1 /* 2 * intel_hdmi_audio.c - Intel HDMI audio driver 3 * 4 * Copyright (C) 2016 Intel Corp 5 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com> 6 * Ramesh Babu K V <ramesh.babu@intel.com> 7 * Vaibhav Agarwal <vaibhav.agarwal@intel.com> 8 * Jerome Anand <jerome.anand@intel.com> 9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; version 2 of the License. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 21 * ALSA driver for Intel HDMI audio 22 */ 23 24 #include <linux/types.h> 25 #include <linux/platform_device.h> 26 #include <linux/io.h> 27 #include <linux/slab.h> 28 #include <linux/module.h> 29 #include <linux/interrupt.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/delay.h> 33 #include <sound/core.h> 34 #include <sound/asoundef.h> 35 #include <sound/pcm.h> 36 #include <sound/pcm_params.h> 37 #include <sound/initval.h> 38 #include <sound/control.h> 39 #include <sound/jack.h> 40 #include <drm/drm_edid.h> 41 #include <drm/intel_lpe_audio.h> 42 #include "intel_hdmi_audio.h" 43 44 #define for_each_pipe(card_ctx, pipe) \ 45 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++) 46 #define for_each_port(card_ctx, port) \ 47 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++) 48 49 /*standard module options for ALSA. This module supports only one card*/ 50 static int hdmi_card_index = SNDRV_DEFAULT_IDX1; 51 static char *hdmi_card_id = SNDRV_DEFAULT_STR1; 52 static bool single_port; 53 54 module_param_named(index, hdmi_card_index, int, 0444); 55 MODULE_PARM_DESC(index, 56 "Index value for INTEL Intel HDMI Audio controller."); 57 module_param_named(id, hdmi_card_id, charp, 0444); 58 MODULE_PARM_DESC(id, 59 "ID string for INTEL Intel HDMI Audio controller."); 60 module_param(single_port, bool, 0444); 61 MODULE_PARM_DESC(single_port, 62 "Single-port mode (for compatibility)"); 63 64 /* 65 * ELD SA bits in the CEA Speaker Allocation data block 66 */ 67 static const int eld_speaker_allocation_bits[] = { 68 [0] = FL | FR, 69 [1] = LFE, 70 [2] = FC, 71 [3] = RL | RR, 72 [4] = RC, 73 [5] = FLC | FRC, 74 [6] = RLC | RRC, 75 /* the following are not defined in ELD yet */ 76 [7] = 0, 77 }; 78 79 /* 80 * This is an ordered list! 81 * 82 * The preceding ones have better chances to be selected by 83 * hdmi_channel_allocation(). 84 */ 85 static struct cea_channel_speaker_allocation channel_allocations[] = { 86 /* channel: 7 6 5 4 3 2 1 0 */ 87 { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } }, 88 /* 2.1 */ 89 { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } }, 90 /* Dolby Surround */ 91 { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } }, 92 /* surround40 */ 93 { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } }, 94 /* surround41 */ 95 { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } }, 96 /* surround50 */ 97 { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } }, 98 /* surround51 */ 99 { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } }, 100 /* 6.1 */ 101 { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } }, 102 /* surround71 */ 103 { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } }, 104 105 { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } }, 106 { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } }, 107 { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } }, 108 { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } }, 109 { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } }, 110 { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } }, 111 { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } }, 112 { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } }, 113 { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } }, 114 { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } }, 115 { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } }, 116 { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } }, 117 { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } }, 118 { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } }, 119 { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } }, 120 { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } }, 121 { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } }, 122 { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } }, 123 { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } }, 124 { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } }, 125 { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } }, 126 { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } }, 127 { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } }, 128 }; 129 130 static const struct channel_map_table map_tables[] = { 131 { SNDRV_CHMAP_FL, 0x00, FL }, 132 { SNDRV_CHMAP_FR, 0x01, FR }, 133 { SNDRV_CHMAP_RL, 0x04, RL }, 134 { SNDRV_CHMAP_RR, 0x05, RR }, 135 { SNDRV_CHMAP_LFE, 0x02, LFE }, 136 { SNDRV_CHMAP_FC, 0x03, FC }, 137 { SNDRV_CHMAP_RLC, 0x06, RLC }, 138 { SNDRV_CHMAP_RRC, 0x07, RRC }, 139 {} /* terminator */ 140 }; 141 142 /* hardware capability structure */ 143 static const struct snd_pcm_hardware had_pcm_hardware = { 144 .info = (SNDRV_PCM_INFO_INTERLEAVED | 145 SNDRV_PCM_INFO_MMAP | 146 SNDRV_PCM_INFO_MMAP_VALID | 147 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), 148 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 149 SNDRV_PCM_FMTBIT_S24_LE | 150 SNDRV_PCM_FMTBIT_S32_LE), 151 .rates = SNDRV_PCM_RATE_32000 | 152 SNDRV_PCM_RATE_44100 | 153 SNDRV_PCM_RATE_48000 | 154 SNDRV_PCM_RATE_88200 | 155 SNDRV_PCM_RATE_96000 | 156 SNDRV_PCM_RATE_176400 | 157 SNDRV_PCM_RATE_192000, 158 .rate_min = HAD_MIN_RATE, 159 .rate_max = HAD_MAX_RATE, 160 .channels_min = HAD_MIN_CHANNEL, 161 .channels_max = HAD_MAX_CHANNEL, 162 .buffer_bytes_max = HAD_MAX_BUFFER, 163 .period_bytes_min = HAD_MIN_PERIOD_BYTES, 164 .period_bytes_max = HAD_MAX_PERIOD_BYTES, 165 .periods_min = HAD_MIN_PERIODS, 166 .periods_max = HAD_MAX_PERIODS, 167 .fifo_size = HAD_FIFO_SIZE, 168 }; 169 170 /* Get the active PCM substream; 171 * Call had_substream_put() for unreferecing. 172 * Don't call this inside had_spinlock, as it takes by itself 173 */ 174 static struct snd_pcm_substream * 175 had_substream_get(struct snd_intelhad *intelhaddata) 176 { 177 struct snd_pcm_substream *substream; 178 unsigned long flags; 179 180 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 181 substream = intelhaddata->stream_info.substream; 182 if (substream) 183 intelhaddata->stream_info.substream_refcount++; 184 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 185 return substream; 186 } 187 188 /* Unref the active PCM substream; 189 * Don't call this inside had_spinlock, as it takes by itself 190 */ 191 static void had_substream_put(struct snd_intelhad *intelhaddata) 192 { 193 unsigned long flags; 194 195 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 196 intelhaddata->stream_info.substream_refcount--; 197 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 198 } 199 200 static u32 had_config_offset(int pipe) 201 { 202 switch (pipe) { 203 default: 204 case 0: 205 return AUDIO_HDMI_CONFIG_A; 206 case 1: 207 return AUDIO_HDMI_CONFIG_B; 208 case 2: 209 return AUDIO_HDMI_CONFIG_C; 210 } 211 } 212 213 /* Register access functions */ 214 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx, 215 int pipe, u32 reg) 216 { 217 return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg); 218 } 219 220 static void had_write_register_raw(struct snd_intelhad_card *card_ctx, 221 int pipe, u32 reg, u32 val) 222 { 223 iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg); 224 } 225 226 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val) 227 { 228 if (!ctx->connected) 229 *val = 0; 230 else 231 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg); 232 } 233 234 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val) 235 { 236 if (ctx->connected) 237 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val); 238 } 239 240 /* 241 * enable / disable audio configuration 242 * 243 * The normal read/modify should not directly be used on VLV2 for 244 * updating AUD_CONFIG register. 245 * This is because: 246 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2 247 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always 248 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the 249 * register. This field should be 1xy binary for configuration with 6 or 250 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio) 251 * causes the "channels" field to be updated as 0xy binary resulting in 252 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with 253 * appropriate value when doing read-modify of AUD_CONFIG register. 254 */ 255 static void had_enable_audio(struct snd_intelhad *intelhaddata, 256 bool enable) 257 { 258 /* update the cached value */ 259 intelhaddata->aud_config.regx.aud_en = enable; 260 had_write_register(intelhaddata, AUD_CONFIG, 261 intelhaddata->aud_config.regval); 262 } 263 264 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */ 265 static void had_ack_irqs(struct snd_intelhad *ctx) 266 { 267 u32 status_reg; 268 269 if (!ctx->connected) 270 return; 271 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); 272 status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN; 273 had_write_register(ctx, AUD_HDMI_STATUS, status_reg); 274 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); 275 } 276 277 /* Reset buffer pointers */ 278 static void had_reset_audio(struct snd_intelhad *intelhaddata) 279 { 280 had_write_register(intelhaddata, AUD_HDMI_STATUS, 281 AUD_HDMI_STATUSG_MASK_FUNCRST); 282 had_write_register(intelhaddata, AUD_HDMI_STATUS, 0); 283 } 284 285 /* 286 * initialize audio channel status registers 287 * This function is called in the prepare callback 288 */ 289 static int had_prog_status_reg(struct snd_pcm_substream *substream, 290 struct snd_intelhad *intelhaddata) 291 { 292 union aud_ch_status_0 ch_stat0 = {.regval = 0}; 293 union aud_ch_status_1 ch_stat1 = {.regval = 0}; 294 295 ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits & 296 IEC958_AES0_NONAUDIO) >> 1; 297 ch_stat0.regx.clk_acc = (intelhaddata->aes_bits & 298 IEC958_AES3_CON_CLOCK) >> 4; 299 300 switch (substream->runtime->rate) { 301 case AUD_SAMPLE_RATE_32: 302 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ; 303 break; 304 305 case AUD_SAMPLE_RATE_44_1: 306 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ; 307 break; 308 case AUD_SAMPLE_RATE_48: 309 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ; 310 break; 311 case AUD_SAMPLE_RATE_88_2: 312 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ; 313 break; 314 case AUD_SAMPLE_RATE_96: 315 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ; 316 break; 317 case AUD_SAMPLE_RATE_176_4: 318 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ; 319 break; 320 case AUD_SAMPLE_RATE_192: 321 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ; 322 break; 323 324 default: 325 /* control should never come here */ 326 return -EINVAL; 327 } 328 329 had_write_register(intelhaddata, 330 AUD_CH_STATUS_0, ch_stat0.regval); 331 332 switch (substream->runtime->format) { 333 case SNDRV_PCM_FORMAT_S16_LE: 334 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20; 335 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS; 336 break; 337 case SNDRV_PCM_FORMAT_S24_LE: 338 case SNDRV_PCM_FORMAT_S32_LE: 339 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24; 340 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS; 341 break; 342 default: 343 return -EINVAL; 344 } 345 346 had_write_register(intelhaddata, 347 AUD_CH_STATUS_1, ch_stat1.regval); 348 return 0; 349 } 350 351 /* 352 * function to initialize audio 353 * registers and buffer confgiuration registers 354 * This function is called in the prepare callback 355 */ 356 static int had_init_audio_ctrl(struct snd_pcm_substream *substream, 357 struct snd_intelhad *intelhaddata) 358 { 359 union aud_cfg cfg_val = {.regval = 0}; 360 union aud_buf_config buf_cfg = {.regval = 0}; 361 u8 channels; 362 363 had_prog_status_reg(substream, intelhaddata); 364 365 buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD; 366 buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD; 367 buf_cfg.regx.aud_delay = 0; 368 had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval); 369 370 channels = substream->runtime->channels; 371 cfg_val.regx.num_ch = channels - 2; 372 if (channels <= 2) 373 cfg_val.regx.layout = LAYOUT0; 374 else 375 cfg_val.regx.layout = LAYOUT1; 376 377 if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE) 378 cfg_val.regx.packet_mode = 1; 379 380 if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE) 381 cfg_val.regx.left_align = 1; 382 383 cfg_val.regx.val_bit = 1; 384 385 /* fix up the DP bits */ 386 if (intelhaddata->dp_output) { 387 cfg_val.regx.dp_modei = 1; 388 cfg_val.regx.set = 1; 389 } 390 391 had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval); 392 intelhaddata->aud_config = cfg_val; 393 return 0; 394 } 395 396 /* 397 * Compute derived values in channel_allocations[]. 398 */ 399 static void init_channel_allocations(void) 400 { 401 int i, j; 402 struct cea_channel_speaker_allocation *p; 403 404 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 405 p = channel_allocations + i; 406 p->channels = 0; 407 p->spk_mask = 0; 408 for (j = 0; j < ARRAY_SIZE(p->speakers); j++) 409 if (p->speakers[j]) { 410 p->channels++; 411 p->spk_mask |= p->speakers[j]; 412 } 413 } 414 } 415 416 /* 417 * The transformation takes two steps: 418 * 419 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask 420 * spk_mask => (channel_allocations[]) => ai->CA 421 * 422 * TODO: it could select the wrong CA from multiple candidates. 423 */ 424 static int had_channel_allocation(struct snd_intelhad *intelhaddata, 425 int channels) 426 { 427 int i; 428 int ca = 0; 429 int spk_mask = 0; 430 431 /* 432 * CA defaults to 0 for basic stereo audio 433 */ 434 if (channels <= 2) 435 return 0; 436 437 /* 438 * expand ELD's speaker allocation mask 439 * 440 * ELD tells the speaker mask in a compact(paired) form, 441 * expand ELD's notions to match the ones used by Audio InfoFrame. 442 */ 443 444 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { 445 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) 446 spk_mask |= eld_speaker_allocation_bits[i]; 447 } 448 449 /* search for the first working match in the CA table */ 450 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 451 if (channels == channel_allocations[i].channels && 452 (spk_mask & channel_allocations[i].spk_mask) == 453 channel_allocations[i].spk_mask) { 454 ca = channel_allocations[i].ca_index; 455 break; 456 } 457 } 458 459 dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels); 460 461 return ca; 462 } 463 464 /* from speaker bit mask to ALSA API channel position */ 465 static int spk_to_chmap(int spk) 466 { 467 const struct channel_map_table *t = map_tables; 468 469 for (; t->map; t++) { 470 if (t->spk_mask == spk) 471 return t->map; 472 } 473 return 0; 474 } 475 476 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata) 477 { 478 int i, c; 479 int spk_mask = 0; 480 struct snd_pcm_chmap_elem *chmap; 481 u8 eld_high, eld_high_mask = 0xF0; 482 u8 high_msb; 483 484 kfree(intelhaddata->chmap->chmap); 485 intelhaddata->chmap->chmap = NULL; 486 487 chmap = kzalloc(sizeof(*chmap), GFP_KERNEL); 488 if (!chmap) 489 return; 490 491 dev_dbg(intelhaddata->dev, "eld speaker = %x\n", 492 intelhaddata->eld[DRM_ELD_SPEAKER]); 493 494 /* WA: Fix the max channel supported to 8 */ 495 496 /* 497 * Sink may support more than 8 channels, if eld_high has more than 498 * one bit set. SOC supports max 8 channels. 499 * Refer eld_speaker_allocation_bits, for sink speaker allocation 500 */ 501 502 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */ 503 eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask; 504 if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) { 505 /* eld_high & (eld_high-1): if more than 1 bit set */ 506 /* 0x1F: 7 channels */ 507 for (i = 1; i < 4; i++) { 508 high_msb = eld_high & (0x80 >> i); 509 if (high_msb) { 510 intelhaddata->eld[DRM_ELD_SPEAKER] &= 511 high_msb | 0xF; 512 break; 513 } 514 } 515 } 516 517 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { 518 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) 519 spk_mask |= eld_speaker_allocation_bits[i]; 520 } 521 522 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { 523 if (spk_mask == channel_allocations[i].spk_mask) { 524 for (c = 0; c < channel_allocations[i].channels; c++) { 525 chmap->map[c] = spk_to_chmap( 526 channel_allocations[i].speakers[ 527 (MAX_SPEAKERS - 1) - c]); 528 } 529 chmap->channels = channel_allocations[i].channels; 530 intelhaddata->chmap->chmap = chmap; 531 break; 532 } 533 } 534 if (i >= ARRAY_SIZE(channel_allocations)) 535 kfree(chmap); 536 } 537 538 /* 539 * ALSA API channel-map control callbacks 540 */ 541 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol, 542 struct snd_ctl_elem_info *uinfo) 543 { 544 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 545 uinfo->count = HAD_MAX_CHANNEL; 546 uinfo->value.integer.min = 0; 547 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 548 return 0; 549 } 550 551 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol, 552 struct snd_ctl_elem_value *ucontrol) 553 { 554 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 555 struct snd_intelhad *intelhaddata = info->private_data; 556 int i; 557 const struct snd_pcm_chmap_elem *chmap; 558 559 memset(ucontrol->value.integer.value, 0, 560 sizeof(long) * HAD_MAX_CHANNEL); 561 mutex_lock(&intelhaddata->mutex); 562 if (!intelhaddata->chmap->chmap) { 563 mutex_unlock(&intelhaddata->mutex); 564 return 0; 565 } 566 567 chmap = intelhaddata->chmap->chmap; 568 for (i = 0; i < chmap->channels; i++) 569 ucontrol->value.integer.value[i] = chmap->map[i]; 570 mutex_unlock(&intelhaddata->mutex); 571 572 return 0; 573 } 574 575 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata, 576 struct snd_pcm *pcm) 577 { 578 int err; 579 580 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 581 NULL, 0, (unsigned long)intelhaddata, 582 &intelhaddata->chmap); 583 if (err < 0) 584 return err; 585 586 intelhaddata->chmap->private_data = intelhaddata; 587 intelhaddata->chmap->kctl->info = had_chmap_ctl_info; 588 intelhaddata->chmap->kctl->get = had_chmap_ctl_get; 589 intelhaddata->chmap->chmap = NULL; 590 return 0; 591 } 592 593 /* 594 * Initialize Data Island Packets registers 595 * This function is called in the prepare callback 596 */ 597 static void had_prog_dip(struct snd_pcm_substream *substream, 598 struct snd_intelhad *intelhaddata) 599 { 600 int i; 601 union aud_ctrl_st ctrl_state = {.regval = 0}; 602 union aud_info_frame2 frame2 = {.regval = 0}; 603 union aud_info_frame3 frame3 = {.regval = 0}; 604 u8 checksum = 0; 605 u32 info_frame; 606 int channels; 607 int ca; 608 609 channels = substream->runtime->channels; 610 611 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); 612 613 ca = had_channel_allocation(intelhaddata, channels); 614 if (intelhaddata->dp_output) { 615 info_frame = DP_INFO_FRAME_WORD1; 616 frame2.regval = (substream->runtime->channels - 1) | (ca << 24); 617 } else { 618 info_frame = HDMI_INFO_FRAME_WORD1; 619 frame2.regx.chnl_cnt = substream->runtime->channels - 1; 620 frame3.regx.chnl_alloc = ca; 621 622 /* Calculte the byte wide checksum for all valid DIP words */ 623 for (i = 0; i < BYTES_PER_WORD; i++) 624 checksum += (info_frame >> (i * 8)) & 0xff; 625 for (i = 0; i < BYTES_PER_WORD; i++) 626 checksum += (frame2.regval >> (i * 8)) & 0xff; 627 for (i = 0; i < BYTES_PER_WORD; i++) 628 checksum += (frame3.regval >> (i * 8)) & 0xff; 629 630 frame2.regx.chksum = -(checksum); 631 } 632 633 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame); 634 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval); 635 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval); 636 637 /* program remaining DIP words with zero */ 638 for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++) 639 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0); 640 641 ctrl_state.regx.dip_freq = 1; 642 ctrl_state.regx.dip_en_sta = 1; 643 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); 644 } 645 646 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate) 647 { 648 u32 maud_val; 649 650 /* Select maud according to DP 1.2 spec */ 651 if (link_rate == DP_2_7_GHZ) { 652 switch (aud_samp_freq) { 653 case AUD_SAMPLE_RATE_32: 654 maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL; 655 break; 656 657 case AUD_SAMPLE_RATE_44_1: 658 maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL; 659 break; 660 661 case AUD_SAMPLE_RATE_48: 662 maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL; 663 break; 664 665 case AUD_SAMPLE_RATE_88_2: 666 maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL; 667 break; 668 669 case AUD_SAMPLE_RATE_96: 670 maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL; 671 break; 672 673 case AUD_SAMPLE_RATE_176_4: 674 maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL; 675 break; 676 677 case HAD_MAX_RATE: 678 maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL; 679 break; 680 681 default: 682 maud_val = -EINVAL; 683 break; 684 } 685 } else if (link_rate == DP_1_62_GHZ) { 686 switch (aud_samp_freq) { 687 case AUD_SAMPLE_RATE_32: 688 maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL; 689 break; 690 691 case AUD_SAMPLE_RATE_44_1: 692 maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL; 693 break; 694 695 case AUD_SAMPLE_RATE_48: 696 maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL; 697 break; 698 699 case AUD_SAMPLE_RATE_88_2: 700 maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL; 701 break; 702 703 case AUD_SAMPLE_RATE_96: 704 maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL; 705 break; 706 707 case AUD_SAMPLE_RATE_176_4: 708 maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL; 709 break; 710 711 case HAD_MAX_RATE: 712 maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL; 713 break; 714 715 default: 716 maud_val = -EINVAL; 717 break; 718 } 719 } else 720 maud_val = -EINVAL; 721 722 return maud_val; 723 } 724 725 /* 726 * Program HDMI audio CTS value 727 * 728 * @aud_samp_freq: sampling frequency of audio data 729 * @tmds: sampling frequency of the display data 730 * @link_rate: DP link rate 731 * @n_param: N value, depends on aud_samp_freq 732 * @intelhaddata: substream private data 733 * 734 * Program CTS register based on the audio and display sampling frequency 735 */ 736 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate, 737 u32 n_param, struct snd_intelhad *intelhaddata) 738 { 739 u32 cts_val; 740 u64 dividend, divisor; 741 742 if (intelhaddata->dp_output) { 743 /* Substitute cts_val with Maud according to DP 1.2 spec*/ 744 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate); 745 } else { 746 /* Calculate CTS according to HDMI 1.3a spec*/ 747 dividend = (u64)tmds * n_param*1000; 748 divisor = 128 * aud_samp_freq; 749 cts_val = div64_u64(dividend, divisor); 750 } 751 dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n", 752 tmds, n_param, cts_val); 753 had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val)); 754 } 755 756 static int had_calculate_n_value(u32 aud_samp_freq) 757 { 758 int n_val; 759 760 /* Select N according to HDMI 1.3a spec*/ 761 switch (aud_samp_freq) { 762 case AUD_SAMPLE_RATE_32: 763 n_val = 4096; 764 break; 765 766 case AUD_SAMPLE_RATE_44_1: 767 n_val = 6272; 768 break; 769 770 case AUD_SAMPLE_RATE_48: 771 n_val = 6144; 772 break; 773 774 case AUD_SAMPLE_RATE_88_2: 775 n_val = 12544; 776 break; 777 778 case AUD_SAMPLE_RATE_96: 779 n_val = 12288; 780 break; 781 782 case AUD_SAMPLE_RATE_176_4: 783 n_val = 25088; 784 break; 785 786 case HAD_MAX_RATE: 787 n_val = 24576; 788 break; 789 790 default: 791 n_val = -EINVAL; 792 break; 793 } 794 return n_val; 795 } 796 797 /* 798 * Program HDMI audio N value 799 * 800 * @aud_samp_freq: sampling frequency of audio data 801 * @n_param: N value, depends on aud_samp_freq 802 * @intelhaddata: substream private data 803 * 804 * This function is called in the prepare callback. 805 * It programs based on the audio and display sampling frequency 806 */ 807 static int had_prog_n(u32 aud_samp_freq, u32 *n_param, 808 struct snd_intelhad *intelhaddata) 809 { 810 int n_val; 811 812 if (intelhaddata->dp_output) { 813 /* 814 * According to DP specs, Maud and Naud values hold 815 * a relationship, which is stated as: 816 * Maud/Naud = 512 * fs / f_LS_Clk 817 * where, fs is the sampling frequency of the audio stream 818 * and Naud is 32768 for Async clock. 819 */ 820 821 n_val = DP_NAUD_VAL; 822 } else 823 n_val = had_calculate_n_value(aud_samp_freq); 824 825 if (n_val < 0) 826 return n_val; 827 828 had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val)); 829 *n_param = n_val; 830 return 0; 831 } 832 833 /* 834 * PCM ring buffer handling 835 * 836 * The hardware provides a ring buffer with the fixed 4 buffer descriptors 837 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping 838 * moves at each period elapsed. The below illustrates how it works: 839 * 840 * At time=0 841 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 842 * BD | 0 | 1 | 2 | 3 | 843 * 844 * At time=1 (period elapsed) 845 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 846 * BD | 1 | 2 | 3 | 0 | 847 * 848 * At time=2 (second period elapsed) 849 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 850 * BD | 2 | 3 | 0 | 1 | 851 * 852 * The bd_head field points to the index of the BD to be read. It's also the 853 * position to be filled at next. The pcm_head and the pcm_filled fields 854 * point to the indices of the current position and of the next position to 855 * be filled, respectively. For PCM buffer there are both _head and _filled 856 * because they may be difference when nperiods > 4. For example, in the 857 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5: 858 * 859 * pcm_head (=1) --v v-- pcm_filled (=5) 860 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| 861 * BD | 1 | 2 | 3 | 0 | 862 * bd_head (=1) --^ ^-- next to fill (= bd_head) 863 * 864 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that 865 * the hardware skips those BDs in the loop. 866 * 867 * An exceptional setup is the case with nperiods=1. Since we have to update 868 * BDs after finishing one BD processing, we'd need at least two BDs, where 869 * both BDs point to the same content, the same address, the same size of the 870 * whole PCM buffer. 871 */ 872 873 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH) 874 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH) 875 876 /* Set up a buffer descriptor at the "filled" position */ 877 static void had_prog_bd(struct snd_pcm_substream *substream, 878 struct snd_intelhad *intelhaddata) 879 { 880 int idx = intelhaddata->bd_head; 881 int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes; 882 u32 addr = substream->runtime->dma_addr + ofs; 883 884 addr |= AUD_BUF_VALID; 885 if (!substream->runtime->no_period_wakeup) 886 addr |= AUD_BUF_INTR_EN; 887 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr); 888 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 889 intelhaddata->period_bytes); 890 891 /* advance the indices to the next */ 892 intelhaddata->bd_head++; 893 intelhaddata->bd_head %= intelhaddata->num_bds; 894 intelhaddata->pcmbuf_filled++; 895 intelhaddata->pcmbuf_filled %= substream->runtime->periods; 896 } 897 898 /* invalidate a buffer descriptor with the given index */ 899 static void had_invalidate_bd(struct snd_intelhad *intelhaddata, 900 int idx) 901 { 902 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0); 903 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0); 904 } 905 906 /* Initial programming of ring buffer */ 907 static void had_init_ringbuf(struct snd_pcm_substream *substream, 908 struct snd_intelhad *intelhaddata) 909 { 910 struct snd_pcm_runtime *runtime = substream->runtime; 911 int i, num_periods; 912 913 num_periods = runtime->periods; 914 intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS); 915 /* set the minimum 2 BDs for num_periods=1 */ 916 intelhaddata->num_bds = max(intelhaddata->num_bds, 2U); 917 intelhaddata->period_bytes = 918 frames_to_bytes(runtime, runtime->period_size); 919 WARN_ON(intelhaddata->period_bytes & 0x3f); 920 921 intelhaddata->bd_head = 0; 922 intelhaddata->pcmbuf_head = 0; 923 intelhaddata->pcmbuf_filled = 0; 924 925 for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) { 926 if (i < intelhaddata->num_bds) 927 had_prog_bd(substream, intelhaddata); 928 else /* invalidate the rest */ 929 had_invalidate_bd(intelhaddata, i); 930 } 931 932 intelhaddata->bd_head = 0; /* reset at head again before starting */ 933 } 934 935 /* process a bd, advance to the next */ 936 static void had_advance_ringbuf(struct snd_pcm_substream *substream, 937 struct snd_intelhad *intelhaddata) 938 { 939 int num_periods = substream->runtime->periods; 940 941 /* reprogram the next buffer */ 942 had_prog_bd(substream, intelhaddata); 943 944 /* proceed to next */ 945 intelhaddata->pcmbuf_head++; 946 intelhaddata->pcmbuf_head %= num_periods; 947 } 948 949 /* process the current BD(s); 950 * returns the current PCM buffer byte position, or -EPIPE for underrun. 951 */ 952 static int had_process_ringbuf(struct snd_pcm_substream *substream, 953 struct snd_intelhad *intelhaddata) 954 { 955 int len, processed; 956 unsigned long flags; 957 958 processed = 0; 959 spin_lock_irqsave(&intelhaddata->had_spinlock, flags); 960 for (;;) { 961 /* get the remaining bytes on the buffer */ 962 had_read_register(intelhaddata, 963 AUD_BUF_LEN(intelhaddata->bd_head), 964 &len); 965 if (len < 0 || len > intelhaddata->period_bytes) { 966 dev_dbg(intelhaddata->dev, "Invalid buf length %d\n", 967 len); 968 len = -EPIPE; 969 goto out; 970 } 971 972 if (len > 0) /* OK, this is the current buffer */ 973 break; 974 975 /* len=0 => already empty, check the next buffer */ 976 if (++processed >= intelhaddata->num_bds) { 977 len = -EPIPE; /* all empty? - report underrun */ 978 goto out; 979 } 980 had_advance_ringbuf(substream, intelhaddata); 981 } 982 983 len = intelhaddata->period_bytes - len; 984 len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head; 985 out: 986 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); 987 return len; 988 } 989 990 /* called from irq handler */ 991 static void had_process_buffer_done(struct snd_intelhad *intelhaddata) 992 { 993 struct snd_pcm_substream *substream; 994 995 substream = had_substream_get(intelhaddata); 996 if (!substream) 997 return; /* no stream? - bail out */ 998 999 if (!intelhaddata->connected) { 1000 snd_pcm_stop_xrun(substream); 1001 goto out; /* disconnected? - bail out */ 1002 } 1003 1004 /* process or stop the stream */ 1005 if (had_process_ringbuf(substream, intelhaddata) < 0) 1006 snd_pcm_stop_xrun(substream); 1007 else 1008 snd_pcm_period_elapsed(substream); 1009 1010 out: 1011 had_substream_put(intelhaddata); 1012 } 1013 1014 /* 1015 * The interrupt status 'sticky' bits might not be cleared by 1016 * setting '1' to that bit once... 1017 */ 1018 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata) 1019 { 1020 int i; 1021 u32 val; 1022 1023 for (i = 0; i < 100; i++) { 1024 /* clear bit30, 31 AUD_HDMI_STATUS */ 1025 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val); 1026 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN)) 1027 return; 1028 udelay(100); 1029 cond_resched(); 1030 had_write_register(intelhaddata, AUD_HDMI_STATUS, val); 1031 } 1032 dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n"); 1033 } 1034 1035 /* Perform some reset procedure but only when need_reset is set; 1036 * this is called from prepare or hw_free callbacks once after trigger STOP 1037 * or underrun has been processed in order to settle down the h/w state. 1038 */ 1039 static void had_do_reset(struct snd_intelhad *intelhaddata) 1040 { 1041 if (!intelhaddata->need_reset || !intelhaddata->connected) 1042 return; 1043 1044 /* Reset buffer pointers */ 1045 had_reset_audio(intelhaddata); 1046 wait_clear_underrun_bit(intelhaddata); 1047 intelhaddata->need_reset = false; 1048 } 1049 1050 /* called from irq handler */ 1051 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata) 1052 { 1053 struct snd_pcm_substream *substream; 1054 1055 /* Report UNDERRUN error to above layers */ 1056 substream = had_substream_get(intelhaddata); 1057 if (substream) { 1058 snd_pcm_stop_xrun(substream); 1059 had_substream_put(intelhaddata); 1060 } 1061 intelhaddata->need_reset = true; 1062 } 1063 1064 /* 1065 * ALSA PCM open callback 1066 */ 1067 static int had_pcm_open(struct snd_pcm_substream *substream) 1068 { 1069 struct snd_intelhad *intelhaddata; 1070 struct snd_pcm_runtime *runtime; 1071 int retval; 1072 1073 intelhaddata = snd_pcm_substream_chip(substream); 1074 runtime = substream->runtime; 1075 1076 pm_runtime_get_sync(intelhaddata->dev); 1077 1078 /* set the runtime hw parameter with local snd_pcm_hardware struct */ 1079 runtime->hw = had_pcm_hardware; 1080 1081 retval = snd_pcm_hw_constraint_integer(runtime, 1082 SNDRV_PCM_HW_PARAM_PERIODS); 1083 if (retval < 0) 1084 goto error; 1085 1086 /* Make sure, that the period size is always aligned 1087 * 64byte boundary 1088 */ 1089 retval = snd_pcm_hw_constraint_step(substream->runtime, 0, 1090 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64); 1091 if (retval < 0) 1092 goto error; 1093 1094 retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1095 if (retval < 0) 1096 goto error; 1097 1098 /* expose PCM substream */ 1099 spin_lock_irq(&intelhaddata->had_spinlock); 1100 intelhaddata->stream_info.substream = substream; 1101 intelhaddata->stream_info.substream_refcount++; 1102 spin_unlock_irq(&intelhaddata->had_spinlock); 1103 1104 return retval; 1105 error: 1106 pm_runtime_mark_last_busy(intelhaddata->dev); 1107 pm_runtime_put_autosuspend(intelhaddata->dev); 1108 return retval; 1109 } 1110 1111 /* 1112 * ALSA PCM close callback 1113 */ 1114 static int had_pcm_close(struct snd_pcm_substream *substream) 1115 { 1116 struct snd_intelhad *intelhaddata; 1117 1118 intelhaddata = snd_pcm_substream_chip(substream); 1119 1120 /* unreference and sync with the pending PCM accesses */ 1121 spin_lock_irq(&intelhaddata->had_spinlock); 1122 intelhaddata->stream_info.substream = NULL; 1123 intelhaddata->stream_info.substream_refcount--; 1124 while (intelhaddata->stream_info.substream_refcount > 0) { 1125 spin_unlock_irq(&intelhaddata->had_spinlock); 1126 cpu_relax(); 1127 spin_lock_irq(&intelhaddata->had_spinlock); 1128 } 1129 spin_unlock_irq(&intelhaddata->had_spinlock); 1130 1131 pm_runtime_mark_last_busy(intelhaddata->dev); 1132 pm_runtime_put_autosuspend(intelhaddata->dev); 1133 return 0; 1134 } 1135 1136 /* 1137 * ALSA PCM hw_params callback 1138 */ 1139 static int had_pcm_hw_params(struct snd_pcm_substream *substream, 1140 struct snd_pcm_hw_params *hw_params) 1141 { 1142 struct snd_intelhad *intelhaddata; 1143 int buf_size, retval; 1144 1145 intelhaddata = snd_pcm_substream_chip(substream); 1146 buf_size = params_buffer_bytes(hw_params); 1147 retval = snd_pcm_lib_malloc_pages(substream, buf_size); 1148 if (retval < 0) 1149 return retval; 1150 dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n", 1151 __func__, buf_size); 1152 return retval; 1153 } 1154 1155 /* 1156 * ALSA PCM hw_free callback 1157 */ 1158 static int had_pcm_hw_free(struct snd_pcm_substream *substream) 1159 { 1160 struct snd_intelhad *intelhaddata; 1161 1162 intelhaddata = snd_pcm_substream_chip(substream); 1163 had_do_reset(intelhaddata); 1164 1165 return snd_pcm_lib_free_pages(substream); 1166 } 1167 1168 /* 1169 * ALSA PCM trigger callback 1170 */ 1171 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 1172 { 1173 int retval = 0; 1174 struct snd_intelhad *intelhaddata; 1175 1176 intelhaddata = snd_pcm_substream_chip(substream); 1177 1178 spin_lock(&intelhaddata->had_spinlock); 1179 switch (cmd) { 1180 case SNDRV_PCM_TRIGGER_START: 1181 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1182 case SNDRV_PCM_TRIGGER_RESUME: 1183 /* Enable Audio */ 1184 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */ 1185 had_enable_audio(intelhaddata, true); 1186 break; 1187 1188 case SNDRV_PCM_TRIGGER_STOP: 1189 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1190 /* Disable Audio */ 1191 had_enable_audio(intelhaddata, false); 1192 intelhaddata->need_reset = true; 1193 break; 1194 1195 default: 1196 retval = -EINVAL; 1197 } 1198 spin_unlock(&intelhaddata->had_spinlock); 1199 return retval; 1200 } 1201 1202 /* 1203 * ALSA PCM prepare callback 1204 */ 1205 static int had_pcm_prepare(struct snd_pcm_substream *substream) 1206 { 1207 int retval; 1208 u32 disp_samp_freq, n_param; 1209 u32 link_rate = 0; 1210 struct snd_intelhad *intelhaddata; 1211 struct snd_pcm_runtime *runtime; 1212 1213 intelhaddata = snd_pcm_substream_chip(substream); 1214 runtime = substream->runtime; 1215 1216 dev_dbg(intelhaddata->dev, "period_size=%d\n", 1217 (int)frames_to_bytes(runtime, runtime->period_size)); 1218 dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods); 1219 dev_dbg(intelhaddata->dev, "buffer_size=%d\n", 1220 (int)snd_pcm_lib_buffer_bytes(substream)); 1221 dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate); 1222 dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels); 1223 1224 had_do_reset(intelhaddata); 1225 1226 /* Get N value in KHz */ 1227 disp_samp_freq = intelhaddata->tmds_clock_speed; 1228 1229 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); 1230 if (retval) { 1231 dev_err(intelhaddata->dev, 1232 "programming N value failed %#x\n", retval); 1233 goto prep_end; 1234 } 1235 1236 if (intelhaddata->dp_output) 1237 link_rate = intelhaddata->link_rate; 1238 1239 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, 1240 n_param, intelhaddata); 1241 1242 had_prog_dip(substream, intelhaddata); 1243 1244 retval = had_init_audio_ctrl(substream, intelhaddata); 1245 1246 /* Prog buffer address */ 1247 had_init_ringbuf(substream, intelhaddata); 1248 1249 /* 1250 * Program channel mapping in following order: 1251 * FL, FR, C, LFE, RL, RR 1252 */ 1253 1254 had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER); 1255 1256 prep_end: 1257 return retval; 1258 } 1259 1260 /* 1261 * ALSA PCM pointer callback 1262 */ 1263 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream) 1264 { 1265 struct snd_intelhad *intelhaddata; 1266 int len; 1267 1268 intelhaddata = snd_pcm_substream_chip(substream); 1269 1270 if (!intelhaddata->connected) 1271 return SNDRV_PCM_POS_XRUN; 1272 1273 len = had_process_ringbuf(substream, intelhaddata); 1274 if (len < 0) 1275 return SNDRV_PCM_POS_XRUN; 1276 len = bytes_to_frames(substream->runtime, len); 1277 /* wrapping may happen when periods=1 */ 1278 len %= substream->runtime->buffer_size; 1279 return len; 1280 } 1281 1282 /* 1283 * ALSA PCM mmap callback 1284 */ 1285 static int had_pcm_mmap(struct snd_pcm_substream *substream, 1286 struct vm_area_struct *vma) 1287 { 1288 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1289 return remap_pfn_range(vma, vma->vm_start, 1290 substream->dma_buffer.addr >> PAGE_SHIFT, 1291 vma->vm_end - vma->vm_start, vma->vm_page_prot); 1292 } 1293 1294 /* 1295 * ALSA PCM ops 1296 */ 1297 static const struct snd_pcm_ops had_pcm_ops = { 1298 .open = had_pcm_open, 1299 .close = had_pcm_close, 1300 .ioctl = snd_pcm_lib_ioctl, 1301 .hw_params = had_pcm_hw_params, 1302 .hw_free = had_pcm_hw_free, 1303 .prepare = had_pcm_prepare, 1304 .trigger = had_pcm_trigger, 1305 .pointer = had_pcm_pointer, 1306 .mmap = had_pcm_mmap, 1307 }; 1308 1309 /* process mode change of the running stream; called in mutex */ 1310 static int had_process_mode_change(struct snd_intelhad *intelhaddata) 1311 { 1312 struct snd_pcm_substream *substream; 1313 int retval = 0; 1314 u32 disp_samp_freq, n_param; 1315 u32 link_rate = 0; 1316 1317 substream = had_substream_get(intelhaddata); 1318 if (!substream) 1319 return 0; 1320 1321 /* Disable Audio */ 1322 had_enable_audio(intelhaddata, false); 1323 1324 /* Update CTS value */ 1325 disp_samp_freq = intelhaddata->tmds_clock_speed; 1326 1327 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); 1328 if (retval) { 1329 dev_err(intelhaddata->dev, 1330 "programming N value failed %#x\n", retval); 1331 goto out; 1332 } 1333 1334 if (intelhaddata->dp_output) 1335 link_rate = intelhaddata->link_rate; 1336 1337 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, 1338 n_param, intelhaddata); 1339 1340 /* Enable Audio */ 1341 had_enable_audio(intelhaddata, true); 1342 1343 out: 1344 had_substream_put(intelhaddata); 1345 return retval; 1346 } 1347 1348 /* process hot plug, called from wq with mutex locked */ 1349 static void had_process_hot_plug(struct snd_intelhad *intelhaddata) 1350 { 1351 struct snd_pcm_substream *substream; 1352 1353 spin_lock_irq(&intelhaddata->had_spinlock); 1354 if (intelhaddata->connected) { 1355 dev_dbg(intelhaddata->dev, "Device already connected\n"); 1356 spin_unlock_irq(&intelhaddata->had_spinlock); 1357 return; 1358 } 1359 1360 /* Disable Audio */ 1361 had_enable_audio(intelhaddata, false); 1362 1363 intelhaddata->connected = true; 1364 dev_dbg(intelhaddata->dev, 1365 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n", 1366 __func__, __LINE__); 1367 spin_unlock_irq(&intelhaddata->had_spinlock); 1368 1369 had_build_channel_allocation_map(intelhaddata); 1370 1371 /* Report to above ALSA layer */ 1372 substream = had_substream_get(intelhaddata); 1373 if (substream) { 1374 snd_pcm_stop_xrun(substream); 1375 had_substream_put(intelhaddata); 1376 } 1377 1378 snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT); 1379 } 1380 1381 /* process hot unplug, called from wq with mutex locked */ 1382 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata) 1383 { 1384 struct snd_pcm_substream *substream; 1385 1386 spin_lock_irq(&intelhaddata->had_spinlock); 1387 if (!intelhaddata->connected) { 1388 dev_dbg(intelhaddata->dev, "Device already disconnected\n"); 1389 spin_unlock_irq(&intelhaddata->had_spinlock); 1390 return; 1391 1392 } 1393 1394 /* Disable Audio */ 1395 had_enable_audio(intelhaddata, false); 1396 1397 intelhaddata->connected = false; 1398 dev_dbg(intelhaddata->dev, 1399 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n", 1400 __func__, __LINE__); 1401 spin_unlock_irq(&intelhaddata->had_spinlock); 1402 1403 kfree(intelhaddata->chmap->chmap); 1404 intelhaddata->chmap->chmap = NULL; 1405 1406 /* Report to above ALSA layer */ 1407 substream = had_substream_get(intelhaddata); 1408 if (substream) { 1409 snd_pcm_stop_xrun(substream); 1410 had_substream_put(intelhaddata); 1411 } 1412 1413 snd_jack_report(intelhaddata->jack, 0); 1414 } 1415 1416 /* 1417 * ALSA iec958 and ELD controls 1418 */ 1419 1420 static int had_iec958_info(struct snd_kcontrol *kcontrol, 1421 struct snd_ctl_elem_info *uinfo) 1422 { 1423 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1424 uinfo->count = 1; 1425 return 0; 1426 } 1427 1428 static int had_iec958_get(struct snd_kcontrol *kcontrol, 1429 struct snd_ctl_elem_value *ucontrol) 1430 { 1431 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1432 1433 mutex_lock(&intelhaddata->mutex); 1434 ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff; 1435 ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff; 1436 ucontrol->value.iec958.status[2] = 1437 (intelhaddata->aes_bits >> 16) & 0xff; 1438 ucontrol->value.iec958.status[3] = 1439 (intelhaddata->aes_bits >> 24) & 0xff; 1440 mutex_unlock(&intelhaddata->mutex); 1441 return 0; 1442 } 1443 1444 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol, 1445 struct snd_ctl_elem_value *ucontrol) 1446 { 1447 ucontrol->value.iec958.status[0] = 0xff; 1448 ucontrol->value.iec958.status[1] = 0xff; 1449 ucontrol->value.iec958.status[2] = 0xff; 1450 ucontrol->value.iec958.status[3] = 0xff; 1451 return 0; 1452 } 1453 1454 static int had_iec958_put(struct snd_kcontrol *kcontrol, 1455 struct snd_ctl_elem_value *ucontrol) 1456 { 1457 unsigned int val; 1458 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1459 int changed = 0; 1460 1461 val = (ucontrol->value.iec958.status[0] << 0) | 1462 (ucontrol->value.iec958.status[1] << 8) | 1463 (ucontrol->value.iec958.status[2] << 16) | 1464 (ucontrol->value.iec958.status[3] << 24); 1465 mutex_lock(&intelhaddata->mutex); 1466 if (intelhaddata->aes_bits != val) { 1467 intelhaddata->aes_bits = val; 1468 changed = 1; 1469 } 1470 mutex_unlock(&intelhaddata->mutex); 1471 return changed; 1472 } 1473 1474 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol, 1475 struct snd_ctl_elem_info *uinfo) 1476 { 1477 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 1478 uinfo->count = HDMI_MAX_ELD_BYTES; 1479 return 0; 1480 } 1481 1482 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol, 1483 struct snd_ctl_elem_value *ucontrol) 1484 { 1485 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); 1486 1487 mutex_lock(&intelhaddata->mutex); 1488 memcpy(ucontrol->value.bytes.data, intelhaddata->eld, 1489 HDMI_MAX_ELD_BYTES); 1490 mutex_unlock(&intelhaddata->mutex); 1491 return 0; 1492 } 1493 1494 static const struct snd_kcontrol_new had_controls[] = { 1495 { 1496 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1497 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1498 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), 1499 .info = had_iec958_info, /* shared */ 1500 .get = had_iec958_mask_get, 1501 }, 1502 { 1503 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1504 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 1505 .info = had_iec958_info, 1506 .get = had_iec958_get, 1507 .put = had_iec958_put, 1508 }, 1509 { 1510 .access = (SNDRV_CTL_ELEM_ACCESS_READ | 1511 SNDRV_CTL_ELEM_ACCESS_VOLATILE), 1512 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1513 .name = "ELD", 1514 .info = had_ctl_eld_info, 1515 .get = had_ctl_eld_get, 1516 }, 1517 }; 1518 1519 /* 1520 * audio interrupt handler 1521 */ 1522 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id) 1523 { 1524 struct snd_intelhad_card *card_ctx = dev_id; 1525 u32 audio_stat[3] = {}; 1526 int pipe, port; 1527 1528 for_each_pipe(card_ctx, pipe) { 1529 /* use raw register access to ack IRQs even while disconnected */ 1530 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe, 1531 AUD_HDMI_STATUS) & 1532 (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE); 1533 1534 if (audio_stat[pipe]) 1535 had_write_register_raw(card_ctx, pipe, 1536 AUD_HDMI_STATUS, audio_stat[pipe]); 1537 } 1538 1539 for_each_port(card_ctx, port) { 1540 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1541 int pipe = ctx->pipe; 1542 1543 if (pipe < 0) 1544 continue; 1545 1546 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE) 1547 had_process_buffer_done(ctx); 1548 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN) 1549 had_process_buffer_underrun(ctx); 1550 } 1551 1552 return IRQ_HANDLED; 1553 } 1554 1555 /* 1556 * monitor plug/unplug notification from i915; just kick off the work 1557 */ 1558 static void notify_audio_lpe(struct platform_device *pdev, int port) 1559 { 1560 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev); 1561 struct snd_intelhad *ctx; 1562 1563 ctx = &card_ctx->pcm_ctx[single_port ? 0 : port]; 1564 if (single_port) 1565 ctx->port = port; 1566 1567 schedule_work(&ctx->hdmi_audio_wq); 1568 } 1569 1570 /* the work to handle monitor hot plug/unplug */ 1571 static void had_audio_wq(struct work_struct *work) 1572 { 1573 struct snd_intelhad *ctx = 1574 container_of(work, struct snd_intelhad, hdmi_audio_wq); 1575 struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data; 1576 struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port]; 1577 1578 pm_runtime_get_sync(ctx->dev); 1579 mutex_lock(&ctx->mutex); 1580 if (ppdata->pipe < 0) { 1581 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n", 1582 __func__, ctx->port); 1583 1584 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */ 1585 1586 ctx->dp_output = false; 1587 ctx->tmds_clock_speed = 0; 1588 ctx->link_rate = 0; 1589 1590 /* Shut down the stream */ 1591 had_process_hot_unplug(ctx); 1592 1593 ctx->pipe = -1; 1594 } else { 1595 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n", 1596 __func__, ctx->port, ppdata->ls_clock); 1597 1598 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld)); 1599 1600 ctx->dp_output = ppdata->dp_output; 1601 if (ctx->dp_output) { 1602 ctx->tmds_clock_speed = 0; 1603 ctx->link_rate = ppdata->ls_clock; 1604 } else { 1605 ctx->tmds_clock_speed = ppdata->ls_clock; 1606 ctx->link_rate = 0; 1607 } 1608 1609 /* 1610 * Shut down the stream before we change 1611 * the pipe assignment for this pcm device 1612 */ 1613 had_process_hot_plug(ctx); 1614 1615 ctx->pipe = ppdata->pipe; 1616 1617 /* Restart the stream if necessary */ 1618 had_process_mode_change(ctx); 1619 } 1620 1621 mutex_unlock(&ctx->mutex); 1622 pm_runtime_mark_last_busy(ctx->dev); 1623 pm_runtime_put_autosuspend(ctx->dev); 1624 } 1625 1626 /* 1627 * Jack interface 1628 */ 1629 static int had_create_jack(struct snd_intelhad *ctx, 1630 struct snd_pcm *pcm) 1631 { 1632 char hdmi_str[32]; 1633 int err; 1634 1635 snprintf(hdmi_str, sizeof(hdmi_str), 1636 "HDMI/DP,pcm=%d", pcm->device); 1637 1638 err = snd_jack_new(ctx->card_ctx->card, hdmi_str, 1639 SND_JACK_AVOUT, &ctx->jack, 1640 true, false); 1641 if (err < 0) 1642 return err; 1643 ctx->jack->private_data = ctx; 1644 return 0; 1645 } 1646 1647 /* 1648 * PM callbacks 1649 */ 1650 1651 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev) 1652 { 1653 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); 1654 int port; 1655 1656 for_each_port(card_ctx, port) { 1657 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1658 struct snd_pcm_substream *substream; 1659 1660 substream = had_substream_get(ctx); 1661 if (substream) { 1662 snd_pcm_suspend(substream); 1663 had_substream_put(ctx); 1664 } 1665 } 1666 1667 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot); 1668 1669 return 0; 1670 } 1671 1672 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev) 1673 { 1674 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); 1675 1676 pm_runtime_mark_last_busy(dev); 1677 1678 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0); 1679 1680 return 0; 1681 } 1682 1683 /* release resources */ 1684 static void hdmi_lpe_audio_free(struct snd_card *card) 1685 { 1686 struct snd_intelhad_card *card_ctx = card->private_data; 1687 struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data; 1688 int port; 1689 1690 spin_lock_irq(&pdata->lpe_audio_slock); 1691 pdata->notify_audio_lpe = NULL; 1692 spin_unlock_irq(&pdata->lpe_audio_slock); 1693 1694 for_each_port(card_ctx, port) { 1695 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1696 1697 cancel_work_sync(&ctx->hdmi_audio_wq); 1698 } 1699 1700 if (card_ctx->mmio_start) 1701 iounmap(card_ctx->mmio_start); 1702 if (card_ctx->irq >= 0) 1703 free_irq(card_ctx->irq, card_ctx); 1704 } 1705 1706 /* 1707 * hdmi_lpe_audio_probe - start bridge with i915 1708 * 1709 * This function is called when the i915 driver creates the 1710 * hdmi-lpe-audio platform device. 1711 */ 1712 static int hdmi_lpe_audio_probe(struct platform_device *pdev) 1713 { 1714 struct snd_card *card; 1715 struct snd_intelhad_card *card_ctx; 1716 struct snd_intelhad *ctx; 1717 struct snd_pcm *pcm; 1718 struct intel_hdmi_lpe_audio_pdata *pdata; 1719 int irq; 1720 struct resource *res_mmio; 1721 int port, ret; 1722 1723 pdata = pdev->dev.platform_data; 1724 if (!pdata) { 1725 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__); 1726 return -EINVAL; 1727 } 1728 1729 /* get resources */ 1730 irq = platform_get_irq(pdev, 0); 1731 if (irq < 0) { 1732 dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq); 1733 return irq; 1734 } 1735 1736 res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1737 if (!res_mmio) { 1738 dev_err(&pdev->dev, "Could not get IO_MEM resources\n"); 1739 return -ENXIO; 1740 } 1741 1742 /* create a card instance with ALSA framework */ 1743 ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id, 1744 THIS_MODULE, sizeof(*card_ctx), &card); 1745 if (ret) 1746 return ret; 1747 1748 card_ctx = card->private_data; 1749 card_ctx->dev = &pdev->dev; 1750 card_ctx->card = card; 1751 strcpy(card->driver, INTEL_HAD); 1752 strcpy(card->shortname, "Intel HDMI/DP LPE Audio"); 1753 strcpy(card->longname, "Intel HDMI/DP LPE Audio"); 1754 1755 card_ctx->irq = -1; 1756 1757 card->private_free = hdmi_lpe_audio_free; 1758 1759 platform_set_drvdata(pdev, card_ctx); 1760 1761 card_ctx->num_pipes = pdata->num_pipes; 1762 card_ctx->num_ports = single_port ? 1 : pdata->num_ports; 1763 1764 for_each_port(card_ctx, port) { 1765 ctx = &card_ctx->pcm_ctx[port]; 1766 ctx->card_ctx = card_ctx; 1767 ctx->dev = card_ctx->dev; 1768 ctx->port = single_port ? -1 : port; 1769 ctx->pipe = -1; 1770 1771 spin_lock_init(&ctx->had_spinlock); 1772 mutex_init(&ctx->mutex); 1773 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq); 1774 } 1775 1776 dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n", 1777 __func__, (unsigned int)res_mmio->start, 1778 (unsigned int)res_mmio->end); 1779 1780 card_ctx->mmio_start = ioremap_nocache(res_mmio->start, 1781 (size_t)(resource_size(res_mmio))); 1782 if (!card_ctx->mmio_start) { 1783 dev_err(&pdev->dev, "Could not get ioremap\n"); 1784 ret = -EACCES; 1785 goto err; 1786 } 1787 1788 /* setup interrupt handler */ 1789 ret = request_irq(irq, display_pipe_interrupt_handler, 0, 1790 pdev->name, card_ctx); 1791 if (ret < 0) { 1792 dev_err(&pdev->dev, "request_irq failed\n"); 1793 goto err; 1794 } 1795 1796 card_ctx->irq = irq; 1797 1798 /* only 32bit addressable */ 1799 dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 1800 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 1801 1802 init_channel_allocations(); 1803 1804 card_ctx->num_pipes = pdata->num_pipes; 1805 card_ctx->num_ports = single_port ? 1 : pdata->num_ports; 1806 1807 for_each_port(card_ctx, port) { 1808 int i; 1809 1810 ctx = &card_ctx->pcm_ctx[port]; 1811 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS, 1812 MAX_CAP_STREAMS, &pcm); 1813 if (ret) 1814 goto err; 1815 1816 /* setup private data which can be retrieved when required */ 1817 pcm->private_data = ctx; 1818 pcm->info_flags = 0; 1819 strlcpy(pcm->name, card->shortname, strlen(card->shortname)); 1820 /* setup the ops for playabck */ 1821 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops); 1822 1823 /* allocate dma pages; 1824 * try to allocate 600k buffer as default which is large enough 1825 */ 1826 snd_pcm_lib_preallocate_pages_for_all(pcm, 1827 SNDRV_DMA_TYPE_DEV_UC, NULL, 1828 HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER); 1829 1830 /* create controls */ 1831 for (i = 0; i < ARRAY_SIZE(had_controls); i++) { 1832 struct snd_kcontrol *kctl; 1833 1834 kctl = snd_ctl_new1(&had_controls[i], ctx); 1835 if (!kctl) { 1836 ret = -ENOMEM; 1837 goto err; 1838 } 1839 1840 kctl->id.device = pcm->device; 1841 1842 ret = snd_ctl_add(card, kctl); 1843 if (ret < 0) 1844 goto err; 1845 } 1846 1847 /* Register channel map controls */ 1848 ret = had_register_chmap_ctls(ctx, pcm); 1849 if (ret < 0) 1850 goto err; 1851 1852 ret = had_create_jack(ctx, pcm); 1853 if (ret < 0) 1854 goto err; 1855 } 1856 1857 ret = snd_card_register(card); 1858 if (ret) 1859 goto err; 1860 1861 spin_lock_irq(&pdata->lpe_audio_slock); 1862 pdata->notify_audio_lpe = notify_audio_lpe; 1863 spin_unlock_irq(&pdata->lpe_audio_slock); 1864 1865 pm_runtime_use_autosuspend(&pdev->dev); 1866 pm_runtime_mark_last_busy(&pdev->dev); 1867 1868 dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__); 1869 for_each_port(card_ctx, port) { 1870 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; 1871 1872 schedule_work(&ctx->hdmi_audio_wq); 1873 } 1874 1875 return 0; 1876 1877 err: 1878 snd_card_free(card); 1879 return ret; 1880 } 1881 1882 /* 1883 * hdmi_lpe_audio_remove - stop bridge with i915 1884 * 1885 * This function is called when the platform device is destroyed. 1886 */ 1887 static int hdmi_lpe_audio_remove(struct platform_device *pdev) 1888 { 1889 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev); 1890 1891 snd_card_free(card_ctx->card); 1892 return 0; 1893 } 1894 1895 static const struct dev_pm_ops hdmi_lpe_audio_pm = { 1896 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume) 1897 }; 1898 1899 static struct platform_driver hdmi_lpe_audio_driver = { 1900 .driver = { 1901 .name = "hdmi-lpe-audio", 1902 .pm = &hdmi_lpe_audio_pm, 1903 }, 1904 .probe = hdmi_lpe_audio_probe, 1905 .remove = hdmi_lpe_audio_remove, 1906 }; 1907 1908 module_platform_driver(hdmi_lpe_audio_driver); 1909 MODULE_ALIAS("platform:hdmi_lpe_audio"); 1910 1911 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>"); 1912 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>"); 1913 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>"); 1914 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>"); 1915 MODULE_DESCRIPTION("Intel HDMI Audio driver"); 1916 MODULE_LICENSE("GPL v2"); 1917 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}"); 1918