1 /* 2 * usbmidi.c - ALSA USB MIDI driver 3 * 4 * Copyright (c) 2002-2009 Clemens Ladisch 5 * All rights reserved. 6 * 7 * Based on the OSS usb-midi driver by NAGANO Daisuke, 8 * NetBSD's umidi driver by Takuya SHIOZAKI, 9 * the "USB Device Class Definition for MIDI Devices" by Roland 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed and/or modified under the 21 * terms of the GNU General Public License as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any later 23 * version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/types.h> 40 #include <linux/bitops.h> 41 #include <linux/interrupt.h> 42 #include <linux/spinlock.h> 43 #include <linux/string.h> 44 #include <linux/init.h> 45 #include <linux/slab.h> 46 #include <linux/timer.h> 47 #include <linux/usb.h> 48 #include <linux/wait.h> 49 #include <linux/usb/audio.h> 50 #include <linux/module.h> 51 52 #include <sound/core.h> 53 #include <sound/control.h> 54 #include <sound/rawmidi.h> 55 #include <sound/asequencer.h> 56 #include "usbaudio.h" 57 #include "midi.h" 58 #include "power.h" 59 #include "helper.h" 60 61 /* 62 * define this to log all USB packets 63 */ 64 /* #define DUMP_PACKETS */ 65 66 /* 67 * how long to wait after some USB errors, so that khubd can disconnect() us 68 * without too many spurious errors 69 */ 70 #define ERROR_DELAY_JIFFIES (HZ / 10) 71 72 #define OUTPUT_URBS 7 73 #define INPUT_URBS 7 74 75 76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); 77 MODULE_DESCRIPTION("USB Audio/MIDI helper module"); 78 MODULE_LICENSE("Dual BSD/GPL"); 79 80 81 struct usb_ms_header_descriptor { 82 __u8 bLength; 83 __u8 bDescriptorType; 84 __u8 bDescriptorSubtype; 85 __u8 bcdMSC[2]; 86 __le16 wTotalLength; 87 } __attribute__ ((packed)); 88 89 struct usb_ms_endpoint_descriptor { 90 __u8 bLength; 91 __u8 bDescriptorType; 92 __u8 bDescriptorSubtype; 93 __u8 bNumEmbMIDIJack; 94 __u8 baAssocJackID[0]; 95 } __attribute__ ((packed)); 96 97 struct snd_usb_midi_in_endpoint; 98 struct snd_usb_midi_out_endpoint; 99 struct snd_usb_midi_endpoint; 100 101 struct usb_protocol_ops { 102 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int); 103 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb); 104 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); 105 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*); 106 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*); 107 }; 108 109 struct snd_usb_midi { 110 struct usb_device *dev; 111 struct snd_card *card; 112 struct usb_interface *iface; 113 const struct snd_usb_audio_quirk *quirk; 114 struct snd_rawmidi *rmidi; 115 struct usb_protocol_ops* usb_protocol_ops; 116 struct list_head list; 117 struct timer_list error_timer; 118 spinlock_t disc_lock; 119 struct rw_semaphore disc_rwsem; 120 struct mutex mutex; 121 u32 usb_id; 122 int next_midi_device; 123 124 struct snd_usb_midi_endpoint { 125 struct snd_usb_midi_out_endpoint *out; 126 struct snd_usb_midi_in_endpoint *in; 127 } endpoints[MIDI_MAX_ENDPOINTS]; 128 unsigned long input_triggered; 129 unsigned int opened[2]; 130 unsigned char disconnected; 131 unsigned char input_running; 132 133 struct snd_kcontrol *roland_load_ctl; 134 }; 135 136 struct snd_usb_midi_out_endpoint { 137 struct snd_usb_midi* umidi; 138 struct out_urb_context { 139 struct urb *urb; 140 struct snd_usb_midi_out_endpoint *ep; 141 } urbs[OUTPUT_URBS]; 142 unsigned int active_urbs; 143 unsigned int drain_urbs; 144 int max_transfer; /* size of urb buffer */ 145 struct tasklet_struct tasklet; 146 unsigned int next_urb; 147 spinlock_t buffer_lock; 148 149 struct usbmidi_out_port { 150 struct snd_usb_midi_out_endpoint* ep; 151 struct snd_rawmidi_substream *substream; 152 int active; 153 uint8_t cable; /* cable number << 4 */ 154 uint8_t state; 155 #define STATE_UNKNOWN 0 156 #define STATE_1PARAM 1 157 #define STATE_2PARAM_1 2 158 #define STATE_2PARAM_2 3 159 #define STATE_SYSEX_0 4 160 #define STATE_SYSEX_1 5 161 #define STATE_SYSEX_2 6 162 uint8_t data[2]; 163 } ports[0x10]; 164 int current_port; 165 166 wait_queue_head_t drain_wait; 167 }; 168 169 struct snd_usb_midi_in_endpoint { 170 struct snd_usb_midi* umidi; 171 struct urb* urbs[INPUT_URBS]; 172 struct usbmidi_in_port { 173 struct snd_rawmidi_substream *substream; 174 u8 running_status_length; 175 } ports[0x10]; 176 u8 seen_f5; 177 u8 error_resubmit; 178 int current_port; 179 }; 180 181 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep); 182 183 static const uint8_t snd_usbmidi_cin_length[] = { 184 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 185 }; 186 187 /* 188 * Submits the URB, with error handling. 189 */ 190 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags) 191 { 192 int err = usb_submit_urb(urb, flags); 193 if (err < 0 && err != -ENODEV) 194 dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err); 195 return err; 196 } 197 198 /* 199 * Error handling for URB completion functions. 200 */ 201 static int snd_usbmidi_urb_error(const struct urb *urb) 202 { 203 switch (urb->status) { 204 /* manually unlinked, or device gone */ 205 case -ENOENT: 206 case -ECONNRESET: 207 case -ESHUTDOWN: 208 case -ENODEV: 209 return -ENODEV; 210 /* errors that might occur during unplugging */ 211 case -EPROTO: 212 case -ETIME: 213 case -EILSEQ: 214 return -EIO; 215 default: 216 dev_err(&urb->dev->dev, "urb status %d\n", urb->status); 217 return 0; /* continue */ 218 } 219 } 220 221 /* 222 * Receives a chunk of MIDI data. 223 */ 224 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx, 225 uint8_t* data, int length) 226 { 227 struct usbmidi_in_port* port = &ep->ports[portidx]; 228 229 if (!port->substream) { 230 dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx); 231 return; 232 } 233 if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) 234 return; 235 snd_rawmidi_receive(port->substream, data, length); 236 } 237 238 #ifdef DUMP_PACKETS 239 static void dump_urb(const char *type, const u8 *data, int length) 240 { 241 snd_printk(KERN_DEBUG "%s packet: [", type); 242 for (; length > 0; ++data, --length) 243 printk(" %02x", *data); 244 printk(" ]\n"); 245 } 246 #else 247 #define dump_urb(type, data, length) /* nothing */ 248 #endif 249 250 /* 251 * Processes the data read from the device. 252 */ 253 static void snd_usbmidi_in_urb_complete(struct urb* urb) 254 { 255 struct snd_usb_midi_in_endpoint* ep = urb->context; 256 257 if (urb->status == 0) { 258 dump_urb("received", urb->transfer_buffer, urb->actual_length); 259 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, 260 urb->actual_length); 261 } else { 262 int err = snd_usbmidi_urb_error(urb); 263 if (err < 0) { 264 if (err != -ENODEV) { 265 ep->error_resubmit = 1; 266 mod_timer(&ep->umidi->error_timer, 267 jiffies + ERROR_DELAY_JIFFIES); 268 } 269 return; 270 } 271 } 272 273 urb->dev = ep->umidi->dev; 274 snd_usbmidi_submit_urb(urb, GFP_ATOMIC); 275 } 276 277 static void snd_usbmidi_out_urb_complete(struct urb* urb) 278 { 279 struct out_urb_context *context = urb->context; 280 struct snd_usb_midi_out_endpoint* ep = context->ep; 281 unsigned int urb_index; 282 283 spin_lock(&ep->buffer_lock); 284 urb_index = context - ep->urbs; 285 ep->active_urbs &= ~(1 << urb_index); 286 if (unlikely(ep->drain_urbs)) { 287 ep->drain_urbs &= ~(1 << urb_index); 288 wake_up(&ep->drain_wait); 289 } 290 spin_unlock(&ep->buffer_lock); 291 if (urb->status < 0) { 292 int err = snd_usbmidi_urb_error(urb); 293 if (err < 0) { 294 if (err != -ENODEV) 295 mod_timer(&ep->umidi->error_timer, 296 jiffies + ERROR_DELAY_JIFFIES); 297 return; 298 } 299 } 300 snd_usbmidi_do_output(ep); 301 } 302 303 /* 304 * This is called when some data should be transferred to the device 305 * (from one or more substreams). 306 */ 307 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep) 308 { 309 unsigned int urb_index; 310 struct urb* urb; 311 unsigned long flags; 312 313 spin_lock_irqsave(&ep->buffer_lock, flags); 314 if (ep->umidi->disconnected) { 315 spin_unlock_irqrestore(&ep->buffer_lock, flags); 316 return; 317 } 318 319 urb_index = ep->next_urb; 320 for (;;) { 321 if (!(ep->active_urbs & (1 << urb_index))) { 322 urb = ep->urbs[urb_index].urb; 323 urb->transfer_buffer_length = 0; 324 ep->umidi->usb_protocol_ops->output(ep, urb); 325 if (urb->transfer_buffer_length == 0) 326 break; 327 328 dump_urb("sending", urb->transfer_buffer, 329 urb->transfer_buffer_length); 330 urb->dev = ep->umidi->dev; 331 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0) 332 break; 333 ep->active_urbs |= 1 << urb_index; 334 } 335 if (++urb_index >= OUTPUT_URBS) 336 urb_index = 0; 337 if (urb_index == ep->next_urb) 338 break; 339 } 340 ep->next_urb = urb_index; 341 spin_unlock_irqrestore(&ep->buffer_lock, flags); 342 } 343 344 static void snd_usbmidi_out_tasklet(unsigned long data) 345 { 346 struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data; 347 348 snd_usbmidi_do_output(ep); 349 } 350 351 /* called after transfers had been interrupted due to some USB error */ 352 static void snd_usbmidi_error_timer(unsigned long data) 353 { 354 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data; 355 unsigned int i, j; 356 357 spin_lock(&umidi->disc_lock); 358 if (umidi->disconnected) { 359 spin_unlock(&umidi->disc_lock); 360 return; 361 } 362 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 363 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in; 364 if (in && in->error_resubmit) { 365 in->error_resubmit = 0; 366 for (j = 0; j < INPUT_URBS; ++j) { 367 in->urbs[j]->dev = umidi->dev; 368 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC); 369 } 370 } 371 if (umidi->endpoints[i].out) 372 snd_usbmidi_do_output(umidi->endpoints[i].out); 373 } 374 spin_unlock(&umidi->disc_lock); 375 } 376 377 /* helper function to send static data that may not DMA-able */ 378 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep, 379 const void *data, int len) 380 { 381 int err = 0; 382 void *buf = kmemdup(data, len, GFP_KERNEL); 383 if (!buf) 384 return -ENOMEM; 385 dump_urb("sending", buf, len); 386 if (ep->urbs[0].urb) 387 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe, 388 buf, len, NULL, 250); 389 kfree(buf); 390 return err; 391 } 392 393 /* 394 * Standard USB MIDI protocol: see the spec. 395 * Midiman protocol: like the standard protocol, but the control byte is the 396 * fourth byte in each packet, and uses length instead of CIN. 397 */ 398 399 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep, 400 uint8_t* buffer, int buffer_length) 401 { 402 int i; 403 404 for (i = 0; i + 3 < buffer_length; i += 4) 405 if (buffer[i] != 0) { 406 int cable = buffer[i] >> 4; 407 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; 408 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); 409 } 410 } 411 412 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep, 413 uint8_t* buffer, int buffer_length) 414 { 415 int i; 416 417 for (i = 0; i + 3 < buffer_length; i += 4) 418 if (buffer[i + 3] != 0) { 419 int port = buffer[i + 3] >> 4; 420 int length = buffer[i + 3] & 3; 421 snd_usbmidi_input_data(ep, port, &buffer[i], length); 422 } 423 } 424 425 /* 426 * Buggy M-Audio device: running status on input results in a packet that has 427 * the data bytes but not the status byte and that is marked with CIN 4. 428 */ 429 static void snd_usbmidi_maudio_broken_running_status_input( 430 struct snd_usb_midi_in_endpoint* ep, 431 uint8_t* buffer, int buffer_length) 432 { 433 int i; 434 435 for (i = 0; i + 3 < buffer_length; i += 4) 436 if (buffer[i] != 0) { 437 int cable = buffer[i] >> 4; 438 u8 cin = buffer[i] & 0x0f; 439 struct usbmidi_in_port *port = &ep->ports[cable]; 440 int length; 441 442 length = snd_usbmidi_cin_length[cin]; 443 if (cin == 0xf && buffer[i + 1] >= 0xf8) 444 ; /* realtime msg: no running status change */ 445 else if (cin >= 0x8 && cin <= 0xe) 446 /* channel msg */ 447 port->running_status_length = length - 1; 448 else if (cin == 0x4 && 449 port->running_status_length != 0 && 450 buffer[i + 1] < 0x80) 451 /* CIN 4 that is not a SysEx */ 452 length = port->running_status_length; 453 else 454 /* 455 * All other msgs cannot begin running status. 456 * (A channel msg sent as two or three CIN 0xF 457 * packets could in theory, but this device 458 * doesn't use this format.) 459 */ 460 port->running_status_length = 0; 461 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); 462 } 463 } 464 465 /* 466 * CME protocol: like the standard protocol, but SysEx commands are sent as a 467 * single USB packet preceded by a 0x0F byte. 468 */ 469 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep, 470 uint8_t *buffer, int buffer_length) 471 { 472 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f) 473 snd_usbmidi_standard_input(ep, buffer, buffer_length); 474 else 475 snd_usbmidi_input_data(ep, buffer[0] >> 4, 476 &buffer[1], buffer_length - 1); 477 } 478 479 /* 480 * Adds one USB MIDI packet to the output buffer. 481 */ 482 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0, 483 uint8_t p1, uint8_t p2, uint8_t p3) 484 { 485 486 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; 487 buf[0] = p0; 488 buf[1] = p1; 489 buf[2] = p2; 490 buf[3] = p3; 491 urb->transfer_buffer_length += 4; 492 } 493 494 /* 495 * Adds one Midiman packet to the output buffer. 496 */ 497 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0, 498 uint8_t p1, uint8_t p2, uint8_t p3) 499 { 500 501 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; 502 buf[0] = p1; 503 buf[1] = p2; 504 buf[2] = p3; 505 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; 506 urb->transfer_buffer_length += 4; 507 } 508 509 /* 510 * Converts MIDI commands to USB MIDI packets. 511 */ 512 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port, 513 uint8_t b, struct urb* urb) 514 { 515 uint8_t p0 = port->cable; 516 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = 517 port->ep->umidi->usb_protocol_ops->output_packet; 518 519 if (b >= 0xf8) { 520 output_packet(urb, p0 | 0x0f, b, 0, 0); 521 } else if (b >= 0xf0) { 522 switch (b) { 523 case 0xf0: 524 port->data[0] = b; 525 port->state = STATE_SYSEX_1; 526 break; 527 case 0xf1: 528 case 0xf3: 529 port->data[0] = b; 530 port->state = STATE_1PARAM; 531 break; 532 case 0xf2: 533 port->data[0] = b; 534 port->state = STATE_2PARAM_1; 535 break; 536 case 0xf4: 537 case 0xf5: 538 port->state = STATE_UNKNOWN; 539 break; 540 case 0xf6: 541 output_packet(urb, p0 | 0x05, 0xf6, 0, 0); 542 port->state = STATE_UNKNOWN; 543 break; 544 case 0xf7: 545 switch (port->state) { 546 case STATE_SYSEX_0: 547 output_packet(urb, p0 | 0x05, 0xf7, 0, 0); 548 break; 549 case STATE_SYSEX_1: 550 output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0); 551 break; 552 case STATE_SYSEX_2: 553 output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7); 554 break; 555 } 556 port->state = STATE_UNKNOWN; 557 break; 558 } 559 } else if (b >= 0x80) { 560 port->data[0] = b; 561 if (b >= 0xc0 && b <= 0xdf) 562 port->state = STATE_1PARAM; 563 else 564 port->state = STATE_2PARAM_1; 565 } else { /* b < 0x80 */ 566 switch (port->state) { 567 case STATE_1PARAM: 568 if (port->data[0] < 0xf0) { 569 p0 |= port->data[0] >> 4; 570 } else { 571 p0 |= 0x02; 572 port->state = STATE_UNKNOWN; 573 } 574 output_packet(urb, p0, port->data[0], b, 0); 575 break; 576 case STATE_2PARAM_1: 577 port->data[1] = b; 578 port->state = STATE_2PARAM_2; 579 break; 580 case STATE_2PARAM_2: 581 if (port->data[0] < 0xf0) { 582 p0 |= port->data[0] >> 4; 583 port->state = STATE_2PARAM_1; 584 } else { 585 p0 |= 0x03; 586 port->state = STATE_UNKNOWN; 587 } 588 output_packet(urb, p0, port->data[0], port->data[1], b); 589 break; 590 case STATE_SYSEX_0: 591 port->data[0] = b; 592 port->state = STATE_SYSEX_1; 593 break; 594 case STATE_SYSEX_1: 595 port->data[1] = b; 596 port->state = STATE_SYSEX_2; 597 break; 598 case STATE_SYSEX_2: 599 output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b); 600 port->state = STATE_SYSEX_0; 601 break; 602 } 603 } 604 } 605 606 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep, 607 struct urb *urb) 608 { 609 int p; 610 611 /* FIXME: lower-numbered ports can starve higher-numbered ports */ 612 for (p = 0; p < 0x10; ++p) { 613 struct usbmidi_out_port* port = &ep->ports[p]; 614 if (!port->active) 615 continue; 616 while (urb->transfer_buffer_length + 3 < ep->max_transfer) { 617 uint8_t b; 618 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { 619 port->active = 0; 620 break; 621 } 622 snd_usbmidi_transmit_byte(port, b, urb); 623 } 624 } 625 } 626 627 static struct usb_protocol_ops snd_usbmidi_standard_ops = { 628 .input = snd_usbmidi_standard_input, 629 .output = snd_usbmidi_standard_output, 630 .output_packet = snd_usbmidi_output_standard_packet, 631 }; 632 633 static struct usb_protocol_ops snd_usbmidi_midiman_ops = { 634 .input = snd_usbmidi_midiman_input, 635 .output = snd_usbmidi_standard_output, 636 .output_packet = snd_usbmidi_output_midiman_packet, 637 }; 638 639 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = { 640 .input = snd_usbmidi_maudio_broken_running_status_input, 641 .output = snd_usbmidi_standard_output, 642 .output_packet = snd_usbmidi_output_standard_packet, 643 }; 644 645 static struct usb_protocol_ops snd_usbmidi_cme_ops = { 646 .input = snd_usbmidi_cme_input, 647 .output = snd_usbmidi_standard_output, 648 .output_packet = snd_usbmidi_output_standard_packet, 649 }; 650 651 /* 652 * AKAI MPD16 protocol: 653 * 654 * For control port (endpoint 1): 655 * ============================== 656 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a 657 * SysEx message (msg_len=9 bytes long). 658 * 659 * For data port (endpoint 2): 660 * =========================== 661 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a 662 * MIDI message (msg_len bytes long) 663 * 664 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change. 665 */ 666 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep, 667 uint8_t *buffer, int buffer_length) 668 { 669 unsigned int pos = 0; 670 unsigned int len = (unsigned int)buffer_length; 671 while (pos < len) { 672 unsigned int port = (buffer[pos] >> 4) - 1; 673 unsigned int msg_len = buffer[pos] & 0x0f; 674 pos++; 675 if (pos + msg_len <= len && port < 2) 676 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len); 677 pos += msg_len; 678 } 679 } 680 681 #define MAX_AKAI_SYSEX_LEN 9 682 683 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep, 684 struct urb *urb) 685 { 686 uint8_t *msg; 687 int pos, end, count, buf_end; 688 uint8_t tmp[MAX_AKAI_SYSEX_LEN]; 689 struct snd_rawmidi_substream *substream = ep->ports[0].substream; 690 691 if (!ep->ports[0].active) 692 return; 693 694 msg = urb->transfer_buffer + urb->transfer_buffer_length; 695 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1; 696 697 /* only try adding more data when there's space for at least 1 SysEx */ 698 while (urb->transfer_buffer_length < buf_end) { 699 count = snd_rawmidi_transmit_peek(substream, 700 tmp, MAX_AKAI_SYSEX_LEN); 701 if (!count) { 702 ep->ports[0].active = 0; 703 return; 704 } 705 /* try to skip non-SysEx data */ 706 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++) 707 ; 708 709 if (pos > 0) { 710 snd_rawmidi_transmit_ack(substream, pos); 711 continue; 712 } 713 714 /* look for the start or end marker */ 715 for (end = 1; end < count && tmp[end] < 0xF0; end++) 716 ; 717 718 /* next SysEx started before the end of current one */ 719 if (end < count && tmp[end] == 0xF0) { 720 /* it's incomplete - drop it */ 721 snd_rawmidi_transmit_ack(substream, end); 722 continue; 723 } 724 /* SysEx complete */ 725 if (end < count && tmp[end] == 0xF7) { 726 /* queue it, ack it, and get the next one */ 727 count = end + 1; 728 msg[0] = 0x10 | count; 729 memcpy(&msg[1], tmp, count); 730 snd_rawmidi_transmit_ack(substream, count); 731 urb->transfer_buffer_length += count + 1; 732 msg += count + 1; 733 continue; 734 } 735 /* less than 9 bytes and no end byte - wait for more */ 736 if (count < MAX_AKAI_SYSEX_LEN) { 737 ep->ports[0].active = 0; 738 return; 739 } 740 /* 9 bytes and no end marker in sight - malformed, skip it */ 741 snd_rawmidi_transmit_ack(substream, count); 742 } 743 } 744 745 static struct usb_protocol_ops snd_usbmidi_akai_ops = { 746 .input = snd_usbmidi_akai_input, 747 .output = snd_usbmidi_akai_output, 748 }; 749 750 /* 751 * Novation USB MIDI protocol: number of data bytes is in the first byte 752 * (when receiving) (+1!) or in the second byte (when sending); data begins 753 * at the third byte. 754 */ 755 756 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep, 757 uint8_t* buffer, int buffer_length) 758 { 759 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) 760 return; 761 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); 762 } 763 764 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep, 765 struct urb *urb) 766 { 767 uint8_t* transfer_buffer; 768 int count; 769 770 if (!ep->ports[0].active) 771 return; 772 transfer_buffer = urb->transfer_buffer; 773 count = snd_rawmidi_transmit(ep->ports[0].substream, 774 &transfer_buffer[2], 775 ep->max_transfer - 2); 776 if (count < 1) { 777 ep->ports[0].active = 0; 778 return; 779 } 780 transfer_buffer[0] = 0; 781 transfer_buffer[1] = count; 782 urb->transfer_buffer_length = 2 + count; 783 } 784 785 static struct usb_protocol_ops snd_usbmidi_novation_ops = { 786 .input = snd_usbmidi_novation_input, 787 .output = snd_usbmidi_novation_output, 788 }; 789 790 /* 791 * "raw" protocol: just move raw MIDI bytes from/to the endpoint 792 */ 793 794 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep, 795 uint8_t* buffer, int buffer_length) 796 { 797 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 798 } 799 800 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep, 801 struct urb *urb) 802 { 803 int count; 804 805 if (!ep->ports[0].active) 806 return; 807 count = snd_rawmidi_transmit(ep->ports[0].substream, 808 urb->transfer_buffer, 809 ep->max_transfer); 810 if (count < 1) { 811 ep->ports[0].active = 0; 812 return; 813 } 814 urb->transfer_buffer_length = count; 815 } 816 817 static struct usb_protocol_ops snd_usbmidi_raw_ops = { 818 .input = snd_usbmidi_raw_input, 819 .output = snd_usbmidi_raw_output, 820 }; 821 822 /* 823 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes. 824 */ 825 826 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint* ep, 827 uint8_t* buffer, int buffer_length) 828 { 829 if (buffer_length > 2) 830 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2); 831 } 832 833 static struct usb_protocol_ops snd_usbmidi_ftdi_ops = { 834 .input = snd_usbmidi_ftdi_input, 835 .output = snd_usbmidi_raw_output, 836 }; 837 838 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep, 839 uint8_t *buffer, int buffer_length) 840 { 841 if (buffer_length != 9) 842 return; 843 buffer_length = 8; 844 while (buffer_length && buffer[buffer_length - 1] == 0xFD) 845 buffer_length--; 846 if (buffer_length) 847 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 848 } 849 850 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep, 851 struct urb *urb) 852 { 853 int count; 854 855 if (!ep->ports[0].active) 856 return; 857 switch (snd_usb_get_speed(ep->umidi->dev)) { 858 case USB_SPEED_HIGH: 859 case USB_SPEED_SUPER: 860 count = 1; 861 break; 862 default: 863 count = 2; 864 } 865 count = snd_rawmidi_transmit(ep->ports[0].substream, 866 urb->transfer_buffer, 867 count); 868 if (count < 1) { 869 ep->ports[0].active = 0; 870 return; 871 } 872 873 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count); 874 urb->transfer_buffer_length = ep->max_transfer; 875 } 876 877 static struct usb_protocol_ops snd_usbmidi_122l_ops = { 878 .input = snd_usbmidi_us122l_input, 879 .output = snd_usbmidi_us122l_output, 880 }; 881 882 /* 883 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. 884 */ 885 886 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep) 887 { 888 static const u8 init_data[] = { 889 /* initialization magic: "get version" */ 890 0xf0, 891 0x00, 0x20, 0x31, /* Emagic */ 892 0x64, /* Unitor8 */ 893 0x0b, /* version number request */ 894 0x00, /* command version */ 895 0x00, /* EEPROM, box 0 */ 896 0xf7 897 }; 898 send_bulk_static_data(ep, init_data, sizeof(init_data)); 899 /* while we're at it, pour on more magic */ 900 send_bulk_static_data(ep, init_data, sizeof(init_data)); 901 } 902 903 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep) 904 { 905 static const u8 finish_data[] = { 906 /* switch to patch mode with last preset */ 907 0xf0, 908 0x00, 0x20, 0x31, /* Emagic */ 909 0x64, /* Unitor8 */ 910 0x10, /* patch switch command */ 911 0x00, /* command version */ 912 0x7f, /* to all boxes */ 913 0x40, /* last preset in EEPROM */ 914 0xf7 915 }; 916 send_bulk_static_data(ep, finish_data, sizeof(finish_data)); 917 } 918 919 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep, 920 uint8_t* buffer, int buffer_length) 921 { 922 int i; 923 924 /* FF indicates end of valid data */ 925 for (i = 0; i < buffer_length; ++i) 926 if (buffer[i] == 0xff) { 927 buffer_length = i; 928 break; 929 } 930 931 /* handle F5 at end of last buffer */ 932 if (ep->seen_f5) 933 goto switch_port; 934 935 while (buffer_length > 0) { 936 /* determine size of data until next F5 */ 937 for (i = 0; i < buffer_length; ++i) 938 if (buffer[i] == 0xf5) 939 break; 940 snd_usbmidi_input_data(ep, ep->current_port, buffer, i); 941 buffer += i; 942 buffer_length -= i; 943 944 if (buffer_length <= 0) 945 break; 946 /* assert(buffer[0] == 0xf5); */ 947 ep->seen_f5 = 1; 948 ++buffer; 949 --buffer_length; 950 951 switch_port: 952 if (buffer_length <= 0) 953 break; 954 if (buffer[0] < 0x80) { 955 ep->current_port = (buffer[0] - 1) & 15; 956 ++buffer; 957 --buffer_length; 958 } 959 ep->seen_f5 = 0; 960 } 961 } 962 963 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep, 964 struct urb *urb) 965 { 966 int port0 = ep->current_port; 967 uint8_t* buf = urb->transfer_buffer; 968 int buf_free = ep->max_transfer; 969 int length, i; 970 971 for (i = 0; i < 0x10; ++i) { 972 /* round-robin, starting at the last current port */ 973 int portnum = (port0 + i) & 15; 974 struct usbmidi_out_port* port = &ep->ports[portnum]; 975 976 if (!port->active) 977 continue; 978 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { 979 port->active = 0; 980 continue; 981 } 982 983 if (portnum != ep->current_port) { 984 if (buf_free < 2) 985 break; 986 ep->current_port = portnum; 987 buf[0] = 0xf5; 988 buf[1] = (portnum + 1) & 15; 989 buf += 2; 990 buf_free -= 2; 991 } 992 993 if (buf_free < 1) 994 break; 995 length = snd_rawmidi_transmit(port->substream, buf, buf_free); 996 if (length > 0) { 997 buf += length; 998 buf_free -= length; 999 if (buf_free < 1) 1000 break; 1001 } 1002 } 1003 if (buf_free < ep->max_transfer && buf_free > 0) { 1004 *buf = 0xff; 1005 --buf_free; 1006 } 1007 urb->transfer_buffer_length = ep->max_transfer - buf_free; 1008 } 1009 1010 static struct usb_protocol_ops snd_usbmidi_emagic_ops = { 1011 .input = snd_usbmidi_emagic_input, 1012 .output = snd_usbmidi_emagic_output, 1013 .init_out_endpoint = snd_usbmidi_emagic_init_out, 1014 .finish_out_endpoint = snd_usbmidi_emagic_finish_out, 1015 }; 1016 1017 1018 static void update_roland_altsetting(struct snd_usb_midi* umidi) 1019 { 1020 struct usb_interface *intf; 1021 struct usb_host_interface *hostif; 1022 struct usb_interface_descriptor *intfd; 1023 int is_light_load; 1024 1025 intf = umidi->iface; 1026 is_light_load = intf->cur_altsetting != intf->altsetting; 1027 if (umidi->roland_load_ctl->private_value == is_light_load) 1028 return; 1029 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value]; 1030 intfd = get_iface_desc(hostif); 1031 snd_usbmidi_input_stop(&umidi->list); 1032 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1033 intfd->bAlternateSetting); 1034 snd_usbmidi_input_start(&umidi->list); 1035 } 1036 1037 static int substream_open(struct snd_rawmidi_substream *substream, int dir, 1038 int open) 1039 { 1040 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1041 struct snd_kcontrol *ctl; 1042 1043 down_read(&umidi->disc_rwsem); 1044 if (umidi->disconnected) { 1045 up_read(&umidi->disc_rwsem); 1046 return open ? -ENODEV : 0; 1047 } 1048 1049 mutex_lock(&umidi->mutex); 1050 if (open) { 1051 if (!umidi->opened[0] && !umidi->opened[1]) { 1052 if (umidi->roland_load_ctl) { 1053 ctl = umidi->roland_load_ctl; 1054 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1055 snd_ctl_notify(umidi->card, 1056 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1057 update_roland_altsetting(umidi); 1058 } 1059 } 1060 umidi->opened[dir]++; 1061 if (umidi->opened[1]) 1062 snd_usbmidi_input_start(&umidi->list); 1063 } else { 1064 umidi->opened[dir]--; 1065 if (!umidi->opened[1]) 1066 snd_usbmidi_input_stop(&umidi->list); 1067 if (!umidi->opened[0] && !umidi->opened[1]) { 1068 if (umidi->roland_load_ctl) { 1069 ctl = umidi->roland_load_ctl; 1070 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1071 snd_ctl_notify(umidi->card, 1072 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1073 } 1074 } 1075 } 1076 mutex_unlock(&umidi->mutex); 1077 up_read(&umidi->disc_rwsem); 1078 return 0; 1079 } 1080 1081 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream) 1082 { 1083 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1084 struct usbmidi_out_port* port = NULL; 1085 int i, j; 1086 1087 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 1088 if (umidi->endpoints[i].out) 1089 for (j = 0; j < 0x10; ++j) 1090 if (umidi->endpoints[i].out->ports[j].substream == substream) { 1091 port = &umidi->endpoints[i].out->ports[j]; 1092 break; 1093 } 1094 if (!port) { 1095 snd_BUG(); 1096 return -ENXIO; 1097 } 1098 1099 substream->runtime->private_data = port; 1100 port->state = STATE_UNKNOWN; 1101 return substream_open(substream, 0, 1); 1102 } 1103 1104 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream) 1105 { 1106 return substream_open(substream, 0, 0); 1107 } 1108 1109 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1110 { 1111 struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data; 1112 1113 port->active = up; 1114 if (up) { 1115 if (port->ep->umidi->disconnected) { 1116 /* gobble up remaining bytes to prevent wait in 1117 * snd_rawmidi_drain_output */ 1118 while (!snd_rawmidi_transmit_empty(substream)) 1119 snd_rawmidi_transmit_ack(substream, 1); 1120 return; 1121 } 1122 tasklet_schedule(&port->ep->tasklet); 1123 } 1124 } 1125 1126 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream) 1127 { 1128 struct usbmidi_out_port* port = substream->runtime->private_data; 1129 struct snd_usb_midi_out_endpoint *ep = port->ep; 1130 unsigned int drain_urbs; 1131 DEFINE_WAIT(wait); 1132 long timeout = msecs_to_jiffies(50); 1133 1134 if (ep->umidi->disconnected) 1135 return; 1136 /* 1137 * The substream buffer is empty, but some data might still be in the 1138 * currently active URBs, so we have to wait for those to complete. 1139 */ 1140 spin_lock_irq(&ep->buffer_lock); 1141 drain_urbs = ep->active_urbs; 1142 if (drain_urbs) { 1143 ep->drain_urbs |= drain_urbs; 1144 do { 1145 prepare_to_wait(&ep->drain_wait, &wait, 1146 TASK_UNINTERRUPTIBLE); 1147 spin_unlock_irq(&ep->buffer_lock); 1148 timeout = schedule_timeout(timeout); 1149 spin_lock_irq(&ep->buffer_lock); 1150 drain_urbs &= ep->drain_urbs; 1151 } while (drain_urbs && timeout); 1152 finish_wait(&ep->drain_wait, &wait); 1153 } 1154 spin_unlock_irq(&ep->buffer_lock); 1155 } 1156 1157 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream) 1158 { 1159 return substream_open(substream, 1, 1); 1160 } 1161 1162 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream) 1163 { 1164 return substream_open(substream, 1, 0); 1165 } 1166 1167 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1168 { 1169 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1170 1171 if (up) 1172 set_bit(substream->number, &umidi->input_triggered); 1173 else 1174 clear_bit(substream->number, &umidi->input_triggered); 1175 } 1176 1177 static struct snd_rawmidi_ops snd_usbmidi_output_ops = { 1178 .open = snd_usbmidi_output_open, 1179 .close = snd_usbmidi_output_close, 1180 .trigger = snd_usbmidi_output_trigger, 1181 .drain = snd_usbmidi_output_drain, 1182 }; 1183 1184 static struct snd_rawmidi_ops snd_usbmidi_input_ops = { 1185 .open = snd_usbmidi_input_open, 1186 .close = snd_usbmidi_input_close, 1187 .trigger = snd_usbmidi_input_trigger 1188 }; 1189 1190 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb, 1191 unsigned int buffer_length) 1192 { 1193 usb_free_coherent(umidi->dev, buffer_length, 1194 urb->transfer_buffer, urb->transfer_dma); 1195 usb_free_urb(urb); 1196 } 1197 1198 /* 1199 * Frees an input endpoint. 1200 * May be called when ep hasn't been initialized completely. 1201 */ 1202 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep) 1203 { 1204 unsigned int i; 1205 1206 for (i = 0; i < INPUT_URBS; ++i) 1207 if (ep->urbs[i]) 1208 free_urb_and_buffer(ep->umidi, ep->urbs[i], 1209 ep->urbs[i]->transfer_buffer_length); 1210 kfree(ep); 1211 } 1212 1213 /* 1214 * Creates an input endpoint. 1215 */ 1216 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi, 1217 struct snd_usb_midi_endpoint_info* ep_info, 1218 struct snd_usb_midi_endpoint* rep) 1219 { 1220 struct snd_usb_midi_in_endpoint* ep; 1221 void* buffer; 1222 unsigned int pipe; 1223 int length; 1224 unsigned int i; 1225 1226 rep->in = NULL; 1227 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1228 if (!ep) 1229 return -ENOMEM; 1230 ep->umidi = umidi; 1231 1232 for (i = 0; i < INPUT_URBS; ++i) { 1233 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); 1234 if (!ep->urbs[i]) { 1235 snd_usbmidi_in_endpoint_delete(ep); 1236 return -ENOMEM; 1237 } 1238 } 1239 if (ep_info->in_interval) 1240 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep); 1241 else 1242 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep); 1243 length = usb_maxpacket(umidi->dev, pipe, 0); 1244 for (i = 0; i < INPUT_URBS; ++i) { 1245 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL, 1246 &ep->urbs[i]->transfer_dma); 1247 if (!buffer) { 1248 snd_usbmidi_in_endpoint_delete(ep); 1249 return -ENOMEM; 1250 } 1251 if (ep_info->in_interval) 1252 usb_fill_int_urb(ep->urbs[i], umidi->dev, 1253 pipe, buffer, length, 1254 snd_usbmidi_in_urb_complete, 1255 ep, ep_info->in_interval); 1256 else 1257 usb_fill_bulk_urb(ep->urbs[i], umidi->dev, 1258 pipe, buffer, length, 1259 snd_usbmidi_in_urb_complete, ep); 1260 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1261 } 1262 1263 rep->in = ep; 1264 return 0; 1265 } 1266 1267 /* 1268 * Frees an output endpoint. 1269 * May be called when ep hasn't been initialized completely. 1270 */ 1271 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep) 1272 { 1273 unsigned int i; 1274 1275 for (i = 0; i < OUTPUT_URBS; ++i) 1276 if (ep->urbs[i].urb) { 1277 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb, 1278 ep->max_transfer); 1279 ep->urbs[i].urb = NULL; 1280 } 1281 } 1282 1283 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep) 1284 { 1285 snd_usbmidi_out_endpoint_clear(ep); 1286 kfree(ep); 1287 } 1288 1289 /* 1290 * Creates an output endpoint, and initializes output ports. 1291 */ 1292 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi, 1293 struct snd_usb_midi_endpoint_info* ep_info, 1294 struct snd_usb_midi_endpoint* rep) 1295 { 1296 struct snd_usb_midi_out_endpoint* ep; 1297 unsigned int i; 1298 unsigned int pipe; 1299 void* buffer; 1300 1301 rep->out = NULL; 1302 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1303 if (!ep) 1304 return -ENOMEM; 1305 ep->umidi = umidi; 1306 1307 for (i = 0; i < OUTPUT_URBS; ++i) { 1308 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL); 1309 if (!ep->urbs[i].urb) { 1310 snd_usbmidi_out_endpoint_delete(ep); 1311 return -ENOMEM; 1312 } 1313 ep->urbs[i].ep = ep; 1314 } 1315 if (ep_info->out_interval) 1316 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep); 1317 else 1318 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep); 1319 switch (umidi->usb_id) { 1320 default: 1321 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1); 1322 break; 1323 /* 1324 * Various chips declare a packet size larger than 4 bytes, but 1325 * do not actually work with larger packets: 1326 */ 1327 case USB_ID(0x0a92, 0x1020): /* ESI M4U */ 1328 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */ 1329 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */ 1330 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */ 1331 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */ 1332 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */ 1333 ep->max_transfer = 4; 1334 break; 1335 /* 1336 * Some devices only work with 9 bytes packet size: 1337 */ 1338 case USB_ID(0x0644, 0x800E): /* Tascam US-122L */ 1339 case USB_ID(0x0644, 0x800F): /* Tascam US-144 */ 1340 ep->max_transfer = 9; 1341 break; 1342 } 1343 for (i = 0; i < OUTPUT_URBS; ++i) { 1344 buffer = usb_alloc_coherent(umidi->dev, 1345 ep->max_transfer, GFP_KERNEL, 1346 &ep->urbs[i].urb->transfer_dma); 1347 if (!buffer) { 1348 snd_usbmidi_out_endpoint_delete(ep); 1349 return -ENOMEM; 1350 } 1351 if (ep_info->out_interval) 1352 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev, 1353 pipe, buffer, ep->max_transfer, 1354 snd_usbmidi_out_urb_complete, 1355 &ep->urbs[i], ep_info->out_interval); 1356 else 1357 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev, 1358 pipe, buffer, ep->max_transfer, 1359 snd_usbmidi_out_urb_complete, 1360 &ep->urbs[i]); 1361 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1362 } 1363 1364 spin_lock_init(&ep->buffer_lock); 1365 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); 1366 init_waitqueue_head(&ep->drain_wait); 1367 1368 for (i = 0; i < 0x10; ++i) 1369 if (ep_info->out_cables & (1 << i)) { 1370 ep->ports[i].ep = ep; 1371 ep->ports[i].cable = i << 4; 1372 } 1373 1374 if (umidi->usb_protocol_ops->init_out_endpoint) 1375 umidi->usb_protocol_ops->init_out_endpoint(ep); 1376 1377 rep->out = ep; 1378 return 0; 1379 } 1380 1381 /* 1382 * Frees everything. 1383 */ 1384 static void snd_usbmidi_free(struct snd_usb_midi* umidi) 1385 { 1386 int i; 1387 1388 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1389 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 1390 if (ep->out) 1391 snd_usbmidi_out_endpoint_delete(ep->out); 1392 if (ep->in) 1393 snd_usbmidi_in_endpoint_delete(ep->in); 1394 } 1395 mutex_destroy(&umidi->mutex); 1396 kfree(umidi); 1397 } 1398 1399 /* 1400 * Unlinks all URBs (must be done before the usb_device is deleted). 1401 */ 1402 void snd_usbmidi_disconnect(struct list_head* p) 1403 { 1404 struct snd_usb_midi* umidi; 1405 unsigned int i, j; 1406 1407 umidi = list_entry(p, struct snd_usb_midi, list); 1408 /* 1409 * an URB's completion handler may start the timer and 1410 * a timer may submit an URB. To reliably break the cycle 1411 * a flag under lock must be used 1412 */ 1413 down_write(&umidi->disc_rwsem); 1414 spin_lock_irq(&umidi->disc_lock); 1415 umidi->disconnected = 1; 1416 spin_unlock_irq(&umidi->disc_lock); 1417 up_write(&umidi->disc_rwsem); 1418 1419 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1420 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 1421 if (ep->out) 1422 tasklet_kill(&ep->out->tasklet); 1423 if (ep->out) { 1424 for (j = 0; j < OUTPUT_URBS; ++j) 1425 usb_kill_urb(ep->out->urbs[j].urb); 1426 if (umidi->usb_protocol_ops->finish_out_endpoint) 1427 umidi->usb_protocol_ops->finish_out_endpoint(ep->out); 1428 ep->out->active_urbs = 0; 1429 if (ep->out->drain_urbs) { 1430 ep->out->drain_urbs = 0; 1431 wake_up(&ep->out->drain_wait); 1432 } 1433 } 1434 if (ep->in) 1435 for (j = 0; j < INPUT_URBS; ++j) 1436 usb_kill_urb(ep->in->urbs[j]); 1437 /* free endpoints here; later call can result in Oops */ 1438 if (ep->out) 1439 snd_usbmidi_out_endpoint_clear(ep->out); 1440 if (ep->in) { 1441 snd_usbmidi_in_endpoint_delete(ep->in); 1442 ep->in = NULL; 1443 } 1444 } 1445 del_timer_sync(&umidi->error_timer); 1446 } 1447 EXPORT_SYMBOL(snd_usbmidi_disconnect); 1448 1449 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi) 1450 { 1451 struct snd_usb_midi* umidi = rmidi->private_data; 1452 snd_usbmidi_free(umidi); 1453 } 1454 1455 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi, 1456 int stream, int number) 1457 { 1458 struct snd_rawmidi_substream *substream; 1459 1460 list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams, list) { 1461 if (substream->number == number) 1462 return substream; 1463 } 1464 return NULL; 1465 } 1466 1467 /* 1468 * This list specifies names for ports that do not fit into the standard 1469 * "(product) MIDI (n)" schema because they aren't external MIDI ports, 1470 * such as internal control or synthesizer ports. 1471 */ 1472 static struct port_info { 1473 u32 id; 1474 short int port; 1475 short int voices; 1476 const char *name; 1477 unsigned int seq_flags; 1478 } snd_usbmidi_port_info[] = { 1479 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \ 1480 { .id = USB_ID(vendor, product), \ 1481 .port = num, .voices = voices_, \ 1482 .name = name_, .seq_flags = flags } 1483 #define EXTERNAL_PORT(vendor, product, num, name) \ 1484 PORT_INFO(vendor, product, num, name, 0, \ 1485 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1486 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1487 SNDRV_SEQ_PORT_TYPE_PORT) 1488 #define CONTROL_PORT(vendor, product, num, name) \ 1489 PORT_INFO(vendor, product, num, name, 0, \ 1490 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1491 SNDRV_SEQ_PORT_TYPE_HARDWARE) 1492 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \ 1493 PORT_INFO(vendor, product, num, name, voices, \ 1494 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1495 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1496 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1497 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1498 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1499 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1500 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1501 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \ 1502 PORT_INFO(vendor, product, num, name, voices, \ 1503 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1504 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1505 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1506 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1507 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1508 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \ 1509 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1510 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1511 /* Roland UA-100 */ 1512 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"), 1513 /* Roland SC-8850 */ 1514 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128), 1515 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128), 1516 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128), 1517 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128), 1518 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"), 1519 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"), 1520 /* Roland U-8 */ 1521 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"), 1522 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"), 1523 /* Roland SC-8820 */ 1524 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64), 1525 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64), 1526 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"), 1527 /* Roland SK-500 */ 1528 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64), 1529 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64), 1530 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"), 1531 /* Roland SC-D70 */ 1532 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64), 1533 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64), 1534 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"), 1535 /* Edirol UM-880 */ 1536 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"), 1537 /* Edirol SD-90 */ 1538 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128), 1539 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128), 1540 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"), 1541 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"), 1542 /* Edirol UM-550 */ 1543 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"), 1544 /* Edirol SD-20 */ 1545 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64), 1546 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64), 1547 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"), 1548 /* Edirol SD-80 */ 1549 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128), 1550 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128), 1551 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"), 1552 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"), 1553 /* Edirol UA-700 */ 1554 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"), 1555 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"), 1556 /* Roland VariOS */ 1557 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"), 1558 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"), 1559 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"), 1560 /* Edirol PCR */ 1561 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"), 1562 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"), 1563 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"), 1564 /* BOSS GS-10 */ 1565 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"), 1566 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"), 1567 /* Edirol UA-1000 */ 1568 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"), 1569 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"), 1570 /* Edirol UR-80 */ 1571 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"), 1572 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"), 1573 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"), 1574 /* Edirol PCR-A */ 1575 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"), 1576 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"), 1577 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"), 1578 /* BOSS GT-PRO */ 1579 CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"), 1580 /* Edirol UM-3EX */ 1581 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"), 1582 /* Roland VG-99 */ 1583 CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"), 1584 EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"), 1585 /* Cakewalk Sonar V-Studio 100 */ 1586 EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"), 1587 CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"), 1588 /* Roland VB-99 */ 1589 CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"), 1590 EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"), 1591 /* Roland A-PRO */ 1592 EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"), 1593 CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"), 1594 CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"), 1595 /* Roland SD-50 */ 1596 ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128), 1597 EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"), 1598 CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"), 1599 /* Roland OCTA-CAPTURE */ 1600 EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"), 1601 CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"), 1602 EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"), 1603 CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"), 1604 /* Roland SPD-SX */ 1605 CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"), 1606 EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"), 1607 /* Roland A-Series */ 1608 CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"), 1609 EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"), 1610 /* Roland INTEGRA-7 */ 1611 ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128), 1612 CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"), 1613 /* M-Audio MidiSport 8x8 */ 1614 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"), 1615 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"), 1616 /* MOTU Fastlane */ 1617 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"), 1618 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"), 1619 /* Emagic Unitor8/AMT8/MT4 */ 1620 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"), 1621 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"), 1622 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"), 1623 /* Akai MPD16 */ 1624 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"), 1625 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0, 1626 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1627 SNDRV_SEQ_PORT_TYPE_HARDWARE), 1628 /* Access Music Virus TI */ 1629 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"), 1630 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0, 1631 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1632 SNDRV_SEQ_PORT_TYPE_HARDWARE | 1633 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER), 1634 }; 1635 1636 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number) 1637 { 1638 int i; 1639 1640 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) { 1641 if (snd_usbmidi_port_info[i].id == umidi->usb_id && 1642 snd_usbmidi_port_info[i].port == number) 1643 return &snd_usbmidi_port_info[i]; 1644 } 1645 return NULL; 1646 } 1647 1648 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number, 1649 struct snd_seq_port_info *seq_port_info) 1650 { 1651 struct snd_usb_midi *umidi = rmidi->private_data; 1652 struct port_info *port_info; 1653 1654 /* TODO: read port flags from descriptors */ 1655 port_info = find_port_info(umidi, number); 1656 if (port_info) { 1657 seq_port_info->type = port_info->seq_flags; 1658 seq_port_info->midi_voices = port_info->voices; 1659 } 1660 } 1661 1662 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi, 1663 int stream, int number, 1664 struct snd_rawmidi_substream ** rsubstream) 1665 { 1666 struct port_info *port_info; 1667 const char *name_format; 1668 1669 struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number); 1670 if (!substream) { 1671 dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream, number); 1672 return; 1673 } 1674 1675 /* TODO: read port name from jack descriptor */ 1676 port_info = find_port_info(umidi, number); 1677 name_format = port_info ? port_info->name : "%s MIDI %d"; 1678 snprintf(substream->name, sizeof(substream->name), 1679 name_format, umidi->card->shortname, number + 1); 1680 1681 *rsubstream = substream; 1682 } 1683 1684 /* 1685 * Creates the endpoints and their ports. 1686 */ 1687 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi, 1688 struct snd_usb_midi_endpoint_info* endpoints) 1689 { 1690 int i, j, err; 1691 int out_ports = 0, in_ports = 0; 1692 1693 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1694 if (endpoints[i].out_cables) { 1695 err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i], 1696 &umidi->endpoints[i]); 1697 if (err < 0) 1698 return err; 1699 } 1700 if (endpoints[i].in_cables) { 1701 err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i], 1702 &umidi->endpoints[i]); 1703 if (err < 0) 1704 return err; 1705 } 1706 1707 for (j = 0; j < 0x10; ++j) { 1708 if (endpoints[i].out_cables & (1 << j)) { 1709 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports, 1710 &umidi->endpoints[i].out->ports[j].substream); 1711 ++out_ports; 1712 } 1713 if (endpoints[i].in_cables & (1 << j)) { 1714 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports, 1715 &umidi->endpoints[i].in->ports[j].substream); 1716 ++in_ports; 1717 } 1718 } 1719 } 1720 dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n", 1721 out_ports, in_ports); 1722 return 0; 1723 } 1724 1725 /* 1726 * Returns MIDIStreaming device capabilities. 1727 */ 1728 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi, 1729 struct snd_usb_midi_endpoint_info* endpoints) 1730 { 1731 struct usb_interface* intf; 1732 struct usb_host_interface *hostif; 1733 struct usb_interface_descriptor* intfd; 1734 struct usb_ms_header_descriptor* ms_header; 1735 struct usb_host_endpoint *hostep; 1736 struct usb_endpoint_descriptor* ep; 1737 struct usb_ms_endpoint_descriptor* ms_ep; 1738 int i, epidx; 1739 1740 intf = umidi->iface; 1741 if (!intf) 1742 return -ENXIO; 1743 hostif = &intf->altsetting[0]; 1744 intfd = get_iface_desc(hostif); 1745 ms_header = (struct usb_ms_header_descriptor*)hostif->extra; 1746 if (hostif->extralen >= 7 && 1747 ms_header->bLength >= 7 && 1748 ms_header->bDescriptorType == USB_DT_CS_INTERFACE && 1749 ms_header->bDescriptorSubtype == UAC_HEADER) 1750 dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n", 1751 ms_header->bcdMSC[1], ms_header->bcdMSC[0]); 1752 else 1753 dev_warn(&umidi->dev->dev, 1754 "MIDIStreaming interface descriptor not found\n"); 1755 1756 epidx = 0; 1757 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1758 hostep = &hostif->endpoint[i]; 1759 ep = get_ep_desc(hostep); 1760 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep)) 1761 continue; 1762 ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra; 1763 if (hostep->extralen < 4 || 1764 ms_ep->bLength < 4 || 1765 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT || 1766 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL) 1767 continue; 1768 if (usb_endpoint_dir_out(ep)) { 1769 if (endpoints[epidx].out_ep) { 1770 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1771 dev_warn(&umidi->dev->dev, 1772 "too many endpoints\n"); 1773 break; 1774 } 1775 } 1776 endpoints[epidx].out_ep = usb_endpoint_num(ep); 1777 if (usb_endpoint_xfer_int(ep)) 1778 endpoints[epidx].out_interval = ep->bInterval; 1779 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1780 /* 1781 * Low speed bulk transfers don't exist, so 1782 * force interrupt transfers for devices like 1783 * ESI MIDI Mate that try to use them anyway. 1784 */ 1785 endpoints[epidx].out_interval = 1; 1786 endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; 1787 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 1788 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1789 } else { 1790 if (endpoints[epidx].in_ep) { 1791 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1792 dev_warn(&umidi->dev->dev, 1793 "too many endpoints\n"); 1794 break; 1795 } 1796 } 1797 endpoints[epidx].in_ep = usb_endpoint_num(ep); 1798 if (usb_endpoint_xfer_int(ep)) 1799 endpoints[epidx].in_interval = ep->bInterval; 1800 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1801 endpoints[epidx].in_interval = 1; 1802 endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; 1803 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 1804 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1805 } 1806 } 1807 return 0; 1808 } 1809 1810 static int roland_load_info(struct snd_kcontrol *kcontrol, 1811 struct snd_ctl_elem_info *info) 1812 { 1813 static const char *const names[] = { "High Load", "Light Load" }; 1814 1815 return snd_ctl_enum_info(info, 1, 2, names); 1816 } 1817 1818 static int roland_load_get(struct snd_kcontrol *kcontrol, 1819 struct snd_ctl_elem_value *value) 1820 { 1821 value->value.enumerated.item[0] = kcontrol->private_value; 1822 return 0; 1823 } 1824 1825 static int roland_load_put(struct snd_kcontrol *kcontrol, 1826 struct snd_ctl_elem_value *value) 1827 { 1828 struct snd_usb_midi* umidi = kcontrol->private_data; 1829 int changed; 1830 1831 if (value->value.enumerated.item[0] > 1) 1832 return -EINVAL; 1833 mutex_lock(&umidi->mutex); 1834 changed = value->value.enumerated.item[0] != kcontrol->private_value; 1835 if (changed) 1836 kcontrol->private_value = value->value.enumerated.item[0]; 1837 mutex_unlock(&umidi->mutex); 1838 return changed; 1839 } 1840 1841 static struct snd_kcontrol_new roland_load_ctl = { 1842 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1843 .name = "MIDI Input Mode", 1844 .info = roland_load_info, 1845 .get = roland_load_get, 1846 .put = roland_load_put, 1847 .private_value = 1, 1848 }; 1849 1850 /* 1851 * On Roland devices, use the second alternate setting to be able to use 1852 * the interrupt input endpoint. 1853 */ 1854 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi) 1855 { 1856 struct usb_interface* intf; 1857 struct usb_host_interface *hostif; 1858 struct usb_interface_descriptor* intfd; 1859 1860 intf = umidi->iface; 1861 if (!intf || intf->num_altsetting != 2) 1862 return; 1863 1864 hostif = &intf->altsetting[1]; 1865 intfd = get_iface_desc(hostif); 1866 if (intfd->bNumEndpoints != 2 || 1867 (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK || 1868 (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) 1869 return; 1870 1871 dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n", 1872 intfd->bAlternateSetting); 1873 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1874 intfd->bAlternateSetting); 1875 1876 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi); 1877 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0) 1878 umidi->roland_load_ctl = NULL; 1879 } 1880 1881 /* 1882 * Try to find any usable endpoints in the interface. 1883 */ 1884 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi, 1885 struct snd_usb_midi_endpoint_info* endpoint, 1886 int max_endpoints) 1887 { 1888 struct usb_interface* intf; 1889 struct usb_host_interface *hostif; 1890 struct usb_interface_descriptor* intfd; 1891 struct usb_endpoint_descriptor* epd; 1892 int i, out_eps = 0, in_eps = 0; 1893 1894 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582) 1895 snd_usbmidi_switch_roland_altsetting(umidi); 1896 1897 if (endpoint[0].out_ep || endpoint[0].in_ep) 1898 return 0; 1899 1900 intf = umidi->iface; 1901 if (!intf || intf->num_altsetting < 1) 1902 return -ENOENT; 1903 hostif = intf->cur_altsetting; 1904 intfd = get_iface_desc(hostif); 1905 1906 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1907 epd = get_endpoint(hostif, i); 1908 if (!usb_endpoint_xfer_bulk(epd) && 1909 !usb_endpoint_xfer_int(epd)) 1910 continue; 1911 if (out_eps < max_endpoints && 1912 usb_endpoint_dir_out(epd)) { 1913 endpoint[out_eps].out_ep = usb_endpoint_num(epd); 1914 if (usb_endpoint_xfer_int(epd)) 1915 endpoint[out_eps].out_interval = epd->bInterval; 1916 ++out_eps; 1917 } 1918 if (in_eps < max_endpoints && 1919 usb_endpoint_dir_in(epd)) { 1920 endpoint[in_eps].in_ep = usb_endpoint_num(epd); 1921 if (usb_endpoint_xfer_int(epd)) 1922 endpoint[in_eps].in_interval = epd->bInterval; 1923 ++in_eps; 1924 } 1925 } 1926 return (out_eps || in_eps) ? 0 : -ENOENT; 1927 } 1928 1929 /* 1930 * Detects the endpoints for one-port-per-endpoint protocols. 1931 */ 1932 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi, 1933 struct snd_usb_midi_endpoint_info* endpoints) 1934 { 1935 int err, i; 1936 1937 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); 1938 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1939 if (endpoints[i].out_ep) 1940 endpoints[i].out_cables = 0x0001; 1941 if (endpoints[i].in_ep) 1942 endpoints[i].in_cables = 0x0001; 1943 } 1944 return err; 1945 } 1946 1947 /* 1948 * Detects the endpoints and ports of Yamaha devices. 1949 */ 1950 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi, 1951 struct snd_usb_midi_endpoint_info* endpoint) 1952 { 1953 struct usb_interface* intf; 1954 struct usb_host_interface *hostif; 1955 struct usb_interface_descriptor* intfd; 1956 uint8_t* cs_desc; 1957 1958 intf = umidi->iface; 1959 if (!intf) 1960 return -ENOENT; 1961 hostif = intf->altsetting; 1962 intfd = get_iface_desc(hostif); 1963 if (intfd->bNumEndpoints < 1) 1964 return -ENOENT; 1965 1966 /* 1967 * For each port there is one MIDI_IN/OUT_JACK descriptor, not 1968 * necessarily with any useful contents. So simply count 'em. 1969 */ 1970 for (cs_desc = hostif->extra; 1971 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 1972 cs_desc += cs_desc[0]) { 1973 if (cs_desc[1] == USB_DT_CS_INTERFACE) { 1974 if (cs_desc[2] == UAC_MIDI_IN_JACK) 1975 endpoint->in_cables = (endpoint->in_cables << 1) | 1; 1976 else if (cs_desc[2] == UAC_MIDI_OUT_JACK) 1977 endpoint->out_cables = (endpoint->out_cables << 1) | 1; 1978 } 1979 } 1980 if (!endpoint->in_cables && !endpoint->out_cables) 1981 return -ENOENT; 1982 1983 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 1984 } 1985 1986 /* 1987 * Detects the endpoints and ports of Roland devices. 1988 */ 1989 static int snd_usbmidi_detect_roland(struct snd_usb_midi* umidi, 1990 struct snd_usb_midi_endpoint_info* endpoint) 1991 { 1992 struct usb_interface* intf; 1993 struct usb_host_interface *hostif; 1994 u8* cs_desc; 1995 1996 intf = umidi->iface; 1997 if (!intf) 1998 return -ENOENT; 1999 hostif = intf->altsetting; 2000 /* 2001 * Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>, 2002 * some have standard class descriptors, or both kinds, or neither. 2003 */ 2004 for (cs_desc = hostif->extra; 2005 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2006 cs_desc += cs_desc[0]) { 2007 if (cs_desc[0] >= 6 && 2008 cs_desc[1] == USB_DT_CS_INTERFACE && 2009 cs_desc[2] == 0xf1 && 2010 cs_desc[3] == 0x02) { 2011 endpoint->in_cables = (1 << cs_desc[4]) - 1; 2012 endpoint->out_cables = (1 << cs_desc[5]) - 1; 2013 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2014 } else if (cs_desc[0] >= 7 && 2015 cs_desc[1] == USB_DT_CS_INTERFACE && 2016 cs_desc[2] == UAC_HEADER) { 2017 return snd_usbmidi_get_ms_info(umidi, endpoint); 2018 } 2019 } 2020 2021 return -ENODEV; 2022 } 2023 2024 /* 2025 * Creates the endpoints and their ports for Midiman devices. 2026 */ 2027 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi, 2028 struct snd_usb_midi_endpoint_info* endpoint) 2029 { 2030 struct snd_usb_midi_endpoint_info ep_info; 2031 struct usb_interface* intf; 2032 struct usb_host_interface *hostif; 2033 struct usb_interface_descriptor* intfd; 2034 struct usb_endpoint_descriptor* epd; 2035 int cable, err; 2036 2037 intf = umidi->iface; 2038 if (!intf) 2039 return -ENOENT; 2040 hostif = intf->altsetting; 2041 intfd = get_iface_desc(hostif); 2042 /* 2043 * The various MidiSport devices have more or less random endpoint 2044 * numbers, so we have to identify the endpoints by their index in 2045 * the descriptor array, like the driver for that other OS does. 2046 * 2047 * There is one interrupt input endpoint for all input ports, one 2048 * bulk output endpoint for even-numbered ports, and one for odd- 2049 * numbered ports. Both bulk output endpoints have corresponding 2050 * input bulk endpoints (at indices 1 and 3) which aren't used. 2051 */ 2052 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { 2053 dev_dbg(&umidi->dev->dev, "not enough endpoints\n"); 2054 return -ENOENT; 2055 } 2056 2057 epd = get_endpoint(hostif, 0); 2058 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) { 2059 dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n"); 2060 return -ENXIO; 2061 } 2062 epd = get_endpoint(hostif, 2); 2063 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { 2064 dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n"); 2065 return -ENXIO; 2066 } 2067 if (endpoint->out_cables > 0x0001) { 2068 epd = get_endpoint(hostif, 4); 2069 if (!usb_endpoint_dir_out(epd) || 2070 !usb_endpoint_xfer_bulk(epd)) { 2071 dev_dbg(&umidi->dev->dev, "endpoint[4] isn't bulk output\n"); 2072 return -ENXIO; 2073 } 2074 } 2075 2076 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 2077 ep_info.out_interval = 0; 2078 ep_info.out_cables = endpoint->out_cables & 0x5555; 2079 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); 2080 if (err < 0) 2081 return err; 2082 2083 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 2084 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; 2085 ep_info.in_cables = endpoint->in_cables; 2086 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); 2087 if (err < 0) 2088 return err; 2089 2090 if (endpoint->out_cables > 0x0001) { 2091 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 2092 ep_info.out_cables = endpoint->out_cables & 0xaaaa; 2093 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]); 2094 if (err < 0) 2095 return err; 2096 } 2097 2098 for (cable = 0; cable < 0x10; ++cable) { 2099 if (endpoint->out_cables & (1 << cable)) 2100 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable, 2101 &umidi->endpoints[cable & 1].out->ports[cable].substream); 2102 if (endpoint->in_cables & (1 << cable)) 2103 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable, 2104 &umidi->endpoints[0].in->ports[cable].substream); 2105 } 2106 return 0; 2107 } 2108 2109 static struct snd_rawmidi_global_ops snd_usbmidi_ops = { 2110 .get_port_info = snd_usbmidi_get_port_info, 2111 }; 2112 2113 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi, 2114 int out_ports, int in_ports) 2115 { 2116 struct snd_rawmidi *rmidi; 2117 int err; 2118 2119 err = snd_rawmidi_new(umidi->card, "USB MIDI", 2120 umidi->next_midi_device++, 2121 out_ports, in_ports, &rmidi); 2122 if (err < 0) 2123 return err; 2124 strcpy(rmidi->name, umidi->card->shortname); 2125 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 2126 SNDRV_RAWMIDI_INFO_INPUT | 2127 SNDRV_RAWMIDI_INFO_DUPLEX; 2128 rmidi->ops = &snd_usbmidi_ops; 2129 rmidi->private_data = umidi; 2130 rmidi->private_free = snd_usbmidi_rawmidi_free; 2131 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops); 2132 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops); 2133 2134 umidi->rmidi = rmidi; 2135 return 0; 2136 } 2137 2138 /* 2139 * Temporarily stop input. 2140 */ 2141 void snd_usbmidi_input_stop(struct list_head* p) 2142 { 2143 struct snd_usb_midi* umidi; 2144 unsigned int i, j; 2145 2146 umidi = list_entry(p, struct snd_usb_midi, list); 2147 if (!umidi->input_running) 2148 return; 2149 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2150 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 2151 if (ep->in) 2152 for (j = 0; j < INPUT_URBS; ++j) 2153 usb_kill_urb(ep->in->urbs[j]); 2154 } 2155 umidi->input_running = 0; 2156 } 2157 EXPORT_SYMBOL(snd_usbmidi_input_stop); 2158 2159 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep) 2160 { 2161 unsigned int i; 2162 2163 if (!ep) 2164 return; 2165 for (i = 0; i < INPUT_URBS; ++i) { 2166 struct urb* urb = ep->urbs[i]; 2167 urb->dev = ep->umidi->dev; 2168 snd_usbmidi_submit_urb(urb, GFP_KERNEL); 2169 } 2170 } 2171 2172 /* 2173 * Resume input after a call to snd_usbmidi_input_stop(). 2174 */ 2175 void snd_usbmidi_input_start(struct list_head* p) 2176 { 2177 struct snd_usb_midi* umidi; 2178 int i; 2179 2180 umidi = list_entry(p, struct snd_usb_midi, list); 2181 if (umidi->input_running || !umidi->opened[1]) 2182 return; 2183 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 2184 snd_usbmidi_input_start_ep(umidi->endpoints[i].in); 2185 umidi->input_running = 1; 2186 } 2187 EXPORT_SYMBOL(snd_usbmidi_input_start); 2188 2189 /* 2190 * Creates and registers everything needed for a MIDI streaming interface. 2191 */ 2192 int snd_usbmidi_create(struct snd_card *card, 2193 struct usb_interface* iface, 2194 struct list_head *midi_list, 2195 const struct snd_usb_audio_quirk* quirk) 2196 { 2197 struct snd_usb_midi* umidi; 2198 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS]; 2199 int out_ports, in_ports; 2200 int i, err; 2201 2202 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL); 2203 if (!umidi) 2204 return -ENOMEM; 2205 umidi->dev = interface_to_usbdev(iface); 2206 umidi->card = card; 2207 umidi->iface = iface; 2208 umidi->quirk = quirk; 2209 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; 2210 init_timer(&umidi->error_timer); 2211 spin_lock_init(&umidi->disc_lock); 2212 init_rwsem(&umidi->disc_rwsem); 2213 mutex_init(&umidi->mutex); 2214 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor), 2215 le16_to_cpu(umidi->dev->descriptor.idProduct)); 2216 umidi->error_timer.function = snd_usbmidi_error_timer; 2217 umidi->error_timer.data = (unsigned long)umidi; 2218 2219 /* detect the endpoint(s) to use */ 2220 memset(endpoints, 0, sizeof(endpoints)); 2221 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) { 2222 case QUIRK_MIDI_STANDARD_INTERFACE: 2223 err = snd_usbmidi_get_ms_info(umidi, endpoints); 2224 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */ 2225 umidi->usb_protocol_ops = 2226 &snd_usbmidi_maudio_broken_running_status_ops; 2227 break; 2228 case QUIRK_MIDI_US122L: 2229 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops; 2230 /* fall through */ 2231 case QUIRK_MIDI_FIXED_ENDPOINT: 2232 memcpy(&endpoints[0], quirk->data, 2233 sizeof(struct snd_usb_midi_endpoint_info)); 2234 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2235 break; 2236 case QUIRK_MIDI_YAMAHA: 2237 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); 2238 break; 2239 case QUIRK_MIDI_ROLAND: 2240 err = snd_usbmidi_detect_roland(umidi, &endpoints[0]); 2241 break; 2242 case QUIRK_MIDI_MIDIMAN: 2243 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; 2244 memcpy(&endpoints[0], quirk->data, 2245 sizeof(struct snd_usb_midi_endpoint_info)); 2246 err = 0; 2247 break; 2248 case QUIRK_MIDI_NOVATION: 2249 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; 2250 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2251 break; 2252 case QUIRK_MIDI_RAW_BYTES: 2253 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops; 2254 /* 2255 * Interface 1 contains isochronous endpoints, but with the same 2256 * numbers as in interface 0. Since it is interface 1 that the 2257 * USB core has most recently seen, these descriptors are now 2258 * associated with the endpoint numbers. This will foul up our 2259 * attempts to submit bulk/interrupt URBs to the endpoints in 2260 * interface 0, so we have to make sure that the USB core looks 2261 * again at interface 0 by calling usb_set_interface() on it. 2262 */ 2263 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */ 2264 usb_set_interface(umidi->dev, 0, 0); 2265 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2266 break; 2267 case QUIRK_MIDI_EMAGIC: 2268 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; 2269 memcpy(&endpoints[0], quirk->data, 2270 sizeof(struct snd_usb_midi_endpoint_info)); 2271 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2272 break; 2273 case QUIRK_MIDI_CME: 2274 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops; 2275 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2276 break; 2277 case QUIRK_MIDI_AKAI: 2278 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops; 2279 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2280 /* endpoint 1 is input-only */ 2281 endpoints[1].out_cables = 0; 2282 break; 2283 case QUIRK_MIDI_FTDI: 2284 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops; 2285 2286 /* set baud rate to 31250 (48 MHz / 16 / 96) */ 2287 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0), 2288 3, 0x40, 0x60, 0, NULL, 0, 1000); 2289 if (err < 0) 2290 break; 2291 2292 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2293 break; 2294 default: 2295 dev_err(&umidi->dev->dev, "invalid quirk type %d\n", quirk->type); 2296 err = -ENXIO; 2297 break; 2298 } 2299 if (err < 0) { 2300 kfree(umidi); 2301 return err; 2302 } 2303 2304 /* create rawmidi device */ 2305 out_ports = 0; 2306 in_ports = 0; 2307 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2308 out_ports += hweight16(endpoints[i].out_cables); 2309 in_ports += hweight16(endpoints[i].in_cables); 2310 } 2311 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); 2312 if (err < 0) { 2313 kfree(umidi); 2314 return err; 2315 } 2316 2317 /* create endpoint/port structures */ 2318 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) 2319 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); 2320 else 2321 err = snd_usbmidi_create_endpoints(umidi, endpoints); 2322 if (err < 0) { 2323 snd_usbmidi_free(umidi); 2324 return err; 2325 } 2326 2327 usb_autopm_get_interface_no_resume(umidi->iface); 2328 2329 list_add_tail(&umidi->list, midi_list); 2330 return 0; 2331 } 2332 EXPORT_SYMBOL(snd_usbmidi_create); 2333