xref: /openbmc/linux/sound/usb/midi.c (revision b595076a)
1 /*
2  * usbmidi.c - ALSA USB MIDI driver
3  *
4  * Copyright (c) 2002-2009 Clemens Ladisch
5  * All rights reserved.
6  *
7  * Based on the OSS usb-midi driver by NAGANO Daisuke,
8  *          NetBSD's umidi driver by Takuya SHIOZAKI,
9  *          the "USB Device Class Definition for MIDI Devices" by Roland
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions, and the following disclaimer,
16  *    without modification.
17  * 2. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed and/or modified under the
21  * terms of the GNU General Public License as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any later
23  * version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50 
51 #include <sound/core.h>
52 #include <sound/control.h>
53 #include <sound/rawmidi.h>
54 #include <sound/asequencer.h>
55 #include "usbaudio.h"
56 #include "midi.h"
57 #include "helper.h"
58 
59 /*
60  * define this to log all USB packets
61  */
62 /* #define DUMP_PACKETS */
63 
64 /*
65  * how long to wait after some USB errors, so that khubd can disconnect() us
66  * without too many spurious errors
67  */
68 #define ERROR_DELAY_JIFFIES (HZ / 10)
69 
70 #define OUTPUT_URBS 7
71 #define INPUT_URBS 7
72 
73 
74 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
75 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
76 MODULE_LICENSE("Dual BSD/GPL");
77 
78 
79 struct usb_ms_header_descriptor {
80 	__u8  bLength;
81 	__u8  bDescriptorType;
82 	__u8  bDescriptorSubtype;
83 	__u8  bcdMSC[2];
84 	__le16 wTotalLength;
85 } __attribute__ ((packed));
86 
87 struct usb_ms_endpoint_descriptor {
88 	__u8  bLength;
89 	__u8  bDescriptorType;
90 	__u8  bDescriptorSubtype;
91 	__u8  bNumEmbMIDIJack;
92 	__u8  baAssocJackID[0];
93 } __attribute__ ((packed));
94 
95 struct snd_usb_midi_in_endpoint;
96 struct snd_usb_midi_out_endpoint;
97 struct snd_usb_midi_endpoint;
98 
99 struct usb_protocol_ops {
100 	void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
101 	void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
102 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
103 	void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
104 	void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
105 };
106 
107 struct snd_usb_midi {
108 	struct usb_device *dev;
109 	struct snd_card *card;
110 	struct usb_interface *iface;
111 	const struct snd_usb_audio_quirk *quirk;
112 	struct snd_rawmidi *rmidi;
113 	struct usb_protocol_ops* usb_protocol_ops;
114 	struct list_head list;
115 	struct timer_list error_timer;
116 	spinlock_t disc_lock;
117 	struct mutex mutex;
118 	u32 usb_id;
119 	int next_midi_device;
120 
121 	struct snd_usb_midi_endpoint {
122 		struct snd_usb_midi_out_endpoint *out;
123 		struct snd_usb_midi_in_endpoint *in;
124 	} endpoints[MIDI_MAX_ENDPOINTS];
125 	unsigned long input_triggered;
126 	unsigned int opened;
127 	unsigned char disconnected;
128 
129 	struct snd_kcontrol *roland_load_ctl;
130 };
131 
132 struct snd_usb_midi_out_endpoint {
133 	struct snd_usb_midi* umidi;
134 	struct out_urb_context {
135 		struct urb *urb;
136 		struct snd_usb_midi_out_endpoint *ep;
137 	} urbs[OUTPUT_URBS];
138 	unsigned int active_urbs;
139 	unsigned int drain_urbs;
140 	int max_transfer;		/* size of urb buffer */
141 	struct tasklet_struct tasklet;
142 	unsigned int next_urb;
143 	spinlock_t buffer_lock;
144 
145 	struct usbmidi_out_port {
146 		struct snd_usb_midi_out_endpoint* ep;
147 		struct snd_rawmidi_substream *substream;
148 		int active;
149 		uint8_t cable;		/* cable number << 4 */
150 		uint8_t state;
151 #define STATE_UNKNOWN	0
152 #define STATE_1PARAM	1
153 #define STATE_2PARAM_1	2
154 #define STATE_2PARAM_2	3
155 #define STATE_SYSEX_0	4
156 #define STATE_SYSEX_1	5
157 #define STATE_SYSEX_2	6
158 		uint8_t data[2];
159 	} ports[0x10];
160 	int current_port;
161 
162 	wait_queue_head_t drain_wait;
163 };
164 
165 struct snd_usb_midi_in_endpoint {
166 	struct snd_usb_midi* umidi;
167 	struct urb* urbs[INPUT_URBS];
168 	struct usbmidi_in_port {
169 		struct snd_rawmidi_substream *substream;
170 		u8 running_status_length;
171 	} ports[0x10];
172 	u8 seen_f5;
173 	u8 error_resubmit;
174 	int current_port;
175 };
176 
177 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
178 
179 static const uint8_t snd_usbmidi_cin_length[] = {
180 	0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
181 };
182 
183 /*
184  * Submits the URB, with error handling.
185  */
186 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
187 {
188 	int err = usb_submit_urb(urb, flags);
189 	if (err < 0 && err != -ENODEV)
190 		snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
191 	return err;
192 }
193 
194 /*
195  * Error handling for URB completion functions.
196  */
197 static int snd_usbmidi_urb_error(int status)
198 {
199 	switch (status) {
200 	/* manually unlinked, or device gone */
201 	case -ENOENT:
202 	case -ECONNRESET:
203 	case -ESHUTDOWN:
204 	case -ENODEV:
205 		return -ENODEV;
206 	/* errors that might occur during unplugging */
207 	case -EPROTO:
208 	case -ETIME:
209 	case -EILSEQ:
210 		return -EIO;
211 	default:
212 		snd_printk(KERN_ERR "urb status %d\n", status);
213 		return 0; /* continue */
214 	}
215 }
216 
217 /*
218  * Receives a chunk of MIDI data.
219  */
220 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
221 				   uint8_t* data, int length)
222 {
223 	struct usbmidi_in_port* port = &ep->ports[portidx];
224 
225 	if (!port->substream) {
226 		snd_printd("unexpected port %d!\n", portidx);
227 		return;
228 	}
229 	if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
230 		return;
231 	snd_rawmidi_receive(port->substream, data, length);
232 }
233 
234 #ifdef DUMP_PACKETS
235 static void dump_urb(const char *type, const u8 *data, int length)
236 {
237 	snd_printk(KERN_DEBUG "%s packet: [", type);
238 	for (; length > 0; ++data, --length)
239 		printk(" %02x", *data);
240 	printk(" ]\n");
241 }
242 #else
243 #define dump_urb(type, data, length) /* nothing */
244 #endif
245 
246 /*
247  * Processes the data read from the device.
248  */
249 static void snd_usbmidi_in_urb_complete(struct urb* urb)
250 {
251 	struct snd_usb_midi_in_endpoint* ep = urb->context;
252 
253 	if (urb->status == 0) {
254 		dump_urb("received", urb->transfer_buffer, urb->actual_length);
255 		ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
256 						   urb->actual_length);
257 	} else {
258 		int err = snd_usbmidi_urb_error(urb->status);
259 		if (err < 0) {
260 			if (err != -ENODEV) {
261 				ep->error_resubmit = 1;
262 				mod_timer(&ep->umidi->error_timer,
263 					  jiffies + ERROR_DELAY_JIFFIES);
264 			}
265 			return;
266 		}
267 	}
268 
269 	urb->dev = ep->umidi->dev;
270 	snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
271 }
272 
273 static void snd_usbmidi_out_urb_complete(struct urb* urb)
274 {
275 	struct out_urb_context *context = urb->context;
276 	struct snd_usb_midi_out_endpoint* ep = context->ep;
277 	unsigned int urb_index;
278 
279 	spin_lock(&ep->buffer_lock);
280 	urb_index = context - ep->urbs;
281 	ep->active_urbs &= ~(1 << urb_index);
282 	if (unlikely(ep->drain_urbs)) {
283 		ep->drain_urbs &= ~(1 << urb_index);
284 		wake_up(&ep->drain_wait);
285 	}
286 	spin_unlock(&ep->buffer_lock);
287 	if (urb->status < 0) {
288 		int err = snd_usbmidi_urb_error(urb->status);
289 		if (err < 0) {
290 			if (err != -ENODEV)
291 				mod_timer(&ep->umidi->error_timer,
292 					  jiffies + ERROR_DELAY_JIFFIES);
293 			return;
294 		}
295 	}
296 	snd_usbmidi_do_output(ep);
297 }
298 
299 /*
300  * This is called when some data should be transferred to the device
301  * (from one or more substreams).
302  */
303 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
304 {
305 	unsigned int urb_index;
306 	struct urb* urb;
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&ep->buffer_lock, flags);
310 	if (ep->umidi->disconnected) {
311 		spin_unlock_irqrestore(&ep->buffer_lock, flags);
312 		return;
313 	}
314 
315 	urb_index = ep->next_urb;
316 	for (;;) {
317 		if (!(ep->active_urbs & (1 << urb_index))) {
318 			urb = ep->urbs[urb_index].urb;
319 			urb->transfer_buffer_length = 0;
320 			ep->umidi->usb_protocol_ops->output(ep, urb);
321 			if (urb->transfer_buffer_length == 0)
322 				break;
323 
324 			dump_urb("sending", urb->transfer_buffer,
325 				 urb->transfer_buffer_length);
326 			urb->dev = ep->umidi->dev;
327 			if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
328 				break;
329 			ep->active_urbs |= 1 << urb_index;
330 		}
331 		if (++urb_index >= OUTPUT_URBS)
332 			urb_index = 0;
333 		if (urb_index == ep->next_urb)
334 			break;
335 	}
336 	ep->next_urb = urb_index;
337 	spin_unlock_irqrestore(&ep->buffer_lock, flags);
338 }
339 
340 static void snd_usbmidi_out_tasklet(unsigned long data)
341 {
342 	struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
343 
344 	snd_usbmidi_do_output(ep);
345 }
346 
347 /* called after transfers had been interrupted due to some USB error */
348 static void snd_usbmidi_error_timer(unsigned long data)
349 {
350 	struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
351 	unsigned int i, j;
352 
353 	spin_lock(&umidi->disc_lock);
354 	if (umidi->disconnected) {
355 		spin_unlock(&umidi->disc_lock);
356 		return;
357 	}
358 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
359 		struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
360 		if (in && in->error_resubmit) {
361 			in->error_resubmit = 0;
362 			for (j = 0; j < INPUT_URBS; ++j) {
363 				in->urbs[j]->dev = umidi->dev;
364 				snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
365 			}
366 		}
367 		if (umidi->endpoints[i].out)
368 			snd_usbmidi_do_output(umidi->endpoints[i].out);
369 	}
370 	spin_unlock(&umidi->disc_lock);
371 }
372 
373 /* helper function to send static data that may not DMA-able */
374 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
375 				 const void *data, int len)
376 {
377 	int err = 0;
378 	void *buf = kmemdup(data, len, GFP_KERNEL);
379 	if (!buf)
380 		return -ENOMEM;
381 	dump_urb("sending", buf, len);
382 	if (ep->urbs[0].urb)
383 		err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
384 				   buf, len, NULL, 250);
385 	kfree(buf);
386 	return err;
387 }
388 
389 /*
390  * Standard USB MIDI protocol: see the spec.
391  * Midiman protocol: like the standard protocol, but the control byte is the
392  * fourth byte in each packet, and uses length instead of CIN.
393  */
394 
395 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
396 				       uint8_t* buffer, int buffer_length)
397 {
398 	int i;
399 
400 	for (i = 0; i + 3 < buffer_length; i += 4)
401 		if (buffer[i] != 0) {
402 			int cable = buffer[i] >> 4;
403 			int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
404 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
405 		}
406 }
407 
408 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
409 				      uint8_t* buffer, int buffer_length)
410 {
411 	int i;
412 
413 	for (i = 0; i + 3 < buffer_length; i += 4)
414 		if (buffer[i + 3] != 0) {
415 			int port = buffer[i + 3] >> 4;
416 			int length = buffer[i + 3] & 3;
417 			snd_usbmidi_input_data(ep, port, &buffer[i], length);
418 		}
419 }
420 
421 /*
422  * Buggy M-Audio device: running status on input results in a packet that has
423  * the data bytes but not the status byte and that is marked with CIN 4.
424  */
425 static void snd_usbmidi_maudio_broken_running_status_input(
426 					struct snd_usb_midi_in_endpoint* ep,
427 					uint8_t* buffer, int buffer_length)
428 {
429 	int i;
430 
431 	for (i = 0; i + 3 < buffer_length; i += 4)
432 		if (buffer[i] != 0) {
433 			int cable = buffer[i] >> 4;
434 			u8 cin = buffer[i] & 0x0f;
435 			struct usbmidi_in_port *port = &ep->ports[cable];
436 			int length;
437 
438 			length = snd_usbmidi_cin_length[cin];
439 			if (cin == 0xf && buffer[i + 1] >= 0xf8)
440 				; /* realtime msg: no running status change */
441 			else if (cin >= 0x8 && cin <= 0xe)
442 				/* channel msg */
443 				port->running_status_length = length - 1;
444 			else if (cin == 0x4 &&
445 				 port->running_status_length != 0 &&
446 				 buffer[i + 1] < 0x80)
447 				/* CIN 4 that is not a SysEx */
448 				length = port->running_status_length;
449 			else
450 				/*
451 				 * All other msgs cannot begin running status.
452 				 * (A channel msg sent as two or three CIN 0xF
453 				 * packets could in theory, but this device
454 				 * doesn't use this format.)
455 				 */
456 				port->running_status_length = 0;
457 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
458 		}
459 }
460 
461 /*
462  * CME protocol: like the standard protocol, but SysEx commands are sent as a
463  * single USB packet preceded by a 0x0F byte.
464  */
465 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
466 				  uint8_t *buffer, int buffer_length)
467 {
468 	if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
469 		snd_usbmidi_standard_input(ep, buffer, buffer_length);
470 	else
471 		snd_usbmidi_input_data(ep, buffer[0] >> 4,
472 				       &buffer[1], buffer_length - 1);
473 }
474 
475 /*
476  * Adds one USB MIDI packet to the output buffer.
477  */
478 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
479 					       uint8_t p1, uint8_t p2, uint8_t p3)
480 {
481 
482 	uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
483 	buf[0] = p0;
484 	buf[1] = p1;
485 	buf[2] = p2;
486 	buf[3] = p3;
487 	urb->transfer_buffer_length += 4;
488 }
489 
490 /*
491  * Adds one Midiman packet to the output buffer.
492  */
493 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
494 					      uint8_t p1, uint8_t p2, uint8_t p3)
495 {
496 
497 	uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
498 	buf[0] = p1;
499 	buf[1] = p2;
500 	buf[2] = p3;
501 	buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
502 	urb->transfer_buffer_length += 4;
503 }
504 
505 /*
506  * Converts MIDI commands to USB MIDI packets.
507  */
508 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
509 				      uint8_t b, struct urb* urb)
510 {
511 	uint8_t p0 = port->cable;
512 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
513 		port->ep->umidi->usb_protocol_ops->output_packet;
514 
515 	if (b >= 0xf8) {
516 		output_packet(urb, p0 | 0x0f, b, 0, 0);
517 	} else if (b >= 0xf0) {
518 		switch (b) {
519 		case 0xf0:
520 			port->data[0] = b;
521 			port->state = STATE_SYSEX_1;
522 			break;
523 		case 0xf1:
524 		case 0xf3:
525 			port->data[0] = b;
526 			port->state = STATE_1PARAM;
527 			break;
528 		case 0xf2:
529 			port->data[0] = b;
530 			port->state = STATE_2PARAM_1;
531 			break;
532 		case 0xf4:
533 		case 0xf5:
534 			port->state = STATE_UNKNOWN;
535 			break;
536 		case 0xf6:
537 			output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
538 			port->state = STATE_UNKNOWN;
539 			break;
540 		case 0xf7:
541 			switch (port->state) {
542 			case STATE_SYSEX_0:
543 				output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
544 				break;
545 			case STATE_SYSEX_1:
546 				output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
547 				break;
548 			case STATE_SYSEX_2:
549 				output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
550 				break;
551 			}
552 			port->state = STATE_UNKNOWN;
553 			break;
554 		}
555 	} else if (b >= 0x80) {
556 		port->data[0] = b;
557 		if (b >= 0xc0 && b <= 0xdf)
558 			port->state = STATE_1PARAM;
559 		else
560 			port->state = STATE_2PARAM_1;
561 	} else { /* b < 0x80 */
562 		switch (port->state) {
563 		case STATE_1PARAM:
564 			if (port->data[0] < 0xf0) {
565 				p0 |= port->data[0] >> 4;
566 			} else {
567 				p0 |= 0x02;
568 				port->state = STATE_UNKNOWN;
569 			}
570 			output_packet(urb, p0, port->data[0], b, 0);
571 			break;
572 		case STATE_2PARAM_1:
573 			port->data[1] = b;
574 			port->state = STATE_2PARAM_2;
575 			break;
576 		case STATE_2PARAM_2:
577 			if (port->data[0] < 0xf0) {
578 				p0 |= port->data[0] >> 4;
579 				port->state = STATE_2PARAM_1;
580 			} else {
581 				p0 |= 0x03;
582 				port->state = STATE_UNKNOWN;
583 			}
584 			output_packet(urb, p0, port->data[0], port->data[1], b);
585 			break;
586 		case STATE_SYSEX_0:
587 			port->data[0] = b;
588 			port->state = STATE_SYSEX_1;
589 			break;
590 		case STATE_SYSEX_1:
591 			port->data[1] = b;
592 			port->state = STATE_SYSEX_2;
593 			break;
594 		case STATE_SYSEX_2:
595 			output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
596 			port->state = STATE_SYSEX_0;
597 			break;
598 		}
599 	}
600 }
601 
602 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
603 					struct urb *urb)
604 {
605 	int p;
606 
607 	/* FIXME: lower-numbered ports can starve higher-numbered ports */
608 	for (p = 0; p < 0x10; ++p) {
609 		struct usbmidi_out_port* port = &ep->ports[p];
610 		if (!port->active)
611 			continue;
612 		while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
613 			uint8_t b;
614 			if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
615 				port->active = 0;
616 				break;
617 			}
618 			snd_usbmidi_transmit_byte(port, b, urb);
619 		}
620 	}
621 }
622 
623 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
624 	.input = snd_usbmidi_standard_input,
625 	.output = snd_usbmidi_standard_output,
626 	.output_packet = snd_usbmidi_output_standard_packet,
627 };
628 
629 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
630 	.input = snd_usbmidi_midiman_input,
631 	.output = snd_usbmidi_standard_output,
632 	.output_packet = snd_usbmidi_output_midiman_packet,
633 };
634 
635 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
636 	.input = snd_usbmidi_maudio_broken_running_status_input,
637 	.output = snd_usbmidi_standard_output,
638 	.output_packet = snd_usbmidi_output_standard_packet,
639 };
640 
641 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
642 	.input = snd_usbmidi_cme_input,
643 	.output = snd_usbmidi_standard_output,
644 	.output_packet = snd_usbmidi_output_standard_packet,
645 };
646 
647 /*
648  * AKAI MPD16 protocol:
649  *
650  * For control port (endpoint 1):
651  * ==============================
652  * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
653  * SysEx message (msg_len=9 bytes long).
654  *
655  * For data port (endpoint 2):
656  * ===========================
657  * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
658  * MIDI message (msg_len bytes long)
659  *
660  * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
661  */
662 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
663 				   uint8_t *buffer, int buffer_length)
664 {
665 	unsigned int pos = 0;
666 	unsigned int len = (unsigned int)buffer_length;
667 	while (pos < len) {
668 		unsigned int port = (buffer[pos] >> 4) - 1;
669 		unsigned int msg_len = buffer[pos] & 0x0f;
670 		pos++;
671 		if (pos + msg_len <= len && port < 2)
672 			snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
673 		pos += msg_len;
674 	}
675 }
676 
677 #define MAX_AKAI_SYSEX_LEN 9
678 
679 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
680 				    struct urb *urb)
681 {
682 	uint8_t *msg;
683 	int pos, end, count, buf_end;
684 	uint8_t tmp[MAX_AKAI_SYSEX_LEN];
685 	struct snd_rawmidi_substream *substream = ep->ports[0].substream;
686 
687 	if (!ep->ports[0].active)
688 		return;
689 
690 	msg = urb->transfer_buffer + urb->transfer_buffer_length;
691 	buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
692 
693 	/* only try adding more data when there's space for at least 1 SysEx */
694 	while (urb->transfer_buffer_length < buf_end) {
695 		count = snd_rawmidi_transmit_peek(substream,
696 						  tmp, MAX_AKAI_SYSEX_LEN);
697 		if (!count) {
698 			ep->ports[0].active = 0;
699 			return;
700 		}
701 		/* try to skip non-SysEx data */
702 		for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
703 			;
704 
705 		if (pos > 0) {
706 			snd_rawmidi_transmit_ack(substream, pos);
707 			continue;
708 		}
709 
710 		/* look for the start or end marker */
711 		for (end = 1; end < count && tmp[end] < 0xF0; end++)
712 			;
713 
714 		/* next SysEx started before the end of current one */
715 		if (end < count && tmp[end] == 0xF0) {
716 			/* it's incomplete - drop it */
717 			snd_rawmidi_transmit_ack(substream, end);
718 			continue;
719 		}
720 		/* SysEx complete */
721 		if (end < count && tmp[end] == 0xF7) {
722 			/* queue it, ack it, and get the next one */
723 			count = end + 1;
724 			msg[0] = 0x10 | count;
725 			memcpy(&msg[1], tmp, count);
726 			snd_rawmidi_transmit_ack(substream, count);
727 			urb->transfer_buffer_length += count + 1;
728 			msg += count + 1;
729 			continue;
730 		}
731 		/* less than 9 bytes and no end byte - wait for more */
732 		if (count < MAX_AKAI_SYSEX_LEN) {
733 			ep->ports[0].active = 0;
734 			return;
735 		}
736 		/* 9 bytes and no end marker in sight - malformed, skip it */
737 		snd_rawmidi_transmit_ack(substream, count);
738 	}
739 }
740 
741 static struct usb_protocol_ops snd_usbmidi_akai_ops = {
742 	.input = snd_usbmidi_akai_input,
743 	.output = snd_usbmidi_akai_output,
744 };
745 
746 /*
747  * Novation USB MIDI protocol: number of data bytes is in the first byte
748  * (when receiving) (+1!) or in the second byte (when sending); data begins
749  * at the third byte.
750  */
751 
752 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
753 				       uint8_t* buffer, int buffer_length)
754 {
755 	if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
756 		return;
757 	snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
758 }
759 
760 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
761 					struct urb *urb)
762 {
763 	uint8_t* transfer_buffer;
764 	int count;
765 
766 	if (!ep->ports[0].active)
767 		return;
768 	transfer_buffer = urb->transfer_buffer;
769 	count = snd_rawmidi_transmit(ep->ports[0].substream,
770 				     &transfer_buffer[2],
771 				     ep->max_transfer - 2);
772 	if (count < 1) {
773 		ep->ports[0].active = 0;
774 		return;
775 	}
776 	transfer_buffer[0] = 0;
777 	transfer_buffer[1] = count;
778 	urb->transfer_buffer_length = 2 + count;
779 }
780 
781 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
782 	.input = snd_usbmidi_novation_input,
783 	.output = snd_usbmidi_novation_output,
784 };
785 
786 /*
787  * "raw" protocol: just move raw MIDI bytes from/to the endpoint
788  */
789 
790 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
791 				  uint8_t* buffer, int buffer_length)
792 {
793 	snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
794 }
795 
796 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
797 				   struct urb *urb)
798 {
799 	int count;
800 
801 	if (!ep->ports[0].active)
802 		return;
803 	count = snd_rawmidi_transmit(ep->ports[0].substream,
804 				     urb->transfer_buffer,
805 				     ep->max_transfer);
806 	if (count < 1) {
807 		ep->ports[0].active = 0;
808 		return;
809 	}
810 	urb->transfer_buffer_length = count;
811 }
812 
813 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
814 	.input = snd_usbmidi_raw_input,
815 	.output = snd_usbmidi_raw_output,
816 };
817 
818 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
819 				     uint8_t *buffer, int buffer_length)
820 {
821 	if (buffer_length != 9)
822 		return;
823 	buffer_length = 8;
824 	while (buffer_length && buffer[buffer_length - 1] == 0xFD)
825 		buffer_length--;
826 	if (buffer_length)
827 		snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
828 }
829 
830 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
831 				      struct urb *urb)
832 {
833 	int count;
834 
835 	if (!ep->ports[0].active)
836 		return;
837 	switch (snd_usb_get_speed(ep->umidi->dev)) {
838 	case USB_SPEED_HIGH:
839 	case USB_SPEED_SUPER:
840 		count = 1;
841 		break;
842 	default:
843 		count = 2;
844 	}
845 	count = snd_rawmidi_transmit(ep->ports[0].substream,
846 				     urb->transfer_buffer,
847 				     count);
848 	if (count < 1) {
849 		ep->ports[0].active = 0;
850 		return;
851 	}
852 
853 	memset(urb->transfer_buffer + count, 0xFD, 9 - count);
854 	urb->transfer_buffer_length = count;
855 }
856 
857 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
858 	.input = snd_usbmidi_us122l_input,
859 	.output = snd_usbmidi_us122l_output,
860 };
861 
862 /*
863  * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
864  */
865 
866 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
867 {
868 	static const u8 init_data[] = {
869 		/* initialization magic: "get version" */
870 		0xf0,
871 		0x00, 0x20, 0x31,	/* Emagic */
872 		0x64,			/* Unitor8 */
873 		0x0b,			/* version number request */
874 		0x00,			/* command version */
875 		0x00,			/* EEPROM, box 0 */
876 		0xf7
877 	};
878 	send_bulk_static_data(ep, init_data, sizeof(init_data));
879 	/* while we're at it, pour on more magic */
880 	send_bulk_static_data(ep, init_data, sizeof(init_data));
881 }
882 
883 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
884 {
885 	static const u8 finish_data[] = {
886 		/* switch to patch mode with last preset */
887 		0xf0,
888 		0x00, 0x20, 0x31,	/* Emagic */
889 		0x64,			/* Unitor8 */
890 		0x10,			/* patch switch command */
891 		0x00,			/* command version */
892 		0x7f,			/* to all boxes */
893 		0x40,			/* last preset in EEPROM */
894 		0xf7
895 	};
896 	send_bulk_static_data(ep, finish_data, sizeof(finish_data));
897 }
898 
899 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
900 				     uint8_t* buffer, int buffer_length)
901 {
902 	int i;
903 
904 	/* FF indicates end of valid data */
905 	for (i = 0; i < buffer_length; ++i)
906 		if (buffer[i] == 0xff) {
907 			buffer_length = i;
908 			break;
909 		}
910 
911 	/* handle F5 at end of last buffer */
912 	if (ep->seen_f5)
913 		goto switch_port;
914 
915 	while (buffer_length > 0) {
916 		/* determine size of data until next F5 */
917 		for (i = 0; i < buffer_length; ++i)
918 			if (buffer[i] == 0xf5)
919 				break;
920 		snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
921 		buffer += i;
922 		buffer_length -= i;
923 
924 		if (buffer_length <= 0)
925 			break;
926 		/* assert(buffer[0] == 0xf5); */
927 		ep->seen_f5 = 1;
928 		++buffer;
929 		--buffer_length;
930 
931 	switch_port:
932 		if (buffer_length <= 0)
933 			break;
934 		if (buffer[0] < 0x80) {
935 			ep->current_port = (buffer[0] - 1) & 15;
936 			++buffer;
937 			--buffer_length;
938 		}
939 		ep->seen_f5 = 0;
940 	}
941 }
942 
943 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
944 				      struct urb *urb)
945 {
946 	int port0 = ep->current_port;
947 	uint8_t* buf = urb->transfer_buffer;
948 	int buf_free = ep->max_transfer;
949 	int length, i;
950 
951 	for (i = 0; i < 0x10; ++i) {
952 		/* round-robin, starting at the last current port */
953 		int portnum = (port0 + i) & 15;
954 		struct usbmidi_out_port* port = &ep->ports[portnum];
955 
956 		if (!port->active)
957 			continue;
958 		if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
959 			port->active = 0;
960 			continue;
961 		}
962 
963 		if (portnum != ep->current_port) {
964 			if (buf_free < 2)
965 				break;
966 			ep->current_port = portnum;
967 			buf[0] = 0xf5;
968 			buf[1] = (portnum + 1) & 15;
969 			buf += 2;
970 			buf_free -= 2;
971 		}
972 
973 		if (buf_free < 1)
974 			break;
975 		length = snd_rawmidi_transmit(port->substream, buf, buf_free);
976 		if (length > 0) {
977 			buf += length;
978 			buf_free -= length;
979 			if (buf_free < 1)
980 				break;
981 		}
982 	}
983 	if (buf_free < ep->max_transfer && buf_free > 0) {
984 		*buf = 0xff;
985 		--buf_free;
986 	}
987 	urb->transfer_buffer_length = ep->max_transfer - buf_free;
988 }
989 
990 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
991 	.input = snd_usbmidi_emagic_input,
992 	.output = snd_usbmidi_emagic_output,
993 	.init_out_endpoint = snd_usbmidi_emagic_init_out,
994 	.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
995 };
996 
997 
998 static void update_roland_altsetting(struct snd_usb_midi* umidi)
999 {
1000 	struct usb_interface *intf;
1001 	struct usb_host_interface *hostif;
1002 	struct usb_interface_descriptor *intfd;
1003 	int is_light_load;
1004 
1005 	intf = umidi->iface;
1006 	is_light_load = intf->cur_altsetting != intf->altsetting;
1007 	if (umidi->roland_load_ctl->private_value == is_light_load)
1008 		return;
1009 	hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1010 	intfd = get_iface_desc(hostif);
1011 	snd_usbmidi_input_stop(&umidi->list);
1012 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1013 			  intfd->bAlternateSetting);
1014 	snd_usbmidi_input_start(&umidi->list);
1015 }
1016 
1017 static void substream_open(struct snd_rawmidi_substream *substream, int open)
1018 {
1019 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1020 	struct snd_kcontrol *ctl;
1021 
1022 	mutex_lock(&umidi->mutex);
1023 	if (open) {
1024 		if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
1025 			ctl = umidi->roland_load_ctl;
1026 			ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1027 			snd_ctl_notify(umidi->card,
1028 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1029 			update_roland_altsetting(umidi);
1030 		}
1031 	} else {
1032 		if (--umidi->opened == 0 && umidi->roland_load_ctl) {
1033 			ctl = umidi->roland_load_ctl;
1034 			ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1035 			snd_ctl_notify(umidi->card,
1036 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1037 		}
1038 	}
1039 	mutex_unlock(&umidi->mutex);
1040 }
1041 
1042 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1043 {
1044 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1045 	struct usbmidi_out_port* port = NULL;
1046 	int i, j;
1047 
1048 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1049 		if (umidi->endpoints[i].out)
1050 			for (j = 0; j < 0x10; ++j)
1051 				if (umidi->endpoints[i].out->ports[j].substream == substream) {
1052 					port = &umidi->endpoints[i].out->ports[j];
1053 					break;
1054 				}
1055 	if (!port) {
1056 		snd_BUG();
1057 		return -ENXIO;
1058 	}
1059 	substream->runtime->private_data = port;
1060 	port->state = STATE_UNKNOWN;
1061 	substream_open(substream, 1);
1062 	return 0;
1063 }
1064 
1065 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1066 {
1067 	substream_open(substream, 0);
1068 	return 0;
1069 }
1070 
1071 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1072 {
1073 	struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1074 
1075 	port->active = up;
1076 	if (up) {
1077 		if (port->ep->umidi->disconnected) {
1078 			/* gobble up remaining bytes to prevent wait in
1079 			 * snd_rawmidi_drain_output */
1080 			while (!snd_rawmidi_transmit_empty(substream))
1081 				snd_rawmidi_transmit_ack(substream, 1);
1082 			return;
1083 		}
1084 		tasklet_schedule(&port->ep->tasklet);
1085 	}
1086 }
1087 
1088 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1089 {
1090 	struct usbmidi_out_port* port = substream->runtime->private_data;
1091 	struct snd_usb_midi_out_endpoint *ep = port->ep;
1092 	unsigned int drain_urbs;
1093 	DEFINE_WAIT(wait);
1094 	long timeout = msecs_to_jiffies(50);
1095 
1096 	if (ep->umidi->disconnected)
1097 		return;
1098 	/*
1099 	 * The substream buffer is empty, but some data might still be in the
1100 	 * currently active URBs, so we have to wait for those to complete.
1101 	 */
1102 	spin_lock_irq(&ep->buffer_lock);
1103 	drain_urbs = ep->active_urbs;
1104 	if (drain_urbs) {
1105 		ep->drain_urbs |= drain_urbs;
1106 		do {
1107 			prepare_to_wait(&ep->drain_wait, &wait,
1108 					TASK_UNINTERRUPTIBLE);
1109 			spin_unlock_irq(&ep->buffer_lock);
1110 			timeout = schedule_timeout(timeout);
1111 			spin_lock_irq(&ep->buffer_lock);
1112 			drain_urbs &= ep->drain_urbs;
1113 		} while (drain_urbs && timeout);
1114 		finish_wait(&ep->drain_wait, &wait);
1115 	}
1116 	spin_unlock_irq(&ep->buffer_lock);
1117 }
1118 
1119 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1120 {
1121 	substream_open(substream, 1);
1122 	return 0;
1123 }
1124 
1125 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1126 {
1127 	substream_open(substream, 0);
1128 	return 0;
1129 }
1130 
1131 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1132 {
1133 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1134 
1135 	if (up)
1136 		set_bit(substream->number, &umidi->input_triggered);
1137 	else
1138 		clear_bit(substream->number, &umidi->input_triggered);
1139 }
1140 
1141 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1142 	.open = snd_usbmidi_output_open,
1143 	.close = snd_usbmidi_output_close,
1144 	.trigger = snd_usbmidi_output_trigger,
1145 	.drain = snd_usbmidi_output_drain,
1146 };
1147 
1148 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1149 	.open = snd_usbmidi_input_open,
1150 	.close = snd_usbmidi_input_close,
1151 	.trigger = snd_usbmidi_input_trigger
1152 };
1153 
1154 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1155 				unsigned int buffer_length)
1156 {
1157 	usb_free_coherent(umidi->dev, buffer_length,
1158 			  urb->transfer_buffer, urb->transfer_dma);
1159 	usb_free_urb(urb);
1160 }
1161 
1162 /*
1163  * Frees an input endpoint.
1164  * May be called when ep hasn't been initialized completely.
1165  */
1166 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1167 {
1168 	unsigned int i;
1169 
1170 	for (i = 0; i < INPUT_URBS; ++i)
1171 		if (ep->urbs[i])
1172 			free_urb_and_buffer(ep->umidi, ep->urbs[i],
1173 					    ep->urbs[i]->transfer_buffer_length);
1174 	kfree(ep);
1175 }
1176 
1177 /*
1178  * Creates an input endpoint.
1179  */
1180 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1181 					  struct snd_usb_midi_endpoint_info* ep_info,
1182 					  struct snd_usb_midi_endpoint* rep)
1183 {
1184 	struct snd_usb_midi_in_endpoint* ep;
1185 	void* buffer;
1186 	unsigned int pipe;
1187 	int length;
1188 	unsigned int i;
1189 
1190 	rep->in = NULL;
1191 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1192 	if (!ep)
1193 		return -ENOMEM;
1194 	ep->umidi = umidi;
1195 
1196 	for (i = 0; i < INPUT_URBS; ++i) {
1197 		ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1198 		if (!ep->urbs[i]) {
1199 			snd_usbmidi_in_endpoint_delete(ep);
1200 			return -ENOMEM;
1201 		}
1202 	}
1203 	if (ep_info->in_interval)
1204 		pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1205 	else
1206 		pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1207 	length = usb_maxpacket(umidi->dev, pipe, 0);
1208 	for (i = 0; i < INPUT_URBS; ++i) {
1209 		buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1210 					    &ep->urbs[i]->transfer_dma);
1211 		if (!buffer) {
1212 			snd_usbmidi_in_endpoint_delete(ep);
1213 			return -ENOMEM;
1214 		}
1215 		if (ep_info->in_interval)
1216 			usb_fill_int_urb(ep->urbs[i], umidi->dev,
1217 					 pipe, buffer, length,
1218 					 snd_usbmidi_in_urb_complete,
1219 					 ep, ep_info->in_interval);
1220 		else
1221 			usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1222 					  pipe, buffer, length,
1223 					  snd_usbmidi_in_urb_complete, ep);
1224 		ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1225 	}
1226 
1227 	rep->in = ep;
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Frees an output endpoint.
1233  * May be called when ep hasn't been initialized completely.
1234  */
1235 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1236 {
1237 	unsigned int i;
1238 
1239 	for (i = 0; i < OUTPUT_URBS; ++i)
1240 		if (ep->urbs[i].urb) {
1241 			free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1242 					    ep->max_transfer);
1243 			ep->urbs[i].urb = NULL;
1244 		}
1245 }
1246 
1247 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1248 {
1249 	snd_usbmidi_out_endpoint_clear(ep);
1250 	kfree(ep);
1251 }
1252 
1253 /*
1254  * Creates an output endpoint, and initializes output ports.
1255  */
1256 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1257 					   struct snd_usb_midi_endpoint_info* ep_info,
1258 					   struct snd_usb_midi_endpoint* rep)
1259 {
1260 	struct snd_usb_midi_out_endpoint* ep;
1261 	unsigned int i;
1262 	unsigned int pipe;
1263 	void* buffer;
1264 
1265 	rep->out = NULL;
1266 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1267 	if (!ep)
1268 		return -ENOMEM;
1269 	ep->umidi = umidi;
1270 
1271 	for (i = 0; i < OUTPUT_URBS; ++i) {
1272 		ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1273 		if (!ep->urbs[i].urb) {
1274 			snd_usbmidi_out_endpoint_delete(ep);
1275 			return -ENOMEM;
1276 		}
1277 		ep->urbs[i].ep = ep;
1278 	}
1279 	if (ep_info->out_interval)
1280 		pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1281 	else
1282 		pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1283 	switch (umidi->usb_id) {
1284 	default:
1285 		ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1286 		break;
1287 		/*
1288 		 * Various chips declare a packet size larger than 4 bytes, but
1289 		 * do not actually work with larger packets:
1290 		 */
1291 	case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1292 	case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1293 	case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1294 	case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1295 	case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1296 		ep->max_transfer = 4;
1297 		break;
1298 	}
1299 	for (i = 0; i < OUTPUT_URBS; ++i) {
1300 		buffer = usb_alloc_coherent(umidi->dev,
1301 					    ep->max_transfer, GFP_KERNEL,
1302 					    &ep->urbs[i].urb->transfer_dma);
1303 		if (!buffer) {
1304 			snd_usbmidi_out_endpoint_delete(ep);
1305 			return -ENOMEM;
1306 		}
1307 		if (ep_info->out_interval)
1308 			usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1309 					 pipe, buffer, ep->max_transfer,
1310 					 snd_usbmidi_out_urb_complete,
1311 					 &ep->urbs[i], ep_info->out_interval);
1312 		else
1313 			usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1314 					  pipe, buffer, ep->max_transfer,
1315 					  snd_usbmidi_out_urb_complete,
1316 					  &ep->urbs[i]);
1317 		ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1318 	}
1319 
1320 	spin_lock_init(&ep->buffer_lock);
1321 	tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1322 	init_waitqueue_head(&ep->drain_wait);
1323 
1324 	for (i = 0; i < 0x10; ++i)
1325 		if (ep_info->out_cables & (1 << i)) {
1326 			ep->ports[i].ep = ep;
1327 			ep->ports[i].cable = i << 4;
1328 		}
1329 
1330 	if (umidi->usb_protocol_ops->init_out_endpoint)
1331 		umidi->usb_protocol_ops->init_out_endpoint(ep);
1332 
1333 	rep->out = ep;
1334 	return 0;
1335 }
1336 
1337 /*
1338  * Frees everything.
1339  */
1340 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1341 {
1342 	int i;
1343 
1344 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1345 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1346 		if (ep->out)
1347 			snd_usbmidi_out_endpoint_delete(ep->out);
1348 		if (ep->in)
1349 			snd_usbmidi_in_endpoint_delete(ep->in);
1350 	}
1351 	mutex_destroy(&umidi->mutex);
1352 	kfree(umidi);
1353 }
1354 
1355 /*
1356  * Unlinks all URBs (must be done before the usb_device is deleted).
1357  */
1358 void snd_usbmidi_disconnect(struct list_head* p)
1359 {
1360 	struct snd_usb_midi* umidi;
1361 	unsigned int i, j;
1362 
1363 	umidi = list_entry(p, struct snd_usb_midi, list);
1364 	/*
1365 	 * an URB's completion handler may start the timer and
1366 	 * a timer may submit an URB. To reliably break the cycle
1367 	 * a flag under lock must be used
1368 	 */
1369 	spin_lock_irq(&umidi->disc_lock);
1370 	umidi->disconnected = 1;
1371 	spin_unlock_irq(&umidi->disc_lock);
1372 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1373 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1374 		if (ep->out)
1375 			tasklet_kill(&ep->out->tasklet);
1376 		if (ep->out) {
1377 			for (j = 0; j < OUTPUT_URBS; ++j)
1378 				usb_kill_urb(ep->out->urbs[j].urb);
1379 			if (umidi->usb_protocol_ops->finish_out_endpoint)
1380 				umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1381 			ep->out->active_urbs = 0;
1382 			if (ep->out->drain_urbs) {
1383 				ep->out->drain_urbs = 0;
1384 				wake_up(&ep->out->drain_wait);
1385 			}
1386 		}
1387 		if (ep->in)
1388 			for (j = 0; j < INPUT_URBS; ++j)
1389 				usb_kill_urb(ep->in->urbs[j]);
1390 		/* free endpoints here; later call can result in Oops */
1391 		if (ep->out)
1392 			snd_usbmidi_out_endpoint_clear(ep->out);
1393 		if (ep->in) {
1394 			snd_usbmidi_in_endpoint_delete(ep->in);
1395 			ep->in = NULL;
1396 		}
1397 	}
1398 	del_timer_sync(&umidi->error_timer);
1399 }
1400 
1401 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1402 {
1403 	struct snd_usb_midi* umidi = rmidi->private_data;
1404 	snd_usbmidi_free(umidi);
1405 }
1406 
1407 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1408 								int stream, int number)
1409 {
1410 	struct list_head* list;
1411 
1412 	list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1413 		struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1414 		if (substream->number == number)
1415 			return substream;
1416 	}
1417 	return NULL;
1418 }
1419 
1420 /*
1421  * This list specifies names for ports that do not fit into the standard
1422  * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1423  * such as internal control or synthesizer ports.
1424  */
1425 static struct port_info {
1426 	u32 id;
1427 	short int port;
1428 	short int voices;
1429 	const char *name;
1430 	unsigned int seq_flags;
1431 } snd_usbmidi_port_info[] = {
1432 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1433 	{ .id = USB_ID(vendor, product), \
1434 	  .port = num, .voices = voices_, \
1435 	  .name = name_, .seq_flags = flags }
1436 #define EXTERNAL_PORT(vendor, product, num, name) \
1437 	PORT_INFO(vendor, product, num, name, 0, \
1438 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1439 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1440 		  SNDRV_SEQ_PORT_TYPE_PORT)
1441 #define CONTROL_PORT(vendor, product, num, name) \
1442 	PORT_INFO(vendor, product, num, name, 0, \
1443 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1444 		  SNDRV_SEQ_PORT_TYPE_HARDWARE)
1445 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1446 	PORT_INFO(vendor, product, num, name, voices, \
1447 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1448 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1449 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1450 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1451 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1452 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1453 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1454 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1455 	PORT_INFO(vendor, product, num, name, voices, \
1456 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1457 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1458 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1459 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1460 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1461 		  SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1462 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1463 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1464 	/* Roland UA-100 */
1465 	CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1466 	/* Roland SC-8850 */
1467 	SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1468 	SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1469 	SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1470 	SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1471 	EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1472 	EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1473 	/* Roland U-8 */
1474 	EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1475 	CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1476 	/* Roland SC-8820 */
1477 	SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1478 	SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1479 	EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1480 	/* Roland SK-500 */
1481 	SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1482 	SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1483 	EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1484 	/* Roland SC-D70 */
1485 	SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1486 	SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1487 	EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1488 	/* Edirol UM-880 */
1489 	CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1490 	/* Edirol SD-90 */
1491 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1492 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1493 	EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1494 	EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1495 	/* Edirol UM-550 */
1496 	CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1497 	/* Edirol SD-20 */
1498 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1499 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1500 	EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1501 	/* Edirol SD-80 */
1502 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1503 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1504 	EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1505 	EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1506 	/* Edirol UA-700 */
1507 	EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1508 	CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1509 	/* Roland VariOS */
1510 	EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1511 	EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1512 	EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1513 	/* Edirol PCR */
1514 	EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1515 	EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1516 	EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1517 	/* BOSS GS-10 */
1518 	EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1519 	CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1520 	/* Edirol UA-1000 */
1521 	EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1522 	CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1523 	/* Edirol UR-80 */
1524 	EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1525 	EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1526 	EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1527 	/* Edirol PCR-A */
1528 	EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1529 	EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1530 	EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1531 	/* Edirol UM-3EX */
1532 	CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1533 	/* M-Audio MidiSport 8x8 */
1534 	CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1535 	CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1536 	/* MOTU Fastlane */
1537 	EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1538 	EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1539 	/* Emagic Unitor8/AMT8/MT4 */
1540 	EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1541 	EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1542 	EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1543 	/* Akai MPD16 */
1544 	CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1545 	PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1546 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1547 		SNDRV_SEQ_PORT_TYPE_HARDWARE),
1548 	/* Access Music Virus TI */
1549 	EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1550 	PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1551 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1552 		SNDRV_SEQ_PORT_TYPE_HARDWARE |
1553 		SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1554 };
1555 
1556 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1557 {
1558 	int i;
1559 
1560 	for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1561 		if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1562 		    snd_usbmidi_port_info[i].port == number)
1563 			return &snd_usbmidi_port_info[i];
1564 	}
1565 	return NULL;
1566 }
1567 
1568 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1569 				      struct snd_seq_port_info *seq_port_info)
1570 {
1571 	struct snd_usb_midi *umidi = rmidi->private_data;
1572 	struct port_info *port_info;
1573 
1574 	/* TODO: read port flags from descriptors */
1575 	port_info = find_port_info(umidi, number);
1576 	if (port_info) {
1577 		seq_port_info->type = port_info->seq_flags;
1578 		seq_port_info->midi_voices = port_info->voices;
1579 	}
1580 }
1581 
1582 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1583 				       int stream, int number,
1584 				       struct snd_rawmidi_substream ** rsubstream)
1585 {
1586 	struct port_info *port_info;
1587 	const char *name_format;
1588 
1589 	struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1590 	if (!substream) {
1591 		snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1592 		return;
1593 	}
1594 
1595 	/* TODO: read port name from jack descriptor */
1596 	port_info = find_port_info(umidi, number);
1597 	name_format = port_info ? port_info->name : "%s MIDI %d";
1598 	snprintf(substream->name, sizeof(substream->name),
1599 		 name_format, umidi->card->shortname, number + 1);
1600 
1601 	*rsubstream = substream;
1602 }
1603 
1604 /*
1605  * Creates the endpoints and their ports.
1606  */
1607 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1608 					struct snd_usb_midi_endpoint_info* endpoints)
1609 {
1610 	int i, j, err;
1611 	int out_ports = 0, in_ports = 0;
1612 
1613 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1614 		if (endpoints[i].out_cables) {
1615 			err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1616 							      &umidi->endpoints[i]);
1617 			if (err < 0)
1618 				return err;
1619 		}
1620 		if (endpoints[i].in_cables) {
1621 			err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1622 							     &umidi->endpoints[i]);
1623 			if (err < 0)
1624 				return err;
1625 		}
1626 
1627 		for (j = 0; j < 0x10; ++j) {
1628 			if (endpoints[i].out_cables & (1 << j)) {
1629 				snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1630 							   &umidi->endpoints[i].out->ports[j].substream);
1631 				++out_ports;
1632 			}
1633 			if (endpoints[i].in_cables & (1 << j)) {
1634 				snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1635 							   &umidi->endpoints[i].in->ports[j].substream);
1636 				++in_ports;
1637 			}
1638 		}
1639 	}
1640 	snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1641 		    out_ports, in_ports);
1642 	return 0;
1643 }
1644 
1645 /*
1646  * Returns MIDIStreaming device capabilities.
1647  */
1648 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1649 			   	   struct snd_usb_midi_endpoint_info* endpoints)
1650 {
1651 	struct usb_interface* intf;
1652 	struct usb_host_interface *hostif;
1653 	struct usb_interface_descriptor* intfd;
1654 	struct usb_ms_header_descriptor* ms_header;
1655 	struct usb_host_endpoint *hostep;
1656 	struct usb_endpoint_descriptor* ep;
1657 	struct usb_ms_endpoint_descriptor* ms_ep;
1658 	int i, epidx;
1659 
1660 	intf = umidi->iface;
1661 	if (!intf)
1662 		return -ENXIO;
1663 	hostif = &intf->altsetting[0];
1664 	intfd = get_iface_desc(hostif);
1665 	ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1666 	if (hostif->extralen >= 7 &&
1667 	    ms_header->bLength >= 7 &&
1668 	    ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1669 	    ms_header->bDescriptorSubtype == UAC_HEADER)
1670 		snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1671 			    ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1672 	else
1673 		snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1674 
1675 	epidx = 0;
1676 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1677 		hostep = &hostif->endpoint[i];
1678 		ep = get_ep_desc(hostep);
1679 		if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1680 			continue;
1681 		ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1682 		if (hostep->extralen < 4 ||
1683 		    ms_ep->bLength < 4 ||
1684 		    ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1685 		    ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1686 			continue;
1687 		if (usb_endpoint_dir_out(ep)) {
1688 			if (endpoints[epidx].out_ep) {
1689 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1690 					snd_printk(KERN_WARNING "too many endpoints\n");
1691 					break;
1692 				}
1693 			}
1694 			endpoints[epidx].out_ep = usb_endpoint_num(ep);
1695 			if (usb_endpoint_xfer_int(ep))
1696 				endpoints[epidx].out_interval = ep->bInterval;
1697 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1698 				/*
1699 				 * Low speed bulk transfers don't exist, so
1700 				 * force interrupt transfers for devices like
1701 				 * ESI MIDI Mate that try to use them anyway.
1702 				 */
1703 				endpoints[epidx].out_interval = 1;
1704 			endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1705 			snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1706 				    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1707 		} else {
1708 			if (endpoints[epidx].in_ep) {
1709 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1710 					snd_printk(KERN_WARNING "too many endpoints\n");
1711 					break;
1712 				}
1713 			}
1714 			endpoints[epidx].in_ep = usb_endpoint_num(ep);
1715 			if (usb_endpoint_xfer_int(ep))
1716 				endpoints[epidx].in_interval = ep->bInterval;
1717 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1718 				endpoints[epidx].in_interval = 1;
1719 			endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1720 			snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1721 				    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1722 		}
1723 	}
1724 	return 0;
1725 }
1726 
1727 static int roland_load_info(struct snd_kcontrol *kcontrol,
1728 			    struct snd_ctl_elem_info *info)
1729 {
1730 	static const char *const names[] = { "High Load", "Light Load" };
1731 
1732 	info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1733 	info->count = 1;
1734 	info->value.enumerated.items = 2;
1735 	if (info->value.enumerated.item > 1)
1736 		info->value.enumerated.item = 1;
1737 	strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
1738 	return 0;
1739 }
1740 
1741 static int roland_load_get(struct snd_kcontrol *kcontrol,
1742 			   struct snd_ctl_elem_value *value)
1743 {
1744 	value->value.enumerated.item[0] = kcontrol->private_value;
1745 	return 0;
1746 }
1747 
1748 static int roland_load_put(struct snd_kcontrol *kcontrol,
1749 			   struct snd_ctl_elem_value *value)
1750 {
1751 	struct snd_usb_midi* umidi = kcontrol->private_data;
1752 	int changed;
1753 
1754 	if (value->value.enumerated.item[0] > 1)
1755 		return -EINVAL;
1756 	mutex_lock(&umidi->mutex);
1757 	changed = value->value.enumerated.item[0] != kcontrol->private_value;
1758 	if (changed)
1759 		kcontrol->private_value = value->value.enumerated.item[0];
1760 	mutex_unlock(&umidi->mutex);
1761 	return changed;
1762 }
1763 
1764 static struct snd_kcontrol_new roland_load_ctl = {
1765 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1766 	.name = "MIDI Input Mode",
1767 	.info = roland_load_info,
1768 	.get = roland_load_get,
1769 	.put = roland_load_put,
1770 	.private_value = 1,
1771 };
1772 
1773 /*
1774  * On Roland devices, use the second alternate setting to be able to use
1775  * the interrupt input endpoint.
1776  */
1777 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1778 {
1779 	struct usb_interface* intf;
1780 	struct usb_host_interface *hostif;
1781 	struct usb_interface_descriptor* intfd;
1782 
1783 	intf = umidi->iface;
1784 	if (!intf || intf->num_altsetting != 2)
1785 		return;
1786 
1787 	hostif = &intf->altsetting[1];
1788 	intfd = get_iface_desc(hostif);
1789 	if (intfd->bNumEndpoints != 2 ||
1790 	    (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1791 	    (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1792 		return;
1793 
1794 	snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1795 		    intfd->bAlternateSetting);
1796 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1797 			  intfd->bAlternateSetting);
1798 
1799 	umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1800 	if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1801 		umidi->roland_load_ctl = NULL;
1802 }
1803 
1804 /*
1805  * Try to find any usable endpoints in the interface.
1806  */
1807 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1808 					struct snd_usb_midi_endpoint_info* endpoint,
1809 					int max_endpoints)
1810 {
1811 	struct usb_interface* intf;
1812 	struct usb_host_interface *hostif;
1813 	struct usb_interface_descriptor* intfd;
1814 	struct usb_endpoint_descriptor* epd;
1815 	int i, out_eps = 0, in_eps = 0;
1816 
1817 	if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1818 		snd_usbmidi_switch_roland_altsetting(umidi);
1819 
1820 	if (endpoint[0].out_ep || endpoint[0].in_ep)
1821 		return 0;
1822 
1823 	intf = umidi->iface;
1824 	if (!intf || intf->num_altsetting < 1)
1825 		return -ENOENT;
1826 	hostif = intf->cur_altsetting;
1827 	intfd = get_iface_desc(hostif);
1828 
1829 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1830 		epd = get_endpoint(hostif, i);
1831 		if (!usb_endpoint_xfer_bulk(epd) &&
1832 		    !usb_endpoint_xfer_int(epd))
1833 			continue;
1834 		if (out_eps < max_endpoints &&
1835 		    usb_endpoint_dir_out(epd)) {
1836 			endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1837 			if (usb_endpoint_xfer_int(epd))
1838 				endpoint[out_eps].out_interval = epd->bInterval;
1839 			++out_eps;
1840 		}
1841 		if (in_eps < max_endpoints &&
1842 		    usb_endpoint_dir_in(epd)) {
1843 			endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1844 			if (usb_endpoint_xfer_int(epd))
1845 				endpoint[in_eps].in_interval = epd->bInterval;
1846 			++in_eps;
1847 		}
1848 	}
1849 	return (out_eps || in_eps) ? 0 : -ENOENT;
1850 }
1851 
1852 /*
1853  * Detects the endpoints for one-port-per-endpoint protocols.
1854  */
1855 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1856 						 struct snd_usb_midi_endpoint_info* endpoints)
1857 {
1858 	int err, i;
1859 
1860 	err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1861 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1862 		if (endpoints[i].out_ep)
1863 			endpoints[i].out_cables = 0x0001;
1864 		if (endpoints[i].in_ep)
1865 			endpoints[i].in_cables = 0x0001;
1866 	}
1867 	return err;
1868 }
1869 
1870 /*
1871  * Detects the endpoints and ports of Yamaha devices.
1872  */
1873 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1874 				     struct snd_usb_midi_endpoint_info* endpoint)
1875 {
1876 	struct usb_interface* intf;
1877 	struct usb_host_interface *hostif;
1878 	struct usb_interface_descriptor* intfd;
1879 	uint8_t* cs_desc;
1880 
1881 	intf = umidi->iface;
1882 	if (!intf)
1883 		return -ENOENT;
1884 	hostif = intf->altsetting;
1885 	intfd = get_iface_desc(hostif);
1886 	if (intfd->bNumEndpoints < 1)
1887 		return -ENOENT;
1888 
1889 	/*
1890 	 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1891 	 * necessarily with any useful contents.  So simply count 'em.
1892 	 */
1893 	for (cs_desc = hostif->extra;
1894 	     cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1895 	     cs_desc += cs_desc[0]) {
1896 		if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1897 			if (cs_desc[2] == UAC_MIDI_IN_JACK)
1898 				endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1899 			else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1900 				endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1901 		}
1902 	}
1903 	if (!endpoint->in_cables && !endpoint->out_cables)
1904 		return -ENOENT;
1905 
1906 	return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1907 }
1908 
1909 /*
1910  * Creates the endpoints and their ports for Midiman devices.
1911  */
1912 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1913 						struct snd_usb_midi_endpoint_info* endpoint)
1914 {
1915 	struct snd_usb_midi_endpoint_info ep_info;
1916 	struct usb_interface* intf;
1917 	struct usb_host_interface *hostif;
1918 	struct usb_interface_descriptor* intfd;
1919 	struct usb_endpoint_descriptor* epd;
1920 	int cable, err;
1921 
1922 	intf = umidi->iface;
1923 	if (!intf)
1924 		return -ENOENT;
1925 	hostif = intf->altsetting;
1926 	intfd = get_iface_desc(hostif);
1927 	/*
1928 	 * The various MidiSport devices have more or less random endpoint
1929 	 * numbers, so we have to identify the endpoints by their index in
1930 	 * the descriptor array, like the driver for that other OS does.
1931 	 *
1932 	 * There is one interrupt input endpoint for all input ports, one
1933 	 * bulk output endpoint for even-numbered ports, and one for odd-
1934 	 * numbered ports.  Both bulk output endpoints have corresponding
1935 	 * input bulk endpoints (at indices 1 and 3) which aren't used.
1936 	 */
1937 	if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1938 		snd_printdd(KERN_ERR "not enough endpoints\n");
1939 		return -ENOENT;
1940 	}
1941 
1942 	epd = get_endpoint(hostif, 0);
1943 	if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1944 		snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1945 		return -ENXIO;
1946 	}
1947 	epd = get_endpoint(hostif, 2);
1948 	if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1949 		snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1950 		return -ENXIO;
1951 	}
1952 	if (endpoint->out_cables > 0x0001) {
1953 		epd = get_endpoint(hostif, 4);
1954 		if (!usb_endpoint_dir_out(epd) ||
1955 		    !usb_endpoint_xfer_bulk(epd)) {
1956 			snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1957 			return -ENXIO;
1958 		}
1959 	}
1960 
1961 	ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1962 	ep_info.out_interval = 0;
1963 	ep_info.out_cables = endpoint->out_cables & 0x5555;
1964 	err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1965 	if (err < 0)
1966 		return err;
1967 
1968 	ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1969 	ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1970 	ep_info.in_cables = endpoint->in_cables;
1971 	err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1972 	if (err < 0)
1973 		return err;
1974 
1975 	if (endpoint->out_cables > 0x0001) {
1976 		ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1977 		ep_info.out_cables = endpoint->out_cables & 0xaaaa;
1978 		err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
1979 		if (err < 0)
1980 			return err;
1981 	}
1982 
1983 	for (cable = 0; cable < 0x10; ++cable) {
1984 		if (endpoint->out_cables & (1 << cable))
1985 			snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
1986 						   &umidi->endpoints[cable & 1].out->ports[cable].substream);
1987 		if (endpoint->in_cables & (1 << cable))
1988 			snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
1989 						   &umidi->endpoints[0].in->ports[cable].substream);
1990 	}
1991 	return 0;
1992 }
1993 
1994 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
1995 	.get_port_info = snd_usbmidi_get_port_info,
1996 };
1997 
1998 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
1999 				      int out_ports, int in_ports)
2000 {
2001 	struct snd_rawmidi *rmidi;
2002 	int err;
2003 
2004 	err = snd_rawmidi_new(umidi->card, "USB MIDI",
2005 			      umidi->next_midi_device++,
2006 			      out_ports, in_ports, &rmidi);
2007 	if (err < 0)
2008 		return err;
2009 	strcpy(rmidi->name, umidi->card->shortname);
2010 	rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2011 			    SNDRV_RAWMIDI_INFO_INPUT |
2012 			    SNDRV_RAWMIDI_INFO_DUPLEX;
2013 	rmidi->ops = &snd_usbmidi_ops;
2014 	rmidi->private_data = umidi;
2015 	rmidi->private_free = snd_usbmidi_rawmidi_free;
2016 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2017 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2018 
2019 	umidi->rmidi = rmidi;
2020 	return 0;
2021 }
2022 
2023 /*
2024  * Temporarily stop input.
2025  */
2026 void snd_usbmidi_input_stop(struct list_head* p)
2027 {
2028 	struct snd_usb_midi* umidi;
2029 	unsigned int i, j;
2030 
2031 	umidi = list_entry(p, struct snd_usb_midi, list);
2032 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2033 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2034 		if (ep->in)
2035 			for (j = 0; j < INPUT_URBS; ++j)
2036 				usb_kill_urb(ep->in->urbs[j]);
2037 	}
2038 }
2039 
2040 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2041 {
2042 	unsigned int i;
2043 
2044 	if (!ep)
2045 		return;
2046 	for (i = 0; i < INPUT_URBS; ++i) {
2047 		struct urb* urb = ep->urbs[i];
2048 		urb->dev = ep->umidi->dev;
2049 		snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2050 	}
2051 }
2052 
2053 /*
2054  * Resume input after a call to snd_usbmidi_input_stop().
2055  */
2056 void snd_usbmidi_input_start(struct list_head* p)
2057 {
2058 	struct snd_usb_midi* umidi;
2059 	int i;
2060 
2061 	umidi = list_entry(p, struct snd_usb_midi, list);
2062 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2063 		snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2064 }
2065 
2066 /*
2067  * Creates and registers everything needed for a MIDI streaming interface.
2068  */
2069 int snd_usbmidi_create(struct snd_card *card,
2070 		       struct usb_interface* iface,
2071 		       struct list_head *midi_list,
2072 		       const struct snd_usb_audio_quirk* quirk)
2073 {
2074 	struct snd_usb_midi* umidi;
2075 	struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2076 	int out_ports, in_ports;
2077 	int i, err;
2078 
2079 	umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2080 	if (!umidi)
2081 		return -ENOMEM;
2082 	umidi->dev = interface_to_usbdev(iface);
2083 	umidi->card = card;
2084 	umidi->iface = iface;
2085 	umidi->quirk = quirk;
2086 	umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2087 	init_timer(&umidi->error_timer);
2088 	spin_lock_init(&umidi->disc_lock);
2089 	mutex_init(&umidi->mutex);
2090 	umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2091 			       le16_to_cpu(umidi->dev->descriptor.idProduct));
2092 	umidi->error_timer.function = snd_usbmidi_error_timer;
2093 	umidi->error_timer.data = (unsigned long)umidi;
2094 
2095 	/* detect the endpoint(s) to use */
2096 	memset(endpoints, 0, sizeof(endpoints));
2097 	switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2098 	case QUIRK_MIDI_STANDARD_INTERFACE:
2099 		err = snd_usbmidi_get_ms_info(umidi, endpoints);
2100 		if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2101 			umidi->usb_protocol_ops =
2102 				&snd_usbmidi_maudio_broken_running_status_ops;
2103 		break;
2104 	case QUIRK_MIDI_US122L:
2105 		umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2106 		/* fall through */
2107 	case QUIRK_MIDI_FIXED_ENDPOINT:
2108 		memcpy(&endpoints[0], quirk->data,
2109 		       sizeof(struct snd_usb_midi_endpoint_info));
2110 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2111 		break;
2112 	case QUIRK_MIDI_YAMAHA:
2113 		err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2114 		break;
2115 	case QUIRK_MIDI_MIDIMAN:
2116 		umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2117 		memcpy(&endpoints[0], quirk->data,
2118 		       sizeof(struct snd_usb_midi_endpoint_info));
2119 		err = 0;
2120 		break;
2121 	case QUIRK_MIDI_NOVATION:
2122 		umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2123 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2124 		break;
2125 	case QUIRK_MIDI_RAW_BYTES:
2126 		umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2127 		/*
2128 		 * Interface 1 contains isochronous endpoints, but with the same
2129 		 * numbers as in interface 0.  Since it is interface 1 that the
2130 		 * USB core has most recently seen, these descriptors are now
2131 		 * associated with the endpoint numbers.  This will foul up our
2132 		 * attempts to submit bulk/interrupt URBs to the endpoints in
2133 		 * interface 0, so we have to make sure that the USB core looks
2134 		 * again at interface 0 by calling usb_set_interface() on it.
2135 		 */
2136 		if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2137 			usb_set_interface(umidi->dev, 0, 0);
2138 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2139 		break;
2140 	case QUIRK_MIDI_EMAGIC:
2141 		umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2142 		memcpy(&endpoints[0], quirk->data,
2143 		       sizeof(struct snd_usb_midi_endpoint_info));
2144 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2145 		break;
2146 	case QUIRK_MIDI_CME:
2147 		umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2148 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2149 		break;
2150 	case QUIRK_MIDI_AKAI:
2151 		umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2152 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2153 		/* endpoint 1 is input-only */
2154 		endpoints[1].out_cables = 0;
2155 		break;
2156 	default:
2157 		snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2158 		err = -ENXIO;
2159 		break;
2160 	}
2161 	if (err < 0) {
2162 		kfree(umidi);
2163 		return err;
2164 	}
2165 
2166 	/* create rawmidi device */
2167 	out_ports = 0;
2168 	in_ports = 0;
2169 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2170 		out_ports += hweight16(endpoints[i].out_cables);
2171 		in_ports += hweight16(endpoints[i].in_cables);
2172 	}
2173 	err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2174 	if (err < 0) {
2175 		kfree(umidi);
2176 		return err;
2177 	}
2178 
2179 	/* create endpoint/port structures */
2180 	if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2181 		err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2182 	else
2183 		err = snd_usbmidi_create_endpoints(umidi, endpoints);
2184 	if (err < 0) {
2185 		snd_usbmidi_free(umidi);
2186 		return err;
2187 	}
2188 
2189 	list_add_tail(&umidi->list, midi_list);
2190 
2191 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2192 		snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2193 	return 0;
2194 }
2195 
2196 EXPORT_SYMBOL(snd_usbmidi_create);
2197 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2198 EXPORT_SYMBOL(snd_usbmidi_input_start);
2199 EXPORT_SYMBOL(snd_usbmidi_disconnect);
2200