xref: /openbmc/linux/sound/x86/intel_hdmi_audio.c (revision 8ee90c5c)
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *		Ramesh Babu K V	<ramesh.babu@intel.com>
7  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *		Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23 
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44 
45 #define for_each_pipe(card_ctx, pipe) \
46 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
49 
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
52 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
53 
54 module_param_named(index, hdmi_card_index, int, 0444);
55 MODULE_PARM_DESC(index,
56 		"Index value for INTEL Intel HDMI Audio controller.");
57 module_param_named(id, hdmi_card_id, charp, 0444);
58 MODULE_PARM_DESC(id,
59 		"ID string for INTEL Intel HDMI Audio controller.");
60 
61 /*
62  * ELD SA bits in the CEA Speaker Allocation data block
63  */
64 static const int eld_speaker_allocation_bits[] = {
65 	[0] = FL | FR,
66 	[1] = LFE,
67 	[2] = FC,
68 	[3] = RL | RR,
69 	[4] = RC,
70 	[5] = FLC | FRC,
71 	[6] = RLC | RRC,
72 	/* the following are not defined in ELD yet */
73 	[7] = 0,
74 };
75 
76 /*
77  * This is an ordered list!
78  *
79  * The preceding ones have better chances to be selected by
80  * hdmi_channel_allocation().
81  */
82 static struct cea_channel_speaker_allocation channel_allocations[] = {
83 /*                        channel:   7     6    5    4    3     2    1    0  */
84 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
85 				/* 2.1 */
86 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
87 				/* Dolby Surround */
88 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
89 				/* surround40 */
90 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
91 				/* surround41 */
92 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
93 				/* surround50 */
94 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
95 				/* surround51 */
96 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
97 				/* 6.1 */
98 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
99 				/* surround71 */
100 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
101 
102 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
103 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
104 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
105 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
106 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
107 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
108 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
109 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
110 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
111 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
112 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
113 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
114 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
115 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
116 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
117 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
118 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
119 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
120 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
121 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
122 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
123 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
124 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
125 };
126 
127 static const struct channel_map_table map_tables[] = {
128 	{ SNDRV_CHMAP_FL,       0x00,   FL },
129 	{ SNDRV_CHMAP_FR,       0x01,   FR },
130 	{ SNDRV_CHMAP_RL,       0x04,   RL },
131 	{ SNDRV_CHMAP_RR,       0x05,   RR },
132 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
133 	{ SNDRV_CHMAP_FC,       0x03,   FC },
134 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
135 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
136 	{} /* terminator */
137 };
138 
139 /* hardware capability structure */
140 static const struct snd_pcm_hardware had_pcm_hardware = {
141 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
142 		SNDRV_PCM_INFO_MMAP |
143 		SNDRV_PCM_INFO_MMAP_VALID |
144 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
145 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
146 		    SNDRV_PCM_FMTBIT_S24_LE |
147 		    SNDRV_PCM_FMTBIT_S32_LE),
148 	.rates = SNDRV_PCM_RATE_32000 |
149 		SNDRV_PCM_RATE_44100 |
150 		SNDRV_PCM_RATE_48000 |
151 		SNDRV_PCM_RATE_88200 |
152 		SNDRV_PCM_RATE_96000 |
153 		SNDRV_PCM_RATE_176400 |
154 		SNDRV_PCM_RATE_192000,
155 	.rate_min = HAD_MIN_RATE,
156 	.rate_max = HAD_MAX_RATE,
157 	.channels_min = HAD_MIN_CHANNEL,
158 	.channels_max = HAD_MAX_CHANNEL,
159 	.buffer_bytes_max = HAD_MAX_BUFFER,
160 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
161 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
162 	.periods_min = HAD_MIN_PERIODS,
163 	.periods_max = HAD_MAX_PERIODS,
164 	.fifo_size = HAD_FIFO_SIZE,
165 };
166 
167 /* Get the active PCM substream;
168  * Call had_substream_put() for unreferecing.
169  * Don't call this inside had_spinlock, as it takes by itself
170  */
171 static struct snd_pcm_substream *
172 had_substream_get(struct snd_intelhad *intelhaddata)
173 {
174 	struct snd_pcm_substream *substream;
175 	unsigned long flags;
176 
177 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
178 	substream = intelhaddata->stream_info.substream;
179 	if (substream)
180 		intelhaddata->stream_info.substream_refcount++;
181 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
182 	return substream;
183 }
184 
185 /* Unref the active PCM substream;
186  * Don't call this inside had_spinlock, as it takes by itself
187  */
188 static void had_substream_put(struct snd_intelhad *intelhaddata)
189 {
190 	unsigned long flags;
191 
192 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
193 	intelhaddata->stream_info.substream_refcount--;
194 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
195 }
196 
197 static u32 had_config_offset(int pipe)
198 {
199 	switch (pipe) {
200 	default:
201 	case 0:
202 		return AUDIO_HDMI_CONFIG_A;
203 	case 1:
204 		return AUDIO_HDMI_CONFIG_B;
205 	case 2:
206 		return AUDIO_HDMI_CONFIG_C;
207 	}
208 }
209 
210 /* Register access functions */
211 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
212 				 int pipe, u32 reg)
213 {
214 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
215 }
216 
217 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
218 				   int pipe, u32 reg, u32 val)
219 {
220 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
221 }
222 
223 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
224 {
225 	if (!ctx->connected)
226 		*val = 0;
227 	else
228 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
229 }
230 
231 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
232 {
233 	if (ctx->connected)
234 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
235 }
236 
237 /*
238  * enable / disable audio configuration
239  *
240  * The normal read/modify should not directly be used on VLV2 for
241  * updating AUD_CONFIG register.
242  * This is because:
243  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
244  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
245  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
246  * register. This field should be 1xy binary for configuration with 6 or
247  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
248  * causes the "channels" field to be updated as 0xy binary resulting in
249  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
250  * appropriate value when doing read-modify of AUD_CONFIG register.
251  */
252 static void had_enable_audio(struct snd_intelhad *intelhaddata,
253 			     bool enable)
254 {
255 	/* update the cached value */
256 	intelhaddata->aud_config.regx.aud_en = enable;
257 	had_write_register(intelhaddata, AUD_CONFIG,
258 			   intelhaddata->aud_config.regval);
259 }
260 
261 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
262 static void had_ack_irqs(struct snd_intelhad *ctx)
263 {
264 	u32 status_reg;
265 
266 	if (!ctx->connected)
267 		return;
268 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
269 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
270 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
271 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
272 }
273 
274 /* Reset buffer pointers */
275 static void had_reset_audio(struct snd_intelhad *intelhaddata)
276 {
277 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
278 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
279 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
280 }
281 
282 /*
283  * initialize audio channel status registers
284  * This function is called in the prepare callback
285  */
286 static int had_prog_status_reg(struct snd_pcm_substream *substream,
287 			struct snd_intelhad *intelhaddata)
288 {
289 	union aud_cfg cfg_val = {.regval = 0};
290 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
291 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
292 
293 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
294 					  IEC958_AES0_NONAUDIO) >> 1;
295 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
296 					  IEC958_AES3_CON_CLOCK) >> 4;
297 	cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
298 
299 	switch (substream->runtime->rate) {
300 	case AUD_SAMPLE_RATE_32:
301 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
302 		break;
303 
304 	case AUD_SAMPLE_RATE_44_1:
305 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
306 		break;
307 	case AUD_SAMPLE_RATE_48:
308 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
309 		break;
310 	case AUD_SAMPLE_RATE_88_2:
311 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
312 		break;
313 	case AUD_SAMPLE_RATE_96:
314 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
315 		break;
316 	case AUD_SAMPLE_RATE_176_4:
317 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
318 		break;
319 	case AUD_SAMPLE_RATE_192:
320 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
321 		break;
322 
323 	default:
324 		/* control should never come here */
325 		return -EINVAL;
326 	}
327 
328 	had_write_register(intelhaddata,
329 			   AUD_CH_STATUS_0, ch_stat0.regval);
330 
331 	switch (substream->runtime->format) {
332 	case SNDRV_PCM_FORMAT_S16_LE:
333 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
334 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
335 		break;
336 	case SNDRV_PCM_FORMAT_S24_LE:
337 	case SNDRV_PCM_FORMAT_S32_LE:
338 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
339 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
340 		break;
341 	default:
342 		return -EINVAL;
343 	}
344 
345 	had_write_register(intelhaddata,
346 			   AUD_CH_STATUS_1, ch_stat1.regval);
347 	return 0;
348 }
349 
350 /*
351  * function to initialize audio
352  * registers and buffer confgiuration registers
353  * This function is called in the prepare callback
354  */
355 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
356 			       struct snd_intelhad *intelhaddata)
357 {
358 	union aud_cfg cfg_val = {.regval = 0};
359 	union aud_buf_config buf_cfg = {.regval = 0};
360 	u8 channels;
361 
362 	had_prog_status_reg(substream, intelhaddata);
363 
364 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
365 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
366 	buf_cfg.regx.aud_delay = 0;
367 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
368 
369 	channels = substream->runtime->channels;
370 	cfg_val.regx.num_ch = channels - 2;
371 	if (channels <= 2)
372 		cfg_val.regx.layout = LAYOUT0;
373 	else
374 		cfg_val.regx.layout = LAYOUT1;
375 
376 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
377 		cfg_val.regx.packet_mode = 1;
378 
379 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
380 		cfg_val.regx.left_align = 1;
381 
382 	cfg_val.regx.val_bit = 1;
383 
384 	/* fix up the DP bits */
385 	if (intelhaddata->dp_output) {
386 		cfg_val.regx.dp_modei = 1;
387 		cfg_val.regx.set = 1;
388 	}
389 
390 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
391 	intelhaddata->aud_config = cfg_val;
392 	return 0;
393 }
394 
395 /*
396  * Compute derived values in channel_allocations[].
397  */
398 static void init_channel_allocations(void)
399 {
400 	int i, j;
401 	struct cea_channel_speaker_allocation *p;
402 
403 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
404 		p = channel_allocations + i;
405 		p->channels = 0;
406 		p->spk_mask = 0;
407 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
408 			if (p->speakers[j]) {
409 				p->channels++;
410 				p->spk_mask |= p->speakers[j];
411 			}
412 	}
413 }
414 
415 /*
416  * The transformation takes two steps:
417  *
418  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
419  *            spk_mask => (channel_allocations[])         => ai->CA
420  *
421  * TODO: it could select the wrong CA from multiple candidates.
422  */
423 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
424 				  int channels)
425 {
426 	int i;
427 	int ca = 0;
428 	int spk_mask = 0;
429 
430 	/*
431 	 * CA defaults to 0 for basic stereo audio
432 	 */
433 	if (channels <= 2)
434 		return 0;
435 
436 	/*
437 	 * expand ELD's speaker allocation mask
438 	 *
439 	 * ELD tells the speaker mask in a compact(paired) form,
440 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
441 	 */
442 
443 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
444 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
445 			spk_mask |= eld_speaker_allocation_bits[i];
446 	}
447 
448 	/* search for the first working match in the CA table */
449 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
450 		if (channels == channel_allocations[i].channels &&
451 		(spk_mask & channel_allocations[i].spk_mask) ==
452 				channel_allocations[i].spk_mask) {
453 			ca = channel_allocations[i].ca_index;
454 			break;
455 		}
456 	}
457 
458 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
459 
460 	return ca;
461 }
462 
463 /* from speaker bit mask to ALSA API channel position */
464 static int spk_to_chmap(int spk)
465 {
466 	const struct channel_map_table *t = map_tables;
467 
468 	for (; t->map; t++) {
469 		if (t->spk_mask == spk)
470 			return t->map;
471 	}
472 	return 0;
473 }
474 
475 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
476 {
477 	int i, c;
478 	int spk_mask = 0;
479 	struct snd_pcm_chmap_elem *chmap;
480 	u8 eld_high, eld_high_mask = 0xF0;
481 	u8 high_msb;
482 
483 	kfree(intelhaddata->chmap->chmap);
484 	intelhaddata->chmap->chmap = NULL;
485 
486 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
487 	if (!chmap)
488 		return;
489 
490 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
491 		intelhaddata->eld[DRM_ELD_SPEAKER]);
492 
493 	/* WA: Fix the max channel supported to 8 */
494 
495 	/*
496 	 * Sink may support more than 8 channels, if eld_high has more than
497 	 * one bit set. SOC supports max 8 channels.
498 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
499 	 */
500 
501 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
502 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
503 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
504 		/* eld_high & (eld_high-1): if more than 1 bit set */
505 		/* 0x1F: 7 channels */
506 		for (i = 1; i < 4; i++) {
507 			high_msb = eld_high & (0x80 >> i);
508 			if (high_msb) {
509 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
510 					high_msb | 0xF;
511 				break;
512 			}
513 		}
514 	}
515 
516 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
517 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
518 			spk_mask |= eld_speaker_allocation_bits[i];
519 	}
520 
521 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
522 		if (spk_mask == channel_allocations[i].spk_mask) {
523 			for (c = 0; c < channel_allocations[i].channels; c++) {
524 				chmap->map[c] = spk_to_chmap(
525 					channel_allocations[i].speakers[
526 						(MAX_SPEAKERS - 1) - c]);
527 			}
528 			chmap->channels = channel_allocations[i].channels;
529 			intelhaddata->chmap->chmap = chmap;
530 			break;
531 		}
532 	}
533 	if (i >= ARRAY_SIZE(channel_allocations))
534 		kfree(chmap);
535 }
536 
537 /*
538  * ALSA API channel-map control callbacks
539  */
540 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
541 				struct snd_ctl_elem_info *uinfo)
542 {
543 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
544 	uinfo->count = HAD_MAX_CHANNEL;
545 	uinfo->value.integer.min = 0;
546 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
547 	return 0;
548 }
549 
550 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
551 				struct snd_ctl_elem_value *ucontrol)
552 {
553 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
554 	struct snd_intelhad *intelhaddata = info->private_data;
555 	int i;
556 	const struct snd_pcm_chmap_elem *chmap;
557 
558 	memset(ucontrol->value.integer.value, 0,
559 	       sizeof(long) * HAD_MAX_CHANNEL);
560 	mutex_lock(&intelhaddata->mutex);
561 	if (!intelhaddata->chmap->chmap) {
562 		mutex_unlock(&intelhaddata->mutex);
563 		return 0;
564 	}
565 
566 	chmap = intelhaddata->chmap->chmap;
567 	for (i = 0; i < chmap->channels; i++)
568 		ucontrol->value.integer.value[i] = chmap->map[i];
569 	mutex_unlock(&intelhaddata->mutex);
570 
571 	return 0;
572 }
573 
574 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
575 						struct snd_pcm *pcm)
576 {
577 	int err;
578 
579 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
580 			NULL, 0, (unsigned long)intelhaddata,
581 			&intelhaddata->chmap);
582 	if (err < 0)
583 		return err;
584 
585 	intelhaddata->chmap->private_data = intelhaddata;
586 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
587 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
588 	intelhaddata->chmap->chmap = NULL;
589 	return 0;
590 }
591 
592 /*
593  * Initialize Data Island Packets registers
594  * This function is called in the prepare callback
595  */
596 static void had_prog_dip(struct snd_pcm_substream *substream,
597 			 struct snd_intelhad *intelhaddata)
598 {
599 	int i;
600 	union aud_ctrl_st ctrl_state = {.regval = 0};
601 	union aud_info_frame2 frame2 = {.regval = 0};
602 	union aud_info_frame3 frame3 = {.regval = 0};
603 	u8 checksum = 0;
604 	u32 info_frame;
605 	int channels;
606 	int ca;
607 
608 	channels = substream->runtime->channels;
609 
610 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
611 
612 	ca = had_channel_allocation(intelhaddata, channels);
613 	if (intelhaddata->dp_output) {
614 		info_frame = DP_INFO_FRAME_WORD1;
615 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
616 	} else {
617 		info_frame = HDMI_INFO_FRAME_WORD1;
618 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
619 		frame3.regx.chnl_alloc = ca;
620 
621 		/* Calculte the byte wide checksum for all valid DIP words */
622 		for (i = 0; i < BYTES_PER_WORD; i++)
623 			checksum += (info_frame >> (i * 8)) & 0xff;
624 		for (i = 0; i < BYTES_PER_WORD; i++)
625 			checksum += (frame2.regval >> (i * 8)) & 0xff;
626 		for (i = 0; i < BYTES_PER_WORD; i++)
627 			checksum += (frame3.regval >> (i * 8)) & 0xff;
628 
629 		frame2.regx.chksum = -(checksum);
630 	}
631 
632 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
633 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
634 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
635 
636 	/* program remaining DIP words with zero */
637 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
638 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
639 
640 	ctrl_state.regx.dip_freq = 1;
641 	ctrl_state.regx.dip_en_sta = 1;
642 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
643 }
644 
645 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
646 {
647 	u32 maud_val;
648 
649 	/* Select maud according to DP 1.2 spec */
650 	if (link_rate == DP_2_7_GHZ) {
651 		switch (aud_samp_freq) {
652 		case AUD_SAMPLE_RATE_32:
653 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
654 			break;
655 
656 		case AUD_SAMPLE_RATE_44_1:
657 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
658 			break;
659 
660 		case AUD_SAMPLE_RATE_48:
661 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
662 			break;
663 
664 		case AUD_SAMPLE_RATE_88_2:
665 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
666 			break;
667 
668 		case AUD_SAMPLE_RATE_96:
669 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
670 			break;
671 
672 		case AUD_SAMPLE_RATE_176_4:
673 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
674 			break;
675 
676 		case HAD_MAX_RATE:
677 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
678 			break;
679 
680 		default:
681 			maud_val = -EINVAL;
682 			break;
683 		}
684 	} else if (link_rate == DP_1_62_GHZ) {
685 		switch (aud_samp_freq) {
686 		case AUD_SAMPLE_RATE_32:
687 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
688 			break;
689 
690 		case AUD_SAMPLE_RATE_44_1:
691 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
692 			break;
693 
694 		case AUD_SAMPLE_RATE_48:
695 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
696 			break;
697 
698 		case AUD_SAMPLE_RATE_88_2:
699 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
700 			break;
701 
702 		case AUD_SAMPLE_RATE_96:
703 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
704 			break;
705 
706 		case AUD_SAMPLE_RATE_176_4:
707 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
708 			break;
709 
710 		case HAD_MAX_RATE:
711 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
712 			break;
713 
714 		default:
715 			maud_val = -EINVAL;
716 			break;
717 		}
718 	} else
719 		maud_val = -EINVAL;
720 
721 	return maud_val;
722 }
723 
724 /*
725  * Program HDMI audio CTS value
726  *
727  * @aud_samp_freq: sampling frequency of audio data
728  * @tmds: sampling frequency of the display data
729  * @link_rate: DP link rate
730  * @n_param: N value, depends on aud_samp_freq
731  * @intelhaddata: substream private data
732  *
733  * Program CTS register based on the audio and display sampling frequency
734  */
735 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
736 			 u32 n_param, struct snd_intelhad *intelhaddata)
737 {
738 	u32 cts_val;
739 	u64 dividend, divisor;
740 
741 	if (intelhaddata->dp_output) {
742 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
743 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
744 	} else {
745 		/* Calculate CTS according to HDMI 1.3a spec*/
746 		dividend = (u64)tmds * n_param*1000;
747 		divisor = 128 * aud_samp_freq;
748 		cts_val = div64_u64(dividend, divisor);
749 	}
750 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
751 		 tmds, n_param, cts_val);
752 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
753 }
754 
755 static int had_calculate_n_value(u32 aud_samp_freq)
756 {
757 	int n_val;
758 
759 	/* Select N according to HDMI 1.3a spec*/
760 	switch (aud_samp_freq) {
761 	case AUD_SAMPLE_RATE_32:
762 		n_val = 4096;
763 		break;
764 
765 	case AUD_SAMPLE_RATE_44_1:
766 		n_val = 6272;
767 		break;
768 
769 	case AUD_SAMPLE_RATE_48:
770 		n_val = 6144;
771 		break;
772 
773 	case AUD_SAMPLE_RATE_88_2:
774 		n_val = 12544;
775 		break;
776 
777 	case AUD_SAMPLE_RATE_96:
778 		n_val = 12288;
779 		break;
780 
781 	case AUD_SAMPLE_RATE_176_4:
782 		n_val = 25088;
783 		break;
784 
785 	case HAD_MAX_RATE:
786 		n_val = 24576;
787 		break;
788 
789 	default:
790 		n_val = -EINVAL;
791 		break;
792 	}
793 	return n_val;
794 }
795 
796 /*
797  * Program HDMI audio N value
798  *
799  * @aud_samp_freq: sampling frequency of audio data
800  * @n_param: N value, depends on aud_samp_freq
801  * @intelhaddata: substream private data
802  *
803  * This function is called in the prepare callback.
804  * It programs based on the audio and display sampling frequency
805  */
806 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
807 		      struct snd_intelhad *intelhaddata)
808 {
809 	int n_val;
810 
811 	if (intelhaddata->dp_output) {
812 		/*
813 		 * According to DP specs, Maud and Naud values hold
814 		 * a relationship, which is stated as:
815 		 * Maud/Naud = 512 * fs / f_LS_Clk
816 		 * where, fs is the sampling frequency of the audio stream
817 		 * and Naud is 32768 for Async clock.
818 		 */
819 
820 		n_val = DP_NAUD_VAL;
821 	} else
822 		n_val =	had_calculate_n_value(aud_samp_freq);
823 
824 	if (n_val < 0)
825 		return n_val;
826 
827 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
828 	*n_param = n_val;
829 	return 0;
830 }
831 
832 /*
833  * PCM ring buffer handling
834  *
835  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
836  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
837  * moves at each period elapsed.  The below illustrates how it works:
838  *
839  * At time=0
840  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
841  *  BD  | 0 | 1 | 2 | 3 |
842  *
843  * At time=1 (period elapsed)
844  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845  *  BD      | 1 | 2 | 3 | 0 |
846  *
847  * At time=2 (second period elapsed)
848  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849  *  BD          | 2 | 3 | 0 | 1 |
850  *
851  * The bd_head field points to the index of the BD to be read.  It's also the
852  * position to be filled at next.  The pcm_head and the pcm_filled fields
853  * point to the indices of the current position and of the next position to
854  * be filled, respectively.  For PCM buffer there are both _head and _filled
855  * because they may be difference when nperiods > 4.  For example, in the
856  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
857  *
858  * pcm_head (=1) --v               v-- pcm_filled (=5)
859  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
860  *       BD      | 1 | 2 | 3 | 0 |
861  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
862  *
863  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
864  * the hardware skips those BDs in the loop.
865  *
866  * An exceptional setup is the case with nperiods=1.  Since we have to update
867  * BDs after finishing one BD processing, we'd need at least two BDs, where
868  * both BDs point to the same content, the same address, the same size of the
869  * whole PCM buffer.
870  */
871 
872 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
873 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
874 
875 /* Set up a buffer descriptor at the "filled" position */
876 static void had_prog_bd(struct snd_pcm_substream *substream,
877 			struct snd_intelhad *intelhaddata)
878 {
879 	int idx = intelhaddata->bd_head;
880 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
881 	u32 addr = substream->runtime->dma_addr + ofs;
882 
883 	addr |= AUD_BUF_VALID;
884 	if (!substream->runtime->no_period_wakeup)
885 		addr |= AUD_BUF_INTR_EN;
886 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
887 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
888 			   intelhaddata->period_bytes);
889 
890 	/* advance the indices to the next */
891 	intelhaddata->bd_head++;
892 	intelhaddata->bd_head %= intelhaddata->num_bds;
893 	intelhaddata->pcmbuf_filled++;
894 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
895 }
896 
897 /* invalidate a buffer descriptor with the given index */
898 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
899 			      int idx)
900 {
901 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
902 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
903 }
904 
905 /* Initial programming of ring buffer */
906 static void had_init_ringbuf(struct snd_pcm_substream *substream,
907 			     struct snd_intelhad *intelhaddata)
908 {
909 	struct snd_pcm_runtime *runtime = substream->runtime;
910 	int i, num_periods;
911 
912 	num_periods = runtime->periods;
913 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
914 	/* set the minimum 2 BDs for num_periods=1 */
915 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
916 	intelhaddata->period_bytes =
917 		frames_to_bytes(runtime, runtime->period_size);
918 	WARN_ON(intelhaddata->period_bytes & 0x3f);
919 
920 	intelhaddata->bd_head = 0;
921 	intelhaddata->pcmbuf_head = 0;
922 	intelhaddata->pcmbuf_filled = 0;
923 
924 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
925 		if (i < intelhaddata->num_bds)
926 			had_prog_bd(substream, intelhaddata);
927 		else /* invalidate the rest */
928 			had_invalidate_bd(intelhaddata, i);
929 	}
930 
931 	intelhaddata->bd_head = 0; /* reset at head again before starting */
932 }
933 
934 /* process a bd, advance to the next */
935 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
936 				struct snd_intelhad *intelhaddata)
937 {
938 	int num_periods = substream->runtime->periods;
939 
940 	/* reprogram the next buffer */
941 	had_prog_bd(substream, intelhaddata);
942 
943 	/* proceed to next */
944 	intelhaddata->pcmbuf_head++;
945 	intelhaddata->pcmbuf_head %= num_periods;
946 }
947 
948 /* process the current BD(s);
949  * returns the current PCM buffer byte position, or -EPIPE for underrun.
950  */
951 static int had_process_ringbuf(struct snd_pcm_substream *substream,
952 			       struct snd_intelhad *intelhaddata)
953 {
954 	int len, processed;
955 	unsigned long flags;
956 
957 	processed = 0;
958 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
959 	for (;;) {
960 		/* get the remaining bytes on the buffer */
961 		had_read_register(intelhaddata,
962 				  AUD_BUF_LEN(intelhaddata->bd_head),
963 				  &len);
964 		if (len < 0 || len > intelhaddata->period_bytes) {
965 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
966 				len);
967 			len = -EPIPE;
968 			goto out;
969 		}
970 
971 		if (len > 0) /* OK, this is the current buffer */
972 			break;
973 
974 		/* len=0 => already empty, check the next buffer */
975 		if (++processed >= intelhaddata->num_bds) {
976 			len = -EPIPE; /* all empty? - report underrun */
977 			goto out;
978 		}
979 		had_advance_ringbuf(substream, intelhaddata);
980 	}
981 
982 	len = intelhaddata->period_bytes - len;
983 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
984  out:
985 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
986 	return len;
987 }
988 
989 /* called from irq handler */
990 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
991 {
992 	struct snd_pcm_substream *substream;
993 
994 	substream = had_substream_get(intelhaddata);
995 	if (!substream)
996 		return; /* no stream? - bail out */
997 
998 	if (!intelhaddata->connected) {
999 		snd_pcm_stop_xrun(substream);
1000 		goto out; /* disconnected? - bail out */
1001 	}
1002 
1003 	/* process or stop the stream */
1004 	if (had_process_ringbuf(substream, intelhaddata) < 0)
1005 		snd_pcm_stop_xrun(substream);
1006 	else
1007 		snd_pcm_period_elapsed(substream);
1008 
1009  out:
1010 	had_substream_put(intelhaddata);
1011 }
1012 
1013 /*
1014  * The interrupt status 'sticky' bits might not be cleared by
1015  * setting '1' to that bit once...
1016  */
1017 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1018 {
1019 	int i;
1020 	u32 val;
1021 
1022 	for (i = 0; i < 100; i++) {
1023 		/* clear bit30, 31 AUD_HDMI_STATUS */
1024 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1025 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1026 			return;
1027 		udelay(100);
1028 		cond_resched();
1029 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1030 	}
1031 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1032 }
1033 
1034 /* Perform some reset procedure but only when need_reset is set;
1035  * this is called from prepare or hw_free callbacks once after trigger STOP
1036  * or underrun has been processed in order to settle down the h/w state.
1037  */
1038 static void had_do_reset(struct snd_intelhad *intelhaddata)
1039 {
1040 	if (!intelhaddata->need_reset || !intelhaddata->connected)
1041 		return;
1042 
1043 	/* Reset buffer pointers */
1044 	had_reset_audio(intelhaddata);
1045 	wait_clear_underrun_bit(intelhaddata);
1046 	intelhaddata->need_reset = false;
1047 }
1048 
1049 /* called from irq handler */
1050 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1051 {
1052 	struct snd_pcm_substream *substream;
1053 
1054 	/* Report UNDERRUN error to above layers */
1055 	substream = had_substream_get(intelhaddata);
1056 	if (substream) {
1057 		snd_pcm_stop_xrun(substream);
1058 		had_substream_put(intelhaddata);
1059 	}
1060 	intelhaddata->need_reset = true;
1061 }
1062 
1063 /*
1064  * ALSA PCM open callback
1065  */
1066 static int had_pcm_open(struct snd_pcm_substream *substream)
1067 {
1068 	struct snd_intelhad *intelhaddata;
1069 	struct snd_pcm_runtime *runtime;
1070 	int retval;
1071 
1072 	intelhaddata = snd_pcm_substream_chip(substream);
1073 	runtime = substream->runtime;
1074 
1075 	pm_runtime_get_sync(intelhaddata->dev);
1076 
1077 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1078 	runtime->hw = had_pcm_hardware;
1079 
1080 	retval = snd_pcm_hw_constraint_integer(runtime,
1081 			 SNDRV_PCM_HW_PARAM_PERIODS);
1082 	if (retval < 0)
1083 		goto error;
1084 
1085 	/* Make sure, that the period size is always aligned
1086 	 * 64byte boundary
1087 	 */
1088 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1089 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1090 	if (retval < 0)
1091 		goto error;
1092 
1093 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1094 	if (retval < 0)
1095 		goto error;
1096 
1097 	/* expose PCM substream */
1098 	spin_lock_irq(&intelhaddata->had_spinlock);
1099 	intelhaddata->stream_info.substream = substream;
1100 	intelhaddata->stream_info.substream_refcount++;
1101 	spin_unlock_irq(&intelhaddata->had_spinlock);
1102 
1103 	return retval;
1104  error:
1105 	pm_runtime_mark_last_busy(intelhaddata->dev);
1106 	pm_runtime_put_autosuspend(intelhaddata->dev);
1107 	return retval;
1108 }
1109 
1110 /*
1111  * ALSA PCM close callback
1112  */
1113 static int had_pcm_close(struct snd_pcm_substream *substream)
1114 {
1115 	struct snd_intelhad *intelhaddata;
1116 
1117 	intelhaddata = snd_pcm_substream_chip(substream);
1118 
1119 	/* unreference and sync with the pending PCM accesses */
1120 	spin_lock_irq(&intelhaddata->had_spinlock);
1121 	intelhaddata->stream_info.substream = NULL;
1122 	intelhaddata->stream_info.substream_refcount--;
1123 	while (intelhaddata->stream_info.substream_refcount > 0) {
1124 		spin_unlock_irq(&intelhaddata->had_spinlock);
1125 		cpu_relax();
1126 		spin_lock_irq(&intelhaddata->had_spinlock);
1127 	}
1128 	spin_unlock_irq(&intelhaddata->had_spinlock);
1129 
1130 	pm_runtime_mark_last_busy(intelhaddata->dev);
1131 	pm_runtime_put_autosuspend(intelhaddata->dev);
1132 	return 0;
1133 }
1134 
1135 /*
1136  * ALSA PCM hw_params callback
1137  */
1138 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1139 			     struct snd_pcm_hw_params *hw_params)
1140 {
1141 	struct snd_intelhad *intelhaddata;
1142 	unsigned long addr;
1143 	int pages, buf_size, retval;
1144 
1145 	intelhaddata = snd_pcm_substream_chip(substream);
1146 	buf_size = params_buffer_bytes(hw_params);
1147 	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1148 	if (retval < 0)
1149 		return retval;
1150 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1151 		__func__, buf_size);
1152 	/* mark the pages as uncached region */
1153 	addr = (unsigned long) substream->runtime->dma_area;
1154 	pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1155 	retval = set_memory_uc(addr, pages);
1156 	if (retval) {
1157 		dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1158 			retval);
1159 		return retval;
1160 	}
1161 	memset(substream->runtime->dma_area, 0, buf_size);
1162 
1163 	return retval;
1164 }
1165 
1166 /*
1167  * ALSA PCM hw_free callback
1168  */
1169 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1170 {
1171 	struct snd_intelhad *intelhaddata;
1172 	unsigned long addr;
1173 	u32 pages;
1174 
1175 	intelhaddata = snd_pcm_substream_chip(substream);
1176 	had_do_reset(intelhaddata);
1177 
1178 	/* mark back the pages as cached/writeback region before the free */
1179 	if (substream->runtime->dma_area != NULL) {
1180 		addr = (unsigned long) substream->runtime->dma_area;
1181 		pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1182 								PAGE_SIZE;
1183 		set_memory_wb(addr, pages);
1184 		return snd_pcm_lib_free_pages(substream);
1185 	}
1186 	return 0;
1187 }
1188 
1189 /*
1190  * ALSA PCM trigger callback
1191  */
1192 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1193 {
1194 	int retval = 0;
1195 	struct snd_intelhad *intelhaddata;
1196 
1197 	intelhaddata = snd_pcm_substream_chip(substream);
1198 
1199 	spin_lock(&intelhaddata->had_spinlock);
1200 	switch (cmd) {
1201 	case SNDRV_PCM_TRIGGER_START:
1202 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1203 	case SNDRV_PCM_TRIGGER_RESUME:
1204 		/* Enable Audio */
1205 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1206 		had_enable_audio(intelhaddata, true);
1207 		break;
1208 
1209 	case SNDRV_PCM_TRIGGER_STOP:
1210 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1211 		/* Disable Audio */
1212 		had_enable_audio(intelhaddata, false);
1213 		intelhaddata->need_reset = true;
1214 		break;
1215 
1216 	default:
1217 		retval = -EINVAL;
1218 	}
1219 	spin_unlock(&intelhaddata->had_spinlock);
1220 	return retval;
1221 }
1222 
1223 /*
1224  * ALSA PCM prepare callback
1225  */
1226 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1227 {
1228 	int retval;
1229 	u32 disp_samp_freq, n_param;
1230 	u32 link_rate = 0;
1231 	struct snd_intelhad *intelhaddata;
1232 	struct snd_pcm_runtime *runtime;
1233 
1234 	intelhaddata = snd_pcm_substream_chip(substream);
1235 	runtime = substream->runtime;
1236 
1237 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1238 		(int)frames_to_bytes(runtime, runtime->period_size));
1239 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1240 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1241 		(int)snd_pcm_lib_buffer_bytes(substream));
1242 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1243 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1244 
1245 	had_do_reset(intelhaddata);
1246 
1247 	/* Get N value in KHz */
1248 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1249 
1250 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1251 	if (retval) {
1252 		dev_err(intelhaddata->dev,
1253 			"programming N value failed %#x\n", retval);
1254 		goto prep_end;
1255 	}
1256 
1257 	if (intelhaddata->dp_output)
1258 		link_rate = intelhaddata->link_rate;
1259 
1260 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1261 		     n_param, intelhaddata);
1262 
1263 	had_prog_dip(substream, intelhaddata);
1264 
1265 	retval = had_init_audio_ctrl(substream, intelhaddata);
1266 
1267 	/* Prog buffer address */
1268 	had_init_ringbuf(substream, intelhaddata);
1269 
1270 	/*
1271 	 * Program channel mapping in following order:
1272 	 * FL, FR, C, LFE, RL, RR
1273 	 */
1274 
1275 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1276 
1277 prep_end:
1278 	return retval;
1279 }
1280 
1281 /*
1282  * ALSA PCM pointer callback
1283  */
1284 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1285 {
1286 	struct snd_intelhad *intelhaddata;
1287 	int len;
1288 
1289 	intelhaddata = snd_pcm_substream_chip(substream);
1290 
1291 	if (!intelhaddata->connected)
1292 		return SNDRV_PCM_POS_XRUN;
1293 
1294 	len = had_process_ringbuf(substream, intelhaddata);
1295 	if (len < 0)
1296 		return SNDRV_PCM_POS_XRUN;
1297 	len = bytes_to_frames(substream->runtime, len);
1298 	/* wrapping may happen when periods=1 */
1299 	len %= substream->runtime->buffer_size;
1300 	return len;
1301 }
1302 
1303 /*
1304  * ALSA PCM mmap callback
1305  */
1306 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1307 			struct vm_area_struct *vma)
1308 {
1309 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1310 	return remap_pfn_range(vma, vma->vm_start,
1311 			substream->dma_buffer.addr >> PAGE_SHIFT,
1312 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1313 }
1314 
1315 /*
1316  * ALSA PCM ops
1317  */
1318 static const struct snd_pcm_ops had_pcm_ops = {
1319 	.open =		had_pcm_open,
1320 	.close =	had_pcm_close,
1321 	.ioctl =	snd_pcm_lib_ioctl,
1322 	.hw_params =	had_pcm_hw_params,
1323 	.hw_free =	had_pcm_hw_free,
1324 	.prepare =	had_pcm_prepare,
1325 	.trigger =	had_pcm_trigger,
1326 	.pointer =	had_pcm_pointer,
1327 	.mmap =		had_pcm_mmap,
1328 };
1329 
1330 /* process mode change of the running stream; called in mutex */
1331 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1332 {
1333 	struct snd_pcm_substream *substream;
1334 	int retval = 0;
1335 	u32 disp_samp_freq, n_param;
1336 	u32 link_rate = 0;
1337 
1338 	substream = had_substream_get(intelhaddata);
1339 	if (!substream)
1340 		return 0;
1341 
1342 	/* Disable Audio */
1343 	had_enable_audio(intelhaddata, false);
1344 
1345 	/* Update CTS value */
1346 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1347 
1348 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1349 	if (retval) {
1350 		dev_err(intelhaddata->dev,
1351 			"programming N value failed %#x\n", retval);
1352 		goto out;
1353 	}
1354 
1355 	if (intelhaddata->dp_output)
1356 		link_rate = intelhaddata->link_rate;
1357 
1358 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1359 		     n_param, intelhaddata);
1360 
1361 	/* Enable Audio */
1362 	had_enable_audio(intelhaddata, true);
1363 
1364 out:
1365 	had_substream_put(intelhaddata);
1366 	return retval;
1367 }
1368 
1369 /* process hot plug, called from wq with mutex locked */
1370 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1371 {
1372 	struct snd_pcm_substream *substream;
1373 
1374 	spin_lock_irq(&intelhaddata->had_spinlock);
1375 	if (intelhaddata->connected) {
1376 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1377 		spin_unlock_irq(&intelhaddata->had_spinlock);
1378 		return;
1379 	}
1380 
1381 	/* Disable Audio */
1382 	had_enable_audio(intelhaddata, false);
1383 
1384 	intelhaddata->connected = true;
1385 	dev_dbg(intelhaddata->dev,
1386 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1387 			__func__, __LINE__);
1388 	spin_unlock_irq(&intelhaddata->had_spinlock);
1389 
1390 	had_build_channel_allocation_map(intelhaddata);
1391 
1392 	/* Report to above ALSA layer */
1393 	substream = had_substream_get(intelhaddata);
1394 	if (substream) {
1395 		snd_pcm_stop_xrun(substream);
1396 		had_substream_put(intelhaddata);
1397 	}
1398 
1399 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1400 }
1401 
1402 /* process hot unplug, called from wq with mutex locked */
1403 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1404 {
1405 	struct snd_pcm_substream *substream;
1406 
1407 	spin_lock_irq(&intelhaddata->had_spinlock);
1408 	if (!intelhaddata->connected) {
1409 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1410 		spin_unlock_irq(&intelhaddata->had_spinlock);
1411 		return;
1412 
1413 	}
1414 
1415 	/* Disable Audio */
1416 	had_enable_audio(intelhaddata, false);
1417 
1418 	intelhaddata->connected = false;
1419 	dev_dbg(intelhaddata->dev,
1420 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1421 			__func__, __LINE__);
1422 	spin_unlock_irq(&intelhaddata->had_spinlock);
1423 
1424 	kfree(intelhaddata->chmap->chmap);
1425 	intelhaddata->chmap->chmap = NULL;
1426 
1427 	/* Report to above ALSA layer */
1428 	substream = had_substream_get(intelhaddata);
1429 	if (substream) {
1430 		snd_pcm_stop_xrun(substream);
1431 		had_substream_put(intelhaddata);
1432 	}
1433 
1434 	snd_jack_report(intelhaddata->jack, 0);
1435 }
1436 
1437 /*
1438  * ALSA iec958 and ELD controls
1439  */
1440 
1441 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1442 				struct snd_ctl_elem_info *uinfo)
1443 {
1444 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1445 	uinfo->count = 1;
1446 	return 0;
1447 }
1448 
1449 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1450 				struct snd_ctl_elem_value *ucontrol)
1451 {
1452 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1453 
1454 	mutex_lock(&intelhaddata->mutex);
1455 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1456 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1457 	ucontrol->value.iec958.status[2] =
1458 					(intelhaddata->aes_bits >> 16) & 0xff;
1459 	ucontrol->value.iec958.status[3] =
1460 					(intelhaddata->aes_bits >> 24) & 0xff;
1461 	mutex_unlock(&intelhaddata->mutex);
1462 	return 0;
1463 }
1464 
1465 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1466 				struct snd_ctl_elem_value *ucontrol)
1467 {
1468 	ucontrol->value.iec958.status[0] = 0xff;
1469 	ucontrol->value.iec958.status[1] = 0xff;
1470 	ucontrol->value.iec958.status[2] = 0xff;
1471 	ucontrol->value.iec958.status[3] = 0xff;
1472 	return 0;
1473 }
1474 
1475 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1476 				struct snd_ctl_elem_value *ucontrol)
1477 {
1478 	unsigned int val;
1479 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1480 	int changed = 0;
1481 
1482 	val = (ucontrol->value.iec958.status[0] << 0) |
1483 		(ucontrol->value.iec958.status[1] << 8) |
1484 		(ucontrol->value.iec958.status[2] << 16) |
1485 		(ucontrol->value.iec958.status[3] << 24);
1486 	mutex_lock(&intelhaddata->mutex);
1487 	if (intelhaddata->aes_bits != val) {
1488 		intelhaddata->aes_bits = val;
1489 		changed = 1;
1490 	}
1491 	mutex_unlock(&intelhaddata->mutex);
1492 	return changed;
1493 }
1494 
1495 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1496 			    struct snd_ctl_elem_info *uinfo)
1497 {
1498 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1499 	uinfo->count = HDMI_MAX_ELD_BYTES;
1500 	return 0;
1501 }
1502 
1503 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1504 			   struct snd_ctl_elem_value *ucontrol)
1505 {
1506 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1507 
1508 	mutex_lock(&intelhaddata->mutex);
1509 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1510 	       HDMI_MAX_ELD_BYTES);
1511 	mutex_unlock(&intelhaddata->mutex);
1512 	return 0;
1513 }
1514 
1515 static const struct snd_kcontrol_new had_controls[] = {
1516 	{
1517 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1518 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1519 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1520 		.info = had_iec958_info, /* shared */
1521 		.get = had_iec958_mask_get,
1522 	},
1523 	{
1524 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1525 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1526 		.info = had_iec958_info,
1527 		.get = had_iec958_get,
1528 		.put = had_iec958_put,
1529 	},
1530 	{
1531 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1532 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1533 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1534 		.name = "ELD",
1535 		.info = had_ctl_eld_info,
1536 		.get = had_ctl_eld_get,
1537 	},
1538 };
1539 
1540 /*
1541  * audio interrupt handler
1542  */
1543 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1544 {
1545 	struct snd_intelhad_card *card_ctx = dev_id;
1546 	u32 audio_stat[3] = {};
1547 	int pipe, port;
1548 
1549 	for_each_pipe(card_ctx, pipe) {
1550 		/* use raw register access to ack IRQs even while disconnected */
1551 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1552 							 AUD_HDMI_STATUS) &
1553 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1554 
1555 		if (audio_stat[pipe])
1556 			had_write_register_raw(card_ctx, pipe,
1557 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1558 	}
1559 
1560 	for_each_port(card_ctx, port) {
1561 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1562 		int pipe = ctx->pipe;
1563 
1564 		if (pipe < 0)
1565 			continue;
1566 
1567 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1568 			had_process_buffer_done(ctx);
1569 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1570 			had_process_buffer_underrun(ctx);
1571 	}
1572 
1573 	return IRQ_HANDLED;
1574 }
1575 
1576 /*
1577  * monitor plug/unplug notification from i915; just kick off the work
1578  */
1579 static void notify_audio_lpe(struct platform_device *pdev, int port)
1580 {
1581 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1582 	struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1583 
1584 	schedule_work(&ctx->hdmi_audio_wq);
1585 }
1586 
1587 /* the work to handle monitor hot plug/unplug */
1588 static void had_audio_wq(struct work_struct *work)
1589 {
1590 	struct snd_intelhad *ctx =
1591 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1592 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1593 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1594 
1595 	pm_runtime_get_sync(ctx->dev);
1596 	mutex_lock(&ctx->mutex);
1597 	if (ppdata->pipe < 0) {
1598 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1599 			__func__, ctx->port);
1600 
1601 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1602 
1603 		ctx->dp_output = false;
1604 		ctx->tmds_clock_speed = 0;
1605 		ctx->link_rate = 0;
1606 
1607 		/* Shut down the stream */
1608 		had_process_hot_unplug(ctx);
1609 
1610 		ctx->pipe = -1;
1611 	} else {
1612 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1613 			__func__, ctx->port, ppdata->ls_clock);
1614 
1615 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1616 
1617 		ctx->dp_output = ppdata->dp_output;
1618 		if (ctx->dp_output) {
1619 			ctx->tmds_clock_speed = 0;
1620 			ctx->link_rate = ppdata->ls_clock;
1621 		} else {
1622 			ctx->tmds_clock_speed = ppdata->ls_clock;
1623 			ctx->link_rate = 0;
1624 		}
1625 
1626 		/*
1627 		 * Shut down the stream before we change
1628 		 * the pipe assignment for this pcm device
1629 		 */
1630 		had_process_hot_plug(ctx);
1631 
1632 		ctx->pipe = ppdata->pipe;
1633 
1634 		/* Restart the stream if necessary */
1635 		had_process_mode_change(ctx);
1636 	}
1637 
1638 	mutex_unlock(&ctx->mutex);
1639 	pm_runtime_mark_last_busy(ctx->dev);
1640 	pm_runtime_put_autosuspend(ctx->dev);
1641 }
1642 
1643 /*
1644  * Jack interface
1645  */
1646 static int had_create_jack(struct snd_intelhad *ctx,
1647 			   struct snd_pcm *pcm)
1648 {
1649 	char hdmi_str[32];
1650 	int err;
1651 
1652 	snprintf(hdmi_str, sizeof(hdmi_str),
1653 		 "HDMI/DP,pcm=%d", pcm->device);
1654 
1655 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1656 			   SND_JACK_AVOUT, &ctx->jack,
1657 			   true, false);
1658 	if (err < 0)
1659 		return err;
1660 	ctx->jack->private_data = ctx;
1661 	return 0;
1662 }
1663 
1664 /*
1665  * PM callbacks
1666  */
1667 
1668 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1669 {
1670 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1671 	int port;
1672 
1673 	for_each_port(card_ctx, port) {
1674 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1675 		struct snd_pcm_substream *substream;
1676 
1677 		substream = had_substream_get(ctx);
1678 		if (substream) {
1679 			snd_pcm_suspend(substream);
1680 			had_substream_put(ctx);
1681 		}
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1688 {
1689 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1690 	int err;
1691 
1692 	err = hdmi_lpe_audio_runtime_suspend(dev);
1693 	if (!err)
1694 		snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1695 	return err;
1696 }
1697 
1698 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1699 {
1700 	pm_runtime_mark_last_busy(dev);
1701 	return 0;
1702 }
1703 
1704 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1705 {
1706 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1707 
1708 	hdmi_lpe_audio_runtime_resume(dev);
1709 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1710 	return 0;
1711 }
1712 
1713 /* release resources */
1714 static void hdmi_lpe_audio_free(struct snd_card *card)
1715 {
1716 	struct snd_intelhad_card *card_ctx = card->private_data;
1717 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1718 	int port;
1719 
1720 	spin_lock_irq(&pdata->lpe_audio_slock);
1721 	pdata->notify_audio_lpe = NULL;
1722 	spin_unlock_irq(&pdata->lpe_audio_slock);
1723 
1724 	for_each_port(card_ctx, port) {
1725 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1726 
1727 		cancel_work_sync(&ctx->hdmi_audio_wq);
1728 	}
1729 
1730 	if (card_ctx->mmio_start)
1731 		iounmap(card_ctx->mmio_start);
1732 	if (card_ctx->irq >= 0)
1733 		free_irq(card_ctx->irq, card_ctx);
1734 }
1735 
1736 /*
1737  * hdmi_lpe_audio_probe - start bridge with i915
1738  *
1739  * This function is called when the i915 driver creates the
1740  * hdmi-lpe-audio platform device.
1741  */
1742 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1743 {
1744 	struct snd_card *card;
1745 	struct snd_intelhad_card *card_ctx;
1746 	struct snd_pcm *pcm;
1747 	struct intel_hdmi_lpe_audio_pdata *pdata;
1748 	int irq;
1749 	struct resource *res_mmio;
1750 	int port, ret;
1751 
1752 	pdata = pdev->dev.platform_data;
1753 	if (!pdata) {
1754 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1755 		return -EINVAL;
1756 	}
1757 
1758 	/* get resources */
1759 	irq = platform_get_irq(pdev, 0);
1760 	if (irq < 0) {
1761 		dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1762 		return irq;
1763 	}
1764 
1765 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1766 	if (!res_mmio) {
1767 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1768 		return -ENXIO;
1769 	}
1770 
1771 	/* create a card instance with ALSA framework */
1772 	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1773 			   THIS_MODULE, sizeof(*card_ctx), &card);
1774 	if (ret)
1775 		return ret;
1776 
1777 	card_ctx = card->private_data;
1778 	card_ctx->dev = &pdev->dev;
1779 	card_ctx->card = card;
1780 	strcpy(card->driver, INTEL_HAD);
1781 	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1782 	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1783 
1784 	card_ctx->irq = -1;
1785 
1786 	card->private_free = hdmi_lpe_audio_free;
1787 
1788 	platform_set_drvdata(pdev, card_ctx);
1789 
1790 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1791 		__func__, (unsigned int)res_mmio->start,
1792 		(unsigned int)res_mmio->end);
1793 
1794 	card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1795 					       (size_t)(resource_size(res_mmio)));
1796 	if (!card_ctx->mmio_start) {
1797 		dev_err(&pdev->dev, "Could not get ioremap\n");
1798 		ret = -EACCES;
1799 		goto err;
1800 	}
1801 
1802 	/* setup interrupt handler */
1803 	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1804 			  pdev->name, card_ctx);
1805 	if (ret < 0) {
1806 		dev_err(&pdev->dev, "request_irq failed\n");
1807 		goto err;
1808 	}
1809 
1810 	card_ctx->irq = irq;
1811 
1812 	/* only 32bit addressable */
1813 	dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1814 	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1815 
1816 	init_channel_allocations();
1817 
1818 	card_ctx->num_pipes = pdata->num_pipes;
1819 	card_ctx->num_ports = pdata->num_ports;
1820 
1821 	for_each_port(card_ctx, port) {
1822 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1823 		int i;
1824 
1825 		ctx->card_ctx = card_ctx;
1826 		ctx->dev = card_ctx->dev;
1827 		ctx->port = port;
1828 		ctx->pipe = -1;
1829 
1830 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1831 
1832 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1833 				  MAX_CAP_STREAMS, &pcm);
1834 		if (ret)
1835 			goto err;
1836 
1837 		/* setup private data which can be retrieved when required */
1838 		pcm->private_data = ctx;
1839 		pcm->info_flags = 0;
1840 		strncpy(pcm->name, card->shortname, strlen(card->shortname));
1841 		/* setup the ops for playabck */
1842 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1843 
1844 		/* allocate dma pages;
1845 		 * try to allocate 600k buffer as default which is large enough
1846 		 */
1847 		snd_pcm_lib_preallocate_pages_for_all(pcm,
1848 						      SNDRV_DMA_TYPE_DEV, NULL,
1849 						      HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1850 
1851 		/* create controls */
1852 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1853 			struct snd_kcontrol *kctl;
1854 
1855 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1856 			if (!kctl) {
1857 				ret = -ENOMEM;
1858 				goto err;
1859 			}
1860 
1861 			kctl->id.device = pcm->device;
1862 
1863 			ret = snd_ctl_add(card, kctl);
1864 			if (ret < 0)
1865 				goto err;
1866 		}
1867 
1868 		/* Register channel map controls */
1869 		ret = had_register_chmap_ctls(ctx, pcm);
1870 		if (ret < 0)
1871 			goto err;
1872 
1873 		ret = had_create_jack(ctx, pcm);
1874 		if (ret < 0)
1875 			goto err;
1876 	}
1877 
1878 	ret = snd_card_register(card);
1879 	if (ret)
1880 		goto err;
1881 
1882 	spin_lock_irq(&pdata->lpe_audio_slock);
1883 	pdata->notify_audio_lpe = notify_audio_lpe;
1884 	spin_unlock_irq(&pdata->lpe_audio_slock);
1885 
1886 	pm_runtime_use_autosuspend(&pdev->dev);
1887 	pm_runtime_mark_last_busy(&pdev->dev);
1888 	pm_runtime_set_active(&pdev->dev);
1889 
1890 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1891 	for_each_port(card_ctx, port) {
1892 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1893 
1894 		schedule_work(&ctx->hdmi_audio_wq);
1895 	}
1896 
1897 	return 0;
1898 
1899 err:
1900 	snd_card_free(card);
1901 	return ret;
1902 }
1903 
1904 /*
1905  * hdmi_lpe_audio_remove - stop bridge with i915
1906  *
1907  * This function is called when the platform device is destroyed.
1908  */
1909 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1910 {
1911 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1912 
1913 	snd_card_free(card_ctx->card);
1914 	return 0;
1915 }
1916 
1917 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1918 	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1919 	SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1920 			   hdmi_lpe_audio_runtime_resume, NULL)
1921 };
1922 
1923 static struct platform_driver hdmi_lpe_audio_driver = {
1924 	.driver		= {
1925 		.name  = "hdmi-lpe-audio",
1926 		.pm = &hdmi_lpe_audio_pm,
1927 	},
1928 	.probe          = hdmi_lpe_audio_probe,
1929 	.remove		= hdmi_lpe_audio_remove,
1930 };
1931 
1932 module_platform_driver(hdmi_lpe_audio_driver);
1933 MODULE_ALIAS("platform:hdmi_lpe_audio");
1934 
1935 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1936 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1937 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1938 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1939 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1940 MODULE_LICENSE("GPL v2");
1941 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");
1942