intelhaddata->link_rate;
1238 
1239 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1240 		     n_param, intelhaddata);
1241 
1242 	had_prog_dip(substream, intelhaddata);
1243 
1244 	retval = had_init_audio_ctrl(substream, intelhaddata);
1245 
1246 	/* Prog buffer address */
1247 	had_init_ringbuf(substream, intelhaddata);
1248 
1249 	/*
1250 	 * Program channel mapping in following order:
1251 	 * FL, FR, C, LFE, RL, RR
1252 	 */
1253 
1254 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1255 
1256 prep_end:
1257 	return retval;
1258 }
1259 
1260 /*
1261  * ALSA PCM pointer callback
1262  */
1263 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1264 {
1265 	struct snd_intelhad *intelhaddata;
1266 	int len;
1267 
1268 	intelhaddata = snd_pcm_substream_chip(substream);
1269 
1270 	if (!intelhaddata->connected)
1271 		return SNDRV_PCM_POS_XRUN;
1272 
1273 	len = had_process_ringbuf(substream, intelhaddata);
1274 	if (len < 0)
1275 		return SNDRV_PCM_POS_XRUN;
1276 	len = bytes_to_frames(substream->runtime, len);
1277 	/* wrapping may happen when periods=1 */
1278 	len %= substream->runtime->buffer_size;
1279 	return len;
1280 }
1281 
1282 /*
1283  * ALSA PCM mmap callback
1284  */
1285 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1286 			struct vm_area_struct *vma)
1287 {
1288 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1289 	return remap_pfn_range(vma, vma->vm_start,
1290 			substream->dma_buffer.addr >> PAGE_SHIFT,
1291 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1292 }
1293 
1294 /*
1295  * ALSA PCM ops
1296  */
1297 static const struct snd_pcm_ops had_pcm_ops = {
1298 	.open =		had_pcm_open,
1299 	.close =	had_pcm_close,
1300 	.ioctl =	snd_pcm_lib_ioctl,
1301 	.hw_params =	had_pcm_hw_params,
1302 	.hw_free =	had_pcm_hw_free,
1303 	.prepare =	had_pcm_prepare,
1304 	.trigger =	had_pcm_trigger,
1305 	.pointer =	had_pcm_pointer,
1306 	.mmap =		had_pcm_mmap,
1307 };
1308 
1309 /* process mode change of the running stream; called in mutex */
1310 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1311 {
1312 	struct snd_pcm_substream *substream;
1313 	int retval = 0;
1314 	u32 disp_samp_freq, n_param;
1315 	u32 link_rate = 0;
1316 
1317 	substream = had_substream_get(intelhaddata);
1318 	if (!substream)
1319 		return 0;
1320 
1321 	/* Disable Audio */
1322 	had_enable_audio(intelhaddata, false);
1323 
1324 	/* Update CTS value */
1325 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1326 
1327 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1328 	if (retval) {
1329 		dev_err(intelhaddata->dev,
1330 			"programming N value failed %#x\n", retval);
1331 		goto out;
1332 	}
1333 
1334 	if (intelhaddata->dp_output)
1335 		link_rate = intelhaddata->link_rate;
1336 
1337 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1338 		     n_param, intelhaddata);
1339 
1340 	/* Enable Audio */
1341 	had_enable_audio(intelhaddata, true);
1342 
1343 out:
1344 	had_substream_put(intelhaddata);
1345 	return retval;
1346 }
1347 
1348 /* process hot plug, called from wq with mutex locked */
1349 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1350 {
1351 	struct snd_pcm_substream *substream;
1352 
1353 	spin_lock_irq(&intelhaddata->had_spinlock);
1354 	if (intelhaddata->connected) {
1355 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1356 		spin_unlock_irq(&intelhaddata->had_spinlock);
1357 		return;
1358 	}
1359 
1360 	/* Disable Audio */
1361 	had_enable_audio(intelhaddata, false);
1362 
1363 	intelhaddata->connected = true;
1364 	dev_dbg(intelhaddata->dev,
1365 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1366 			__func__, __LINE__);
1367 	spin_unlock_irq(&intelhaddata->had_spinlock);
1368 
1369 	had_build_channel_allocation_map(intelhaddata);
1370 
1371 	/* Report to above ALSA layer */
1372 	substream = had_substream_get(intelhaddata);
1373 	if (substream) {
1374 		snd_pcm_stop_xrun(substream);
1375 		had_substream_put(intelhaddata);
1376 	}
1377 
1378 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1379 }
1380 
1381 /* process hot unplug, called from wq with mutex locked */
1382 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1383 {
1384 	struct snd_pcm_substream *substream;
1385 
1386 	spin_lock_irq(&intelhaddata->had_spinlock);
1387 	if (!intelhaddata->connected) {
1388 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1389 		spin_unlock_irq(&intelhaddata->had_spinlock);
1390 		return;
1391 
1392 	}
1393 
1394 	/* Disable Audio */
1395 	had_enable_audio(intelhaddata, false);
1396 
1397 	intelhaddata->connected = false;
1398 	dev_dbg(intelhaddata->dev,
1399 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1400 			__func__, __LINE__);
1401 	spin_unlock_irq(&intelhaddata->had_spinlock);
1402 
1403 	kfree(intelhaddata->chmap->chmap);
1404 	intelhaddata->chmap->chmap = NULL;
1405 
1406 	/* Report to above ALSA layer */
1407 	substream = had_substream_get(intelhaddata);
1408 	if (substream) {
1409 		snd_pcm_stop_xrun(substream);
1410 		had_substream_put(intelhaddata);
1411 	}
1412 
1413 	snd_jack_report(intelhaddata->jack, 0);
1414 }
1415 
1416 /*
1417  * ALSA iec958 and ELD controls
1418  */
1419 
1420 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1421 				struct snd_ctl_elem_info *uinfo)
1422 {
1423 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1424 	uinfo->count = 1;
1425 	return 0;
1426 }
1427 
1428 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1429 				struct snd_ctl_elem_value *ucontrol)
1430 {
1431 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1432 
1433 	mutex_lock(&intelhaddata->mutex);
1434 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1435 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1436 	ucontrol->value.iec958.status[2] =
1437 					(intelhaddata->aes_bits >> 16) & 0xff;
1438 	ucontrol->value.iec958.status[3] =
1439 					(intelhaddata->aes_bits >> 24) & 0xff;
1440 	mutex_unlock(&intelhaddata->mutex);
1441 	return 0;
1442 }
1443 
1444 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1445 				struct snd_ctl_elem_value *ucontrol)
1446 {
1447 	ucontrol->value.iec958.status[0] = 0xff;
1448 	ucontrol->value.iec958.status[1] = 0xff;
1449 	ucontrol->value.iec958.status[2] = 0xff;
1450 	ucontrol->value.iec958.status[3] = 0xff;
1451 	return 0;
1452 }
1453 
1454 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1455 				struct snd_ctl_elem_value *ucontrol)
1456 {
1457 	unsigned int val;
1458 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1459 	int changed = 0;
1460 
1461 	val = (ucontrol->value.iec958.status[0] << 0) |
1462 		(ucontrol->value.iec958.status[1] << 8) |
1463 		(ucontrol->value.iec958.status[2] << 16) |
1464 		(ucontrol->value.iec958.status[3] << 24);
1465 	mutex_lock(&intelhaddata->mutex);
1466 	if (intelhaddata->aes_bits != val) {
1467 		intelhaddata->aes_bits = val;
1468 		changed = 1;
1469 	}
1470 	mutex_unlock(&intelhaddata->mutex);
1471 	return changed;
1472 }
1473 
1474 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1475 			    struct snd_ctl_elem_info *uinfo)
1476 {
1477 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1478 	uinfo->count = HDMI_MAX_ELD_BYTES;
1479 	return 0;
1480 }
1481 
1482 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1483 			   struct snd_ctl_elem_value *ucontrol)
1484 {
1485 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1486 
1487 	mutex_lock(&intelhaddata->mutex);
1488 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1489 	       HDMI_MAX_ELD_BYTES);
1490 	mutex_unlock(&intelhaddata->mutex);
1491 	return 0;
1492 }
1493 
1494 static const struct snd_kcontrol_new had_controls[] = {
1495 	{
1496 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1497 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1498 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1499 		.info = had_iec958_info, /* shared */
1500 		.get = had_iec958_mask_get,
1501 	},
1502 	{
1503 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1504 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1505 		.info = had_iec958_info,
1506 		.get = had_iec958_get,
1507 		.put = had_iec958_put,
1508 	},
1509 	{
1510 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1511 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1512 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1513 		.name = "ELD",
1514 		.info = had_ctl_eld_info,
1515 		.get = had_ctl_eld_get,
1516 	},
1517 };
1518 
1519 /*
1520  * audio interrupt handler
1521  */
1522 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1523 {
1524 	struct snd_intelhad_card *card_ctx = dev_id;
1525 	u32 audio_stat[3] = {};
1526 	int pipe, port;
1527 
1528 	for_each_pipe(card_ctx, pipe) {
1529 		/* use raw register access to ack IRQs even while disconnected */
1530 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1531 							 AUD_HDMI_STATUS) &
1532 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1533 
1534 		if (audio_stat[pipe])
1535 			had_write_register_raw(card_ctx, pipe,
1536 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1537 	}
1538 
1539 	for_each_port(card_ctx, port) {
1540 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1541 		int pipe = ctx->pipe;
1542 
1543 		if (pipe < 0)
1544 			continue;
1545 
1546 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1547 			had_process_buffer_done(ctx);
1548 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1549 			had_process_buffer_underrun(ctx);
1550 	}
1551 
1552 	return IRQ_HANDLED;
1553 }
1554 
1555 /*
1556  * monitor plug/unplug notification from i915; just kick off the work
1557  */
1558 static void notify_audio_lpe(struct platform_device *pdev, int port)
1559 {
1560 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1561 	struct snd_intelhad *ctx;
1562 
1563 	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1564 	if (single_port)
1565 		ctx->port = port;
1566 
1567 	schedule_work(&ctx->hdmi_audio_wq);
1568 }
1569 
1570 /* the work to handle monitor hot plug/unplug */
1571 static void had_audio_wq(struct work_struct *work)
1572 {
1573 	struct snd_intelhad *ctx =
1574 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1575 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1576 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1577 
1578 	pm_runtime_get_sync(ctx->dev);
1579 	mutex_lock(&ctx->mutex);
1580 	if (ppdata->pipe < 0) {
1581 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1582 			__func__, ctx->port);
1583 
1584 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1585 
1586 		ctx->dp_output = false;
1587 		ctx->tmds_clock_speed = 0;
1588 		ctx->link_rate = 0;
1589 
1590 		/* Shut down the stream */
1591 		had_process_hot_unplug(ctx);
1592 
1593 		ctx->pipe = -1;
1594 	} else {
1595 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1596 			__func__, ctx->port, ppdata->ls_clock);
1597 
1598 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1599 
1600 		ctx->dp_output = ppdata->dp_output;
1601 		if (ctx->dp_output) {
1602 			ctx->tmds_clock_speed = 0;
1603 			ctx->link_rate = ppdata->ls_clock;
1604 		} else {
1605 			ctx->tmds_clock_speed = ppdata->ls_clock;
1606 			ctx->link_rate = 0;
1607 		}
1608 
1609 		/*
1610 		 * Shut down the stream before we change
1611 		 * the pipe assignment for this pcm device
1612 		 */
1613 		had_process_hot_plug(ctx);
1614 
1615 		ctx->pipe = ppdata->pipe;
1616 
1617 		/* Restart the stream if necessary */
1618 		had_process_mode_change(ctx);
1619 	}
1620 
1621 	mutex_unlock(&ctx->mutex);
1622 	pm_runtime_mark_last_busy(ctx->dev);
1623 	pm_runtime_put_autosuspend(ctx->dev);
1624 }
1625 
1626 /*
1627  * Jack interface
1628  */
1629 static int had_create_jack(struct snd_intelhad *ctx,
1630 			   struct snd_pcm *pcm)
1631 {
1632 	char hdmi_str[32];
1633 	int err;
1634 
1635 	snprintf(hdmi_str, sizeof(hdmi_str),
1636 		 "HDMI/DP,pcm=%d", pcm->device);
1637 
1638 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1639 			   SND_JACK_AVOUT, &ctx->jack,
1640 			   true, false);
1641 	if (err < 0)
1642 		return err;
1643 	ctx->jack->private_data = ctx;
1644 	return 0;
1645 }
1646 
1647 /*
1648  * PM callbacks
1649  */
1650 
1651 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1652 {
1653 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1654 	int port;
1655 
1656 	for_each_port(card_ctx, port) {
1657 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1658 		struct snd_pcm_substream *substream;
1659 
1660 		substream = had_substream_get(ctx);
1661 		if (substream) {
1662 			snd_pcm_suspend(substream);
1663 			had_substream_put(ctx);
1664 		}
1665 	}
1666 
1667 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1668 
1669 	return 0;
1670 }
1671 
1672 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1673 {
1674 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1675 
1676 	pm_runtime_mark_last_busy(dev);
1677 
1678 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1679 
1680 	return 0;
1681 }
1682 
1683 /* release resources */
1684 static void hdmi_lpe_audio_free(struct snd_card *card)
1685 {
1686 	struct snd_intelhad_card *card_ctx = card->private_data;
1687 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1688 	int port;
1689 
1690 	spin_lock_irq(&pdata->lpe_audio_slock);
1691 	pdata->notify_audio_lpe = NULL;
1692 	spin_unlock_irq(&pdata->lpe_audio_slock);
1693 
1694 	for_each_port(card_ctx, port) {
1695 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1696 
1697 		cancel_work_sync(&ctx->hdmi_audio_wq);
1698 	}
1699 
1700 	if (card_ctx->mmio_start)
1701 		iounmap(card_ctx->mmio_start);
1702 	if (card_ctx->irq >= 0)
1703 		free_irq(card_ctx->irq, card_ctx);
1704 }
1705 
1706 /*
1707  * hdmi_lpe_audio_probe - start bridge with i915
1708  *
1709  * This function is called when the i915 driver creates the
1710  * hdmi-lpe-audio platform device.
1711  */
1712 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1713 {
1714 	struct snd_card *card;
1715 	struct snd_intelhad_card *card_ctx;
1716 	struct snd_intelhad *ctx;
1717 	struct snd_pcm *pcm;
1718 	struct intel_hdmi_lpe_audio_pdata *pdata;
1719 	int irq;
1720 	struct resource *res_mmio;
1721 	int port, ret;
1722 
1723 	pdata = pdev->dev.platform_data;
1724 	if (!pdata) {
1725 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1726 		return -EINVAL;
1727 	}
1728 
1729 	/* get resources */
1730 	irq = platform_get_irq(pdev, 0);
1731 	if (irq < 0) {
1732 		dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1733 		return irq;
1734 	}
1735 
1736 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1737 	if (!res_mmio) {
1738 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1739 		return -ENXIO;
1740 	}
1741 
1742 	/* create a card instance with ALSA framework */
1743 	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1744 			   THIS_MODULE, sizeof(*card_ctx), &card);
1745 	if (ret)
1746 		return ret;
1747 
1748 	card_ctx = card->private_data;
1749 	card_ctx->dev = &pdev->dev;
1750 	card_ctx->card = card;
1751 	strcpy(card->driver, INTEL_HAD);
1752 	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1753 	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1754 
1755 	card_ctx->irq = -1;
1756 
1757 	card->private_free = hdmi_lpe_audio_free;
1758 
1759 	platform_set_drvdata(pdev, card_ctx);
1760 
1761 	card_ctx->num_pipes = pdata->num_pipes;
1762 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1763 
1764 	for_each_port(card_ctx, port) {
1765 		ctx = &card_ctx->pcm_ctx[port];
1766 		ctx->card_ctx = card_ctx;
1767 		ctx->dev = card_ctx->dev;
1768 		ctx->port = single_port ? -1 : port;
1769 		ctx->pipe = -1;
1770 
1771 		spin_lock_init(&ctx->had_spinlock);
1772 		mutex_init(&ctx->mutex);
1773 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1774 	}
1775 
1776 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1777 		__func__, (unsigned int)res_mmio->start,
1778 		(unsigned int)res_mmio->end);
1779 
1780 	card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1781 					       (size_t)(resource_size(res_mmio)));
1782 	if (!card_ctx->mmio_start) {
1783 		dev_err(&pdev->dev, "Could not get ioremap\n");
1784 		ret = -EACCES;
1785 		goto err;
1786 	}
1787 
1788 	/* setup interrupt handler */
1789 	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1790 			  pdev->name, card_ctx);
1791 	if (ret < 0) {
1792 		dev_err(&pdev->dev, "request_irq failed\n");
1793 		goto err;
1794 	}
1795 
1796 	card_ctx->irq = irq;
1797 
1798 	/* only 32bit addressable */
1799 	dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1800 	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1801 
1802 	init_channel_allocations();
1803 
1804 	card_ctx->num_pipes = pdata->num_pipes;
1805 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1806 
1807 	for_each_port(card_ctx, port) {
1808 		int i;
1809 
1810 		ctx = &card_ctx->pcm_ctx[port];
1811 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1812 				  MAX_CAP_STREAMS, &pcm);
1813 		if (ret)
1814 			goto err;
1815 
1816 		/* setup private data which can be retrieved when required */
1817 		pcm->private_data = ctx;
1818 		pcm->info_flags = 0;
1819 		strlcpy(pcm->name, card->shortname, strlen(card->shortname));
1820 		/* setup the ops for playabck */
1821 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1822 
1823 		/* allocate dma pages;
1824 		 * try to allocate 600k buffer as default which is large enough
1825 		 */
1826 		snd_pcm_lib_preallocate_pages_for_all(pcm,
1827 						      SNDRV_DMA_TYPE_DEV_UC, NULL,
1828 						      HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1829 
1830 		/* create controls */
1831 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1832 			struct snd_kcontrol *kctl;
1833 
1834 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1835 			if (!kctl) {
1836 				ret = -ENOMEM;
1837 				goto err;
1838 			}
1839 
1840 			kctl->id.device = pcm->device;
1841 
1842 			ret = snd_ctl_add(card, kctl);
1843 			if (ret < 0)
1844 				goto err;
1845 		}
1846 
1847 		/* Register channel map controls */
1848 		ret = had_register_chmap_ctls(ctx, pcm);
1849 		if (ret < 0)
1850 			goto err;
1851 
1852 		ret = had_create_jack(ctx, pcm);
1853 		if (ret < 0)
1854 			goto err;
1855 	}
1856 
1857 	ret = snd_card_register(card);
1858 	if (ret)
1859 		goto err;
1860 
1861 	spin_lock_irq(&pdata->lpe_audio_slock);
1862 	pdata->notify_audio_lpe = notify_audio_lpe;
1863 	spin_unlock_irq(&pdata->lpe_audio_slock);
1864 
1865 	pm_runtime_use_autosuspend(&pdev->dev);
1866 	pm_runtime_mark_last_busy(&pdev->dev);
1867 
1868 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1869 	for_each_port(card_ctx, port) {
1870 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1871 
1872 		schedule_work(&ctx->hdmi_audio_wq);
1873 	}
1874 
1875 	return 0;
1876 
1877 err:
1878 	snd_card_free(card);
1879 	return ret;
1880 }
1881 
1882 /*
1883  * hdmi_lpe_audio_remove - stop bridge with i915
1884  *
1885  * This function is called when the platform device is destroyed.
1886  */
1887 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1888 {
1889 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1890 
1891 	snd_card_free(card_ctx->card);
1892 	return 0;
1893 }
1894 
1895 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1896 	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1897 };
1898 
1899 static struct platform_driver hdmi_lpe_audio_driver = {
1900 	.driver		= {
1901 		.name  = "hdmi-lpe-audio",
1902 		.pm = &hdmi_lpe_audio_pm,
1903 	},
1904 	.probe          = hdmi_lpe_audio_probe,
1905 	.remove		= hdmi_lpe_audio_remove,
1906 };
1907 
1908 module_platform_driver(hdmi_lpe_audio_driver);
1909 MODULE_ALIAS("platform:hdmi_lpe_audio");
1910 
1911 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1912 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1913 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1914 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1915 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1916 MODULE_LICENSE("GPL v2");
1917 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");
1918