1 /* 2 * usbmidi.c - ALSA USB MIDI driver 3 * 4 * Copyright (c) 2002-2009 Clemens Ladisch 5 * All rights reserved. 6 * 7 * Based on the OSS usb-midi driver by NAGANO Daisuke, 8 * NetBSD's umidi driver by Takuya SHIOZAKI, 9 * the "USB Device Class Definition for MIDI Devices" by Roland 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed and/or modified under the 21 * terms of the GNU General Public License as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any later 23 * version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/types.h> 40 #include <linux/bitops.h> 41 #include <linux/interrupt.h> 42 #include <linux/spinlock.h> 43 #include <linux/string.h> 44 #include <linux/init.h> 45 #include <linux/slab.h> 46 #include <linux/timer.h> 47 #include <linux/usb.h> 48 #include <linux/wait.h> 49 #include <linux/usb/audio.h> 50 #include <linux/module.h> 51 52 #include <sound/core.h> 53 #include <sound/control.h> 54 #include <sound/rawmidi.h> 55 #include <sound/asequencer.h> 56 #include "usbaudio.h" 57 #include "midi.h" 58 #include "power.h" 59 #include "helper.h" 60 61 /* 62 * define this to log all USB packets 63 */ 64 /* #define DUMP_PACKETS */ 65 66 /* 67 * how long to wait after some USB errors, so that hub_wq can disconnect() us 68 * without too many spurious errors 69 */ 70 #define ERROR_DELAY_JIFFIES (HZ / 10) 71 72 #define OUTPUT_URBS 7 73 #define INPUT_URBS 7 74 75 76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); 77 MODULE_DESCRIPTION("USB Audio/MIDI helper module"); 78 MODULE_LICENSE("Dual BSD/GPL"); 79 80 81 struct usb_ms_header_descriptor { 82 __u8 bLength; 83 __u8 bDescriptorType; 84 __u8 bDescriptorSubtype; 85 __u8 bcdMSC[2]; 86 __le16 wTotalLength; 87 } __attribute__ ((packed)); 88 89 struct usb_ms_endpoint_descriptor { 90 __u8 bLength; 91 __u8 bDescriptorType; 92 __u8 bDescriptorSubtype; 93 __u8 bNumEmbMIDIJack; 94 __u8 baAssocJackID[0]; 95 } __attribute__ ((packed)); 96 97 struct snd_usb_midi_in_endpoint; 98 struct snd_usb_midi_out_endpoint; 99 struct snd_usb_midi_endpoint; 100 101 struct usb_protocol_ops { 102 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int); 103 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb); 104 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); 105 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint *); 106 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint *); 107 }; 108 109 struct snd_usb_midi { 110 struct usb_device *dev; 111 struct snd_card *card; 112 struct usb_interface *iface; 113 const struct snd_usb_audio_quirk *quirk; 114 struct snd_rawmidi *rmidi; 115 const struct usb_protocol_ops *usb_protocol_ops; 116 struct list_head list; 117 struct timer_list error_timer; 118 spinlock_t disc_lock; 119 struct rw_semaphore disc_rwsem; 120 struct mutex mutex; 121 u32 usb_id; 122 int next_midi_device; 123 124 struct snd_usb_midi_endpoint { 125 struct snd_usb_midi_out_endpoint *out; 126 struct snd_usb_midi_in_endpoint *in; 127 } endpoints[MIDI_MAX_ENDPOINTS]; 128 unsigned long input_triggered; 129 unsigned int opened[2]; 130 unsigned char disconnected; 131 unsigned char input_running; 132 133 struct snd_kcontrol *roland_load_ctl; 134 }; 135 136 struct snd_usb_midi_out_endpoint { 137 struct snd_usb_midi *umidi; 138 struct out_urb_context { 139 struct urb *urb; 140 struct snd_usb_midi_out_endpoint *ep; 141 } urbs[OUTPUT_URBS]; 142 unsigned int active_urbs; 143 unsigned int drain_urbs; 144 int max_transfer; /* size of urb buffer */ 145 struct tasklet_struct tasklet; 146 unsigned int next_urb; 147 spinlock_t buffer_lock; 148 149 struct usbmidi_out_port { 150 struct snd_usb_midi_out_endpoint *ep; 151 struct snd_rawmidi_substream *substream; 152 int active; 153 uint8_t cable; /* cable number << 4 */ 154 uint8_t state; 155 #define STATE_UNKNOWN 0 156 #define STATE_1PARAM 1 157 #define STATE_2PARAM_1 2 158 #define STATE_2PARAM_2 3 159 #define STATE_SYSEX_0 4 160 #define STATE_SYSEX_1 5 161 #define STATE_SYSEX_2 6 162 uint8_t data[2]; 163 } ports[0x10]; 164 int current_port; 165 166 wait_queue_head_t drain_wait; 167 }; 168 169 struct snd_usb_midi_in_endpoint { 170 struct snd_usb_midi *umidi; 171 struct urb *urbs[INPUT_URBS]; 172 struct usbmidi_in_port { 173 struct snd_rawmidi_substream *substream; 174 u8 running_status_length; 175 } ports[0x10]; 176 u8 seen_f5; 177 bool in_sysex; 178 u8 last_cin; 179 u8 error_resubmit; 180 int current_port; 181 }; 182 183 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep); 184 185 static const uint8_t snd_usbmidi_cin_length[] = { 186 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 187 }; 188 189 /* 190 * Submits the URB, with error handling. 191 */ 192 static int snd_usbmidi_submit_urb(struct urb *urb, gfp_t flags) 193 { 194 int err = usb_submit_urb(urb, flags); 195 if (err < 0 && err != -ENODEV) 196 dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err); 197 return err; 198 } 199 200 /* 201 * Error handling for URB completion functions. 202 */ 203 static int snd_usbmidi_urb_error(const struct urb *urb) 204 { 205 switch (urb->status) { 206 /* manually unlinked, or device gone */ 207 case -ENOENT: 208 case -ECONNRESET: 209 case -ESHUTDOWN: 210 case -ENODEV: 211 return -ENODEV; 212 /* errors that might occur during unplugging */ 213 case -EPROTO: 214 case -ETIME: 215 case -EILSEQ: 216 return -EIO; 217 default: 218 dev_err(&urb->dev->dev, "urb status %d\n", urb->status); 219 return 0; /* continue */ 220 } 221 } 222 223 /* 224 * Receives a chunk of MIDI data. 225 */ 226 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint *ep, 227 int portidx, uint8_t *data, int length) 228 { 229 struct usbmidi_in_port *port = &ep->ports[portidx]; 230 231 if (!port->substream) { 232 dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx); 233 return; 234 } 235 if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) 236 return; 237 snd_rawmidi_receive(port->substream, data, length); 238 } 239 240 #ifdef DUMP_PACKETS 241 static void dump_urb(const char *type, const u8 *data, int length) 242 { 243 snd_printk(KERN_DEBUG "%s packet: [", type); 244 for (; length > 0; ++data, --length) 245 printk(KERN_CONT " %02x", *data); 246 printk(KERN_CONT " ]\n"); 247 } 248 #else 249 #define dump_urb(type, data, length) /* nothing */ 250 #endif 251 252 /* 253 * Processes the data read from the device. 254 */ 255 static void snd_usbmidi_in_urb_complete(struct urb *urb) 256 { 257 struct snd_usb_midi_in_endpoint *ep = urb->context; 258 259 if (urb->status == 0) { 260 dump_urb("received", urb->transfer_buffer, urb->actual_length); 261 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, 262 urb->actual_length); 263 } else { 264 int err = snd_usbmidi_urb_error(urb); 265 if (err < 0) { 266 if (err != -ENODEV) { 267 ep->error_resubmit = 1; 268 mod_timer(&ep->umidi->error_timer, 269 jiffies + ERROR_DELAY_JIFFIES); 270 } 271 return; 272 } 273 } 274 275 urb->dev = ep->umidi->dev; 276 snd_usbmidi_submit_urb(urb, GFP_ATOMIC); 277 } 278 279 static void snd_usbmidi_out_urb_complete(struct urb *urb) 280 { 281 struct out_urb_context *context = urb->context; 282 struct snd_usb_midi_out_endpoint *ep = context->ep; 283 unsigned int urb_index; 284 unsigned long flags; 285 286 spin_lock_irqsave(&ep->buffer_lock, flags); 287 urb_index = context - ep->urbs; 288 ep->active_urbs &= ~(1 << urb_index); 289 if (unlikely(ep->drain_urbs)) { 290 ep->drain_urbs &= ~(1 << urb_index); 291 wake_up(&ep->drain_wait); 292 } 293 spin_unlock_irqrestore(&ep->buffer_lock, flags); 294 if (urb->status < 0) { 295 int err = snd_usbmidi_urb_error(urb); 296 if (err < 0) { 297 if (err != -ENODEV) 298 mod_timer(&ep->umidi->error_timer, 299 jiffies + ERROR_DELAY_JIFFIES); 300 return; 301 } 302 } 303 snd_usbmidi_do_output(ep); 304 } 305 306 /* 307 * This is called when some data should be transferred to the device 308 * (from one or more substreams). 309 */ 310 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep) 311 { 312 unsigned int urb_index; 313 struct urb *urb; 314 unsigned long flags; 315 316 spin_lock_irqsave(&ep->buffer_lock, flags); 317 if (ep->umidi->disconnected) { 318 spin_unlock_irqrestore(&ep->buffer_lock, flags); 319 return; 320 } 321 322 urb_index = ep->next_urb; 323 for (;;) { 324 if (!(ep->active_urbs & (1 << urb_index))) { 325 urb = ep->urbs[urb_index].urb; 326 urb->transfer_buffer_length = 0; 327 ep->umidi->usb_protocol_ops->output(ep, urb); 328 if (urb->transfer_buffer_length == 0) 329 break; 330 331 dump_urb("sending", urb->transfer_buffer, 332 urb->transfer_buffer_length); 333 urb->dev = ep->umidi->dev; 334 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0) 335 break; 336 ep->active_urbs |= 1 << urb_index; 337 } 338 if (++urb_index >= OUTPUT_URBS) 339 urb_index = 0; 340 if (urb_index == ep->next_urb) 341 break; 342 } 343 ep->next_urb = urb_index; 344 spin_unlock_irqrestore(&ep->buffer_lock, flags); 345 } 346 347 static void snd_usbmidi_out_tasklet(unsigned long data) 348 { 349 struct snd_usb_midi_out_endpoint *ep = 350 (struct snd_usb_midi_out_endpoint *) data; 351 352 snd_usbmidi_do_output(ep); 353 } 354 355 /* called after transfers had been interrupted due to some USB error */ 356 static void snd_usbmidi_error_timer(struct timer_list *t) 357 { 358 struct snd_usb_midi *umidi = from_timer(umidi, t, error_timer); 359 unsigned int i, j; 360 361 spin_lock(&umidi->disc_lock); 362 if (umidi->disconnected) { 363 spin_unlock(&umidi->disc_lock); 364 return; 365 } 366 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 367 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in; 368 if (in && in->error_resubmit) { 369 in->error_resubmit = 0; 370 for (j = 0; j < INPUT_URBS; ++j) { 371 if (atomic_read(&in->urbs[j]->use_count)) 372 continue; 373 in->urbs[j]->dev = umidi->dev; 374 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC); 375 } 376 } 377 if (umidi->endpoints[i].out) 378 snd_usbmidi_do_output(umidi->endpoints[i].out); 379 } 380 spin_unlock(&umidi->disc_lock); 381 } 382 383 /* helper function to send static data that may not DMA-able */ 384 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint *ep, 385 const void *data, int len) 386 { 387 int err = 0; 388 void *buf = kmemdup(data, len, GFP_KERNEL); 389 if (!buf) 390 return -ENOMEM; 391 dump_urb("sending", buf, len); 392 if (ep->urbs[0].urb) 393 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe, 394 buf, len, NULL, 250); 395 kfree(buf); 396 return err; 397 } 398 399 /* 400 * Standard USB MIDI protocol: see the spec. 401 * Midiman protocol: like the standard protocol, but the control byte is the 402 * fourth byte in each packet, and uses length instead of CIN. 403 */ 404 405 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint *ep, 406 uint8_t *buffer, int buffer_length) 407 { 408 int i; 409 410 for (i = 0; i + 3 < buffer_length; i += 4) 411 if (buffer[i] != 0) { 412 int cable = buffer[i] >> 4; 413 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; 414 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], 415 length); 416 } 417 } 418 419 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint *ep, 420 uint8_t *buffer, int buffer_length) 421 { 422 int i; 423 424 for (i = 0; i + 3 < buffer_length; i += 4) 425 if (buffer[i + 3] != 0) { 426 int port = buffer[i + 3] >> 4; 427 int length = buffer[i + 3] & 3; 428 snd_usbmidi_input_data(ep, port, &buffer[i], length); 429 } 430 } 431 432 /* 433 * Buggy M-Audio device: running status on input results in a packet that has 434 * the data bytes but not the status byte and that is marked with CIN 4. 435 */ 436 static void snd_usbmidi_maudio_broken_running_status_input( 437 struct snd_usb_midi_in_endpoint *ep, 438 uint8_t *buffer, int buffer_length) 439 { 440 int i; 441 442 for (i = 0; i + 3 < buffer_length; i += 4) 443 if (buffer[i] != 0) { 444 int cable = buffer[i] >> 4; 445 u8 cin = buffer[i] & 0x0f; 446 struct usbmidi_in_port *port = &ep->ports[cable]; 447 int length; 448 449 length = snd_usbmidi_cin_length[cin]; 450 if (cin == 0xf && buffer[i + 1] >= 0xf8) 451 ; /* realtime msg: no running status change */ 452 else if (cin >= 0x8 && cin <= 0xe) 453 /* channel msg */ 454 port->running_status_length = length - 1; 455 else if (cin == 0x4 && 456 port->running_status_length != 0 && 457 buffer[i + 1] < 0x80) 458 /* CIN 4 that is not a SysEx */ 459 length = port->running_status_length; 460 else 461 /* 462 * All other msgs cannot begin running status. 463 * (A channel msg sent as two or three CIN 0xF 464 * packets could in theory, but this device 465 * doesn't use this format.) 466 */ 467 port->running_status_length = 0; 468 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], 469 length); 470 } 471 } 472 473 /* 474 * QinHeng CH345 is buggy: every second packet inside a SysEx has not CIN 4 475 * but the previously seen CIN, but still with three data bytes. 476 */ 477 static void ch345_broken_sysex_input(struct snd_usb_midi_in_endpoint *ep, 478 uint8_t *buffer, int buffer_length) 479 { 480 unsigned int i, cin, length; 481 482 for (i = 0; i + 3 < buffer_length; i += 4) { 483 if (buffer[i] == 0 && i > 0) 484 break; 485 cin = buffer[i] & 0x0f; 486 if (ep->in_sysex && 487 cin == ep->last_cin && 488 (buffer[i + 1 + (cin == 0x6)] & 0x80) == 0) 489 cin = 0x4; 490 #if 0 491 if (buffer[i + 1] == 0x90) { 492 /* 493 * Either a corrupted running status or a real note-on 494 * message; impossible to detect reliably. 495 */ 496 } 497 #endif 498 length = snd_usbmidi_cin_length[cin]; 499 snd_usbmidi_input_data(ep, 0, &buffer[i + 1], length); 500 ep->in_sysex = cin == 0x4; 501 if (!ep->in_sysex) 502 ep->last_cin = cin; 503 } 504 } 505 506 /* 507 * CME protocol: like the standard protocol, but SysEx commands are sent as a 508 * single USB packet preceded by a 0x0F byte. 509 */ 510 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep, 511 uint8_t *buffer, int buffer_length) 512 { 513 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f) 514 snd_usbmidi_standard_input(ep, buffer, buffer_length); 515 else 516 snd_usbmidi_input_data(ep, buffer[0] >> 4, 517 &buffer[1], buffer_length - 1); 518 } 519 520 /* 521 * Adds one USB MIDI packet to the output buffer. 522 */ 523 static void snd_usbmidi_output_standard_packet(struct urb *urb, uint8_t p0, 524 uint8_t p1, uint8_t p2, 525 uint8_t p3) 526 { 527 528 uint8_t *buf = 529 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length; 530 buf[0] = p0; 531 buf[1] = p1; 532 buf[2] = p2; 533 buf[3] = p3; 534 urb->transfer_buffer_length += 4; 535 } 536 537 /* 538 * Adds one Midiman packet to the output buffer. 539 */ 540 static void snd_usbmidi_output_midiman_packet(struct urb *urb, uint8_t p0, 541 uint8_t p1, uint8_t p2, 542 uint8_t p3) 543 { 544 545 uint8_t *buf = 546 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length; 547 buf[0] = p1; 548 buf[1] = p2; 549 buf[2] = p3; 550 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; 551 urb->transfer_buffer_length += 4; 552 } 553 554 /* 555 * Converts MIDI commands to USB MIDI packets. 556 */ 557 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port *port, 558 uint8_t b, struct urb *urb) 559 { 560 uint8_t p0 = port->cable; 561 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = 562 port->ep->umidi->usb_protocol_ops->output_packet; 563 564 if (b >= 0xf8) { 565 output_packet(urb, p0 | 0x0f, b, 0, 0); 566 } else if (b >= 0xf0) { 567 switch (b) { 568 case 0xf0: 569 port->data[0] = b; 570 port->state = STATE_SYSEX_1; 571 break; 572 case 0xf1: 573 case 0xf3: 574 port->data[0] = b; 575 port->state = STATE_1PARAM; 576 break; 577 case 0xf2: 578 port->data[0] = b; 579 port->state = STATE_2PARAM_1; 580 break; 581 case 0xf4: 582 case 0xf5: 583 port->state = STATE_UNKNOWN; 584 break; 585 case 0xf6: 586 output_packet(urb, p0 | 0x05, 0xf6, 0, 0); 587 port->state = STATE_UNKNOWN; 588 break; 589 case 0xf7: 590 switch (port->state) { 591 case STATE_SYSEX_0: 592 output_packet(urb, p0 | 0x05, 0xf7, 0, 0); 593 break; 594 case STATE_SYSEX_1: 595 output_packet(urb, p0 | 0x06, port->data[0], 596 0xf7, 0); 597 break; 598 case STATE_SYSEX_2: 599 output_packet(urb, p0 | 0x07, port->data[0], 600 port->data[1], 0xf7); 601 break; 602 } 603 port->state = STATE_UNKNOWN; 604 break; 605 } 606 } else if (b >= 0x80) { 607 port->data[0] = b; 608 if (b >= 0xc0 && b <= 0xdf) 609 port->state = STATE_1PARAM; 610 else 611 port->state = STATE_2PARAM_1; 612 } else { /* b < 0x80 */ 613 switch (port->state) { 614 case STATE_1PARAM: 615 if (port->data[0] < 0xf0) { 616 p0 |= port->data[0] >> 4; 617 } else { 618 p0 |= 0x02; 619 port->state = STATE_UNKNOWN; 620 } 621 output_packet(urb, p0, port->data[0], b, 0); 622 break; 623 case STATE_2PARAM_1: 624 port->data[1] = b; 625 port->state = STATE_2PARAM_2; 626 break; 627 case STATE_2PARAM_2: 628 if (port->data[0] < 0xf0) { 629 p0 |= port->data[0] >> 4; 630 port->state = STATE_2PARAM_1; 631 } else { 632 p0 |= 0x03; 633 port->state = STATE_UNKNOWN; 634 } 635 output_packet(urb, p0, port->data[0], port->data[1], b); 636 break; 637 case STATE_SYSEX_0: 638 port->data[0] = b; 639 port->state = STATE_SYSEX_1; 640 break; 641 case STATE_SYSEX_1: 642 port->data[1] = b; 643 port->state = STATE_SYSEX_2; 644 break; 645 case STATE_SYSEX_2: 646 output_packet(urb, p0 | 0x04, port->data[0], 647 port->data[1], b); 648 port->state = STATE_SYSEX_0; 649 break; 650 } 651 } 652 } 653 654 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint *ep, 655 struct urb *urb) 656 { 657 int p; 658 659 /* FIXME: lower-numbered ports can starve higher-numbered ports */ 660 for (p = 0; p < 0x10; ++p) { 661 struct usbmidi_out_port *port = &ep->ports[p]; 662 if (!port->active) 663 continue; 664 while (urb->transfer_buffer_length + 3 < ep->max_transfer) { 665 uint8_t b; 666 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { 667 port->active = 0; 668 break; 669 } 670 snd_usbmidi_transmit_byte(port, b, urb); 671 } 672 } 673 } 674 675 static const struct usb_protocol_ops snd_usbmidi_standard_ops = { 676 .input = snd_usbmidi_standard_input, 677 .output = snd_usbmidi_standard_output, 678 .output_packet = snd_usbmidi_output_standard_packet, 679 }; 680 681 static const struct usb_protocol_ops snd_usbmidi_midiman_ops = { 682 .input = snd_usbmidi_midiman_input, 683 .output = snd_usbmidi_standard_output, 684 .output_packet = snd_usbmidi_output_midiman_packet, 685 }; 686 687 static const 688 struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = { 689 .input = snd_usbmidi_maudio_broken_running_status_input, 690 .output = snd_usbmidi_standard_output, 691 .output_packet = snd_usbmidi_output_standard_packet, 692 }; 693 694 static const struct usb_protocol_ops snd_usbmidi_cme_ops = { 695 .input = snd_usbmidi_cme_input, 696 .output = snd_usbmidi_standard_output, 697 .output_packet = snd_usbmidi_output_standard_packet, 698 }; 699 700 static const struct usb_protocol_ops snd_usbmidi_ch345_broken_sysex_ops = { 701 .input = ch345_broken_sysex_input, 702 .output = snd_usbmidi_standard_output, 703 .output_packet = snd_usbmidi_output_standard_packet, 704 }; 705 706 /* 707 * AKAI MPD16 protocol: 708 * 709 * For control port (endpoint 1): 710 * ============================== 711 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a 712 * SysEx message (msg_len=9 bytes long). 713 * 714 * For data port (endpoint 2): 715 * =========================== 716 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a 717 * MIDI message (msg_len bytes long) 718 * 719 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change. 720 */ 721 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep, 722 uint8_t *buffer, int buffer_length) 723 { 724 unsigned int pos = 0; 725 unsigned int len = (unsigned int)buffer_length; 726 while (pos < len) { 727 unsigned int port = (buffer[pos] >> 4) - 1; 728 unsigned int msg_len = buffer[pos] & 0x0f; 729 pos++; 730 if (pos + msg_len <= len && port < 2) 731 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len); 732 pos += msg_len; 733 } 734 } 735 736 #define MAX_AKAI_SYSEX_LEN 9 737 738 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep, 739 struct urb *urb) 740 { 741 uint8_t *msg; 742 int pos, end, count, buf_end; 743 uint8_t tmp[MAX_AKAI_SYSEX_LEN]; 744 struct snd_rawmidi_substream *substream = ep->ports[0].substream; 745 746 if (!ep->ports[0].active) 747 return; 748 749 msg = urb->transfer_buffer + urb->transfer_buffer_length; 750 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1; 751 752 /* only try adding more data when there's space for at least 1 SysEx */ 753 while (urb->transfer_buffer_length < buf_end) { 754 count = snd_rawmidi_transmit_peek(substream, 755 tmp, MAX_AKAI_SYSEX_LEN); 756 if (!count) { 757 ep->ports[0].active = 0; 758 return; 759 } 760 /* try to skip non-SysEx data */ 761 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++) 762 ; 763 764 if (pos > 0) { 765 snd_rawmidi_transmit_ack(substream, pos); 766 continue; 767 } 768 769 /* look for the start or end marker */ 770 for (end = 1; end < count && tmp[end] < 0xF0; end++) 771 ; 772 773 /* next SysEx started before the end of current one */ 774 if (end < count && tmp[end] == 0xF0) { 775 /* it's incomplete - drop it */ 776 snd_rawmidi_transmit_ack(substream, end); 777 continue; 778 } 779 /* SysEx complete */ 780 if (end < count && tmp[end] == 0xF7) { 781 /* queue it, ack it, and get the next one */ 782 count = end + 1; 783 msg[0] = 0x10 | count; 784 memcpy(&msg[1], tmp, count); 785 snd_rawmidi_transmit_ack(substream, count); 786 urb->transfer_buffer_length += count + 1; 787 msg += count + 1; 788 continue; 789 } 790 /* less than 9 bytes and no end byte - wait for more */ 791 if (count < MAX_AKAI_SYSEX_LEN) { 792 ep->ports[0].active = 0; 793 return; 794 } 795 /* 9 bytes and no end marker in sight - malformed, skip it */ 796 snd_rawmidi_transmit_ack(substream, count); 797 } 798 } 799 800 static const struct usb_protocol_ops snd_usbmidi_akai_ops = { 801 .input = snd_usbmidi_akai_input, 802 .output = snd_usbmidi_akai_output, 803 }; 804 805 /* 806 * Novation USB MIDI protocol: number of data bytes is in the first byte 807 * (when receiving) (+1!) or in the second byte (when sending); data begins 808 * at the third byte. 809 */ 810 811 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint *ep, 812 uint8_t *buffer, int buffer_length) 813 { 814 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) 815 return; 816 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); 817 } 818 819 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint *ep, 820 struct urb *urb) 821 { 822 uint8_t *transfer_buffer; 823 int count; 824 825 if (!ep->ports[0].active) 826 return; 827 transfer_buffer = urb->transfer_buffer; 828 count = snd_rawmidi_transmit(ep->ports[0].substream, 829 &transfer_buffer[2], 830 ep->max_transfer - 2); 831 if (count < 1) { 832 ep->ports[0].active = 0; 833 return; 834 } 835 transfer_buffer[0] = 0; 836 transfer_buffer[1] = count; 837 urb->transfer_buffer_length = 2 + count; 838 } 839 840 static const struct usb_protocol_ops snd_usbmidi_novation_ops = { 841 .input = snd_usbmidi_novation_input, 842 .output = snd_usbmidi_novation_output, 843 }; 844 845 /* 846 * "raw" protocol: just move raw MIDI bytes from/to the endpoint 847 */ 848 849 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint *ep, 850 uint8_t *buffer, int buffer_length) 851 { 852 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 853 } 854 855 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint *ep, 856 struct urb *urb) 857 { 858 int count; 859 860 if (!ep->ports[0].active) 861 return; 862 count = snd_rawmidi_transmit(ep->ports[0].substream, 863 urb->transfer_buffer, 864 ep->max_transfer); 865 if (count < 1) { 866 ep->ports[0].active = 0; 867 return; 868 } 869 urb->transfer_buffer_length = count; 870 } 871 872 static const struct usb_protocol_ops snd_usbmidi_raw_ops = { 873 .input = snd_usbmidi_raw_input, 874 .output = snd_usbmidi_raw_output, 875 }; 876 877 /* 878 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes. 879 */ 880 881 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint *ep, 882 uint8_t *buffer, int buffer_length) 883 { 884 if (buffer_length > 2) 885 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2); 886 } 887 888 static const struct usb_protocol_ops snd_usbmidi_ftdi_ops = { 889 .input = snd_usbmidi_ftdi_input, 890 .output = snd_usbmidi_raw_output, 891 }; 892 893 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep, 894 uint8_t *buffer, int buffer_length) 895 { 896 if (buffer_length != 9) 897 return; 898 buffer_length = 8; 899 while (buffer_length && buffer[buffer_length - 1] == 0xFD) 900 buffer_length--; 901 if (buffer_length) 902 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 903 } 904 905 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep, 906 struct urb *urb) 907 { 908 int count; 909 910 if (!ep->ports[0].active) 911 return; 912 switch (snd_usb_get_speed(ep->umidi->dev)) { 913 case USB_SPEED_HIGH: 914 case USB_SPEED_SUPER: 915 case USB_SPEED_SUPER_PLUS: 916 count = 1; 917 break; 918 default: 919 count = 2; 920 } 921 count = snd_rawmidi_transmit(ep->ports[0].substream, 922 urb->transfer_buffer, 923 count); 924 if (count < 1) { 925 ep->ports[0].active = 0; 926 return; 927 } 928 929 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count); 930 urb->transfer_buffer_length = ep->max_transfer; 931 } 932 933 static const struct usb_protocol_ops snd_usbmidi_122l_ops = { 934 .input = snd_usbmidi_us122l_input, 935 .output = snd_usbmidi_us122l_output, 936 }; 937 938 /* 939 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. 940 */ 941 942 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint *ep) 943 { 944 static const u8 init_data[] = { 945 /* initialization magic: "get version" */ 946 0xf0, 947 0x00, 0x20, 0x31, /* Emagic */ 948 0x64, /* Unitor8 */ 949 0x0b, /* version number request */ 950 0x00, /* command version */ 951 0x00, /* EEPROM, box 0 */ 952 0xf7 953 }; 954 send_bulk_static_data(ep, init_data, sizeof(init_data)); 955 /* while we're at it, pour on more magic */ 956 send_bulk_static_data(ep, init_data, sizeof(init_data)); 957 } 958 959 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint *ep) 960 { 961 static const u8 finish_data[] = { 962 /* switch to patch mode with last preset */ 963 0xf0, 964 0x00, 0x20, 0x31, /* Emagic */ 965 0x64, /* Unitor8 */ 966 0x10, /* patch switch command */ 967 0x00, /* command version */ 968 0x7f, /* to all boxes */ 969 0x40, /* last preset in EEPROM */ 970 0xf7 971 }; 972 send_bulk_static_data(ep, finish_data, sizeof(finish_data)); 973 } 974 975 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint *ep, 976 uint8_t *buffer, int buffer_length) 977 { 978 int i; 979 980 /* FF indicates end of valid data */ 981 for (i = 0; i < buffer_length; ++i) 982 if (buffer[i] == 0xff) { 983 buffer_length = i; 984 break; 985 } 986 987 /* handle F5 at end of last buffer */ 988 if (ep->seen_f5) 989 goto switch_port; 990 991 while (buffer_length > 0) { 992 /* determine size of data until next F5 */ 993 for (i = 0; i < buffer_length; ++i) 994 if (buffer[i] == 0xf5) 995 break; 996 snd_usbmidi_input_data(ep, ep->current_port, buffer, i); 997 buffer += i; 998 buffer_length -= i; 999 1000 if (buffer_length <= 0) 1001 break; 1002 /* assert(buffer[0] == 0xf5); */ 1003 ep->seen_f5 = 1; 1004 ++buffer; 1005 --buffer_length; 1006 1007 switch_port: 1008 if (buffer_length <= 0) 1009 break; 1010 if (buffer[0] < 0x80) { 1011 ep->current_port = (buffer[0] - 1) & 15; 1012 ++buffer; 1013 --buffer_length; 1014 } 1015 ep->seen_f5 = 0; 1016 } 1017 } 1018 1019 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint *ep, 1020 struct urb *urb) 1021 { 1022 int port0 = ep->current_port; 1023 uint8_t *buf = urb->transfer_buffer; 1024 int buf_free = ep->max_transfer; 1025 int length, i; 1026 1027 for (i = 0; i < 0x10; ++i) { 1028 /* round-robin, starting at the last current port */ 1029 int portnum = (port0 + i) & 15; 1030 struct usbmidi_out_port *port = &ep->ports[portnum]; 1031 1032 if (!port->active) 1033 continue; 1034 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { 1035 port->active = 0; 1036 continue; 1037 } 1038 1039 if (portnum != ep->current_port) { 1040 if (buf_free < 2) 1041 break; 1042 ep->current_port = portnum; 1043 buf[0] = 0xf5; 1044 buf[1] = (portnum + 1) & 15; 1045 buf += 2; 1046 buf_free -= 2; 1047 } 1048 1049 if (buf_free < 1) 1050 break; 1051 length = snd_rawmidi_transmit(port->substream, buf, buf_free); 1052 if (length > 0) { 1053 buf += length; 1054 buf_free -= length; 1055 if (buf_free < 1) 1056 break; 1057 } 1058 } 1059 if (buf_free < ep->max_transfer && buf_free > 0) { 1060 *buf = 0xff; 1061 --buf_free; 1062 } 1063 urb->transfer_buffer_length = ep->max_transfer - buf_free; 1064 } 1065 1066 static const struct usb_protocol_ops snd_usbmidi_emagic_ops = { 1067 .input = snd_usbmidi_emagic_input, 1068 .output = snd_usbmidi_emagic_output, 1069 .init_out_endpoint = snd_usbmidi_emagic_init_out, 1070 .finish_out_endpoint = snd_usbmidi_emagic_finish_out, 1071 }; 1072 1073 1074 static void update_roland_altsetting(struct snd_usb_midi *umidi) 1075 { 1076 struct usb_interface *intf; 1077 struct usb_host_interface *hostif; 1078 struct usb_interface_descriptor *intfd; 1079 int is_light_load; 1080 1081 intf = umidi->iface; 1082 is_light_load = intf->cur_altsetting != intf->altsetting; 1083 if (umidi->roland_load_ctl->private_value == is_light_load) 1084 return; 1085 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value]; 1086 intfd = get_iface_desc(hostif); 1087 snd_usbmidi_input_stop(&umidi->list); 1088 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1089 intfd->bAlternateSetting); 1090 snd_usbmidi_input_start(&umidi->list); 1091 } 1092 1093 static int substream_open(struct snd_rawmidi_substream *substream, int dir, 1094 int open) 1095 { 1096 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1097 struct snd_kcontrol *ctl; 1098 1099 down_read(&umidi->disc_rwsem); 1100 if (umidi->disconnected) { 1101 up_read(&umidi->disc_rwsem); 1102 return open ? -ENODEV : 0; 1103 } 1104 1105 mutex_lock(&umidi->mutex); 1106 if (open) { 1107 if (!umidi->opened[0] && !umidi->opened[1]) { 1108 if (umidi->roland_load_ctl) { 1109 ctl = umidi->roland_load_ctl; 1110 ctl->vd[0].access |= 1111 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1112 snd_ctl_notify(umidi->card, 1113 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1114 update_roland_altsetting(umidi); 1115 } 1116 } 1117 umidi->opened[dir]++; 1118 if (umidi->opened[1]) 1119 snd_usbmidi_input_start(&umidi->list); 1120 } else { 1121 umidi->opened[dir]--; 1122 if (!umidi->opened[1]) 1123 snd_usbmidi_input_stop(&umidi->list); 1124 if (!umidi->opened[0] && !umidi->opened[1]) { 1125 if (umidi->roland_load_ctl) { 1126 ctl = umidi->roland_load_ctl; 1127 ctl->vd[0].access &= 1128 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1129 snd_ctl_notify(umidi->card, 1130 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1131 } 1132 } 1133 } 1134 mutex_unlock(&umidi->mutex); 1135 up_read(&umidi->disc_rwsem); 1136 return 0; 1137 } 1138 1139 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream) 1140 { 1141 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1142 struct usbmidi_out_port *port = NULL; 1143 int i, j; 1144 1145 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 1146 if (umidi->endpoints[i].out) 1147 for (j = 0; j < 0x10; ++j) 1148 if (umidi->endpoints[i].out->ports[j].substream == substream) { 1149 port = &umidi->endpoints[i].out->ports[j]; 1150 break; 1151 } 1152 if (!port) { 1153 snd_BUG(); 1154 return -ENXIO; 1155 } 1156 1157 substream->runtime->private_data = port; 1158 port->state = STATE_UNKNOWN; 1159 return substream_open(substream, 0, 1); 1160 } 1161 1162 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream) 1163 { 1164 return substream_open(substream, 0, 0); 1165 } 1166 1167 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, 1168 int up) 1169 { 1170 struct usbmidi_out_port *port = 1171 (struct usbmidi_out_port *)substream->runtime->private_data; 1172 1173 port->active = up; 1174 if (up) { 1175 if (port->ep->umidi->disconnected) { 1176 /* gobble up remaining bytes to prevent wait in 1177 * snd_rawmidi_drain_output */ 1178 while (!snd_rawmidi_transmit_empty(substream)) 1179 snd_rawmidi_transmit_ack(substream, 1); 1180 return; 1181 } 1182 tasklet_schedule(&port->ep->tasklet); 1183 } 1184 } 1185 1186 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream) 1187 { 1188 struct usbmidi_out_port *port = substream->runtime->private_data; 1189 struct snd_usb_midi_out_endpoint *ep = port->ep; 1190 unsigned int drain_urbs; 1191 DEFINE_WAIT(wait); 1192 long timeout = msecs_to_jiffies(50); 1193 1194 if (ep->umidi->disconnected) 1195 return; 1196 /* 1197 * The substream buffer is empty, but some data might still be in the 1198 * currently active URBs, so we have to wait for those to complete. 1199 */ 1200 spin_lock_irq(&ep->buffer_lock); 1201 drain_urbs = ep->active_urbs; 1202 if (drain_urbs) { 1203 ep->drain_urbs |= drain_urbs; 1204 do { 1205 prepare_to_wait(&ep->drain_wait, &wait, 1206 TASK_UNINTERRUPTIBLE); 1207 spin_unlock_irq(&ep->buffer_lock); 1208 timeout = schedule_timeout(timeout); 1209 spin_lock_irq(&ep->buffer_lock); 1210 drain_urbs &= ep->drain_urbs; 1211 } while (drain_urbs && timeout); 1212 finish_wait(&ep->drain_wait, &wait); 1213 } 1214 spin_unlock_irq(&ep->buffer_lock); 1215 } 1216 1217 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream) 1218 { 1219 return substream_open(substream, 1, 1); 1220 } 1221 1222 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream) 1223 { 1224 return substream_open(substream, 1, 0); 1225 } 1226 1227 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, 1228 int up) 1229 { 1230 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1231 1232 if (up) 1233 set_bit(substream->number, &umidi->input_triggered); 1234 else 1235 clear_bit(substream->number, &umidi->input_triggered); 1236 } 1237 1238 static const struct snd_rawmidi_ops snd_usbmidi_output_ops = { 1239 .open = snd_usbmidi_output_open, 1240 .close = snd_usbmidi_output_close, 1241 .trigger = snd_usbmidi_output_trigger, 1242 .drain = snd_usbmidi_output_drain, 1243 }; 1244 1245 static const struct snd_rawmidi_ops snd_usbmidi_input_ops = { 1246 .open = snd_usbmidi_input_open, 1247 .close = snd_usbmidi_input_close, 1248 .trigger = snd_usbmidi_input_trigger 1249 }; 1250 1251 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb, 1252 unsigned int buffer_length) 1253 { 1254 usb_free_coherent(umidi->dev, buffer_length, 1255 urb->transfer_buffer, urb->transfer_dma); 1256 usb_free_urb(urb); 1257 } 1258 1259 /* 1260 * Frees an input endpoint. 1261 * May be called when ep hasn't been initialized completely. 1262 */ 1263 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint *ep) 1264 { 1265 unsigned int i; 1266 1267 for (i = 0; i < INPUT_URBS; ++i) 1268 if (ep->urbs[i]) 1269 free_urb_and_buffer(ep->umidi, ep->urbs[i], 1270 ep->urbs[i]->transfer_buffer_length); 1271 kfree(ep); 1272 } 1273 1274 /* 1275 * Creates an input endpoint. 1276 */ 1277 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi *umidi, 1278 struct snd_usb_midi_endpoint_info *ep_info, 1279 struct snd_usb_midi_endpoint *rep) 1280 { 1281 struct snd_usb_midi_in_endpoint *ep; 1282 void *buffer; 1283 unsigned int pipe; 1284 int length; 1285 unsigned int i; 1286 int err; 1287 1288 rep->in = NULL; 1289 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1290 if (!ep) 1291 return -ENOMEM; 1292 ep->umidi = umidi; 1293 1294 for (i = 0; i < INPUT_URBS; ++i) { 1295 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); 1296 if (!ep->urbs[i]) { 1297 err = -ENOMEM; 1298 goto error; 1299 } 1300 } 1301 if (ep_info->in_interval) 1302 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep); 1303 else 1304 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep); 1305 length = usb_maxpacket(umidi->dev, pipe, 0); 1306 for (i = 0; i < INPUT_URBS; ++i) { 1307 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL, 1308 &ep->urbs[i]->transfer_dma); 1309 if (!buffer) { 1310 err = -ENOMEM; 1311 goto error; 1312 } 1313 if (ep_info->in_interval) 1314 usb_fill_int_urb(ep->urbs[i], umidi->dev, 1315 pipe, buffer, length, 1316 snd_usbmidi_in_urb_complete, 1317 ep, ep_info->in_interval); 1318 else 1319 usb_fill_bulk_urb(ep->urbs[i], umidi->dev, 1320 pipe, buffer, length, 1321 snd_usbmidi_in_urb_complete, ep); 1322 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1323 err = usb_urb_ep_type_check(ep->urbs[i]); 1324 if (err < 0) { 1325 dev_err(&umidi->dev->dev, "invalid MIDI in EP %x\n", 1326 ep_info->in_ep); 1327 goto error; 1328 } 1329 } 1330 1331 rep->in = ep; 1332 return 0; 1333 1334 error: 1335 snd_usbmidi_in_endpoint_delete(ep); 1336 return -ENOMEM; 1337 } 1338 1339 /* 1340 * Frees an output endpoint. 1341 * May be called when ep hasn't been initialized completely. 1342 */ 1343 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep) 1344 { 1345 unsigned int i; 1346 1347 for (i = 0; i < OUTPUT_URBS; ++i) 1348 if (ep->urbs[i].urb) { 1349 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb, 1350 ep->max_transfer); 1351 ep->urbs[i].urb = NULL; 1352 } 1353 } 1354 1355 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep) 1356 { 1357 snd_usbmidi_out_endpoint_clear(ep); 1358 kfree(ep); 1359 } 1360 1361 /* 1362 * Creates an output endpoint, and initializes output ports. 1363 */ 1364 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi *umidi, 1365 struct snd_usb_midi_endpoint_info *ep_info, 1366 struct snd_usb_midi_endpoint *rep) 1367 { 1368 struct snd_usb_midi_out_endpoint *ep; 1369 unsigned int i; 1370 unsigned int pipe; 1371 void *buffer; 1372 int err; 1373 1374 rep->out = NULL; 1375 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1376 if (!ep) 1377 return -ENOMEM; 1378 ep->umidi = umidi; 1379 1380 for (i = 0; i < OUTPUT_URBS; ++i) { 1381 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL); 1382 if (!ep->urbs[i].urb) { 1383 err = -ENOMEM; 1384 goto error; 1385 } 1386 ep->urbs[i].ep = ep; 1387 } 1388 if (ep_info->out_interval) 1389 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep); 1390 else 1391 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep); 1392 switch (umidi->usb_id) { 1393 default: 1394 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1); 1395 break; 1396 /* 1397 * Various chips declare a packet size larger than 4 bytes, but 1398 * do not actually work with larger packets: 1399 */ 1400 case USB_ID(0x0a67, 0x5011): /* Medeli DD305 */ 1401 case USB_ID(0x0a92, 0x1020): /* ESI M4U */ 1402 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */ 1403 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */ 1404 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */ 1405 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */ 1406 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */ 1407 ep->max_transfer = 4; 1408 break; 1409 /* 1410 * Some devices only work with 9 bytes packet size: 1411 */ 1412 case USB_ID(0x0644, 0x800E): /* Tascam US-122L */ 1413 case USB_ID(0x0644, 0x800F): /* Tascam US-144 */ 1414 ep->max_transfer = 9; 1415 break; 1416 } 1417 for (i = 0; i < OUTPUT_URBS; ++i) { 1418 buffer = usb_alloc_coherent(umidi->dev, 1419 ep->max_transfer, GFP_KERNEL, 1420 &ep->urbs[i].urb->transfer_dma); 1421 if (!buffer) { 1422 err = -ENOMEM; 1423 goto error; 1424 } 1425 if (ep_info->out_interval) 1426 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev, 1427 pipe, buffer, ep->max_transfer, 1428 snd_usbmidi_out_urb_complete, 1429 &ep->urbs[i], ep_info->out_interval); 1430 else 1431 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev, 1432 pipe, buffer, ep->max_transfer, 1433 snd_usbmidi_out_urb_complete, 1434 &ep->urbs[i]); 1435 err = usb_urb_ep_type_check(ep->urbs[i].urb); 1436 if (err < 0) { 1437 dev_err(&umidi->dev->dev, "invalid MIDI out EP %x\n", 1438 ep_info->out_ep); 1439 goto error; 1440 } 1441 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1442 } 1443 1444 spin_lock_init(&ep->buffer_lock); 1445 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); 1446 init_waitqueue_head(&ep->drain_wait); 1447 1448 for (i = 0; i < 0x10; ++i) 1449 if (ep_info->out_cables & (1 << i)) { 1450 ep->ports[i].ep = ep; 1451 ep->ports[i].cable = i << 4; 1452 } 1453 1454 if (umidi->usb_protocol_ops->init_out_endpoint) 1455 umidi->usb_protocol_ops->init_out_endpoint(ep); 1456 1457 rep->out = ep; 1458 return 0; 1459 1460 error: 1461 snd_usbmidi_out_endpoint_delete(ep); 1462 return err; 1463 } 1464 1465 /* 1466 * Frees everything. 1467 */ 1468 static void snd_usbmidi_free(struct snd_usb_midi *umidi) 1469 { 1470 int i; 1471 1472 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1473 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 1474 if (ep->out) 1475 snd_usbmidi_out_endpoint_delete(ep->out); 1476 if (ep->in) 1477 snd_usbmidi_in_endpoint_delete(ep->in); 1478 } 1479 mutex_destroy(&umidi->mutex); 1480 kfree(umidi); 1481 } 1482 1483 /* 1484 * Unlinks all URBs (must be done before the usb_device is deleted). 1485 */ 1486 void snd_usbmidi_disconnect(struct list_head *p) 1487 { 1488 struct snd_usb_midi *umidi; 1489 unsigned int i, j; 1490 1491 umidi = list_entry(p, struct snd_usb_midi, list); 1492 /* 1493 * an URB's completion handler may start the timer and 1494 * a timer may submit an URB. To reliably break the cycle 1495 * a flag under lock must be used 1496 */ 1497 down_write(&umidi->disc_rwsem); 1498 spin_lock_irq(&umidi->disc_lock); 1499 umidi->disconnected = 1; 1500 spin_unlock_irq(&umidi->disc_lock); 1501 up_write(&umidi->disc_rwsem); 1502 1503 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1504 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 1505 if (ep->out) 1506 tasklet_kill(&ep->out->tasklet); 1507 if (ep->out) { 1508 for (j = 0; j < OUTPUT_URBS; ++j) 1509 usb_kill_urb(ep->out->urbs[j].urb); 1510 if (umidi->usb_protocol_ops->finish_out_endpoint) 1511 umidi->usb_protocol_ops->finish_out_endpoint(ep->out); 1512 ep->out->active_urbs = 0; 1513 if (ep->out->drain_urbs) { 1514 ep->out->drain_urbs = 0; 1515 wake_up(&ep->out->drain_wait); 1516 } 1517 } 1518 if (ep->in) 1519 for (j = 0; j < INPUT_URBS; ++j) 1520 usb_kill_urb(ep->in->urbs[j]); 1521 /* free endpoints here; later call can result in Oops */ 1522 if (ep->out) 1523 snd_usbmidi_out_endpoint_clear(ep->out); 1524 if (ep->in) { 1525 snd_usbmidi_in_endpoint_delete(ep->in); 1526 ep->in = NULL; 1527 } 1528 } 1529 del_timer_sync(&umidi->error_timer); 1530 } 1531 EXPORT_SYMBOL(snd_usbmidi_disconnect); 1532 1533 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi) 1534 { 1535 struct snd_usb_midi *umidi = rmidi->private_data; 1536 snd_usbmidi_free(umidi); 1537 } 1538 1539 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi *umidi, 1540 int stream, 1541 int number) 1542 { 1543 struct snd_rawmidi_substream *substream; 1544 1545 list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams, 1546 list) { 1547 if (substream->number == number) 1548 return substream; 1549 } 1550 return NULL; 1551 } 1552 1553 /* 1554 * This list specifies names for ports that do not fit into the standard 1555 * "(product) MIDI (n)" schema because they aren't external MIDI ports, 1556 * such as internal control or synthesizer ports. 1557 */ 1558 static struct port_info { 1559 u32 id; 1560 short int port; 1561 short int voices; 1562 const char *name; 1563 unsigned int seq_flags; 1564 } snd_usbmidi_port_info[] = { 1565 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \ 1566 { .id = USB_ID(vendor, product), \ 1567 .port = num, .voices = voices_, \ 1568 .name = name_, .seq_flags = flags } 1569 #define EXTERNAL_PORT(vendor, product, num, name) \ 1570 PORT_INFO(vendor, product, num, name, 0, \ 1571 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1572 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1573 SNDRV_SEQ_PORT_TYPE_PORT) 1574 #define CONTROL_PORT(vendor, product, num, name) \ 1575 PORT_INFO(vendor, product, num, name, 0, \ 1576 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1577 SNDRV_SEQ_PORT_TYPE_HARDWARE) 1578 #define GM_SYNTH_PORT(vendor, product, num, name, voices) \ 1579 PORT_INFO(vendor, product, num, name, voices, \ 1580 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1581 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1582 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1583 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1584 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \ 1585 PORT_INFO(vendor, product, num, name, voices, \ 1586 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1587 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1588 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1589 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1590 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1591 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1592 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1593 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \ 1594 PORT_INFO(vendor, product, num, name, voices, \ 1595 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1596 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1597 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1598 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1599 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1600 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \ 1601 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1602 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1603 /* Yamaha MOTIF XF */ 1604 GM_SYNTH_PORT(0x0499, 0x105c, 0, "%s Tone Generator", 128), 1605 CONTROL_PORT(0x0499, 0x105c, 1, "%s Remote Control"), 1606 EXTERNAL_PORT(0x0499, 0x105c, 2, "%s Thru"), 1607 CONTROL_PORT(0x0499, 0x105c, 3, "%s Editor"), 1608 /* Roland UA-100 */ 1609 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"), 1610 /* Roland SC-8850 */ 1611 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128), 1612 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128), 1613 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128), 1614 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128), 1615 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"), 1616 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"), 1617 /* Roland U-8 */ 1618 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"), 1619 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"), 1620 /* Roland SC-8820 */ 1621 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64), 1622 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64), 1623 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"), 1624 /* Roland SK-500 */ 1625 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64), 1626 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64), 1627 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"), 1628 /* Roland SC-D70 */ 1629 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64), 1630 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64), 1631 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"), 1632 /* Edirol UM-880 */ 1633 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"), 1634 /* Edirol SD-90 */ 1635 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128), 1636 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128), 1637 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"), 1638 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"), 1639 /* Edirol UM-550 */ 1640 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"), 1641 /* Edirol SD-20 */ 1642 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64), 1643 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64), 1644 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"), 1645 /* Edirol SD-80 */ 1646 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128), 1647 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128), 1648 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"), 1649 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"), 1650 /* Edirol UA-700 */ 1651 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"), 1652 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"), 1653 /* Roland VariOS */ 1654 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"), 1655 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"), 1656 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"), 1657 /* Edirol PCR */ 1658 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"), 1659 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"), 1660 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"), 1661 /* BOSS GS-10 */ 1662 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"), 1663 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"), 1664 /* Edirol UA-1000 */ 1665 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"), 1666 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"), 1667 /* Edirol UR-80 */ 1668 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"), 1669 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"), 1670 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"), 1671 /* Edirol PCR-A */ 1672 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"), 1673 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"), 1674 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"), 1675 /* BOSS GT-PRO */ 1676 CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"), 1677 /* Edirol UM-3EX */ 1678 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"), 1679 /* Roland VG-99 */ 1680 CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"), 1681 EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"), 1682 /* Cakewalk Sonar V-Studio 100 */ 1683 EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"), 1684 CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"), 1685 /* Roland VB-99 */ 1686 CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"), 1687 EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"), 1688 /* Roland A-PRO */ 1689 EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"), 1690 CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"), 1691 CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"), 1692 /* Roland SD-50 */ 1693 ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128), 1694 EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"), 1695 CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"), 1696 /* Roland OCTA-CAPTURE */ 1697 EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"), 1698 CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"), 1699 EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"), 1700 CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"), 1701 /* Roland SPD-SX */ 1702 CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"), 1703 EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"), 1704 /* Roland A-Series */ 1705 CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"), 1706 EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"), 1707 /* Roland INTEGRA-7 */ 1708 ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128), 1709 CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"), 1710 /* M-Audio MidiSport 8x8 */ 1711 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"), 1712 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"), 1713 /* MOTU Fastlane */ 1714 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"), 1715 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"), 1716 /* Emagic Unitor8/AMT8/MT4 */ 1717 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"), 1718 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"), 1719 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"), 1720 /* Akai MPD16 */ 1721 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"), 1722 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0, 1723 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1724 SNDRV_SEQ_PORT_TYPE_HARDWARE), 1725 /* Access Music Virus TI */ 1726 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"), 1727 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0, 1728 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1729 SNDRV_SEQ_PORT_TYPE_HARDWARE | 1730 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER), 1731 }; 1732 1733 static struct port_info *find_port_info(struct snd_usb_midi *umidi, int number) 1734 { 1735 int i; 1736 1737 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) { 1738 if (snd_usbmidi_port_info[i].id == umidi->usb_id && 1739 snd_usbmidi_port_info[i].port == number) 1740 return &snd_usbmidi_port_info[i]; 1741 } 1742 return NULL; 1743 } 1744 1745 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number, 1746 struct snd_seq_port_info *seq_port_info) 1747 { 1748 struct snd_usb_midi *umidi = rmidi->private_data; 1749 struct port_info *port_info; 1750 1751 /* TODO: read port flags from descriptors */ 1752 port_info = find_port_info(umidi, number); 1753 if (port_info) { 1754 seq_port_info->type = port_info->seq_flags; 1755 seq_port_info->midi_voices = port_info->voices; 1756 } 1757 } 1758 1759 static void snd_usbmidi_init_substream(struct snd_usb_midi *umidi, 1760 int stream, int number, 1761 struct snd_rawmidi_substream **rsubstream) 1762 { 1763 struct port_info *port_info; 1764 const char *name_format; 1765 1766 struct snd_rawmidi_substream *substream = 1767 snd_usbmidi_find_substream(umidi, stream, number); 1768 if (!substream) { 1769 dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream, 1770 number); 1771 return; 1772 } 1773 1774 /* TODO: read port name from jack descriptor */ 1775 port_info = find_port_info(umidi, number); 1776 name_format = port_info ? port_info->name : "%s MIDI %d"; 1777 snprintf(substream->name, sizeof(substream->name), 1778 name_format, umidi->card->shortname, number + 1); 1779 1780 *rsubstream = substream; 1781 } 1782 1783 /* 1784 * Creates the endpoints and their ports. 1785 */ 1786 static int snd_usbmidi_create_endpoints(struct snd_usb_midi *umidi, 1787 struct snd_usb_midi_endpoint_info *endpoints) 1788 { 1789 int i, j, err; 1790 int out_ports = 0, in_ports = 0; 1791 1792 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1793 if (endpoints[i].out_cables) { 1794 err = snd_usbmidi_out_endpoint_create(umidi, 1795 &endpoints[i], 1796 &umidi->endpoints[i]); 1797 if (err < 0) 1798 return err; 1799 } 1800 if (endpoints[i].in_cables) { 1801 err = snd_usbmidi_in_endpoint_create(umidi, 1802 &endpoints[i], 1803 &umidi->endpoints[i]); 1804 if (err < 0) 1805 return err; 1806 } 1807 1808 for (j = 0; j < 0x10; ++j) { 1809 if (endpoints[i].out_cables & (1 << j)) { 1810 snd_usbmidi_init_substream(umidi, 1811 SNDRV_RAWMIDI_STREAM_OUTPUT, 1812 out_ports, 1813 &umidi->endpoints[i].out->ports[j].substream); 1814 ++out_ports; 1815 } 1816 if (endpoints[i].in_cables & (1 << j)) { 1817 snd_usbmidi_init_substream(umidi, 1818 SNDRV_RAWMIDI_STREAM_INPUT, 1819 in_ports, 1820 &umidi->endpoints[i].in->ports[j].substream); 1821 ++in_ports; 1822 } 1823 } 1824 } 1825 dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n", 1826 out_ports, in_ports); 1827 return 0; 1828 } 1829 1830 /* 1831 * Returns MIDIStreaming device capabilities. 1832 */ 1833 static int snd_usbmidi_get_ms_info(struct snd_usb_midi *umidi, 1834 struct snd_usb_midi_endpoint_info *endpoints) 1835 { 1836 struct usb_interface *intf; 1837 struct usb_host_interface *hostif; 1838 struct usb_interface_descriptor *intfd; 1839 struct usb_ms_header_descriptor *ms_header; 1840 struct usb_host_endpoint *hostep; 1841 struct usb_endpoint_descriptor *ep; 1842 struct usb_ms_endpoint_descriptor *ms_ep; 1843 int i, epidx; 1844 1845 intf = umidi->iface; 1846 if (!intf) 1847 return -ENXIO; 1848 hostif = &intf->altsetting[0]; 1849 intfd = get_iface_desc(hostif); 1850 ms_header = (struct usb_ms_header_descriptor *)hostif->extra; 1851 if (hostif->extralen >= 7 && 1852 ms_header->bLength >= 7 && 1853 ms_header->bDescriptorType == USB_DT_CS_INTERFACE && 1854 ms_header->bDescriptorSubtype == UAC_HEADER) 1855 dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n", 1856 ms_header->bcdMSC[1], ms_header->bcdMSC[0]); 1857 else 1858 dev_warn(&umidi->dev->dev, 1859 "MIDIStreaming interface descriptor not found\n"); 1860 1861 epidx = 0; 1862 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1863 hostep = &hostif->endpoint[i]; 1864 ep = get_ep_desc(hostep); 1865 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep)) 1866 continue; 1867 ms_ep = (struct usb_ms_endpoint_descriptor *)hostep->extra; 1868 if (hostep->extralen < 4 || 1869 ms_ep->bLength < 4 || 1870 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT || 1871 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL) 1872 continue; 1873 if (usb_endpoint_dir_out(ep)) { 1874 if (endpoints[epidx].out_ep) { 1875 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1876 dev_warn(&umidi->dev->dev, 1877 "too many endpoints\n"); 1878 break; 1879 } 1880 } 1881 endpoints[epidx].out_ep = usb_endpoint_num(ep); 1882 if (usb_endpoint_xfer_int(ep)) 1883 endpoints[epidx].out_interval = ep->bInterval; 1884 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1885 /* 1886 * Low speed bulk transfers don't exist, so 1887 * force interrupt transfers for devices like 1888 * ESI MIDI Mate that try to use them anyway. 1889 */ 1890 endpoints[epidx].out_interval = 1; 1891 endpoints[epidx].out_cables = 1892 (1 << ms_ep->bNumEmbMIDIJack) - 1; 1893 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 1894 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1895 } else { 1896 if (endpoints[epidx].in_ep) { 1897 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1898 dev_warn(&umidi->dev->dev, 1899 "too many endpoints\n"); 1900 break; 1901 } 1902 } 1903 endpoints[epidx].in_ep = usb_endpoint_num(ep); 1904 if (usb_endpoint_xfer_int(ep)) 1905 endpoints[epidx].in_interval = ep->bInterval; 1906 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1907 endpoints[epidx].in_interval = 1; 1908 endpoints[epidx].in_cables = 1909 (1 << ms_ep->bNumEmbMIDIJack) - 1; 1910 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 1911 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1912 } 1913 } 1914 return 0; 1915 } 1916 1917 static int roland_load_info(struct snd_kcontrol *kcontrol, 1918 struct snd_ctl_elem_info *info) 1919 { 1920 static const char *const names[] = { "High Load", "Light Load" }; 1921 1922 return snd_ctl_enum_info(info, 1, 2, names); 1923 } 1924 1925 static int roland_load_get(struct snd_kcontrol *kcontrol, 1926 struct snd_ctl_elem_value *value) 1927 { 1928 value->value.enumerated.item[0] = kcontrol->private_value; 1929 return 0; 1930 } 1931 1932 static int roland_load_put(struct snd_kcontrol *kcontrol, 1933 struct snd_ctl_elem_value *value) 1934 { 1935 struct snd_usb_midi *umidi = kcontrol->private_data; 1936 int changed; 1937 1938 if (value->value.enumerated.item[0] > 1) 1939 return -EINVAL; 1940 mutex_lock(&umidi->mutex); 1941 changed = value->value.enumerated.item[0] != kcontrol->private_value; 1942 if (changed) 1943 kcontrol->private_value = value->value.enumerated.item[0]; 1944 mutex_unlock(&umidi->mutex); 1945 return changed; 1946 } 1947 1948 static const struct snd_kcontrol_new roland_load_ctl = { 1949 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1950 .name = "MIDI Input Mode", 1951 .info = roland_load_info, 1952 .get = roland_load_get, 1953 .put = roland_load_put, 1954 .private_value = 1, 1955 }; 1956 1957 /* 1958 * On Roland devices, use the second alternate setting to be able to use 1959 * the interrupt input endpoint. 1960 */ 1961 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi *umidi) 1962 { 1963 struct usb_interface *intf; 1964 struct usb_host_interface *hostif; 1965 struct usb_interface_descriptor *intfd; 1966 1967 intf = umidi->iface; 1968 if (!intf || intf->num_altsetting != 2) 1969 return; 1970 1971 hostif = &intf->altsetting[1]; 1972 intfd = get_iface_desc(hostif); 1973 /* If either or both of the endpoints support interrupt transfer, 1974 * then use the alternate setting 1975 */ 1976 if (intfd->bNumEndpoints != 2 || 1977 !((get_endpoint(hostif, 0)->bmAttributes & 1978 USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT || 1979 (get_endpoint(hostif, 1)->bmAttributes & 1980 USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)) 1981 return; 1982 1983 dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n", 1984 intfd->bAlternateSetting); 1985 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1986 intfd->bAlternateSetting); 1987 1988 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi); 1989 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0) 1990 umidi->roland_load_ctl = NULL; 1991 } 1992 1993 /* 1994 * Try to find any usable endpoints in the interface. 1995 */ 1996 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi *umidi, 1997 struct snd_usb_midi_endpoint_info *endpoint, 1998 int max_endpoints) 1999 { 2000 struct usb_interface *intf; 2001 struct usb_host_interface *hostif; 2002 struct usb_interface_descriptor *intfd; 2003 struct usb_endpoint_descriptor *epd; 2004 int i, out_eps = 0, in_eps = 0; 2005 2006 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582) 2007 snd_usbmidi_switch_roland_altsetting(umidi); 2008 2009 if (endpoint[0].out_ep || endpoint[0].in_ep) 2010 return 0; 2011 2012 intf = umidi->iface; 2013 if (!intf || intf->num_altsetting < 1) 2014 return -ENOENT; 2015 hostif = intf->cur_altsetting; 2016 intfd = get_iface_desc(hostif); 2017 2018 for (i = 0; i < intfd->bNumEndpoints; ++i) { 2019 epd = get_endpoint(hostif, i); 2020 if (!usb_endpoint_xfer_bulk(epd) && 2021 !usb_endpoint_xfer_int(epd)) 2022 continue; 2023 if (out_eps < max_endpoints && 2024 usb_endpoint_dir_out(epd)) { 2025 endpoint[out_eps].out_ep = usb_endpoint_num(epd); 2026 if (usb_endpoint_xfer_int(epd)) 2027 endpoint[out_eps].out_interval = epd->bInterval; 2028 ++out_eps; 2029 } 2030 if (in_eps < max_endpoints && 2031 usb_endpoint_dir_in(epd)) { 2032 endpoint[in_eps].in_ep = usb_endpoint_num(epd); 2033 if (usb_endpoint_xfer_int(epd)) 2034 endpoint[in_eps].in_interval = epd->bInterval; 2035 ++in_eps; 2036 } 2037 } 2038 return (out_eps || in_eps) ? 0 : -ENOENT; 2039 } 2040 2041 /* 2042 * Detects the endpoints for one-port-per-endpoint protocols. 2043 */ 2044 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi *umidi, 2045 struct snd_usb_midi_endpoint_info *endpoints) 2046 { 2047 int err, i; 2048 2049 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); 2050 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2051 if (endpoints[i].out_ep) 2052 endpoints[i].out_cables = 0x0001; 2053 if (endpoints[i].in_ep) 2054 endpoints[i].in_cables = 0x0001; 2055 } 2056 return err; 2057 } 2058 2059 /* 2060 * Detects the endpoints and ports of Yamaha devices. 2061 */ 2062 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi *umidi, 2063 struct snd_usb_midi_endpoint_info *endpoint) 2064 { 2065 struct usb_interface *intf; 2066 struct usb_host_interface *hostif; 2067 struct usb_interface_descriptor *intfd; 2068 uint8_t *cs_desc; 2069 2070 intf = umidi->iface; 2071 if (!intf) 2072 return -ENOENT; 2073 hostif = intf->altsetting; 2074 intfd = get_iface_desc(hostif); 2075 if (intfd->bNumEndpoints < 1) 2076 return -ENOENT; 2077 2078 /* 2079 * For each port there is one MIDI_IN/OUT_JACK descriptor, not 2080 * necessarily with any useful contents. So simply count 'em. 2081 */ 2082 for (cs_desc = hostif->extra; 2083 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2084 cs_desc += cs_desc[0]) { 2085 if (cs_desc[1] == USB_DT_CS_INTERFACE) { 2086 if (cs_desc[2] == UAC_MIDI_IN_JACK) 2087 endpoint->in_cables = 2088 (endpoint->in_cables << 1) | 1; 2089 else if (cs_desc[2] == UAC_MIDI_OUT_JACK) 2090 endpoint->out_cables = 2091 (endpoint->out_cables << 1) | 1; 2092 } 2093 } 2094 if (!endpoint->in_cables && !endpoint->out_cables) 2095 return -ENOENT; 2096 2097 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2098 } 2099 2100 /* 2101 * Detects the endpoints and ports of Roland devices. 2102 */ 2103 static int snd_usbmidi_detect_roland(struct snd_usb_midi *umidi, 2104 struct snd_usb_midi_endpoint_info *endpoint) 2105 { 2106 struct usb_interface *intf; 2107 struct usb_host_interface *hostif; 2108 u8 *cs_desc; 2109 2110 intf = umidi->iface; 2111 if (!intf) 2112 return -ENOENT; 2113 hostif = intf->altsetting; 2114 /* 2115 * Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>, 2116 * some have standard class descriptors, or both kinds, or neither. 2117 */ 2118 for (cs_desc = hostif->extra; 2119 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2120 cs_desc += cs_desc[0]) { 2121 if (cs_desc[0] >= 6 && 2122 cs_desc[1] == USB_DT_CS_INTERFACE && 2123 cs_desc[2] == 0xf1 && 2124 cs_desc[3] == 0x02) { 2125 endpoint->in_cables = (1 << cs_desc[4]) - 1; 2126 endpoint->out_cables = (1 << cs_desc[5]) - 1; 2127 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2128 } else if (cs_desc[0] >= 7 && 2129 cs_desc[1] == USB_DT_CS_INTERFACE && 2130 cs_desc[2] == UAC_HEADER) { 2131 return snd_usbmidi_get_ms_info(umidi, endpoint); 2132 } 2133 } 2134 2135 return -ENODEV; 2136 } 2137 2138 /* 2139 * Creates the endpoints and their ports for Midiman devices. 2140 */ 2141 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi *umidi, 2142 struct snd_usb_midi_endpoint_info *endpoint) 2143 { 2144 struct snd_usb_midi_endpoint_info ep_info; 2145 struct usb_interface *intf; 2146 struct usb_host_interface *hostif; 2147 struct usb_interface_descriptor *intfd; 2148 struct usb_endpoint_descriptor *epd; 2149 int cable, err; 2150 2151 intf = umidi->iface; 2152 if (!intf) 2153 return -ENOENT; 2154 hostif = intf->altsetting; 2155 intfd = get_iface_desc(hostif); 2156 /* 2157 * The various MidiSport devices have more or less random endpoint 2158 * numbers, so we have to identify the endpoints by their index in 2159 * the descriptor array, like the driver for that other OS does. 2160 * 2161 * There is one interrupt input endpoint for all input ports, one 2162 * bulk output endpoint for even-numbered ports, and one for odd- 2163 * numbered ports. Both bulk output endpoints have corresponding 2164 * input bulk endpoints (at indices 1 and 3) which aren't used. 2165 */ 2166 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { 2167 dev_dbg(&umidi->dev->dev, "not enough endpoints\n"); 2168 return -ENOENT; 2169 } 2170 2171 epd = get_endpoint(hostif, 0); 2172 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) { 2173 dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n"); 2174 return -ENXIO; 2175 } 2176 epd = get_endpoint(hostif, 2); 2177 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { 2178 dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n"); 2179 return -ENXIO; 2180 } 2181 if (endpoint->out_cables > 0x0001) { 2182 epd = get_endpoint(hostif, 4); 2183 if (!usb_endpoint_dir_out(epd) || 2184 !usb_endpoint_xfer_bulk(epd)) { 2185 dev_dbg(&umidi->dev->dev, 2186 "endpoint[4] isn't bulk output\n"); 2187 return -ENXIO; 2188 } 2189 } 2190 2191 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & 2192 USB_ENDPOINT_NUMBER_MASK; 2193 ep_info.out_interval = 0; 2194 ep_info.out_cables = endpoint->out_cables & 0x5555; 2195 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, 2196 &umidi->endpoints[0]); 2197 if (err < 0) 2198 return err; 2199 2200 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & 2201 USB_ENDPOINT_NUMBER_MASK; 2202 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; 2203 ep_info.in_cables = endpoint->in_cables; 2204 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, 2205 &umidi->endpoints[0]); 2206 if (err < 0) 2207 return err; 2208 2209 if (endpoint->out_cables > 0x0001) { 2210 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & 2211 USB_ENDPOINT_NUMBER_MASK; 2212 ep_info.out_cables = endpoint->out_cables & 0xaaaa; 2213 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, 2214 &umidi->endpoints[1]); 2215 if (err < 0) 2216 return err; 2217 } 2218 2219 for (cable = 0; cable < 0x10; ++cable) { 2220 if (endpoint->out_cables & (1 << cable)) 2221 snd_usbmidi_init_substream(umidi, 2222 SNDRV_RAWMIDI_STREAM_OUTPUT, 2223 cable, 2224 &umidi->endpoints[cable & 1].out->ports[cable].substream); 2225 if (endpoint->in_cables & (1 << cable)) 2226 snd_usbmidi_init_substream(umidi, 2227 SNDRV_RAWMIDI_STREAM_INPUT, 2228 cable, 2229 &umidi->endpoints[0].in->ports[cable].substream); 2230 } 2231 return 0; 2232 } 2233 2234 static const struct snd_rawmidi_global_ops snd_usbmidi_ops = { 2235 .get_port_info = snd_usbmidi_get_port_info, 2236 }; 2237 2238 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi *umidi, 2239 int out_ports, int in_ports) 2240 { 2241 struct snd_rawmidi *rmidi; 2242 int err; 2243 2244 err = snd_rawmidi_new(umidi->card, "USB MIDI", 2245 umidi->next_midi_device++, 2246 out_ports, in_ports, &rmidi); 2247 if (err < 0) 2248 return err; 2249 strcpy(rmidi->name, umidi->card->shortname); 2250 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 2251 SNDRV_RAWMIDI_INFO_INPUT | 2252 SNDRV_RAWMIDI_INFO_DUPLEX; 2253 rmidi->ops = &snd_usbmidi_ops; 2254 rmidi->private_data = umidi; 2255 rmidi->private_free = snd_usbmidi_rawmidi_free; 2256 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, 2257 &snd_usbmidi_output_ops); 2258 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, 2259 &snd_usbmidi_input_ops); 2260 2261 umidi->rmidi = rmidi; 2262 return 0; 2263 } 2264 2265 /* 2266 * Temporarily stop input. 2267 */ 2268 void snd_usbmidi_input_stop(struct list_head *p) 2269 { 2270 struct snd_usb_midi *umidi; 2271 unsigned int i, j; 2272 2273 umidi = list_entry(p, struct snd_usb_midi, list); 2274 if (!umidi->input_running) 2275 return; 2276 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2277 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 2278 if (ep->in) 2279 for (j = 0; j < INPUT_URBS; ++j) 2280 usb_kill_urb(ep->in->urbs[j]); 2281 } 2282 umidi->input_running = 0; 2283 } 2284 EXPORT_SYMBOL(snd_usbmidi_input_stop); 2285 2286 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint *ep) 2287 { 2288 unsigned int i; 2289 2290 if (!ep) 2291 return; 2292 for (i = 0; i < INPUT_URBS; ++i) { 2293 struct urb *urb = ep->urbs[i]; 2294 urb->dev = ep->umidi->dev; 2295 snd_usbmidi_submit_urb(urb, GFP_KERNEL); 2296 } 2297 } 2298 2299 /* 2300 * Resume input after a call to snd_usbmidi_input_stop(). 2301 */ 2302 void snd_usbmidi_input_start(struct list_head *p) 2303 { 2304 struct snd_usb_midi *umidi; 2305 int i; 2306 2307 umidi = list_entry(p, struct snd_usb_midi, list); 2308 if (umidi->input_running || !umidi->opened[1]) 2309 return; 2310 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 2311 snd_usbmidi_input_start_ep(umidi->endpoints[i].in); 2312 umidi->input_running = 1; 2313 } 2314 EXPORT_SYMBOL(snd_usbmidi_input_start); 2315 2316 /* 2317 * Prepare for suspend. Typically called from the USB suspend callback. 2318 */ 2319 void snd_usbmidi_suspend(struct list_head *p) 2320 { 2321 struct snd_usb_midi *umidi; 2322 2323 umidi = list_entry(p, struct snd_usb_midi, list); 2324 mutex_lock(&umidi->mutex); 2325 snd_usbmidi_input_stop(p); 2326 mutex_unlock(&umidi->mutex); 2327 } 2328 EXPORT_SYMBOL(snd_usbmidi_suspend); 2329 2330 /* 2331 * Resume. Typically called from the USB resume callback. 2332 */ 2333 void snd_usbmidi_resume(struct list_head *p) 2334 { 2335 struct snd_usb_midi *umidi; 2336 2337 umidi = list_entry(p, struct snd_usb_midi, list); 2338 mutex_lock(&umidi->mutex); 2339 snd_usbmidi_input_start(p); 2340 mutex_unlock(&umidi->mutex); 2341 } 2342 EXPORT_SYMBOL(snd_usbmidi_resume); 2343 2344 /* 2345 * Creates and registers everything needed for a MIDI streaming interface. 2346 */ 2347 int __snd_usbmidi_create(struct snd_card *card, 2348 struct usb_interface *iface, 2349 struct list_head *midi_list, 2350 const struct snd_usb_audio_quirk *quirk, 2351 unsigned int usb_id) 2352 { 2353 struct snd_usb_midi *umidi; 2354 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS]; 2355 int out_ports, in_ports; 2356 int i, err; 2357 2358 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL); 2359 if (!umidi) 2360 return -ENOMEM; 2361 umidi->dev = interface_to_usbdev(iface); 2362 umidi->card = card; 2363 umidi->iface = iface; 2364 umidi->quirk = quirk; 2365 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; 2366 spin_lock_init(&umidi->disc_lock); 2367 init_rwsem(&umidi->disc_rwsem); 2368 mutex_init(&umidi->mutex); 2369 if (!usb_id) 2370 usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor), 2371 le16_to_cpu(umidi->dev->descriptor.idProduct)); 2372 umidi->usb_id = usb_id; 2373 timer_setup(&umidi->error_timer, snd_usbmidi_error_timer, 0); 2374 2375 /* detect the endpoint(s) to use */ 2376 memset(endpoints, 0, sizeof(endpoints)); 2377 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) { 2378 case QUIRK_MIDI_STANDARD_INTERFACE: 2379 err = snd_usbmidi_get_ms_info(umidi, endpoints); 2380 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */ 2381 umidi->usb_protocol_ops = 2382 &snd_usbmidi_maudio_broken_running_status_ops; 2383 break; 2384 case QUIRK_MIDI_US122L: 2385 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops; 2386 /* fall through */ 2387 case QUIRK_MIDI_FIXED_ENDPOINT: 2388 memcpy(&endpoints[0], quirk->data, 2389 sizeof(struct snd_usb_midi_endpoint_info)); 2390 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2391 break; 2392 case QUIRK_MIDI_YAMAHA: 2393 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); 2394 break; 2395 case QUIRK_MIDI_ROLAND: 2396 err = snd_usbmidi_detect_roland(umidi, &endpoints[0]); 2397 break; 2398 case QUIRK_MIDI_MIDIMAN: 2399 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; 2400 memcpy(&endpoints[0], quirk->data, 2401 sizeof(struct snd_usb_midi_endpoint_info)); 2402 err = 0; 2403 break; 2404 case QUIRK_MIDI_NOVATION: 2405 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; 2406 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2407 break; 2408 case QUIRK_MIDI_RAW_BYTES: 2409 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops; 2410 /* 2411 * Interface 1 contains isochronous endpoints, but with the same 2412 * numbers as in interface 0. Since it is interface 1 that the 2413 * USB core has most recently seen, these descriptors are now 2414 * associated with the endpoint numbers. This will foul up our 2415 * attempts to submit bulk/interrupt URBs to the endpoints in 2416 * interface 0, so we have to make sure that the USB core looks 2417 * again at interface 0 by calling usb_set_interface() on it. 2418 */ 2419 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */ 2420 usb_set_interface(umidi->dev, 0, 0); 2421 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2422 break; 2423 case QUIRK_MIDI_EMAGIC: 2424 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; 2425 memcpy(&endpoints[0], quirk->data, 2426 sizeof(struct snd_usb_midi_endpoint_info)); 2427 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2428 break; 2429 case QUIRK_MIDI_CME: 2430 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops; 2431 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2432 break; 2433 case QUIRK_MIDI_AKAI: 2434 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops; 2435 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2436 /* endpoint 1 is input-only */ 2437 endpoints[1].out_cables = 0; 2438 break; 2439 case QUIRK_MIDI_FTDI: 2440 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops; 2441 2442 /* set baud rate to 31250 (48 MHz / 16 / 96) */ 2443 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0), 2444 3, 0x40, 0x60, 0, NULL, 0, 1000); 2445 if (err < 0) 2446 break; 2447 2448 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2449 break; 2450 case QUIRK_MIDI_CH345: 2451 umidi->usb_protocol_ops = &snd_usbmidi_ch345_broken_sysex_ops; 2452 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2453 break; 2454 default: 2455 dev_err(&umidi->dev->dev, "invalid quirk type %d\n", 2456 quirk->type); 2457 err = -ENXIO; 2458 break; 2459 } 2460 if (err < 0) 2461 goto free_midi; 2462 2463 /* create rawmidi device */ 2464 out_ports = 0; 2465 in_ports = 0; 2466 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2467 out_ports += hweight16(endpoints[i].out_cables); 2468 in_ports += hweight16(endpoints[i].in_cables); 2469 } 2470 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); 2471 if (err < 0) 2472 goto free_midi; 2473 2474 /* create endpoint/port structures */ 2475 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) 2476 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); 2477 else 2478 err = snd_usbmidi_create_endpoints(umidi, endpoints); 2479 if (err < 0) 2480 goto exit; 2481 2482 usb_autopm_get_interface_no_resume(umidi->iface); 2483 2484 list_add_tail(&umidi->list, midi_list); 2485 return 0; 2486 2487 free_midi: 2488 kfree(umidi); 2489 exit: 2490 return err; 2491 } 2492 EXPORT_SYMBOL(__snd_usbmidi_create); 2493