1 /* 2 * usbmidi.c - ALSA USB MIDI driver 3 * 4 * Copyright (c) 2002-2009 Clemens Ladisch 5 * All rights reserved. 6 * 7 * Based on the OSS usb-midi driver by NAGANO Daisuke, 8 * NetBSD's umidi driver by Takuya SHIOZAKI, 9 * the "USB Device Class Definition for MIDI Devices" by Roland 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed and/or modified under the 21 * terms of the GNU General Public License as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any later 23 * version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/types.h> 40 #include <linux/bitops.h> 41 #include <linux/interrupt.h> 42 #include <linux/spinlock.h> 43 #include <linux/string.h> 44 #include <linux/init.h> 45 #include <linux/slab.h> 46 #include <linux/timer.h> 47 #include <linux/usb.h> 48 #include <linux/wait.h> 49 #include <linux/usb/audio.h> 50 #include <linux/module.h> 51 52 #include <sound/core.h> 53 #include <sound/control.h> 54 #include <sound/rawmidi.h> 55 #include <sound/asequencer.h> 56 #include "usbaudio.h" 57 #include "midi.h" 58 #include "power.h" 59 #include "helper.h" 60 61 /* 62 * define this to log all USB packets 63 */ 64 /* #define DUMP_PACKETS */ 65 66 /* 67 * how long to wait after some USB errors, so that hub_wq can disconnect() us 68 * without too many spurious errors 69 */ 70 #define ERROR_DELAY_JIFFIES (HZ / 10) 71 72 #define OUTPUT_URBS 7 73 #define INPUT_URBS 7 74 75 76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); 77 MODULE_DESCRIPTION("USB Audio/MIDI helper module"); 78 MODULE_LICENSE("Dual BSD/GPL"); 79 80 81 struct usb_ms_header_descriptor { 82 __u8 bLength; 83 __u8 bDescriptorType; 84 __u8 bDescriptorSubtype; 85 __u8 bcdMSC[2]; 86 __le16 wTotalLength; 87 } __attribute__ ((packed)); 88 89 struct usb_ms_endpoint_descriptor { 90 __u8 bLength; 91 __u8 bDescriptorType; 92 __u8 bDescriptorSubtype; 93 __u8 bNumEmbMIDIJack; 94 __u8 baAssocJackID[]; 95 } __attribute__ ((packed)); 96 97 struct snd_usb_midi_in_endpoint; 98 struct snd_usb_midi_out_endpoint; 99 struct snd_usb_midi_endpoint; 100 101 struct usb_protocol_ops { 102 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int); 103 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb); 104 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); 105 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint *); 106 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint *); 107 }; 108 109 struct snd_usb_midi { 110 struct usb_device *dev; 111 struct snd_card *card; 112 struct usb_interface *iface; 113 const struct snd_usb_audio_quirk *quirk; 114 struct snd_rawmidi *rmidi; 115 const struct usb_protocol_ops *usb_protocol_ops; 116 struct list_head list; 117 struct timer_list error_timer; 118 spinlock_t disc_lock; 119 struct rw_semaphore disc_rwsem; 120 struct mutex mutex; 121 u32 usb_id; 122 int next_midi_device; 123 124 struct snd_usb_midi_endpoint { 125 struct snd_usb_midi_out_endpoint *out; 126 struct snd_usb_midi_in_endpoint *in; 127 } endpoints[MIDI_MAX_ENDPOINTS]; 128 unsigned long input_triggered; 129 unsigned int opened[2]; 130 unsigned char disconnected; 131 unsigned char input_running; 132 133 struct snd_kcontrol *roland_load_ctl; 134 }; 135 136 struct snd_usb_midi_out_endpoint { 137 struct snd_usb_midi *umidi; 138 struct out_urb_context { 139 struct urb *urb; 140 struct snd_usb_midi_out_endpoint *ep; 141 } urbs[OUTPUT_URBS]; 142 unsigned int active_urbs; 143 unsigned int drain_urbs; 144 int max_transfer; /* size of urb buffer */ 145 struct tasklet_struct tasklet; 146 unsigned int next_urb; 147 spinlock_t buffer_lock; 148 149 struct usbmidi_out_port { 150 struct snd_usb_midi_out_endpoint *ep; 151 struct snd_rawmidi_substream *substream; 152 int active; 153 uint8_t cable; /* cable number << 4 */ 154 uint8_t state; 155 #define STATE_UNKNOWN 0 156 #define STATE_1PARAM 1 157 #define STATE_2PARAM_1 2 158 #define STATE_2PARAM_2 3 159 #define STATE_SYSEX_0 4 160 #define STATE_SYSEX_1 5 161 #define STATE_SYSEX_2 6 162 uint8_t data[2]; 163 } ports[0x10]; 164 int current_port; 165 166 wait_queue_head_t drain_wait; 167 }; 168 169 struct snd_usb_midi_in_endpoint { 170 struct snd_usb_midi *umidi; 171 struct urb *urbs[INPUT_URBS]; 172 struct usbmidi_in_port { 173 struct snd_rawmidi_substream *substream; 174 u8 running_status_length; 175 } ports[0x10]; 176 u8 seen_f5; 177 bool in_sysex; 178 u8 last_cin; 179 u8 error_resubmit; 180 int current_port; 181 }; 182 183 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep); 184 185 static const uint8_t snd_usbmidi_cin_length[] = { 186 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 187 }; 188 189 /* 190 * Submits the URB, with error handling. 191 */ 192 static int snd_usbmidi_submit_urb(struct urb *urb, gfp_t flags) 193 { 194 int err = usb_submit_urb(urb, flags); 195 if (err < 0 && err != -ENODEV) 196 dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err); 197 return err; 198 } 199 200 /* 201 * Error handling for URB completion functions. 202 */ 203 static int snd_usbmidi_urb_error(const struct urb *urb) 204 { 205 switch (urb->status) { 206 /* manually unlinked, or device gone */ 207 case -ENOENT: 208 case -ECONNRESET: 209 case -ESHUTDOWN: 210 case -ENODEV: 211 return -ENODEV; 212 /* errors that might occur during unplugging */ 213 case -EPROTO: 214 case -ETIME: 215 case -EILSEQ: 216 return -EIO; 217 default: 218 dev_err(&urb->dev->dev, "urb status %d\n", urb->status); 219 return 0; /* continue */ 220 } 221 } 222 223 /* 224 * Receives a chunk of MIDI data. 225 */ 226 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint *ep, 227 int portidx, uint8_t *data, int length) 228 { 229 struct usbmidi_in_port *port = &ep->ports[portidx]; 230 231 if (!port->substream) { 232 dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx); 233 return; 234 } 235 if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) 236 return; 237 snd_rawmidi_receive(port->substream, data, length); 238 } 239 240 #ifdef DUMP_PACKETS 241 static void dump_urb(const char *type, const u8 *data, int length) 242 { 243 snd_printk(KERN_DEBUG "%s packet: [", type); 244 for (; length > 0; ++data, --length) 245 printk(KERN_CONT " %02x", *data); 246 printk(KERN_CONT " ]\n"); 247 } 248 #else 249 #define dump_urb(type, data, length) /* nothing */ 250 #endif 251 252 /* 253 * Processes the data read from the device. 254 */ 255 static void snd_usbmidi_in_urb_complete(struct urb *urb) 256 { 257 struct snd_usb_midi_in_endpoint *ep = urb->context; 258 259 if (urb->status == 0) { 260 dump_urb("received", urb->transfer_buffer, urb->actual_length); 261 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, 262 urb->actual_length); 263 } else { 264 int err = snd_usbmidi_urb_error(urb); 265 if (err < 0) { 266 if (err != -ENODEV) { 267 ep->error_resubmit = 1; 268 mod_timer(&ep->umidi->error_timer, 269 jiffies + ERROR_DELAY_JIFFIES); 270 } 271 return; 272 } 273 } 274 275 urb->dev = ep->umidi->dev; 276 snd_usbmidi_submit_urb(urb, GFP_ATOMIC); 277 } 278 279 static void snd_usbmidi_out_urb_complete(struct urb *urb) 280 { 281 struct out_urb_context *context = urb->context; 282 struct snd_usb_midi_out_endpoint *ep = context->ep; 283 unsigned int urb_index; 284 unsigned long flags; 285 286 spin_lock_irqsave(&ep->buffer_lock, flags); 287 urb_index = context - ep->urbs; 288 ep->active_urbs &= ~(1 << urb_index); 289 if (unlikely(ep->drain_urbs)) { 290 ep->drain_urbs &= ~(1 << urb_index); 291 wake_up(&ep->drain_wait); 292 } 293 spin_unlock_irqrestore(&ep->buffer_lock, flags); 294 if (urb->status < 0) { 295 int err = snd_usbmidi_urb_error(urb); 296 if (err < 0) { 297 if (err != -ENODEV) 298 mod_timer(&ep->umidi->error_timer, 299 jiffies + ERROR_DELAY_JIFFIES); 300 return; 301 } 302 } 303 snd_usbmidi_do_output(ep); 304 } 305 306 /* 307 * This is called when some data should be transferred to the device 308 * (from one or more substreams). 309 */ 310 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep) 311 { 312 unsigned int urb_index; 313 struct urb *urb; 314 unsigned long flags; 315 316 spin_lock_irqsave(&ep->buffer_lock, flags); 317 if (ep->umidi->disconnected) { 318 spin_unlock_irqrestore(&ep->buffer_lock, flags); 319 return; 320 } 321 322 urb_index = ep->next_urb; 323 for (;;) { 324 if (!(ep->active_urbs & (1 << urb_index))) { 325 urb = ep->urbs[urb_index].urb; 326 urb->transfer_buffer_length = 0; 327 ep->umidi->usb_protocol_ops->output(ep, urb); 328 if (urb->transfer_buffer_length == 0) 329 break; 330 331 dump_urb("sending", urb->transfer_buffer, 332 urb->transfer_buffer_length); 333 urb->dev = ep->umidi->dev; 334 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0) 335 break; 336 ep->active_urbs |= 1 << urb_index; 337 } 338 if (++urb_index >= OUTPUT_URBS) 339 urb_index = 0; 340 if (urb_index == ep->next_urb) 341 break; 342 } 343 ep->next_urb = urb_index; 344 spin_unlock_irqrestore(&ep->buffer_lock, flags); 345 } 346 347 static void snd_usbmidi_out_tasklet(unsigned long data) 348 { 349 struct snd_usb_midi_out_endpoint *ep = 350 (struct snd_usb_midi_out_endpoint *) data; 351 352 snd_usbmidi_do_output(ep); 353 } 354 355 /* called after transfers had been interrupted due to some USB error */ 356 static void snd_usbmidi_error_timer(struct timer_list *t) 357 { 358 struct snd_usb_midi *umidi = from_timer(umidi, t, error_timer); 359 unsigned int i, j; 360 361 spin_lock(&umidi->disc_lock); 362 if (umidi->disconnected) { 363 spin_unlock(&umidi->disc_lock); 364 return; 365 } 366 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 367 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in; 368 if (in && in->error_resubmit) { 369 in->error_resubmit = 0; 370 for (j = 0; j < INPUT_URBS; ++j) { 371 if (atomic_read(&in->urbs[j]->use_count)) 372 continue; 373 in->urbs[j]->dev = umidi->dev; 374 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC); 375 } 376 } 377 if (umidi->endpoints[i].out) 378 snd_usbmidi_do_output(umidi->endpoints[i].out); 379 } 380 spin_unlock(&umidi->disc_lock); 381 } 382 383 /* helper function to send static data that may not DMA-able */ 384 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint *ep, 385 const void *data, int len) 386 { 387 int err = 0; 388 void *buf = kmemdup(data, len, GFP_KERNEL); 389 if (!buf) 390 return -ENOMEM; 391 dump_urb("sending", buf, len); 392 if (ep->urbs[0].urb) 393 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe, 394 buf, len, NULL, 250); 395 kfree(buf); 396 return err; 397 } 398 399 /* 400 * Standard USB MIDI protocol: see the spec. 401 * Midiman protocol: like the standard protocol, but the control byte is the 402 * fourth byte in each packet, and uses length instead of CIN. 403 */ 404 405 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint *ep, 406 uint8_t *buffer, int buffer_length) 407 { 408 int i; 409 410 for (i = 0; i + 3 < buffer_length; i += 4) 411 if (buffer[i] != 0) { 412 int cable = buffer[i] >> 4; 413 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; 414 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], 415 length); 416 } 417 } 418 419 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint *ep, 420 uint8_t *buffer, int buffer_length) 421 { 422 int i; 423 424 for (i = 0; i + 3 < buffer_length; i += 4) 425 if (buffer[i + 3] != 0) { 426 int port = buffer[i + 3] >> 4; 427 int length = buffer[i + 3] & 3; 428 snd_usbmidi_input_data(ep, port, &buffer[i], length); 429 } 430 } 431 432 /* 433 * Buggy M-Audio device: running status on input results in a packet that has 434 * the data bytes but not the status byte and that is marked with CIN 4. 435 */ 436 static void snd_usbmidi_maudio_broken_running_status_input( 437 struct snd_usb_midi_in_endpoint *ep, 438 uint8_t *buffer, int buffer_length) 439 { 440 int i; 441 442 for (i = 0; i + 3 < buffer_length; i += 4) 443 if (buffer[i] != 0) { 444 int cable = buffer[i] >> 4; 445 u8 cin = buffer[i] & 0x0f; 446 struct usbmidi_in_port *port = &ep->ports[cable]; 447 int length; 448 449 length = snd_usbmidi_cin_length[cin]; 450 if (cin == 0xf && buffer[i + 1] >= 0xf8) 451 ; /* realtime msg: no running status change */ 452 else if (cin >= 0x8 && cin <= 0xe) 453 /* channel msg */ 454 port->running_status_length = length - 1; 455 else if (cin == 0x4 && 456 port->running_status_length != 0 && 457 buffer[i + 1] < 0x80) 458 /* CIN 4 that is not a SysEx */ 459 length = port->running_status_length; 460 else 461 /* 462 * All other msgs cannot begin running status. 463 * (A channel msg sent as two or three CIN 0xF 464 * packets could in theory, but this device 465 * doesn't use this format.) 466 */ 467 port->running_status_length = 0; 468 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], 469 length); 470 } 471 } 472 473 /* 474 * QinHeng CH345 is buggy: every second packet inside a SysEx has not CIN 4 475 * but the previously seen CIN, but still with three data bytes. 476 */ 477 static void ch345_broken_sysex_input(struct snd_usb_midi_in_endpoint *ep, 478 uint8_t *buffer, int buffer_length) 479 { 480 unsigned int i, cin, length; 481 482 for (i = 0; i + 3 < buffer_length; i += 4) { 483 if (buffer[i] == 0 && i > 0) 484 break; 485 cin = buffer[i] & 0x0f; 486 if (ep->in_sysex && 487 cin == ep->last_cin && 488 (buffer[i + 1 + (cin == 0x6)] & 0x80) == 0) 489 cin = 0x4; 490 #if 0 491 if (buffer[i + 1] == 0x90) { 492 /* 493 * Either a corrupted running status or a real note-on 494 * message; impossible to detect reliably. 495 */ 496 } 497 #endif 498 length = snd_usbmidi_cin_length[cin]; 499 snd_usbmidi_input_data(ep, 0, &buffer[i + 1], length); 500 ep->in_sysex = cin == 0x4; 501 if (!ep->in_sysex) 502 ep->last_cin = cin; 503 } 504 } 505 506 /* 507 * CME protocol: like the standard protocol, but SysEx commands are sent as a 508 * single USB packet preceded by a 0x0F byte. 509 */ 510 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep, 511 uint8_t *buffer, int buffer_length) 512 { 513 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f) 514 snd_usbmidi_standard_input(ep, buffer, buffer_length); 515 else 516 snd_usbmidi_input_data(ep, buffer[0] >> 4, 517 &buffer[1], buffer_length - 1); 518 } 519 520 /* 521 * Adds one USB MIDI packet to the output buffer. 522 */ 523 static void snd_usbmidi_output_standard_packet(struct urb *urb, uint8_t p0, 524 uint8_t p1, uint8_t p2, 525 uint8_t p3) 526 { 527 528 uint8_t *buf = 529 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length; 530 buf[0] = p0; 531 buf[1] = p1; 532 buf[2] = p2; 533 buf[3] = p3; 534 urb->transfer_buffer_length += 4; 535 } 536 537 /* 538 * Adds one Midiman packet to the output buffer. 539 */ 540 static void snd_usbmidi_output_midiman_packet(struct urb *urb, uint8_t p0, 541 uint8_t p1, uint8_t p2, 542 uint8_t p3) 543 { 544 545 uint8_t *buf = 546 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length; 547 buf[0] = p1; 548 buf[1] = p2; 549 buf[2] = p3; 550 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; 551 urb->transfer_buffer_length += 4; 552 } 553 554 /* 555 * Converts MIDI commands to USB MIDI packets. 556 */ 557 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port *port, 558 uint8_t b, struct urb *urb) 559 { 560 uint8_t p0 = port->cable; 561 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = 562 port->ep->umidi->usb_protocol_ops->output_packet; 563 564 if (b >= 0xf8) { 565 output_packet(urb, p0 | 0x0f, b, 0, 0); 566 } else if (b >= 0xf0) { 567 switch (b) { 568 case 0xf0: 569 port->data[0] = b; 570 port->state = STATE_SYSEX_1; 571 break; 572 case 0xf1: 573 case 0xf3: 574 port->data[0] = b; 575 port->state = STATE_1PARAM; 576 break; 577 case 0xf2: 578 port->data[0] = b; 579 port->state = STATE_2PARAM_1; 580 break; 581 case 0xf4: 582 case 0xf5: 583 port->state = STATE_UNKNOWN; 584 break; 585 case 0xf6: 586 output_packet(urb, p0 | 0x05, 0xf6, 0, 0); 587 port->state = STATE_UNKNOWN; 588 break; 589 case 0xf7: 590 switch (port->state) { 591 case STATE_SYSEX_0: 592 output_packet(urb, p0 | 0x05, 0xf7, 0, 0); 593 break; 594 case STATE_SYSEX_1: 595 output_packet(urb, p0 | 0x06, port->data[0], 596 0xf7, 0); 597 break; 598 case STATE_SYSEX_2: 599 output_packet(urb, p0 | 0x07, port->data[0], 600 port->data[1], 0xf7); 601 break; 602 } 603 port->state = STATE_UNKNOWN; 604 break; 605 } 606 } else if (b >= 0x80) { 607 port->data[0] = b; 608 if (b >= 0xc0 && b <= 0xdf) 609 port->state = STATE_1PARAM; 610 else 611 port->state = STATE_2PARAM_1; 612 } else { /* b < 0x80 */ 613 switch (port->state) { 614 case STATE_1PARAM: 615 if (port->data[0] < 0xf0) { 616 p0 |= port->data[0] >> 4; 617 } else { 618 p0 |= 0x02; 619 port->state = STATE_UNKNOWN; 620 } 621 output_packet(urb, p0, port->data[0], b, 0); 622 break; 623 case STATE_2PARAM_1: 624 port->data[1] = b; 625 port->state = STATE_2PARAM_2; 626 break; 627 case STATE_2PARAM_2: 628 if (port->data[0] < 0xf0) { 629 p0 |= port->data[0] >> 4; 630 port->state = STATE_2PARAM_1; 631 } else { 632 p0 |= 0x03; 633 port->state = STATE_UNKNOWN; 634 } 635 output_packet(urb, p0, port->data[0], port->data[1], b); 636 break; 637 case STATE_SYSEX_0: 638 port->data[0] = b; 639 port->state = STATE_SYSEX_1; 640 break; 641 case STATE_SYSEX_1: 642 port->data[1] = b; 643 port->state = STATE_SYSEX_2; 644 break; 645 case STATE_SYSEX_2: 646 output_packet(urb, p0 | 0x04, port->data[0], 647 port->data[1], b); 648 port->state = STATE_SYSEX_0; 649 break; 650 } 651 } 652 } 653 654 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint *ep, 655 struct urb *urb) 656 { 657 int p; 658 659 /* FIXME: lower-numbered ports can starve higher-numbered ports */ 660 for (p = 0; p < 0x10; ++p) { 661 struct usbmidi_out_port *port = &ep->ports[p]; 662 if (!port->active) 663 continue; 664 while (urb->transfer_buffer_length + 3 < ep->max_transfer) { 665 uint8_t b; 666 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { 667 port->active = 0; 668 break; 669 } 670 snd_usbmidi_transmit_byte(port, b, urb); 671 } 672 } 673 } 674 675 static const struct usb_protocol_ops snd_usbmidi_standard_ops = { 676 .input = snd_usbmidi_standard_input, 677 .output = snd_usbmidi_standard_output, 678 .output_packet = snd_usbmidi_output_standard_packet, 679 }; 680 681 static const struct usb_protocol_ops snd_usbmidi_midiman_ops = { 682 .input = snd_usbmidi_midiman_input, 683 .output = snd_usbmidi_standard_output, 684 .output_packet = snd_usbmidi_output_midiman_packet, 685 }; 686 687 static const 688 struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = { 689 .input = snd_usbmidi_maudio_broken_running_status_input, 690 .output = snd_usbmidi_standard_output, 691 .output_packet = snd_usbmidi_output_standard_packet, 692 }; 693 694 static const struct usb_protocol_ops snd_usbmidi_cme_ops = { 695 .input = snd_usbmidi_cme_input, 696 .output = snd_usbmidi_standard_output, 697 .output_packet = snd_usbmidi_output_standard_packet, 698 }; 699 700 static const struct usb_protocol_ops snd_usbmidi_ch345_broken_sysex_ops = { 701 .input = ch345_broken_sysex_input, 702 .output = snd_usbmidi_standard_output, 703 .output_packet = snd_usbmidi_output_standard_packet, 704 }; 705 706 /* 707 * AKAI MPD16 protocol: 708 * 709 * For control port (endpoint 1): 710 * ============================== 711 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a 712 * SysEx message (msg_len=9 bytes long). 713 * 714 * For data port (endpoint 2): 715 * =========================== 716 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a 717 * MIDI message (msg_len bytes long) 718 * 719 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change. 720 */ 721 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep, 722 uint8_t *buffer, int buffer_length) 723 { 724 unsigned int pos = 0; 725 unsigned int len = (unsigned int)buffer_length; 726 while (pos < len) { 727 unsigned int port = (buffer[pos] >> 4) - 1; 728 unsigned int msg_len = buffer[pos] & 0x0f; 729 pos++; 730 if (pos + msg_len <= len && port < 2) 731 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len); 732 pos += msg_len; 733 } 734 } 735 736 #define MAX_AKAI_SYSEX_LEN 9 737 738 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep, 739 struct urb *urb) 740 { 741 uint8_t *msg; 742 int pos, end, count, buf_end; 743 uint8_t tmp[MAX_AKAI_SYSEX_LEN]; 744 struct snd_rawmidi_substream *substream = ep->ports[0].substream; 745 746 if (!ep->ports[0].active) 747 return; 748 749 msg = urb->transfer_buffer + urb->transfer_buffer_length; 750 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1; 751 752 /* only try adding more data when there's space for at least 1 SysEx */ 753 while (urb->transfer_buffer_length < buf_end) { 754 count = snd_rawmidi_transmit_peek(substream, 755 tmp, MAX_AKAI_SYSEX_LEN); 756 if (!count) { 757 ep->ports[0].active = 0; 758 return; 759 } 760 /* try to skip non-SysEx data */ 761 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++) 762 ; 763 764 if (pos > 0) { 765 snd_rawmidi_transmit_ack(substream, pos); 766 continue; 767 } 768 769 /* look for the start or end marker */ 770 for (end = 1; end < count && tmp[end] < 0xF0; end++) 771 ; 772 773 /* next SysEx started before the end of current one */ 774 if (end < count && tmp[end] == 0xF0) { 775 /* it's incomplete - drop it */ 776 snd_rawmidi_transmit_ack(substream, end); 777 continue; 778 } 779 /* SysEx complete */ 780 if (end < count && tmp[end] == 0xF7) { 781 /* queue it, ack it, and get the next one */ 782 count = end + 1; 783 msg[0] = 0x10 | count; 784 memcpy(&msg[1], tmp, count); 785 snd_rawmidi_transmit_ack(substream, count); 786 urb->transfer_buffer_length += count + 1; 787 msg += count + 1; 788 continue; 789 } 790 /* less than 9 bytes and no end byte - wait for more */ 791 if (count < MAX_AKAI_SYSEX_LEN) { 792 ep->ports[0].active = 0; 793 return; 794 } 795 /* 9 bytes and no end marker in sight - malformed, skip it */ 796 snd_rawmidi_transmit_ack(substream, count); 797 } 798 } 799 800 static const struct usb_protocol_ops snd_usbmidi_akai_ops = { 801 .input = snd_usbmidi_akai_input, 802 .output = snd_usbmidi_akai_output, 803 }; 804 805 /* 806 * Novation USB MIDI protocol: number of data bytes is in the first byte 807 * (when receiving) (+1!) or in the second byte (when sending); data begins 808 * at the third byte. 809 */ 810 811 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint *ep, 812 uint8_t *buffer, int buffer_length) 813 { 814 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) 815 return; 816 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); 817 } 818 819 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint *ep, 820 struct urb *urb) 821 { 822 uint8_t *transfer_buffer; 823 int count; 824 825 if (!ep->ports[0].active) 826 return; 827 transfer_buffer = urb->transfer_buffer; 828 count = snd_rawmidi_transmit(ep->ports[0].substream, 829 &transfer_buffer[2], 830 ep->max_transfer - 2); 831 if (count < 1) { 832 ep->ports[0].active = 0; 833 return; 834 } 835 transfer_buffer[0] = 0; 836 transfer_buffer[1] = count; 837 urb->transfer_buffer_length = 2 + count; 838 } 839 840 static const struct usb_protocol_ops snd_usbmidi_novation_ops = { 841 .input = snd_usbmidi_novation_input, 842 .output = snd_usbmidi_novation_output, 843 }; 844 845 /* 846 * "raw" protocol: just move raw MIDI bytes from/to the endpoint 847 */ 848 849 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint *ep, 850 uint8_t *buffer, int buffer_length) 851 { 852 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 853 } 854 855 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint *ep, 856 struct urb *urb) 857 { 858 int count; 859 860 if (!ep->ports[0].active) 861 return; 862 count = snd_rawmidi_transmit(ep->ports[0].substream, 863 urb->transfer_buffer, 864 ep->max_transfer); 865 if (count < 1) { 866 ep->ports[0].active = 0; 867 return; 868 } 869 urb->transfer_buffer_length = count; 870 } 871 872 static const struct usb_protocol_ops snd_usbmidi_raw_ops = { 873 .input = snd_usbmidi_raw_input, 874 .output = snd_usbmidi_raw_output, 875 }; 876 877 /* 878 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes. 879 */ 880 881 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint *ep, 882 uint8_t *buffer, int buffer_length) 883 { 884 if (buffer_length > 2) 885 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2); 886 } 887 888 static const struct usb_protocol_ops snd_usbmidi_ftdi_ops = { 889 .input = snd_usbmidi_ftdi_input, 890 .output = snd_usbmidi_raw_output, 891 }; 892 893 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep, 894 uint8_t *buffer, int buffer_length) 895 { 896 if (buffer_length != 9) 897 return; 898 buffer_length = 8; 899 while (buffer_length && buffer[buffer_length - 1] == 0xFD) 900 buffer_length--; 901 if (buffer_length) 902 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 903 } 904 905 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep, 906 struct urb *urb) 907 { 908 int count; 909 910 if (!ep->ports[0].active) 911 return; 912 switch (snd_usb_get_speed(ep->umidi->dev)) { 913 case USB_SPEED_HIGH: 914 case USB_SPEED_SUPER: 915 case USB_SPEED_SUPER_PLUS: 916 count = 1; 917 break; 918 default: 919 count = 2; 920 } 921 count = snd_rawmidi_transmit(ep->ports[0].substream, 922 urb->transfer_buffer, 923 count); 924 if (count < 1) { 925 ep->ports[0].active = 0; 926 return; 927 } 928 929 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count); 930 urb->transfer_buffer_length = ep->max_transfer; 931 } 932 933 static const struct usb_protocol_ops snd_usbmidi_122l_ops = { 934 .input = snd_usbmidi_us122l_input, 935 .output = snd_usbmidi_us122l_output, 936 }; 937 938 /* 939 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. 940 */ 941 942 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint *ep) 943 { 944 static const u8 init_data[] = { 945 /* initialization magic: "get version" */ 946 0xf0, 947 0x00, 0x20, 0x31, /* Emagic */ 948 0x64, /* Unitor8 */ 949 0x0b, /* version number request */ 950 0x00, /* command version */ 951 0x00, /* EEPROM, box 0 */ 952 0xf7 953 }; 954 send_bulk_static_data(ep, init_data, sizeof(init_data)); 955 /* while we're at it, pour on more magic */ 956 send_bulk_static_data(ep, init_data, sizeof(init_data)); 957 } 958 959 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint *ep) 960 { 961 static const u8 finish_data[] = { 962 /* switch to patch mode with last preset */ 963 0xf0, 964 0x00, 0x20, 0x31, /* Emagic */ 965 0x64, /* Unitor8 */ 966 0x10, /* patch switch command */ 967 0x00, /* command version */ 968 0x7f, /* to all boxes */ 969 0x40, /* last preset in EEPROM */ 970 0xf7 971 }; 972 send_bulk_static_data(ep, finish_data, sizeof(finish_data)); 973 } 974 975 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint *ep, 976 uint8_t *buffer, int buffer_length) 977 { 978 int i; 979 980 /* FF indicates end of valid data */ 981 for (i = 0; i < buffer_length; ++i) 982 if (buffer[i] == 0xff) { 983 buffer_length = i; 984 break; 985 } 986 987 /* handle F5 at end of last buffer */ 988 if (ep->seen_f5) 989 goto switch_port; 990 991 while (buffer_length > 0) { 992 /* determine size of data until next F5 */ 993 for (i = 0; i < buffer_length; ++i) 994 if (buffer[i] == 0xf5) 995 break; 996 snd_usbmidi_input_data(ep, ep->current_port, buffer, i); 997 buffer += i; 998 buffer_length -= i; 999 1000 if (buffer_length <= 0) 1001 break; 1002 /* assert(buffer[0] == 0xf5); */ 1003 ep->seen_f5 = 1; 1004 ++buffer; 1005 --buffer_length; 1006 1007 switch_port: 1008 if (buffer_length <= 0) 1009 break; 1010 if (buffer[0] < 0x80) { 1011 ep->current_port = (buffer[0] - 1) & 15; 1012 ++buffer; 1013 --buffer_length; 1014 } 1015 ep->seen_f5 = 0; 1016 } 1017 } 1018 1019 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint *ep, 1020 struct urb *urb) 1021 { 1022 int port0 = ep->current_port; 1023 uint8_t *buf = urb->transfer_buffer; 1024 int buf_free = ep->max_transfer; 1025 int length, i; 1026 1027 for (i = 0; i < 0x10; ++i) { 1028 /* round-robin, starting at the last current port */ 1029 int portnum = (port0 + i) & 15; 1030 struct usbmidi_out_port *port = &ep->ports[portnum]; 1031 1032 if (!port->active) 1033 continue; 1034 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { 1035 port->active = 0; 1036 continue; 1037 } 1038 1039 if (portnum != ep->current_port) { 1040 if (buf_free < 2) 1041 break; 1042 ep->current_port = portnum; 1043 buf[0] = 0xf5; 1044 buf[1] = (portnum + 1) & 15; 1045 buf += 2; 1046 buf_free -= 2; 1047 } 1048 1049 if (buf_free < 1) 1050 break; 1051 length = snd_rawmidi_transmit(port->substream, buf, buf_free); 1052 if (length > 0) { 1053 buf += length; 1054 buf_free -= length; 1055 if (buf_free < 1) 1056 break; 1057 } 1058 } 1059 if (buf_free < ep->max_transfer && buf_free > 0) { 1060 *buf = 0xff; 1061 --buf_free; 1062 } 1063 urb->transfer_buffer_length = ep->max_transfer - buf_free; 1064 } 1065 1066 static const struct usb_protocol_ops snd_usbmidi_emagic_ops = { 1067 .input = snd_usbmidi_emagic_input, 1068 .output = snd_usbmidi_emagic_output, 1069 .init_out_endpoint = snd_usbmidi_emagic_init_out, 1070 .finish_out_endpoint = snd_usbmidi_emagic_finish_out, 1071 }; 1072 1073 1074 static void update_roland_altsetting(struct snd_usb_midi *umidi) 1075 { 1076 struct usb_interface *intf; 1077 struct usb_host_interface *hostif; 1078 struct usb_interface_descriptor *intfd; 1079 int is_light_load; 1080 1081 intf = umidi->iface; 1082 is_light_load = intf->cur_altsetting != intf->altsetting; 1083 if (umidi->roland_load_ctl->private_value == is_light_load) 1084 return; 1085 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value]; 1086 intfd = get_iface_desc(hostif); 1087 snd_usbmidi_input_stop(&umidi->list); 1088 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1089 intfd->bAlternateSetting); 1090 snd_usbmidi_input_start(&umidi->list); 1091 } 1092 1093 static int substream_open(struct snd_rawmidi_substream *substream, int dir, 1094 int open) 1095 { 1096 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1097 struct snd_kcontrol *ctl; 1098 1099 down_read(&umidi->disc_rwsem); 1100 if (umidi->disconnected) { 1101 up_read(&umidi->disc_rwsem); 1102 return open ? -ENODEV : 0; 1103 } 1104 1105 mutex_lock(&umidi->mutex); 1106 if (open) { 1107 if (!umidi->opened[0] && !umidi->opened[1]) { 1108 if (umidi->roland_load_ctl) { 1109 ctl = umidi->roland_load_ctl; 1110 ctl->vd[0].access |= 1111 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1112 snd_ctl_notify(umidi->card, 1113 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1114 update_roland_altsetting(umidi); 1115 } 1116 } 1117 umidi->opened[dir]++; 1118 if (umidi->opened[1]) 1119 snd_usbmidi_input_start(&umidi->list); 1120 } else { 1121 umidi->opened[dir]--; 1122 if (!umidi->opened[1]) 1123 snd_usbmidi_input_stop(&umidi->list); 1124 if (!umidi->opened[0] && !umidi->opened[1]) { 1125 if (umidi->roland_load_ctl) { 1126 ctl = umidi->roland_load_ctl; 1127 ctl->vd[0].access &= 1128 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1129 snd_ctl_notify(umidi->card, 1130 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1131 } 1132 } 1133 } 1134 mutex_unlock(&umidi->mutex); 1135 up_read(&umidi->disc_rwsem); 1136 return 0; 1137 } 1138 1139 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream) 1140 { 1141 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1142 struct usbmidi_out_port *port = NULL; 1143 int i, j; 1144 1145 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 1146 if (umidi->endpoints[i].out) 1147 for (j = 0; j < 0x10; ++j) 1148 if (umidi->endpoints[i].out->ports[j].substream == substream) { 1149 port = &umidi->endpoints[i].out->ports[j]; 1150 break; 1151 } 1152 if (!port) { 1153 snd_BUG(); 1154 return -ENXIO; 1155 } 1156 1157 substream->runtime->private_data = port; 1158 port->state = STATE_UNKNOWN; 1159 return substream_open(substream, 0, 1); 1160 } 1161 1162 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream) 1163 { 1164 return substream_open(substream, 0, 0); 1165 } 1166 1167 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, 1168 int up) 1169 { 1170 struct usbmidi_out_port *port = 1171 (struct usbmidi_out_port *)substream->runtime->private_data; 1172 1173 port->active = up; 1174 if (up) { 1175 if (port->ep->umidi->disconnected) { 1176 /* gobble up remaining bytes to prevent wait in 1177 * snd_rawmidi_drain_output */ 1178 snd_rawmidi_proceed(substream); 1179 return; 1180 } 1181 tasklet_schedule(&port->ep->tasklet); 1182 } 1183 } 1184 1185 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream) 1186 { 1187 struct usbmidi_out_port *port = substream->runtime->private_data; 1188 struct snd_usb_midi_out_endpoint *ep = port->ep; 1189 unsigned int drain_urbs; 1190 DEFINE_WAIT(wait); 1191 long timeout = msecs_to_jiffies(50); 1192 1193 if (ep->umidi->disconnected) 1194 return; 1195 /* 1196 * The substream buffer is empty, but some data might still be in the 1197 * currently active URBs, so we have to wait for those to complete. 1198 */ 1199 spin_lock_irq(&ep->buffer_lock); 1200 drain_urbs = ep->active_urbs; 1201 if (drain_urbs) { 1202 ep->drain_urbs |= drain_urbs; 1203 do { 1204 prepare_to_wait(&ep->drain_wait, &wait, 1205 TASK_UNINTERRUPTIBLE); 1206 spin_unlock_irq(&ep->buffer_lock); 1207 timeout = schedule_timeout(timeout); 1208 spin_lock_irq(&ep->buffer_lock); 1209 drain_urbs &= ep->drain_urbs; 1210 } while (drain_urbs && timeout); 1211 finish_wait(&ep->drain_wait, &wait); 1212 } 1213 spin_unlock_irq(&ep->buffer_lock); 1214 } 1215 1216 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream) 1217 { 1218 return substream_open(substream, 1, 1); 1219 } 1220 1221 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream) 1222 { 1223 return substream_open(substream, 1, 0); 1224 } 1225 1226 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, 1227 int up) 1228 { 1229 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1230 1231 if (up) 1232 set_bit(substream->number, &umidi->input_triggered); 1233 else 1234 clear_bit(substream->number, &umidi->input_triggered); 1235 } 1236 1237 static const struct snd_rawmidi_ops snd_usbmidi_output_ops = { 1238 .open = snd_usbmidi_output_open, 1239 .close = snd_usbmidi_output_close, 1240 .trigger = snd_usbmidi_output_trigger, 1241 .drain = snd_usbmidi_output_drain, 1242 }; 1243 1244 static const struct snd_rawmidi_ops snd_usbmidi_input_ops = { 1245 .open = snd_usbmidi_input_open, 1246 .close = snd_usbmidi_input_close, 1247 .trigger = snd_usbmidi_input_trigger 1248 }; 1249 1250 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb, 1251 unsigned int buffer_length) 1252 { 1253 usb_free_coherent(umidi->dev, buffer_length, 1254 urb->transfer_buffer, urb->transfer_dma); 1255 usb_free_urb(urb); 1256 } 1257 1258 /* 1259 * Frees an input endpoint. 1260 * May be called when ep hasn't been initialized completely. 1261 */ 1262 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint *ep) 1263 { 1264 unsigned int i; 1265 1266 for (i = 0; i < INPUT_URBS; ++i) 1267 if (ep->urbs[i]) 1268 free_urb_and_buffer(ep->umidi, ep->urbs[i], 1269 ep->urbs[i]->transfer_buffer_length); 1270 kfree(ep); 1271 } 1272 1273 /* 1274 * Creates an input endpoint. 1275 */ 1276 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi *umidi, 1277 struct snd_usb_midi_endpoint_info *ep_info, 1278 struct snd_usb_midi_endpoint *rep) 1279 { 1280 struct snd_usb_midi_in_endpoint *ep; 1281 void *buffer; 1282 unsigned int pipe; 1283 int length; 1284 unsigned int i; 1285 int err; 1286 1287 rep->in = NULL; 1288 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1289 if (!ep) 1290 return -ENOMEM; 1291 ep->umidi = umidi; 1292 1293 for (i = 0; i < INPUT_URBS; ++i) { 1294 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); 1295 if (!ep->urbs[i]) { 1296 err = -ENOMEM; 1297 goto error; 1298 } 1299 } 1300 if (ep_info->in_interval) 1301 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep); 1302 else 1303 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep); 1304 length = usb_maxpacket(umidi->dev, pipe, 0); 1305 for (i = 0; i < INPUT_URBS; ++i) { 1306 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL, 1307 &ep->urbs[i]->transfer_dma); 1308 if (!buffer) { 1309 err = -ENOMEM; 1310 goto error; 1311 } 1312 if (ep_info->in_interval) 1313 usb_fill_int_urb(ep->urbs[i], umidi->dev, 1314 pipe, buffer, length, 1315 snd_usbmidi_in_urb_complete, 1316 ep, ep_info->in_interval); 1317 else 1318 usb_fill_bulk_urb(ep->urbs[i], umidi->dev, 1319 pipe, buffer, length, 1320 snd_usbmidi_in_urb_complete, ep); 1321 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1322 err = usb_urb_ep_type_check(ep->urbs[i]); 1323 if (err < 0) { 1324 dev_err(&umidi->dev->dev, "invalid MIDI in EP %x\n", 1325 ep_info->in_ep); 1326 goto error; 1327 } 1328 } 1329 1330 rep->in = ep; 1331 return 0; 1332 1333 error: 1334 snd_usbmidi_in_endpoint_delete(ep); 1335 return -ENOMEM; 1336 } 1337 1338 /* 1339 * Frees an output endpoint. 1340 * May be called when ep hasn't been initialized completely. 1341 */ 1342 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep) 1343 { 1344 unsigned int i; 1345 1346 for (i = 0; i < OUTPUT_URBS; ++i) 1347 if (ep->urbs[i].urb) { 1348 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb, 1349 ep->max_transfer); 1350 ep->urbs[i].urb = NULL; 1351 } 1352 } 1353 1354 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep) 1355 { 1356 snd_usbmidi_out_endpoint_clear(ep); 1357 kfree(ep); 1358 } 1359 1360 /* 1361 * Creates an output endpoint, and initializes output ports. 1362 */ 1363 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi *umidi, 1364 struct snd_usb_midi_endpoint_info *ep_info, 1365 struct snd_usb_midi_endpoint *rep) 1366 { 1367 struct snd_usb_midi_out_endpoint *ep; 1368 unsigned int i; 1369 unsigned int pipe; 1370 void *buffer; 1371 int err; 1372 1373 rep->out = NULL; 1374 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1375 if (!ep) 1376 return -ENOMEM; 1377 ep->umidi = umidi; 1378 1379 for (i = 0; i < OUTPUT_URBS; ++i) { 1380 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL); 1381 if (!ep->urbs[i].urb) { 1382 err = -ENOMEM; 1383 goto error; 1384 } 1385 ep->urbs[i].ep = ep; 1386 } 1387 if (ep_info->out_interval) 1388 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep); 1389 else 1390 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep); 1391 switch (umidi->usb_id) { 1392 default: 1393 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1); 1394 break; 1395 /* 1396 * Various chips declare a packet size larger than 4 bytes, but 1397 * do not actually work with larger packets: 1398 */ 1399 case USB_ID(0x0a67, 0x5011): /* Medeli DD305 */ 1400 case USB_ID(0x0a92, 0x1020): /* ESI M4U */ 1401 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */ 1402 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */ 1403 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */ 1404 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */ 1405 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */ 1406 ep->max_transfer = 4; 1407 break; 1408 /* 1409 * Some devices only work with 9 bytes packet size: 1410 */ 1411 case USB_ID(0x0644, 0x800e): /* Tascam US-122L */ 1412 case USB_ID(0x0644, 0x800f): /* Tascam US-144 */ 1413 ep->max_transfer = 9; 1414 break; 1415 } 1416 for (i = 0; i < OUTPUT_URBS; ++i) { 1417 buffer = usb_alloc_coherent(umidi->dev, 1418 ep->max_transfer, GFP_KERNEL, 1419 &ep->urbs[i].urb->transfer_dma); 1420 if (!buffer) { 1421 err = -ENOMEM; 1422 goto error; 1423 } 1424 if (ep_info->out_interval) 1425 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev, 1426 pipe, buffer, ep->max_transfer, 1427 snd_usbmidi_out_urb_complete, 1428 &ep->urbs[i], ep_info->out_interval); 1429 else 1430 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev, 1431 pipe, buffer, ep->max_transfer, 1432 snd_usbmidi_out_urb_complete, 1433 &ep->urbs[i]); 1434 err = usb_urb_ep_type_check(ep->urbs[i].urb); 1435 if (err < 0) { 1436 dev_err(&umidi->dev->dev, "invalid MIDI out EP %x\n", 1437 ep_info->out_ep); 1438 goto error; 1439 } 1440 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1441 } 1442 1443 spin_lock_init(&ep->buffer_lock); 1444 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); 1445 init_waitqueue_head(&ep->drain_wait); 1446 1447 for (i = 0; i < 0x10; ++i) 1448 if (ep_info->out_cables & (1 << i)) { 1449 ep->ports[i].ep = ep; 1450 ep->ports[i].cable = i << 4; 1451 } 1452 1453 if (umidi->usb_protocol_ops->init_out_endpoint) 1454 umidi->usb_protocol_ops->init_out_endpoint(ep); 1455 1456 rep->out = ep; 1457 return 0; 1458 1459 error: 1460 snd_usbmidi_out_endpoint_delete(ep); 1461 return err; 1462 } 1463 1464 /* 1465 * Frees everything. 1466 */ 1467 static void snd_usbmidi_free(struct snd_usb_midi *umidi) 1468 { 1469 int i; 1470 1471 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1472 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 1473 if (ep->out) 1474 snd_usbmidi_out_endpoint_delete(ep->out); 1475 if (ep->in) 1476 snd_usbmidi_in_endpoint_delete(ep->in); 1477 } 1478 mutex_destroy(&umidi->mutex); 1479 kfree(umidi); 1480 } 1481 1482 /* 1483 * Unlinks all URBs (must be done before the usb_device is deleted). 1484 */ 1485 void snd_usbmidi_disconnect(struct list_head *p) 1486 { 1487 struct snd_usb_midi *umidi; 1488 unsigned int i, j; 1489 1490 umidi = list_entry(p, struct snd_usb_midi, list); 1491 /* 1492 * an URB's completion handler may start the timer and 1493 * a timer may submit an URB. To reliably break the cycle 1494 * a flag under lock must be used 1495 */ 1496 down_write(&umidi->disc_rwsem); 1497 spin_lock_irq(&umidi->disc_lock); 1498 umidi->disconnected = 1; 1499 spin_unlock_irq(&umidi->disc_lock); 1500 up_write(&umidi->disc_rwsem); 1501 1502 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1503 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 1504 if (ep->out) 1505 tasklet_kill(&ep->out->tasklet); 1506 if (ep->out) { 1507 for (j = 0; j < OUTPUT_URBS; ++j) 1508 usb_kill_urb(ep->out->urbs[j].urb); 1509 if (umidi->usb_protocol_ops->finish_out_endpoint) 1510 umidi->usb_protocol_ops->finish_out_endpoint(ep->out); 1511 ep->out->active_urbs = 0; 1512 if (ep->out->drain_urbs) { 1513 ep->out->drain_urbs = 0; 1514 wake_up(&ep->out->drain_wait); 1515 } 1516 } 1517 if (ep->in) 1518 for (j = 0; j < INPUT_URBS; ++j) 1519 usb_kill_urb(ep->in->urbs[j]); 1520 /* free endpoints here; later call can result in Oops */ 1521 if (ep->out) 1522 snd_usbmidi_out_endpoint_clear(ep->out); 1523 if (ep->in) { 1524 snd_usbmidi_in_endpoint_delete(ep->in); 1525 ep->in = NULL; 1526 } 1527 } 1528 del_timer_sync(&umidi->error_timer); 1529 } 1530 EXPORT_SYMBOL(snd_usbmidi_disconnect); 1531 1532 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi) 1533 { 1534 struct snd_usb_midi *umidi = rmidi->private_data; 1535 snd_usbmidi_free(umidi); 1536 } 1537 1538 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi *umidi, 1539 int stream, 1540 int number) 1541 { 1542 struct snd_rawmidi_substream *substream; 1543 1544 list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams, 1545 list) { 1546 if (substream->number == number) 1547 return substream; 1548 } 1549 return NULL; 1550 } 1551 1552 /* 1553 * This list specifies names for ports that do not fit into the standard 1554 * "(product) MIDI (n)" schema because they aren't external MIDI ports, 1555 * such as internal control or synthesizer ports. 1556 */ 1557 static struct port_info { 1558 u32 id; 1559 short int port; 1560 short int voices; 1561 const char *name; 1562 unsigned int seq_flags; 1563 } snd_usbmidi_port_info[] = { 1564 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \ 1565 { .id = USB_ID(vendor, product), \ 1566 .port = num, .voices = voices_, \ 1567 .name = name_, .seq_flags = flags } 1568 #define EXTERNAL_PORT(vendor, product, num, name) \ 1569 PORT_INFO(vendor, product, num, name, 0, \ 1570 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1571 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1572 SNDRV_SEQ_PORT_TYPE_PORT) 1573 #define CONTROL_PORT(vendor, product, num, name) \ 1574 PORT_INFO(vendor, product, num, name, 0, \ 1575 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1576 SNDRV_SEQ_PORT_TYPE_HARDWARE) 1577 #define GM_SYNTH_PORT(vendor, product, num, name, voices) \ 1578 PORT_INFO(vendor, product, num, name, voices, \ 1579 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1580 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1581 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1582 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1583 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \ 1584 PORT_INFO(vendor, product, num, name, voices, \ 1585 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1586 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1587 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1588 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1589 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1590 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1591 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1592 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \ 1593 PORT_INFO(vendor, product, num, name, voices, \ 1594 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1595 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1596 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1597 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1598 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1599 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \ 1600 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1601 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1602 /* Yamaha MOTIF XF */ 1603 GM_SYNTH_PORT(0x0499, 0x105c, 0, "%s Tone Generator", 128), 1604 CONTROL_PORT(0x0499, 0x105c, 1, "%s Remote Control"), 1605 EXTERNAL_PORT(0x0499, 0x105c, 2, "%s Thru"), 1606 CONTROL_PORT(0x0499, 0x105c, 3, "%s Editor"), 1607 /* Roland UA-100 */ 1608 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"), 1609 /* Roland SC-8850 */ 1610 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128), 1611 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128), 1612 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128), 1613 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128), 1614 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"), 1615 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"), 1616 /* Roland U-8 */ 1617 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"), 1618 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"), 1619 /* Roland SC-8820 */ 1620 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64), 1621 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64), 1622 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"), 1623 /* Roland SK-500 */ 1624 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64), 1625 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64), 1626 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"), 1627 /* Roland SC-D70 */ 1628 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64), 1629 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64), 1630 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"), 1631 /* Edirol UM-880 */ 1632 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"), 1633 /* Edirol SD-90 */ 1634 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128), 1635 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128), 1636 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"), 1637 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"), 1638 /* Edirol UM-550 */ 1639 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"), 1640 /* Edirol SD-20 */ 1641 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64), 1642 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64), 1643 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"), 1644 /* Edirol SD-80 */ 1645 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128), 1646 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128), 1647 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"), 1648 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"), 1649 /* Edirol UA-700 */ 1650 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"), 1651 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"), 1652 /* Roland VariOS */ 1653 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"), 1654 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"), 1655 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"), 1656 /* Edirol PCR */ 1657 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"), 1658 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"), 1659 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"), 1660 /* BOSS GS-10 */ 1661 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"), 1662 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"), 1663 /* Edirol UA-1000 */ 1664 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"), 1665 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"), 1666 /* Edirol UR-80 */ 1667 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"), 1668 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"), 1669 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"), 1670 /* Edirol PCR-A */ 1671 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"), 1672 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"), 1673 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"), 1674 /* BOSS GT-PRO */ 1675 CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"), 1676 /* Edirol UM-3EX */ 1677 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"), 1678 /* Roland VG-99 */ 1679 CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"), 1680 EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"), 1681 /* Cakewalk Sonar V-Studio 100 */ 1682 EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"), 1683 CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"), 1684 /* Roland VB-99 */ 1685 CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"), 1686 EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"), 1687 /* Roland A-PRO */ 1688 EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"), 1689 CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"), 1690 CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"), 1691 /* Roland SD-50 */ 1692 ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128), 1693 EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"), 1694 CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"), 1695 /* Roland OCTA-CAPTURE */ 1696 EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"), 1697 CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"), 1698 EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"), 1699 CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"), 1700 /* Roland SPD-SX */ 1701 CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"), 1702 EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"), 1703 /* Roland A-Series */ 1704 CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"), 1705 EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"), 1706 /* Roland INTEGRA-7 */ 1707 ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128), 1708 CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"), 1709 /* M-Audio MidiSport 8x8 */ 1710 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"), 1711 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"), 1712 /* MOTU Fastlane */ 1713 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"), 1714 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"), 1715 /* Emagic Unitor8/AMT8/MT4 */ 1716 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"), 1717 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"), 1718 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"), 1719 /* Akai MPD16 */ 1720 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"), 1721 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0, 1722 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1723 SNDRV_SEQ_PORT_TYPE_HARDWARE), 1724 /* Access Music Virus TI */ 1725 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"), 1726 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0, 1727 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1728 SNDRV_SEQ_PORT_TYPE_HARDWARE | 1729 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER), 1730 }; 1731 1732 static struct port_info *find_port_info(struct snd_usb_midi *umidi, int number) 1733 { 1734 int i; 1735 1736 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) { 1737 if (snd_usbmidi_port_info[i].id == umidi->usb_id && 1738 snd_usbmidi_port_info[i].port == number) 1739 return &snd_usbmidi_port_info[i]; 1740 } 1741 return NULL; 1742 } 1743 1744 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number, 1745 struct snd_seq_port_info *seq_port_info) 1746 { 1747 struct snd_usb_midi *umidi = rmidi->private_data; 1748 struct port_info *port_info; 1749 1750 /* TODO: read port flags from descriptors */ 1751 port_info = find_port_info(umidi, number); 1752 if (port_info) { 1753 seq_port_info->type = port_info->seq_flags; 1754 seq_port_info->midi_voices = port_info->voices; 1755 } 1756 } 1757 1758 static void snd_usbmidi_init_substream(struct snd_usb_midi *umidi, 1759 int stream, int number, 1760 struct snd_rawmidi_substream **rsubstream) 1761 { 1762 struct port_info *port_info; 1763 const char *name_format; 1764 1765 struct snd_rawmidi_substream *substream = 1766 snd_usbmidi_find_substream(umidi, stream, number); 1767 if (!substream) { 1768 dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream, 1769 number); 1770 return; 1771 } 1772 1773 /* TODO: read port name from jack descriptor */ 1774 port_info = find_port_info(umidi, number); 1775 name_format = port_info ? port_info->name : "%s MIDI %d"; 1776 snprintf(substream->name, sizeof(substream->name), 1777 name_format, umidi->card->shortname, number + 1); 1778 1779 *rsubstream = substream; 1780 } 1781 1782 /* 1783 * Creates the endpoints and their ports. 1784 */ 1785 static int snd_usbmidi_create_endpoints(struct snd_usb_midi *umidi, 1786 struct snd_usb_midi_endpoint_info *endpoints) 1787 { 1788 int i, j, err; 1789 int out_ports = 0, in_ports = 0; 1790 1791 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1792 if (endpoints[i].out_cables) { 1793 err = snd_usbmidi_out_endpoint_create(umidi, 1794 &endpoints[i], 1795 &umidi->endpoints[i]); 1796 if (err < 0) 1797 return err; 1798 } 1799 if (endpoints[i].in_cables) { 1800 err = snd_usbmidi_in_endpoint_create(umidi, 1801 &endpoints[i], 1802 &umidi->endpoints[i]); 1803 if (err < 0) 1804 return err; 1805 } 1806 1807 for (j = 0; j < 0x10; ++j) { 1808 if (endpoints[i].out_cables & (1 << j)) { 1809 snd_usbmidi_init_substream(umidi, 1810 SNDRV_RAWMIDI_STREAM_OUTPUT, 1811 out_ports, 1812 &umidi->endpoints[i].out->ports[j].substream); 1813 ++out_ports; 1814 } 1815 if (endpoints[i].in_cables & (1 << j)) { 1816 snd_usbmidi_init_substream(umidi, 1817 SNDRV_RAWMIDI_STREAM_INPUT, 1818 in_ports, 1819 &umidi->endpoints[i].in->ports[j].substream); 1820 ++in_ports; 1821 } 1822 } 1823 } 1824 dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n", 1825 out_ports, in_ports); 1826 return 0; 1827 } 1828 1829 static struct usb_ms_endpoint_descriptor *find_usb_ms_endpoint_descriptor( 1830 struct usb_host_endpoint *hostep) 1831 { 1832 unsigned char *extra = hostep->extra; 1833 int extralen = hostep->extralen; 1834 1835 while (extralen > 3) { 1836 struct usb_ms_endpoint_descriptor *ms_ep = 1837 (struct usb_ms_endpoint_descriptor *)extra; 1838 1839 if (ms_ep->bLength > 3 && 1840 ms_ep->bDescriptorType == USB_DT_CS_ENDPOINT && 1841 ms_ep->bDescriptorSubtype == UAC_MS_GENERAL) 1842 return ms_ep; 1843 if (!extra[0]) 1844 break; 1845 extralen -= extra[0]; 1846 extra += extra[0]; 1847 } 1848 return NULL; 1849 } 1850 1851 /* 1852 * Returns MIDIStreaming device capabilities. 1853 */ 1854 static int snd_usbmidi_get_ms_info(struct snd_usb_midi *umidi, 1855 struct snd_usb_midi_endpoint_info *endpoints) 1856 { 1857 struct usb_interface *intf; 1858 struct usb_host_interface *hostif; 1859 struct usb_interface_descriptor *intfd; 1860 struct usb_ms_header_descriptor *ms_header; 1861 struct usb_host_endpoint *hostep; 1862 struct usb_endpoint_descriptor *ep; 1863 struct usb_ms_endpoint_descriptor *ms_ep; 1864 int i, epidx; 1865 1866 intf = umidi->iface; 1867 if (!intf) 1868 return -ENXIO; 1869 hostif = &intf->altsetting[0]; 1870 intfd = get_iface_desc(hostif); 1871 ms_header = (struct usb_ms_header_descriptor *)hostif->extra; 1872 if (hostif->extralen >= 7 && 1873 ms_header->bLength >= 7 && 1874 ms_header->bDescriptorType == USB_DT_CS_INTERFACE && 1875 ms_header->bDescriptorSubtype == UAC_HEADER) 1876 dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n", 1877 ms_header->bcdMSC[1], ms_header->bcdMSC[0]); 1878 else 1879 dev_warn(&umidi->dev->dev, 1880 "MIDIStreaming interface descriptor not found\n"); 1881 1882 epidx = 0; 1883 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1884 hostep = &hostif->endpoint[i]; 1885 ep = get_ep_desc(hostep); 1886 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep)) 1887 continue; 1888 ms_ep = find_usb_ms_endpoint_descriptor(hostep); 1889 if (!ms_ep) 1890 continue; 1891 if (usb_endpoint_dir_out(ep)) { 1892 if (endpoints[epidx].out_ep) { 1893 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1894 dev_warn(&umidi->dev->dev, 1895 "too many endpoints\n"); 1896 break; 1897 } 1898 } 1899 endpoints[epidx].out_ep = usb_endpoint_num(ep); 1900 if (usb_endpoint_xfer_int(ep)) 1901 endpoints[epidx].out_interval = ep->bInterval; 1902 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1903 /* 1904 * Low speed bulk transfers don't exist, so 1905 * force interrupt transfers for devices like 1906 * ESI MIDI Mate that try to use them anyway. 1907 */ 1908 endpoints[epidx].out_interval = 1; 1909 endpoints[epidx].out_cables = 1910 (1 << ms_ep->bNumEmbMIDIJack) - 1; 1911 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 1912 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1913 } else { 1914 if (endpoints[epidx].in_ep) { 1915 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1916 dev_warn(&umidi->dev->dev, 1917 "too many endpoints\n"); 1918 break; 1919 } 1920 } 1921 endpoints[epidx].in_ep = usb_endpoint_num(ep); 1922 if (usb_endpoint_xfer_int(ep)) 1923 endpoints[epidx].in_interval = ep->bInterval; 1924 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1925 endpoints[epidx].in_interval = 1; 1926 endpoints[epidx].in_cables = 1927 (1 << ms_ep->bNumEmbMIDIJack) - 1; 1928 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 1929 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1930 } 1931 } 1932 return 0; 1933 } 1934 1935 static int roland_load_info(struct snd_kcontrol *kcontrol, 1936 struct snd_ctl_elem_info *info) 1937 { 1938 static const char *const names[] = { "High Load", "Light Load" }; 1939 1940 return snd_ctl_enum_info(info, 1, 2, names); 1941 } 1942 1943 static int roland_load_get(struct snd_kcontrol *kcontrol, 1944 struct snd_ctl_elem_value *value) 1945 { 1946 value->value.enumerated.item[0] = kcontrol->private_value; 1947 return 0; 1948 } 1949 1950 static int roland_load_put(struct snd_kcontrol *kcontrol, 1951 struct snd_ctl_elem_value *value) 1952 { 1953 struct snd_usb_midi *umidi = kcontrol->private_data; 1954 int changed; 1955 1956 if (value->value.enumerated.item[0] > 1) 1957 return -EINVAL; 1958 mutex_lock(&umidi->mutex); 1959 changed = value->value.enumerated.item[0] != kcontrol->private_value; 1960 if (changed) 1961 kcontrol->private_value = value->value.enumerated.item[0]; 1962 mutex_unlock(&umidi->mutex); 1963 return changed; 1964 } 1965 1966 static const struct snd_kcontrol_new roland_load_ctl = { 1967 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1968 .name = "MIDI Input Mode", 1969 .info = roland_load_info, 1970 .get = roland_load_get, 1971 .put = roland_load_put, 1972 .private_value = 1, 1973 }; 1974 1975 /* 1976 * On Roland devices, use the second alternate setting to be able to use 1977 * the interrupt input endpoint. 1978 */ 1979 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi *umidi) 1980 { 1981 struct usb_interface *intf; 1982 struct usb_host_interface *hostif; 1983 struct usb_interface_descriptor *intfd; 1984 1985 intf = umidi->iface; 1986 if (!intf || intf->num_altsetting != 2) 1987 return; 1988 1989 hostif = &intf->altsetting[1]; 1990 intfd = get_iface_desc(hostif); 1991 /* If either or both of the endpoints support interrupt transfer, 1992 * then use the alternate setting 1993 */ 1994 if (intfd->bNumEndpoints != 2 || 1995 !((get_endpoint(hostif, 0)->bmAttributes & 1996 USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT || 1997 (get_endpoint(hostif, 1)->bmAttributes & 1998 USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)) 1999 return; 2000 2001 dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n", 2002 intfd->bAlternateSetting); 2003 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 2004 intfd->bAlternateSetting); 2005 2006 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi); 2007 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0) 2008 umidi->roland_load_ctl = NULL; 2009 } 2010 2011 /* 2012 * Try to find any usable endpoints in the interface. 2013 */ 2014 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi *umidi, 2015 struct snd_usb_midi_endpoint_info *endpoint, 2016 int max_endpoints) 2017 { 2018 struct usb_interface *intf; 2019 struct usb_host_interface *hostif; 2020 struct usb_interface_descriptor *intfd; 2021 struct usb_endpoint_descriptor *epd; 2022 int i, out_eps = 0, in_eps = 0; 2023 2024 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582) 2025 snd_usbmidi_switch_roland_altsetting(umidi); 2026 2027 if (endpoint[0].out_ep || endpoint[0].in_ep) 2028 return 0; 2029 2030 intf = umidi->iface; 2031 if (!intf || intf->num_altsetting < 1) 2032 return -ENOENT; 2033 hostif = intf->cur_altsetting; 2034 intfd = get_iface_desc(hostif); 2035 2036 for (i = 0; i < intfd->bNumEndpoints; ++i) { 2037 epd = get_endpoint(hostif, i); 2038 if (!usb_endpoint_xfer_bulk(epd) && 2039 !usb_endpoint_xfer_int(epd)) 2040 continue; 2041 if (out_eps < max_endpoints && 2042 usb_endpoint_dir_out(epd)) { 2043 endpoint[out_eps].out_ep = usb_endpoint_num(epd); 2044 if (usb_endpoint_xfer_int(epd)) 2045 endpoint[out_eps].out_interval = epd->bInterval; 2046 ++out_eps; 2047 } 2048 if (in_eps < max_endpoints && 2049 usb_endpoint_dir_in(epd)) { 2050 endpoint[in_eps].in_ep = usb_endpoint_num(epd); 2051 if (usb_endpoint_xfer_int(epd)) 2052 endpoint[in_eps].in_interval = epd->bInterval; 2053 ++in_eps; 2054 } 2055 } 2056 return (out_eps || in_eps) ? 0 : -ENOENT; 2057 } 2058 2059 /* 2060 * Detects the endpoints for one-port-per-endpoint protocols. 2061 */ 2062 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi *umidi, 2063 struct snd_usb_midi_endpoint_info *endpoints) 2064 { 2065 int err, i; 2066 2067 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); 2068 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2069 if (endpoints[i].out_ep) 2070 endpoints[i].out_cables = 0x0001; 2071 if (endpoints[i].in_ep) 2072 endpoints[i].in_cables = 0x0001; 2073 } 2074 return err; 2075 } 2076 2077 /* 2078 * Detects the endpoints and ports of Yamaha devices. 2079 */ 2080 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi *umidi, 2081 struct snd_usb_midi_endpoint_info *endpoint) 2082 { 2083 struct usb_interface *intf; 2084 struct usb_host_interface *hostif; 2085 struct usb_interface_descriptor *intfd; 2086 uint8_t *cs_desc; 2087 2088 intf = umidi->iface; 2089 if (!intf) 2090 return -ENOENT; 2091 hostif = intf->altsetting; 2092 intfd = get_iface_desc(hostif); 2093 if (intfd->bNumEndpoints < 1) 2094 return -ENOENT; 2095 2096 /* 2097 * For each port there is one MIDI_IN/OUT_JACK descriptor, not 2098 * necessarily with any useful contents. So simply count 'em. 2099 */ 2100 for (cs_desc = hostif->extra; 2101 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2102 cs_desc += cs_desc[0]) { 2103 if (cs_desc[1] == USB_DT_CS_INTERFACE) { 2104 if (cs_desc[2] == UAC_MIDI_IN_JACK) 2105 endpoint->in_cables = 2106 (endpoint->in_cables << 1) | 1; 2107 else if (cs_desc[2] == UAC_MIDI_OUT_JACK) 2108 endpoint->out_cables = 2109 (endpoint->out_cables << 1) | 1; 2110 } 2111 } 2112 if (!endpoint->in_cables && !endpoint->out_cables) 2113 return -ENOENT; 2114 2115 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2116 } 2117 2118 /* 2119 * Detects the endpoints and ports of Roland devices. 2120 */ 2121 static int snd_usbmidi_detect_roland(struct snd_usb_midi *umidi, 2122 struct snd_usb_midi_endpoint_info *endpoint) 2123 { 2124 struct usb_interface *intf; 2125 struct usb_host_interface *hostif; 2126 u8 *cs_desc; 2127 2128 intf = umidi->iface; 2129 if (!intf) 2130 return -ENOENT; 2131 hostif = intf->altsetting; 2132 /* 2133 * Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>, 2134 * some have standard class descriptors, or both kinds, or neither. 2135 */ 2136 for (cs_desc = hostif->extra; 2137 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2138 cs_desc += cs_desc[0]) { 2139 if (cs_desc[0] >= 6 && 2140 cs_desc[1] == USB_DT_CS_INTERFACE && 2141 cs_desc[2] == 0xf1 && 2142 cs_desc[3] == 0x02) { 2143 endpoint->in_cables = (1 << cs_desc[4]) - 1; 2144 endpoint->out_cables = (1 << cs_desc[5]) - 1; 2145 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2146 } else if (cs_desc[0] >= 7 && 2147 cs_desc[1] == USB_DT_CS_INTERFACE && 2148 cs_desc[2] == UAC_HEADER) { 2149 return snd_usbmidi_get_ms_info(umidi, endpoint); 2150 } 2151 } 2152 2153 return -ENODEV; 2154 } 2155 2156 /* 2157 * Creates the endpoints and their ports for Midiman devices. 2158 */ 2159 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi *umidi, 2160 struct snd_usb_midi_endpoint_info *endpoint) 2161 { 2162 struct snd_usb_midi_endpoint_info ep_info; 2163 struct usb_interface *intf; 2164 struct usb_host_interface *hostif; 2165 struct usb_interface_descriptor *intfd; 2166 struct usb_endpoint_descriptor *epd; 2167 int cable, err; 2168 2169 intf = umidi->iface; 2170 if (!intf) 2171 return -ENOENT; 2172 hostif = intf->altsetting; 2173 intfd = get_iface_desc(hostif); 2174 /* 2175 * The various MidiSport devices have more or less random endpoint 2176 * numbers, so we have to identify the endpoints by their index in 2177 * the descriptor array, like the driver for that other OS does. 2178 * 2179 * There is one interrupt input endpoint for all input ports, one 2180 * bulk output endpoint for even-numbered ports, and one for odd- 2181 * numbered ports. Both bulk output endpoints have corresponding 2182 * input bulk endpoints (at indices 1 and 3) which aren't used. 2183 */ 2184 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { 2185 dev_dbg(&umidi->dev->dev, "not enough endpoints\n"); 2186 return -ENOENT; 2187 } 2188 2189 epd = get_endpoint(hostif, 0); 2190 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) { 2191 dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n"); 2192 return -ENXIO; 2193 } 2194 epd = get_endpoint(hostif, 2); 2195 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { 2196 dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n"); 2197 return -ENXIO; 2198 } 2199 if (endpoint->out_cables > 0x0001) { 2200 epd = get_endpoint(hostif, 4); 2201 if (!usb_endpoint_dir_out(epd) || 2202 !usb_endpoint_xfer_bulk(epd)) { 2203 dev_dbg(&umidi->dev->dev, 2204 "endpoint[4] isn't bulk output\n"); 2205 return -ENXIO; 2206 } 2207 } 2208 2209 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & 2210 USB_ENDPOINT_NUMBER_MASK; 2211 ep_info.out_interval = 0; 2212 ep_info.out_cables = endpoint->out_cables & 0x5555; 2213 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, 2214 &umidi->endpoints[0]); 2215 if (err < 0) 2216 return err; 2217 2218 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & 2219 USB_ENDPOINT_NUMBER_MASK; 2220 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; 2221 ep_info.in_cables = endpoint->in_cables; 2222 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, 2223 &umidi->endpoints[0]); 2224 if (err < 0) 2225 return err; 2226 2227 if (endpoint->out_cables > 0x0001) { 2228 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & 2229 USB_ENDPOINT_NUMBER_MASK; 2230 ep_info.out_cables = endpoint->out_cables & 0xaaaa; 2231 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, 2232 &umidi->endpoints[1]); 2233 if (err < 0) 2234 return err; 2235 } 2236 2237 for (cable = 0; cable < 0x10; ++cable) { 2238 if (endpoint->out_cables & (1 << cable)) 2239 snd_usbmidi_init_substream(umidi, 2240 SNDRV_RAWMIDI_STREAM_OUTPUT, 2241 cable, 2242 &umidi->endpoints[cable & 1].out->ports[cable].substream); 2243 if (endpoint->in_cables & (1 << cable)) 2244 snd_usbmidi_init_substream(umidi, 2245 SNDRV_RAWMIDI_STREAM_INPUT, 2246 cable, 2247 &umidi->endpoints[0].in->ports[cable].substream); 2248 } 2249 return 0; 2250 } 2251 2252 static const struct snd_rawmidi_global_ops snd_usbmidi_ops = { 2253 .get_port_info = snd_usbmidi_get_port_info, 2254 }; 2255 2256 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi *umidi, 2257 int out_ports, int in_ports) 2258 { 2259 struct snd_rawmidi *rmidi; 2260 int err; 2261 2262 err = snd_rawmidi_new(umidi->card, "USB MIDI", 2263 umidi->next_midi_device++, 2264 out_ports, in_ports, &rmidi); 2265 if (err < 0) 2266 return err; 2267 strcpy(rmidi->name, umidi->card->shortname); 2268 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 2269 SNDRV_RAWMIDI_INFO_INPUT | 2270 SNDRV_RAWMIDI_INFO_DUPLEX; 2271 rmidi->ops = &snd_usbmidi_ops; 2272 rmidi->private_data = umidi; 2273 rmidi->private_free = snd_usbmidi_rawmidi_free; 2274 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, 2275 &snd_usbmidi_output_ops); 2276 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, 2277 &snd_usbmidi_input_ops); 2278 2279 umidi->rmidi = rmidi; 2280 return 0; 2281 } 2282 2283 /* 2284 * Temporarily stop input. 2285 */ 2286 void snd_usbmidi_input_stop(struct list_head *p) 2287 { 2288 struct snd_usb_midi *umidi; 2289 unsigned int i, j; 2290 2291 umidi = list_entry(p, struct snd_usb_midi, list); 2292 if (!umidi->input_running) 2293 return; 2294 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2295 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 2296 if (ep->in) 2297 for (j = 0; j < INPUT_URBS; ++j) 2298 usb_kill_urb(ep->in->urbs[j]); 2299 } 2300 umidi->input_running = 0; 2301 } 2302 EXPORT_SYMBOL(snd_usbmidi_input_stop); 2303 2304 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint *ep) 2305 { 2306 unsigned int i; 2307 2308 if (!ep) 2309 return; 2310 for (i = 0; i < INPUT_URBS; ++i) { 2311 struct urb *urb = ep->urbs[i]; 2312 urb->dev = ep->umidi->dev; 2313 snd_usbmidi_submit_urb(urb, GFP_KERNEL); 2314 } 2315 } 2316 2317 /* 2318 * Resume input after a call to snd_usbmidi_input_stop(). 2319 */ 2320 void snd_usbmidi_input_start(struct list_head *p) 2321 { 2322 struct snd_usb_midi *umidi; 2323 int i; 2324 2325 umidi = list_entry(p, struct snd_usb_midi, list); 2326 if (umidi->input_running || !umidi->opened[1]) 2327 return; 2328 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 2329 snd_usbmidi_input_start_ep(umidi->endpoints[i].in); 2330 umidi->input_running = 1; 2331 } 2332 EXPORT_SYMBOL(snd_usbmidi_input_start); 2333 2334 /* 2335 * Prepare for suspend. Typically called from the USB suspend callback. 2336 */ 2337 void snd_usbmidi_suspend(struct list_head *p) 2338 { 2339 struct snd_usb_midi *umidi; 2340 2341 umidi = list_entry(p, struct snd_usb_midi, list); 2342 mutex_lock(&umidi->mutex); 2343 snd_usbmidi_input_stop(p); 2344 mutex_unlock(&umidi->mutex); 2345 } 2346 EXPORT_SYMBOL(snd_usbmidi_suspend); 2347 2348 /* 2349 * Resume. Typically called from the USB resume callback. 2350 */ 2351 void snd_usbmidi_resume(struct list_head *p) 2352 { 2353 struct snd_usb_midi *umidi; 2354 2355 umidi = list_entry(p, struct snd_usb_midi, list); 2356 mutex_lock(&umidi->mutex); 2357 snd_usbmidi_input_start(p); 2358 mutex_unlock(&umidi->mutex); 2359 } 2360 EXPORT_SYMBOL(snd_usbmidi_resume); 2361 2362 /* 2363 * Creates and registers everything needed for a MIDI streaming interface. 2364 */ 2365 int __snd_usbmidi_create(struct snd_card *card, 2366 struct usb_interface *iface, 2367 struct list_head *midi_list, 2368 const struct snd_usb_audio_quirk *quirk, 2369 unsigned int usb_id) 2370 { 2371 struct snd_usb_midi *umidi; 2372 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS]; 2373 int out_ports, in_ports; 2374 int i, err; 2375 2376 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL); 2377 if (!umidi) 2378 return -ENOMEM; 2379 umidi->dev = interface_to_usbdev(iface); 2380 umidi->card = card; 2381 umidi->iface = iface; 2382 umidi->quirk = quirk; 2383 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; 2384 spin_lock_init(&umidi->disc_lock); 2385 init_rwsem(&umidi->disc_rwsem); 2386 mutex_init(&umidi->mutex); 2387 if (!usb_id) 2388 usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor), 2389 le16_to_cpu(umidi->dev->descriptor.idProduct)); 2390 umidi->usb_id = usb_id; 2391 timer_setup(&umidi->error_timer, snd_usbmidi_error_timer, 0); 2392 2393 /* detect the endpoint(s) to use */ 2394 memset(endpoints, 0, sizeof(endpoints)); 2395 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) { 2396 case QUIRK_MIDI_STANDARD_INTERFACE: 2397 err = snd_usbmidi_get_ms_info(umidi, endpoints); 2398 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */ 2399 umidi->usb_protocol_ops = 2400 &snd_usbmidi_maudio_broken_running_status_ops; 2401 break; 2402 case QUIRK_MIDI_US122L: 2403 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops; 2404 /* fall through */ 2405 case QUIRK_MIDI_FIXED_ENDPOINT: 2406 memcpy(&endpoints[0], quirk->data, 2407 sizeof(struct snd_usb_midi_endpoint_info)); 2408 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2409 break; 2410 case QUIRK_MIDI_YAMAHA: 2411 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); 2412 break; 2413 case QUIRK_MIDI_ROLAND: 2414 err = snd_usbmidi_detect_roland(umidi, &endpoints[0]); 2415 break; 2416 case QUIRK_MIDI_MIDIMAN: 2417 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; 2418 memcpy(&endpoints[0], quirk->data, 2419 sizeof(struct snd_usb_midi_endpoint_info)); 2420 err = 0; 2421 break; 2422 case QUIRK_MIDI_NOVATION: 2423 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; 2424 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2425 break; 2426 case QUIRK_MIDI_RAW_BYTES: 2427 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops; 2428 /* 2429 * Interface 1 contains isochronous endpoints, but with the same 2430 * numbers as in interface 0. Since it is interface 1 that the 2431 * USB core has most recently seen, these descriptors are now 2432 * associated with the endpoint numbers. This will foul up our 2433 * attempts to submit bulk/interrupt URBs to the endpoints in 2434 * interface 0, so we have to make sure that the USB core looks 2435 * again at interface 0 by calling usb_set_interface() on it. 2436 */ 2437 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */ 2438 usb_set_interface(umidi->dev, 0, 0); 2439 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2440 break; 2441 case QUIRK_MIDI_EMAGIC: 2442 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; 2443 memcpy(&endpoints[0], quirk->data, 2444 sizeof(struct snd_usb_midi_endpoint_info)); 2445 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2446 break; 2447 case QUIRK_MIDI_CME: 2448 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops; 2449 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2450 break; 2451 case QUIRK_MIDI_AKAI: 2452 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops; 2453 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2454 /* endpoint 1 is input-only */ 2455 endpoints[1].out_cables = 0; 2456 break; 2457 case QUIRK_MIDI_FTDI: 2458 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops; 2459 2460 /* set baud rate to 31250 (48 MHz / 16 / 96) */ 2461 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0), 2462 3, 0x40, 0x60, 0, NULL, 0, 1000); 2463 if (err < 0) 2464 break; 2465 2466 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2467 break; 2468 case QUIRK_MIDI_CH345: 2469 umidi->usb_protocol_ops = &snd_usbmidi_ch345_broken_sysex_ops; 2470 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2471 break; 2472 default: 2473 dev_err(&umidi->dev->dev, "invalid quirk type %d\n", 2474 quirk->type); 2475 err = -ENXIO; 2476 break; 2477 } 2478 if (err < 0) 2479 goto free_midi; 2480 2481 /* create rawmidi device */ 2482 out_ports = 0; 2483 in_ports = 0; 2484 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2485 out_ports += hweight16(endpoints[i].out_cables); 2486 in_ports += hweight16(endpoints[i].in_cables); 2487 } 2488 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); 2489 if (err < 0) 2490 goto free_midi; 2491 2492 /* create endpoint/port structures */ 2493 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) 2494 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); 2495 else 2496 err = snd_usbmidi_create_endpoints(umidi, endpoints); 2497 if (err < 0) 2498 goto exit; 2499 2500 usb_autopm_get_interface_no_resume(umidi->iface); 2501 2502 list_add_tail(&umidi->list, midi_list); 2503 return 0; 2504 2505 free_midi: 2506 kfree(umidi); 2507 exit: 2508 return err; 2509 } 2510 EXPORT_SYMBOL(__snd_usbmidi_create); 2511