1 /* 2 * usbmidi.c - ALSA USB MIDI driver 3 * 4 * Copyright (c) 2002-2009 Clemens Ladisch 5 * All rights reserved. 6 * 7 * Based on the OSS usb-midi driver by NAGANO Daisuke, 8 * NetBSD's umidi driver by Takuya SHIOZAKI, 9 * the "USB Device Class Definition for MIDI Devices" by Roland 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed and/or modified under the 21 * terms of the GNU General Public License as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any later 23 * version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/types.h> 40 #include <linux/bitops.h> 41 #include <linux/interrupt.h> 42 #include <linux/spinlock.h> 43 #include <linux/string.h> 44 #include <linux/init.h> 45 #include <linux/slab.h> 46 #include <linux/timer.h> 47 #include <linux/usb.h> 48 #include <linux/wait.h> 49 #include <linux/usb/audio.h> 50 #include <linux/module.h> 51 52 #include <sound/core.h> 53 #include <sound/control.h> 54 #include <sound/rawmidi.h> 55 #include <sound/asequencer.h> 56 #include "usbaudio.h" 57 #include "midi.h" 58 #include "power.h" 59 #include "helper.h" 60 61 /* 62 * define this to log all USB packets 63 */ 64 /* #define DUMP_PACKETS */ 65 66 /* 67 * how long to wait after some USB errors, so that hub_wq can disconnect() us 68 * without too many spurious errors 69 */ 70 #define ERROR_DELAY_JIFFIES (HZ / 10) 71 72 #define OUTPUT_URBS 7 73 #define INPUT_URBS 7 74 75 76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); 77 MODULE_DESCRIPTION("USB Audio/MIDI helper module"); 78 MODULE_LICENSE("Dual BSD/GPL"); 79 80 81 struct usb_ms_header_descriptor { 82 __u8 bLength; 83 __u8 bDescriptorType; 84 __u8 bDescriptorSubtype; 85 __u8 bcdMSC[2]; 86 __le16 wTotalLength; 87 } __attribute__ ((packed)); 88 89 struct usb_ms_endpoint_descriptor { 90 __u8 bLength; 91 __u8 bDescriptorType; 92 __u8 bDescriptorSubtype; 93 __u8 bNumEmbMIDIJack; 94 __u8 baAssocJackID[0]; 95 } __attribute__ ((packed)); 96 97 struct snd_usb_midi_in_endpoint; 98 struct snd_usb_midi_out_endpoint; 99 struct snd_usb_midi_endpoint; 100 101 struct usb_protocol_ops { 102 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int); 103 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb); 104 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); 105 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint *); 106 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint *); 107 }; 108 109 struct snd_usb_midi { 110 struct usb_device *dev; 111 struct snd_card *card; 112 struct usb_interface *iface; 113 const struct snd_usb_audio_quirk *quirk; 114 struct snd_rawmidi *rmidi; 115 struct usb_protocol_ops *usb_protocol_ops; 116 struct list_head list; 117 struct timer_list error_timer; 118 spinlock_t disc_lock; 119 struct rw_semaphore disc_rwsem; 120 struct mutex mutex; 121 u32 usb_id; 122 int next_midi_device; 123 124 struct snd_usb_midi_endpoint { 125 struct snd_usb_midi_out_endpoint *out; 126 struct snd_usb_midi_in_endpoint *in; 127 } endpoints[MIDI_MAX_ENDPOINTS]; 128 unsigned long input_triggered; 129 unsigned int opened[2]; 130 unsigned char disconnected; 131 unsigned char input_running; 132 133 struct snd_kcontrol *roland_load_ctl; 134 }; 135 136 struct snd_usb_midi_out_endpoint { 137 struct snd_usb_midi *umidi; 138 struct out_urb_context { 139 struct urb *urb; 140 struct snd_usb_midi_out_endpoint *ep; 141 } urbs[OUTPUT_URBS]; 142 unsigned int active_urbs; 143 unsigned int drain_urbs; 144 int max_transfer; /* size of urb buffer */ 145 struct tasklet_struct tasklet; 146 unsigned int next_urb; 147 spinlock_t buffer_lock; 148 149 struct usbmidi_out_port { 150 struct snd_usb_midi_out_endpoint *ep; 151 struct snd_rawmidi_substream *substream; 152 int active; 153 uint8_t cable; /* cable number << 4 */ 154 uint8_t state; 155 #define STATE_UNKNOWN 0 156 #define STATE_1PARAM 1 157 #define STATE_2PARAM_1 2 158 #define STATE_2PARAM_2 3 159 #define STATE_SYSEX_0 4 160 #define STATE_SYSEX_1 5 161 #define STATE_SYSEX_2 6 162 uint8_t data[2]; 163 } ports[0x10]; 164 int current_port; 165 166 wait_queue_head_t drain_wait; 167 }; 168 169 struct snd_usb_midi_in_endpoint { 170 struct snd_usb_midi *umidi; 171 struct urb *urbs[INPUT_URBS]; 172 struct usbmidi_in_port { 173 struct snd_rawmidi_substream *substream; 174 u8 running_status_length; 175 } ports[0x10]; 176 u8 seen_f5; 177 u8 error_resubmit; 178 int current_port; 179 }; 180 181 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep); 182 183 static const uint8_t snd_usbmidi_cin_length[] = { 184 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 185 }; 186 187 /* 188 * Submits the URB, with error handling. 189 */ 190 static int snd_usbmidi_submit_urb(struct urb *urb, gfp_t flags) 191 { 192 int err = usb_submit_urb(urb, flags); 193 if (err < 0 && err != -ENODEV) 194 dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err); 195 return err; 196 } 197 198 /* 199 * Error handling for URB completion functions. 200 */ 201 static int snd_usbmidi_urb_error(const struct urb *urb) 202 { 203 switch (urb->status) { 204 /* manually unlinked, or device gone */ 205 case -ENOENT: 206 case -ECONNRESET: 207 case -ESHUTDOWN: 208 case -ENODEV: 209 return -ENODEV; 210 /* errors that might occur during unplugging */ 211 case -EPROTO: 212 case -ETIME: 213 case -EILSEQ: 214 return -EIO; 215 default: 216 dev_err(&urb->dev->dev, "urb status %d\n", urb->status); 217 return 0; /* continue */ 218 } 219 } 220 221 /* 222 * Receives a chunk of MIDI data. 223 */ 224 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint *ep, 225 int portidx, uint8_t *data, int length) 226 { 227 struct usbmidi_in_port *port = &ep->ports[portidx]; 228 229 if (!port->substream) { 230 dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx); 231 return; 232 } 233 if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) 234 return; 235 snd_rawmidi_receive(port->substream, data, length); 236 } 237 238 #ifdef DUMP_PACKETS 239 static void dump_urb(const char *type, const u8 *data, int length) 240 { 241 snd_printk(KERN_DEBUG "%s packet: [", type); 242 for (; length > 0; ++data, --length) 243 printk(" %02x", *data); 244 printk(" ]\n"); 245 } 246 #else 247 #define dump_urb(type, data, length) /* nothing */ 248 #endif 249 250 /* 251 * Processes the data read from the device. 252 */ 253 static void snd_usbmidi_in_urb_complete(struct urb *urb) 254 { 255 struct snd_usb_midi_in_endpoint *ep = urb->context; 256 257 if (urb->status == 0) { 258 dump_urb("received", urb->transfer_buffer, urb->actual_length); 259 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, 260 urb->actual_length); 261 } else { 262 int err = snd_usbmidi_urb_error(urb); 263 if (err < 0) { 264 if (err != -ENODEV) { 265 ep->error_resubmit = 1; 266 mod_timer(&ep->umidi->error_timer, 267 jiffies + ERROR_DELAY_JIFFIES); 268 } 269 return; 270 } 271 } 272 273 urb->dev = ep->umidi->dev; 274 snd_usbmidi_submit_urb(urb, GFP_ATOMIC); 275 } 276 277 static void snd_usbmidi_out_urb_complete(struct urb *urb) 278 { 279 struct out_urb_context *context = urb->context; 280 struct snd_usb_midi_out_endpoint *ep = context->ep; 281 unsigned int urb_index; 282 283 spin_lock(&ep->buffer_lock); 284 urb_index = context - ep->urbs; 285 ep->active_urbs &= ~(1 << urb_index); 286 if (unlikely(ep->drain_urbs)) { 287 ep->drain_urbs &= ~(1 << urb_index); 288 wake_up(&ep->drain_wait); 289 } 290 spin_unlock(&ep->buffer_lock); 291 if (urb->status < 0) { 292 int err = snd_usbmidi_urb_error(urb); 293 if (err < 0) { 294 if (err != -ENODEV) 295 mod_timer(&ep->umidi->error_timer, 296 jiffies + ERROR_DELAY_JIFFIES); 297 return; 298 } 299 } 300 snd_usbmidi_do_output(ep); 301 } 302 303 /* 304 * This is called when some data should be transferred to the device 305 * (from one or more substreams). 306 */ 307 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep) 308 { 309 unsigned int urb_index; 310 struct urb *urb; 311 unsigned long flags; 312 313 spin_lock_irqsave(&ep->buffer_lock, flags); 314 if (ep->umidi->disconnected) { 315 spin_unlock_irqrestore(&ep->buffer_lock, flags); 316 return; 317 } 318 319 urb_index = ep->next_urb; 320 for (;;) { 321 if (!(ep->active_urbs & (1 << urb_index))) { 322 urb = ep->urbs[urb_index].urb; 323 urb->transfer_buffer_length = 0; 324 ep->umidi->usb_protocol_ops->output(ep, urb); 325 if (urb->transfer_buffer_length == 0) 326 break; 327 328 dump_urb("sending", urb->transfer_buffer, 329 urb->transfer_buffer_length); 330 urb->dev = ep->umidi->dev; 331 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0) 332 break; 333 ep->active_urbs |= 1 << urb_index; 334 } 335 if (++urb_index >= OUTPUT_URBS) 336 urb_index = 0; 337 if (urb_index == ep->next_urb) 338 break; 339 } 340 ep->next_urb = urb_index; 341 spin_unlock_irqrestore(&ep->buffer_lock, flags); 342 } 343 344 static void snd_usbmidi_out_tasklet(unsigned long data) 345 { 346 struct snd_usb_midi_out_endpoint *ep = 347 (struct snd_usb_midi_out_endpoint *) data; 348 349 snd_usbmidi_do_output(ep); 350 } 351 352 /* called after transfers had been interrupted due to some USB error */ 353 static void snd_usbmidi_error_timer(unsigned long data) 354 { 355 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data; 356 unsigned int i, j; 357 358 spin_lock(&umidi->disc_lock); 359 if (umidi->disconnected) { 360 spin_unlock(&umidi->disc_lock); 361 return; 362 } 363 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 364 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in; 365 if (in && in->error_resubmit) { 366 in->error_resubmit = 0; 367 for (j = 0; j < INPUT_URBS; ++j) { 368 in->urbs[j]->dev = umidi->dev; 369 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC); 370 } 371 } 372 if (umidi->endpoints[i].out) 373 snd_usbmidi_do_output(umidi->endpoints[i].out); 374 } 375 spin_unlock(&umidi->disc_lock); 376 } 377 378 /* helper function to send static data that may not DMA-able */ 379 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint *ep, 380 const void *data, int len) 381 { 382 int err = 0; 383 void *buf = kmemdup(data, len, GFP_KERNEL); 384 if (!buf) 385 return -ENOMEM; 386 dump_urb("sending", buf, len); 387 if (ep->urbs[0].urb) 388 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe, 389 buf, len, NULL, 250); 390 kfree(buf); 391 return err; 392 } 393 394 /* 395 * Standard USB MIDI protocol: see the spec. 396 * Midiman protocol: like the standard protocol, but the control byte is the 397 * fourth byte in each packet, and uses length instead of CIN. 398 */ 399 400 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint *ep, 401 uint8_t *buffer, int buffer_length) 402 { 403 int i; 404 405 for (i = 0; i + 3 < buffer_length; i += 4) 406 if (buffer[i] != 0) { 407 int cable = buffer[i] >> 4; 408 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; 409 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], 410 length); 411 } 412 } 413 414 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint *ep, 415 uint8_t *buffer, int buffer_length) 416 { 417 int i; 418 419 for (i = 0; i + 3 < buffer_length; i += 4) 420 if (buffer[i + 3] != 0) { 421 int port = buffer[i + 3] >> 4; 422 int length = buffer[i + 3] & 3; 423 snd_usbmidi_input_data(ep, port, &buffer[i], length); 424 } 425 } 426 427 /* 428 * Buggy M-Audio device: running status on input results in a packet that has 429 * the data bytes but not the status byte and that is marked with CIN 4. 430 */ 431 static void snd_usbmidi_maudio_broken_running_status_input( 432 struct snd_usb_midi_in_endpoint *ep, 433 uint8_t *buffer, int buffer_length) 434 { 435 int i; 436 437 for (i = 0; i + 3 < buffer_length; i += 4) 438 if (buffer[i] != 0) { 439 int cable = buffer[i] >> 4; 440 u8 cin = buffer[i] & 0x0f; 441 struct usbmidi_in_port *port = &ep->ports[cable]; 442 int length; 443 444 length = snd_usbmidi_cin_length[cin]; 445 if (cin == 0xf && buffer[i + 1] >= 0xf8) 446 ; /* realtime msg: no running status change */ 447 else if (cin >= 0x8 && cin <= 0xe) 448 /* channel msg */ 449 port->running_status_length = length - 1; 450 else if (cin == 0x4 && 451 port->running_status_length != 0 && 452 buffer[i + 1] < 0x80) 453 /* CIN 4 that is not a SysEx */ 454 length = port->running_status_length; 455 else 456 /* 457 * All other msgs cannot begin running status. 458 * (A channel msg sent as two or three CIN 0xF 459 * packets could in theory, but this device 460 * doesn't use this format.) 461 */ 462 port->running_status_length = 0; 463 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], 464 length); 465 } 466 } 467 468 /* 469 * CME protocol: like the standard protocol, but SysEx commands are sent as a 470 * single USB packet preceded by a 0x0F byte. 471 */ 472 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep, 473 uint8_t *buffer, int buffer_length) 474 { 475 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f) 476 snd_usbmidi_standard_input(ep, buffer, buffer_length); 477 else 478 snd_usbmidi_input_data(ep, buffer[0] >> 4, 479 &buffer[1], buffer_length - 1); 480 } 481 482 /* 483 * Adds one USB MIDI packet to the output buffer. 484 */ 485 static void snd_usbmidi_output_standard_packet(struct urb *urb, uint8_t p0, 486 uint8_t p1, uint8_t p2, 487 uint8_t p3) 488 { 489 490 uint8_t *buf = 491 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length; 492 buf[0] = p0; 493 buf[1] = p1; 494 buf[2] = p2; 495 buf[3] = p3; 496 urb->transfer_buffer_length += 4; 497 } 498 499 /* 500 * Adds one Midiman packet to the output buffer. 501 */ 502 static void snd_usbmidi_output_midiman_packet(struct urb *urb, uint8_t p0, 503 uint8_t p1, uint8_t p2, 504 uint8_t p3) 505 { 506 507 uint8_t *buf = 508 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length; 509 buf[0] = p1; 510 buf[1] = p2; 511 buf[2] = p3; 512 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; 513 urb->transfer_buffer_length += 4; 514 } 515 516 /* 517 * Converts MIDI commands to USB MIDI packets. 518 */ 519 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port *port, 520 uint8_t b, struct urb *urb) 521 { 522 uint8_t p0 = port->cable; 523 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = 524 port->ep->umidi->usb_protocol_ops->output_packet; 525 526 if (b >= 0xf8) { 527 output_packet(urb, p0 | 0x0f, b, 0, 0); 528 } else if (b >= 0xf0) { 529 switch (b) { 530 case 0xf0: 531 port->data[0] = b; 532 port->state = STATE_SYSEX_1; 533 break; 534 case 0xf1: 535 case 0xf3: 536 port->data[0] = b; 537 port->state = STATE_1PARAM; 538 break; 539 case 0xf2: 540 port->data[0] = b; 541 port->state = STATE_2PARAM_1; 542 break; 543 case 0xf4: 544 case 0xf5: 545 port->state = STATE_UNKNOWN; 546 break; 547 case 0xf6: 548 output_packet(urb, p0 | 0x05, 0xf6, 0, 0); 549 port->state = STATE_UNKNOWN; 550 break; 551 case 0xf7: 552 switch (port->state) { 553 case STATE_SYSEX_0: 554 output_packet(urb, p0 | 0x05, 0xf7, 0, 0); 555 break; 556 case STATE_SYSEX_1: 557 output_packet(urb, p0 | 0x06, port->data[0], 558 0xf7, 0); 559 break; 560 case STATE_SYSEX_2: 561 output_packet(urb, p0 | 0x07, port->data[0], 562 port->data[1], 0xf7); 563 break; 564 } 565 port->state = STATE_UNKNOWN; 566 break; 567 } 568 } else if (b >= 0x80) { 569 port->data[0] = b; 570 if (b >= 0xc0 && b <= 0xdf) 571 port->state = STATE_1PARAM; 572 else 573 port->state = STATE_2PARAM_1; 574 } else { /* b < 0x80 */ 575 switch (port->state) { 576 case STATE_1PARAM: 577 if (port->data[0] < 0xf0) { 578 p0 |= port->data[0] >> 4; 579 } else { 580 p0 |= 0x02; 581 port->state = STATE_UNKNOWN; 582 } 583 output_packet(urb, p0, port->data[0], b, 0); 584 break; 585 case STATE_2PARAM_1: 586 port->data[1] = b; 587 port->state = STATE_2PARAM_2; 588 break; 589 case STATE_2PARAM_2: 590 if (port->data[0] < 0xf0) { 591 p0 |= port->data[0] >> 4; 592 port->state = STATE_2PARAM_1; 593 } else { 594 p0 |= 0x03; 595 port->state = STATE_UNKNOWN; 596 } 597 output_packet(urb, p0, port->data[0], port->data[1], b); 598 break; 599 case STATE_SYSEX_0: 600 port->data[0] = b; 601 port->state = STATE_SYSEX_1; 602 break; 603 case STATE_SYSEX_1: 604 port->data[1] = b; 605 port->state = STATE_SYSEX_2; 606 break; 607 case STATE_SYSEX_2: 608 output_packet(urb, p0 | 0x04, port->data[0], 609 port->data[1], b); 610 port->state = STATE_SYSEX_0; 611 break; 612 } 613 } 614 } 615 616 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint *ep, 617 struct urb *urb) 618 { 619 int p; 620 621 /* FIXME: lower-numbered ports can starve higher-numbered ports */ 622 for (p = 0; p < 0x10; ++p) { 623 struct usbmidi_out_port *port = &ep->ports[p]; 624 if (!port->active) 625 continue; 626 while (urb->transfer_buffer_length + 3 < ep->max_transfer) { 627 uint8_t b; 628 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { 629 port->active = 0; 630 break; 631 } 632 snd_usbmidi_transmit_byte(port, b, urb); 633 } 634 } 635 } 636 637 static struct usb_protocol_ops snd_usbmidi_standard_ops = { 638 .input = snd_usbmidi_standard_input, 639 .output = snd_usbmidi_standard_output, 640 .output_packet = snd_usbmidi_output_standard_packet, 641 }; 642 643 static struct usb_protocol_ops snd_usbmidi_midiman_ops = { 644 .input = snd_usbmidi_midiman_input, 645 .output = snd_usbmidi_standard_output, 646 .output_packet = snd_usbmidi_output_midiman_packet, 647 }; 648 649 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = { 650 .input = snd_usbmidi_maudio_broken_running_status_input, 651 .output = snd_usbmidi_standard_output, 652 .output_packet = snd_usbmidi_output_standard_packet, 653 }; 654 655 static struct usb_protocol_ops snd_usbmidi_cme_ops = { 656 .input = snd_usbmidi_cme_input, 657 .output = snd_usbmidi_standard_output, 658 .output_packet = snd_usbmidi_output_standard_packet, 659 }; 660 661 /* 662 * AKAI MPD16 protocol: 663 * 664 * For control port (endpoint 1): 665 * ============================== 666 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a 667 * SysEx message (msg_len=9 bytes long). 668 * 669 * For data port (endpoint 2): 670 * =========================== 671 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a 672 * MIDI message (msg_len bytes long) 673 * 674 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change. 675 */ 676 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep, 677 uint8_t *buffer, int buffer_length) 678 { 679 unsigned int pos = 0; 680 unsigned int len = (unsigned int)buffer_length; 681 while (pos < len) { 682 unsigned int port = (buffer[pos] >> 4) - 1; 683 unsigned int msg_len = buffer[pos] & 0x0f; 684 pos++; 685 if (pos + msg_len <= len && port < 2) 686 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len); 687 pos += msg_len; 688 } 689 } 690 691 #define MAX_AKAI_SYSEX_LEN 9 692 693 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep, 694 struct urb *urb) 695 { 696 uint8_t *msg; 697 int pos, end, count, buf_end; 698 uint8_t tmp[MAX_AKAI_SYSEX_LEN]; 699 struct snd_rawmidi_substream *substream = ep->ports[0].substream; 700 701 if (!ep->ports[0].active) 702 return; 703 704 msg = urb->transfer_buffer + urb->transfer_buffer_length; 705 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1; 706 707 /* only try adding more data when there's space for at least 1 SysEx */ 708 while (urb->transfer_buffer_length < buf_end) { 709 count = snd_rawmidi_transmit_peek(substream, 710 tmp, MAX_AKAI_SYSEX_LEN); 711 if (!count) { 712 ep->ports[0].active = 0; 713 return; 714 } 715 /* try to skip non-SysEx data */ 716 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++) 717 ; 718 719 if (pos > 0) { 720 snd_rawmidi_transmit_ack(substream, pos); 721 continue; 722 } 723 724 /* look for the start or end marker */ 725 for (end = 1; end < count && tmp[end] < 0xF0; end++) 726 ; 727 728 /* next SysEx started before the end of current one */ 729 if (end < count && tmp[end] == 0xF0) { 730 /* it's incomplete - drop it */ 731 snd_rawmidi_transmit_ack(substream, end); 732 continue; 733 } 734 /* SysEx complete */ 735 if (end < count && tmp[end] == 0xF7) { 736 /* queue it, ack it, and get the next one */ 737 count = end + 1; 738 msg[0] = 0x10 | count; 739 memcpy(&msg[1], tmp, count); 740 snd_rawmidi_transmit_ack(substream, count); 741 urb->transfer_buffer_length += count + 1; 742 msg += count + 1; 743 continue; 744 } 745 /* less than 9 bytes and no end byte - wait for more */ 746 if (count < MAX_AKAI_SYSEX_LEN) { 747 ep->ports[0].active = 0; 748 return; 749 } 750 /* 9 bytes and no end marker in sight - malformed, skip it */ 751 snd_rawmidi_transmit_ack(substream, count); 752 } 753 } 754 755 static struct usb_protocol_ops snd_usbmidi_akai_ops = { 756 .input = snd_usbmidi_akai_input, 757 .output = snd_usbmidi_akai_output, 758 }; 759 760 /* 761 * Novation USB MIDI protocol: number of data bytes is in the first byte 762 * (when receiving) (+1!) or in the second byte (when sending); data begins 763 * at the third byte. 764 */ 765 766 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint *ep, 767 uint8_t *buffer, int buffer_length) 768 { 769 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) 770 return; 771 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); 772 } 773 774 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint *ep, 775 struct urb *urb) 776 { 777 uint8_t *transfer_buffer; 778 int count; 779 780 if (!ep->ports[0].active) 781 return; 782 transfer_buffer = urb->transfer_buffer; 783 count = snd_rawmidi_transmit(ep->ports[0].substream, 784 &transfer_buffer[2], 785 ep->max_transfer - 2); 786 if (count < 1) { 787 ep->ports[0].active = 0; 788 return; 789 } 790 transfer_buffer[0] = 0; 791 transfer_buffer[1] = count; 792 urb->transfer_buffer_length = 2 + count; 793 } 794 795 static struct usb_protocol_ops snd_usbmidi_novation_ops = { 796 .input = snd_usbmidi_novation_input, 797 .output = snd_usbmidi_novation_output, 798 }; 799 800 /* 801 * "raw" protocol: just move raw MIDI bytes from/to the endpoint 802 */ 803 804 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint *ep, 805 uint8_t *buffer, int buffer_length) 806 { 807 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 808 } 809 810 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint *ep, 811 struct urb *urb) 812 { 813 int count; 814 815 if (!ep->ports[0].active) 816 return; 817 count = snd_rawmidi_transmit(ep->ports[0].substream, 818 urb->transfer_buffer, 819 ep->max_transfer); 820 if (count < 1) { 821 ep->ports[0].active = 0; 822 return; 823 } 824 urb->transfer_buffer_length = count; 825 } 826 827 static struct usb_protocol_ops snd_usbmidi_raw_ops = { 828 .input = snd_usbmidi_raw_input, 829 .output = snd_usbmidi_raw_output, 830 }; 831 832 /* 833 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes. 834 */ 835 836 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint *ep, 837 uint8_t *buffer, int buffer_length) 838 { 839 if (buffer_length > 2) 840 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2); 841 } 842 843 static struct usb_protocol_ops snd_usbmidi_ftdi_ops = { 844 .input = snd_usbmidi_ftdi_input, 845 .output = snd_usbmidi_raw_output, 846 }; 847 848 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep, 849 uint8_t *buffer, int buffer_length) 850 { 851 if (buffer_length != 9) 852 return; 853 buffer_length = 8; 854 while (buffer_length && buffer[buffer_length - 1] == 0xFD) 855 buffer_length--; 856 if (buffer_length) 857 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 858 } 859 860 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep, 861 struct urb *urb) 862 { 863 int count; 864 865 if (!ep->ports[0].active) 866 return; 867 switch (snd_usb_get_speed(ep->umidi->dev)) { 868 case USB_SPEED_HIGH: 869 case USB_SPEED_SUPER: 870 count = 1; 871 break; 872 default: 873 count = 2; 874 } 875 count = snd_rawmidi_transmit(ep->ports[0].substream, 876 urb->transfer_buffer, 877 count); 878 if (count < 1) { 879 ep->ports[0].active = 0; 880 return; 881 } 882 883 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count); 884 urb->transfer_buffer_length = ep->max_transfer; 885 } 886 887 static struct usb_protocol_ops snd_usbmidi_122l_ops = { 888 .input = snd_usbmidi_us122l_input, 889 .output = snd_usbmidi_us122l_output, 890 }; 891 892 /* 893 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. 894 */ 895 896 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint *ep) 897 { 898 static const u8 init_data[] = { 899 /* initialization magic: "get version" */ 900 0xf0, 901 0x00, 0x20, 0x31, /* Emagic */ 902 0x64, /* Unitor8 */ 903 0x0b, /* version number request */ 904 0x00, /* command version */ 905 0x00, /* EEPROM, box 0 */ 906 0xf7 907 }; 908 send_bulk_static_data(ep, init_data, sizeof(init_data)); 909 /* while we're at it, pour on more magic */ 910 send_bulk_static_data(ep, init_data, sizeof(init_data)); 911 } 912 913 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint *ep) 914 { 915 static const u8 finish_data[] = { 916 /* switch to patch mode with last preset */ 917 0xf0, 918 0x00, 0x20, 0x31, /* Emagic */ 919 0x64, /* Unitor8 */ 920 0x10, /* patch switch command */ 921 0x00, /* command version */ 922 0x7f, /* to all boxes */ 923 0x40, /* last preset in EEPROM */ 924 0xf7 925 }; 926 send_bulk_static_data(ep, finish_data, sizeof(finish_data)); 927 } 928 929 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint *ep, 930 uint8_t *buffer, int buffer_length) 931 { 932 int i; 933 934 /* FF indicates end of valid data */ 935 for (i = 0; i < buffer_length; ++i) 936 if (buffer[i] == 0xff) { 937 buffer_length = i; 938 break; 939 } 940 941 /* handle F5 at end of last buffer */ 942 if (ep->seen_f5) 943 goto switch_port; 944 945 while (buffer_length > 0) { 946 /* determine size of data until next F5 */ 947 for (i = 0; i < buffer_length; ++i) 948 if (buffer[i] == 0xf5) 949 break; 950 snd_usbmidi_input_data(ep, ep->current_port, buffer, i); 951 buffer += i; 952 buffer_length -= i; 953 954 if (buffer_length <= 0) 955 break; 956 /* assert(buffer[0] == 0xf5); */ 957 ep->seen_f5 = 1; 958 ++buffer; 959 --buffer_length; 960 961 switch_port: 962 if (buffer_length <= 0) 963 break; 964 if (buffer[0] < 0x80) { 965 ep->current_port = (buffer[0] - 1) & 15; 966 ++buffer; 967 --buffer_length; 968 } 969 ep->seen_f5 = 0; 970 } 971 } 972 973 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint *ep, 974 struct urb *urb) 975 { 976 int port0 = ep->current_port; 977 uint8_t *buf = urb->transfer_buffer; 978 int buf_free = ep->max_transfer; 979 int length, i; 980 981 for (i = 0; i < 0x10; ++i) { 982 /* round-robin, starting at the last current port */ 983 int portnum = (port0 + i) & 15; 984 struct usbmidi_out_port *port = &ep->ports[portnum]; 985 986 if (!port->active) 987 continue; 988 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { 989 port->active = 0; 990 continue; 991 } 992 993 if (portnum != ep->current_port) { 994 if (buf_free < 2) 995 break; 996 ep->current_port = portnum; 997 buf[0] = 0xf5; 998 buf[1] = (portnum + 1) & 15; 999 buf += 2; 1000 buf_free -= 2; 1001 } 1002 1003 if (buf_free < 1) 1004 break; 1005 length = snd_rawmidi_transmit(port->substream, buf, buf_free); 1006 if (length > 0) { 1007 buf += length; 1008 buf_free -= length; 1009 if (buf_free < 1) 1010 break; 1011 } 1012 } 1013 if (buf_free < ep->max_transfer && buf_free > 0) { 1014 *buf = 0xff; 1015 --buf_free; 1016 } 1017 urb->transfer_buffer_length = ep->max_transfer - buf_free; 1018 } 1019 1020 static struct usb_protocol_ops snd_usbmidi_emagic_ops = { 1021 .input = snd_usbmidi_emagic_input, 1022 .output = snd_usbmidi_emagic_output, 1023 .init_out_endpoint = snd_usbmidi_emagic_init_out, 1024 .finish_out_endpoint = snd_usbmidi_emagic_finish_out, 1025 }; 1026 1027 1028 static void update_roland_altsetting(struct snd_usb_midi *umidi) 1029 { 1030 struct usb_interface *intf; 1031 struct usb_host_interface *hostif; 1032 struct usb_interface_descriptor *intfd; 1033 int is_light_load; 1034 1035 intf = umidi->iface; 1036 is_light_load = intf->cur_altsetting != intf->altsetting; 1037 if (umidi->roland_load_ctl->private_value == is_light_load) 1038 return; 1039 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value]; 1040 intfd = get_iface_desc(hostif); 1041 snd_usbmidi_input_stop(&umidi->list); 1042 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1043 intfd->bAlternateSetting); 1044 snd_usbmidi_input_start(&umidi->list); 1045 } 1046 1047 static int substream_open(struct snd_rawmidi_substream *substream, int dir, 1048 int open) 1049 { 1050 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1051 struct snd_kcontrol *ctl; 1052 1053 down_read(&umidi->disc_rwsem); 1054 if (umidi->disconnected) { 1055 up_read(&umidi->disc_rwsem); 1056 return open ? -ENODEV : 0; 1057 } 1058 1059 mutex_lock(&umidi->mutex); 1060 if (open) { 1061 if (!umidi->opened[0] && !umidi->opened[1]) { 1062 if (umidi->roland_load_ctl) { 1063 ctl = umidi->roland_load_ctl; 1064 ctl->vd[0].access |= 1065 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1066 snd_ctl_notify(umidi->card, 1067 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1068 update_roland_altsetting(umidi); 1069 } 1070 } 1071 umidi->opened[dir]++; 1072 if (umidi->opened[1]) 1073 snd_usbmidi_input_start(&umidi->list); 1074 } else { 1075 umidi->opened[dir]--; 1076 if (!umidi->opened[1]) 1077 snd_usbmidi_input_stop(&umidi->list); 1078 if (!umidi->opened[0] && !umidi->opened[1]) { 1079 if (umidi->roland_load_ctl) { 1080 ctl = umidi->roland_load_ctl; 1081 ctl->vd[0].access &= 1082 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1083 snd_ctl_notify(umidi->card, 1084 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1085 } 1086 } 1087 } 1088 mutex_unlock(&umidi->mutex); 1089 up_read(&umidi->disc_rwsem); 1090 return 0; 1091 } 1092 1093 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream) 1094 { 1095 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1096 struct usbmidi_out_port *port = NULL; 1097 int i, j; 1098 1099 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 1100 if (umidi->endpoints[i].out) 1101 for (j = 0; j < 0x10; ++j) 1102 if (umidi->endpoints[i].out->ports[j].substream == substream) { 1103 port = &umidi->endpoints[i].out->ports[j]; 1104 break; 1105 } 1106 if (!port) { 1107 snd_BUG(); 1108 return -ENXIO; 1109 } 1110 1111 substream->runtime->private_data = port; 1112 port->state = STATE_UNKNOWN; 1113 return substream_open(substream, 0, 1); 1114 } 1115 1116 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream) 1117 { 1118 return substream_open(substream, 0, 0); 1119 } 1120 1121 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, 1122 int up) 1123 { 1124 struct usbmidi_out_port *port = 1125 (struct usbmidi_out_port *)substream->runtime->private_data; 1126 1127 port->active = up; 1128 if (up) { 1129 if (port->ep->umidi->disconnected) { 1130 /* gobble up remaining bytes to prevent wait in 1131 * snd_rawmidi_drain_output */ 1132 while (!snd_rawmidi_transmit_empty(substream)) 1133 snd_rawmidi_transmit_ack(substream, 1); 1134 return; 1135 } 1136 tasklet_schedule(&port->ep->tasklet); 1137 } 1138 } 1139 1140 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream) 1141 { 1142 struct usbmidi_out_port *port = substream->runtime->private_data; 1143 struct snd_usb_midi_out_endpoint *ep = port->ep; 1144 unsigned int drain_urbs; 1145 DEFINE_WAIT(wait); 1146 long timeout = msecs_to_jiffies(50); 1147 1148 if (ep->umidi->disconnected) 1149 return; 1150 /* 1151 * The substream buffer is empty, but some data might still be in the 1152 * currently active URBs, so we have to wait for those to complete. 1153 */ 1154 spin_lock_irq(&ep->buffer_lock); 1155 drain_urbs = ep->active_urbs; 1156 if (drain_urbs) { 1157 ep->drain_urbs |= drain_urbs; 1158 do { 1159 prepare_to_wait(&ep->drain_wait, &wait, 1160 TASK_UNINTERRUPTIBLE); 1161 spin_unlock_irq(&ep->buffer_lock); 1162 timeout = schedule_timeout(timeout); 1163 spin_lock_irq(&ep->buffer_lock); 1164 drain_urbs &= ep->drain_urbs; 1165 } while (drain_urbs && timeout); 1166 finish_wait(&ep->drain_wait, &wait); 1167 } 1168 spin_unlock_irq(&ep->buffer_lock); 1169 } 1170 1171 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream) 1172 { 1173 return substream_open(substream, 1, 1); 1174 } 1175 1176 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream) 1177 { 1178 return substream_open(substream, 1, 0); 1179 } 1180 1181 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, 1182 int up) 1183 { 1184 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1185 1186 if (up) 1187 set_bit(substream->number, &umidi->input_triggered); 1188 else 1189 clear_bit(substream->number, &umidi->input_triggered); 1190 } 1191 1192 static struct snd_rawmidi_ops snd_usbmidi_output_ops = { 1193 .open = snd_usbmidi_output_open, 1194 .close = snd_usbmidi_output_close, 1195 .trigger = snd_usbmidi_output_trigger, 1196 .drain = snd_usbmidi_output_drain, 1197 }; 1198 1199 static struct snd_rawmidi_ops snd_usbmidi_input_ops = { 1200 .open = snd_usbmidi_input_open, 1201 .close = snd_usbmidi_input_close, 1202 .trigger = snd_usbmidi_input_trigger 1203 }; 1204 1205 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb, 1206 unsigned int buffer_length) 1207 { 1208 usb_free_coherent(umidi->dev, buffer_length, 1209 urb->transfer_buffer, urb->transfer_dma); 1210 usb_free_urb(urb); 1211 } 1212 1213 /* 1214 * Frees an input endpoint. 1215 * May be called when ep hasn't been initialized completely. 1216 */ 1217 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint *ep) 1218 { 1219 unsigned int i; 1220 1221 for (i = 0; i < INPUT_URBS; ++i) 1222 if (ep->urbs[i]) 1223 free_urb_and_buffer(ep->umidi, ep->urbs[i], 1224 ep->urbs[i]->transfer_buffer_length); 1225 kfree(ep); 1226 } 1227 1228 /* 1229 * Creates an input endpoint. 1230 */ 1231 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi *umidi, 1232 struct snd_usb_midi_endpoint_info *ep_info, 1233 struct snd_usb_midi_endpoint *rep) 1234 { 1235 struct snd_usb_midi_in_endpoint *ep; 1236 void *buffer; 1237 unsigned int pipe; 1238 int length; 1239 unsigned int i; 1240 1241 rep->in = NULL; 1242 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1243 if (!ep) 1244 return -ENOMEM; 1245 ep->umidi = umidi; 1246 1247 for (i = 0; i < INPUT_URBS; ++i) { 1248 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); 1249 if (!ep->urbs[i]) { 1250 snd_usbmidi_in_endpoint_delete(ep); 1251 return -ENOMEM; 1252 } 1253 } 1254 if (ep_info->in_interval) 1255 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep); 1256 else 1257 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep); 1258 length = usb_maxpacket(umidi->dev, pipe, 0); 1259 for (i = 0; i < INPUT_URBS; ++i) { 1260 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL, 1261 &ep->urbs[i]->transfer_dma); 1262 if (!buffer) { 1263 snd_usbmidi_in_endpoint_delete(ep); 1264 return -ENOMEM; 1265 } 1266 if (ep_info->in_interval) 1267 usb_fill_int_urb(ep->urbs[i], umidi->dev, 1268 pipe, buffer, length, 1269 snd_usbmidi_in_urb_complete, 1270 ep, ep_info->in_interval); 1271 else 1272 usb_fill_bulk_urb(ep->urbs[i], umidi->dev, 1273 pipe, buffer, length, 1274 snd_usbmidi_in_urb_complete, ep); 1275 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1276 } 1277 1278 rep->in = ep; 1279 return 0; 1280 } 1281 1282 /* 1283 * Frees an output endpoint. 1284 * May be called when ep hasn't been initialized completely. 1285 */ 1286 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep) 1287 { 1288 unsigned int i; 1289 1290 for (i = 0; i < OUTPUT_URBS; ++i) 1291 if (ep->urbs[i].urb) { 1292 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb, 1293 ep->max_transfer); 1294 ep->urbs[i].urb = NULL; 1295 } 1296 } 1297 1298 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep) 1299 { 1300 snd_usbmidi_out_endpoint_clear(ep); 1301 kfree(ep); 1302 } 1303 1304 /* 1305 * Creates an output endpoint, and initializes output ports. 1306 */ 1307 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi *umidi, 1308 struct snd_usb_midi_endpoint_info *ep_info, 1309 struct snd_usb_midi_endpoint *rep) 1310 { 1311 struct snd_usb_midi_out_endpoint *ep; 1312 unsigned int i; 1313 unsigned int pipe; 1314 void *buffer; 1315 1316 rep->out = NULL; 1317 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1318 if (!ep) 1319 return -ENOMEM; 1320 ep->umidi = umidi; 1321 1322 for (i = 0; i < OUTPUT_URBS; ++i) { 1323 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL); 1324 if (!ep->urbs[i].urb) { 1325 snd_usbmidi_out_endpoint_delete(ep); 1326 return -ENOMEM; 1327 } 1328 ep->urbs[i].ep = ep; 1329 } 1330 if (ep_info->out_interval) 1331 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep); 1332 else 1333 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep); 1334 switch (umidi->usb_id) { 1335 default: 1336 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1); 1337 break; 1338 /* 1339 * Various chips declare a packet size larger than 4 bytes, but 1340 * do not actually work with larger packets: 1341 */ 1342 case USB_ID(0x0a92, 0x1020): /* ESI M4U */ 1343 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */ 1344 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */ 1345 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */ 1346 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */ 1347 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */ 1348 ep->max_transfer = 4; 1349 break; 1350 /* 1351 * Some devices only work with 9 bytes packet size: 1352 */ 1353 case USB_ID(0x0644, 0x800E): /* Tascam US-122L */ 1354 case USB_ID(0x0644, 0x800F): /* Tascam US-144 */ 1355 ep->max_transfer = 9; 1356 break; 1357 } 1358 for (i = 0; i < OUTPUT_URBS; ++i) { 1359 buffer = usb_alloc_coherent(umidi->dev, 1360 ep->max_transfer, GFP_KERNEL, 1361 &ep->urbs[i].urb->transfer_dma); 1362 if (!buffer) { 1363 snd_usbmidi_out_endpoint_delete(ep); 1364 return -ENOMEM; 1365 } 1366 if (ep_info->out_interval) 1367 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev, 1368 pipe, buffer, ep->max_transfer, 1369 snd_usbmidi_out_urb_complete, 1370 &ep->urbs[i], ep_info->out_interval); 1371 else 1372 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev, 1373 pipe, buffer, ep->max_transfer, 1374 snd_usbmidi_out_urb_complete, 1375 &ep->urbs[i]); 1376 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1377 } 1378 1379 spin_lock_init(&ep->buffer_lock); 1380 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); 1381 init_waitqueue_head(&ep->drain_wait); 1382 1383 for (i = 0; i < 0x10; ++i) 1384 if (ep_info->out_cables & (1 << i)) { 1385 ep->ports[i].ep = ep; 1386 ep->ports[i].cable = i << 4; 1387 } 1388 1389 if (umidi->usb_protocol_ops->init_out_endpoint) 1390 umidi->usb_protocol_ops->init_out_endpoint(ep); 1391 1392 rep->out = ep; 1393 return 0; 1394 } 1395 1396 /* 1397 * Frees everything. 1398 */ 1399 static void snd_usbmidi_free(struct snd_usb_midi *umidi) 1400 { 1401 int i; 1402 1403 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1404 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 1405 if (ep->out) 1406 snd_usbmidi_out_endpoint_delete(ep->out); 1407 if (ep->in) 1408 snd_usbmidi_in_endpoint_delete(ep->in); 1409 } 1410 mutex_destroy(&umidi->mutex); 1411 kfree(umidi); 1412 } 1413 1414 /* 1415 * Unlinks all URBs (must be done before the usb_device is deleted). 1416 */ 1417 void snd_usbmidi_disconnect(struct list_head *p) 1418 { 1419 struct snd_usb_midi *umidi; 1420 unsigned int i, j; 1421 1422 umidi = list_entry(p, struct snd_usb_midi, list); 1423 /* 1424 * an URB's completion handler may start the timer and 1425 * a timer may submit an URB. To reliably break the cycle 1426 * a flag under lock must be used 1427 */ 1428 down_write(&umidi->disc_rwsem); 1429 spin_lock_irq(&umidi->disc_lock); 1430 umidi->disconnected = 1; 1431 spin_unlock_irq(&umidi->disc_lock); 1432 up_write(&umidi->disc_rwsem); 1433 1434 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1435 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 1436 if (ep->out) 1437 tasklet_kill(&ep->out->tasklet); 1438 if (ep->out) { 1439 for (j = 0; j < OUTPUT_URBS; ++j) 1440 usb_kill_urb(ep->out->urbs[j].urb); 1441 if (umidi->usb_protocol_ops->finish_out_endpoint) 1442 umidi->usb_protocol_ops->finish_out_endpoint(ep->out); 1443 ep->out->active_urbs = 0; 1444 if (ep->out->drain_urbs) { 1445 ep->out->drain_urbs = 0; 1446 wake_up(&ep->out->drain_wait); 1447 } 1448 } 1449 if (ep->in) 1450 for (j = 0; j < INPUT_URBS; ++j) 1451 usb_kill_urb(ep->in->urbs[j]); 1452 /* free endpoints here; later call can result in Oops */ 1453 if (ep->out) 1454 snd_usbmidi_out_endpoint_clear(ep->out); 1455 if (ep->in) { 1456 snd_usbmidi_in_endpoint_delete(ep->in); 1457 ep->in = NULL; 1458 } 1459 } 1460 del_timer_sync(&umidi->error_timer); 1461 } 1462 EXPORT_SYMBOL(snd_usbmidi_disconnect); 1463 1464 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi) 1465 { 1466 struct snd_usb_midi *umidi = rmidi->private_data; 1467 snd_usbmidi_free(umidi); 1468 } 1469 1470 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi *umidi, 1471 int stream, 1472 int number) 1473 { 1474 struct snd_rawmidi_substream *substream; 1475 1476 list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams, 1477 list) { 1478 if (substream->number == number) 1479 return substream; 1480 } 1481 return NULL; 1482 } 1483 1484 /* 1485 * This list specifies names for ports that do not fit into the standard 1486 * "(product) MIDI (n)" schema because they aren't external MIDI ports, 1487 * such as internal control or synthesizer ports. 1488 */ 1489 static struct port_info { 1490 u32 id; 1491 short int port; 1492 short int voices; 1493 const char *name; 1494 unsigned int seq_flags; 1495 } snd_usbmidi_port_info[] = { 1496 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \ 1497 { .id = USB_ID(vendor, product), \ 1498 .port = num, .voices = voices_, \ 1499 .name = name_, .seq_flags = flags } 1500 #define EXTERNAL_PORT(vendor, product, num, name) \ 1501 PORT_INFO(vendor, product, num, name, 0, \ 1502 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1503 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1504 SNDRV_SEQ_PORT_TYPE_PORT) 1505 #define CONTROL_PORT(vendor, product, num, name) \ 1506 PORT_INFO(vendor, product, num, name, 0, \ 1507 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1508 SNDRV_SEQ_PORT_TYPE_HARDWARE) 1509 #define GM_SYNTH_PORT(vendor, product, num, name, voices) \ 1510 PORT_INFO(vendor, product, num, name, voices, \ 1511 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1512 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1513 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1514 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1515 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \ 1516 PORT_INFO(vendor, product, num, name, voices, \ 1517 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1518 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1519 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1520 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1521 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1522 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1523 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1524 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \ 1525 PORT_INFO(vendor, product, num, name, voices, \ 1526 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1527 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1528 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1529 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1530 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1531 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \ 1532 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1533 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1534 /* Yamaha MOTIF XF */ 1535 GM_SYNTH_PORT(0x0499, 0x105c, 0, "%s Tone Generator", 128), 1536 CONTROL_PORT(0x0499, 0x105c, 1, "%s Remote Control"), 1537 EXTERNAL_PORT(0x0499, 0x105c, 2, "%s Thru"), 1538 CONTROL_PORT(0x0499, 0x105c, 3, "%s Editor"), 1539 /* Roland UA-100 */ 1540 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"), 1541 /* Roland SC-8850 */ 1542 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128), 1543 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128), 1544 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128), 1545 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128), 1546 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"), 1547 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"), 1548 /* Roland U-8 */ 1549 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"), 1550 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"), 1551 /* Roland SC-8820 */ 1552 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64), 1553 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64), 1554 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"), 1555 /* Roland SK-500 */ 1556 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64), 1557 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64), 1558 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"), 1559 /* Roland SC-D70 */ 1560 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64), 1561 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64), 1562 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"), 1563 /* Edirol UM-880 */ 1564 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"), 1565 /* Edirol SD-90 */ 1566 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128), 1567 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128), 1568 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"), 1569 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"), 1570 /* Edirol UM-550 */ 1571 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"), 1572 /* Edirol SD-20 */ 1573 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64), 1574 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64), 1575 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"), 1576 /* Edirol SD-80 */ 1577 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128), 1578 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128), 1579 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"), 1580 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"), 1581 /* Edirol UA-700 */ 1582 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"), 1583 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"), 1584 /* Roland VariOS */ 1585 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"), 1586 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"), 1587 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"), 1588 /* Edirol PCR */ 1589 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"), 1590 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"), 1591 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"), 1592 /* BOSS GS-10 */ 1593 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"), 1594 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"), 1595 /* Edirol UA-1000 */ 1596 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"), 1597 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"), 1598 /* Edirol UR-80 */ 1599 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"), 1600 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"), 1601 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"), 1602 /* Edirol PCR-A */ 1603 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"), 1604 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"), 1605 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"), 1606 /* BOSS GT-PRO */ 1607 CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"), 1608 /* Edirol UM-3EX */ 1609 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"), 1610 /* Roland VG-99 */ 1611 CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"), 1612 EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"), 1613 /* Cakewalk Sonar V-Studio 100 */ 1614 EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"), 1615 CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"), 1616 /* Roland VB-99 */ 1617 CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"), 1618 EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"), 1619 /* Roland A-PRO */ 1620 EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"), 1621 CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"), 1622 CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"), 1623 /* Roland SD-50 */ 1624 ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128), 1625 EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"), 1626 CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"), 1627 /* Roland OCTA-CAPTURE */ 1628 EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"), 1629 CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"), 1630 EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"), 1631 CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"), 1632 /* Roland SPD-SX */ 1633 CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"), 1634 EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"), 1635 /* Roland A-Series */ 1636 CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"), 1637 EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"), 1638 /* Roland INTEGRA-7 */ 1639 ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128), 1640 CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"), 1641 /* M-Audio MidiSport 8x8 */ 1642 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"), 1643 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"), 1644 /* MOTU Fastlane */ 1645 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"), 1646 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"), 1647 /* Emagic Unitor8/AMT8/MT4 */ 1648 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"), 1649 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"), 1650 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"), 1651 /* Akai MPD16 */ 1652 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"), 1653 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0, 1654 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1655 SNDRV_SEQ_PORT_TYPE_HARDWARE), 1656 /* Access Music Virus TI */ 1657 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"), 1658 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0, 1659 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1660 SNDRV_SEQ_PORT_TYPE_HARDWARE | 1661 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER), 1662 }; 1663 1664 static struct port_info *find_port_info(struct snd_usb_midi *umidi, int number) 1665 { 1666 int i; 1667 1668 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) { 1669 if (snd_usbmidi_port_info[i].id == umidi->usb_id && 1670 snd_usbmidi_port_info[i].port == number) 1671 return &snd_usbmidi_port_info[i]; 1672 } 1673 return NULL; 1674 } 1675 1676 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number, 1677 struct snd_seq_port_info *seq_port_info) 1678 { 1679 struct snd_usb_midi *umidi = rmidi->private_data; 1680 struct port_info *port_info; 1681 1682 /* TODO: read port flags from descriptors */ 1683 port_info = find_port_info(umidi, number); 1684 if (port_info) { 1685 seq_port_info->type = port_info->seq_flags; 1686 seq_port_info->midi_voices = port_info->voices; 1687 } 1688 } 1689 1690 static void snd_usbmidi_init_substream(struct snd_usb_midi *umidi, 1691 int stream, int number, 1692 struct snd_rawmidi_substream **rsubstream) 1693 { 1694 struct port_info *port_info; 1695 const char *name_format; 1696 1697 struct snd_rawmidi_substream *substream = 1698 snd_usbmidi_find_substream(umidi, stream, number); 1699 if (!substream) { 1700 dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream, 1701 number); 1702 return; 1703 } 1704 1705 /* TODO: read port name from jack descriptor */ 1706 port_info = find_port_info(umidi, number); 1707 name_format = port_info ? port_info->name : "%s MIDI %d"; 1708 snprintf(substream->name, sizeof(substream->name), 1709 name_format, umidi->card->shortname, number + 1); 1710 1711 *rsubstream = substream; 1712 } 1713 1714 /* 1715 * Creates the endpoints and their ports. 1716 */ 1717 static int snd_usbmidi_create_endpoints(struct snd_usb_midi *umidi, 1718 struct snd_usb_midi_endpoint_info *endpoints) 1719 { 1720 int i, j, err; 1721 int out_ports = 0, in_ports = 0; 1722 1723 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1724 if (endpoints[i].out_cables) { 1725 err = snd_usbmidi_out_endpoint_create(umidi, 1726 &endpoints[i], 1727 &umidi->endpoints[i]); 1728 if (err < 0) 1729 return err; 1730 } 1731 if (endpoints[i].in_cables) { 1732 err = snd_usbmidi_in_endpoint_create(umidi, 1733 &endpoints[i], 1734 &umidi->endpoints[i]); 1735 if (err < 0) 1736 return err; 1737 } 1738 1739 for (j = 0; j < 0x10; ++j) { 1740 if (endpoints[i].out_cables & (1 << j)) { 1741 snd_usbmidi_init_substream(umidi, 1742 SNDRV_RAWMIDI_STREAM_OUTPUT, 1743 out_ports, 1744 &umidi->endpoints[i].out->ports[j].substream); 1745 ++out_ports; 1746 } 1747 if (endpoints[i].in_cables & (1 << j)) { 1748 snd_usbmidi_init_substream(umidi, 1749 SNDRV_RAWMIDI_STREAM_INPUT, 1750 in_ports, 1751 &umidi->endpoints[i].in->ports[j].substream); 1752 ++in_ports; 1753 } 1754 } 1755 } 1756 dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n", 1757 out_ports, in_ports); 1758 return 0; 1759 } 1760 1761 /* 1762 * Returns MIDIStreaming device capabilities. 1763 */ 1764 static int snd_usbmidi_get_ms_info(struct snd_usb_midi *umidi, 1765 struct snd_usb_midi_endpoint_info *endpoints) 1766 { 1767 struct usb_interface *intf; 1768 struct usb_host_interface *hostif; 1769 struct usb_interface_descriptor *intfd; 1770 struct usb_ms_header_descriptor *ms_header; 1771 struct usb_host_endpoint *hostep; 1772 struct usb_endpoint_descriptor *ep; 1773 struct usb_ms_endpoint_descriptor *ms_ep; 1774 int i, epidx; 1775 1776 intf = umidi->iface; 1777 if (!intf) 1778 return -ENXIO; 1779 hostif = &intf->altsetting[0]; 1780 intfd = get_iface_desc(hostif); 1781 ms_header = (struct usb_ms_header_descriptor *)hostif->extra; 1782 if (hostif->extralen >= 7 && 1783 ms_header->bLength >= 7 && 1784 ms_header->bDescriptorType == USB_DT_CS_INTERFACE && 1785 ms_header->bDescriptorSubtype == UAC_HEADER) 1786 dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n", 1787 ms_header->bcdMSC[1], ms_header->bcdMSC[0]); 1788 else 1789 dev_warn(&umidi->dev->dev, 1790 "MIDIStreaming interface descriptor not found\n"); 1791 1792 epidx = 0; 1793 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1794 hostep = &hostif->endpoint[i]; 1795 ep = get_ep_desc(hostep); 1796 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep)) 1797 continue; 1798 ms_ep = (struct usb_ms_endpoint_descriptor *)hostep->extra; 1799 if (hostep->extralen < 4 || 1800 ms_ep->bLength < 4 || 1801 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT || 1802 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL) 1803 continue; 1804 if (usb_endpoint_dir_out(ep)) { 1805 if (endpoints[epidx].out_ep) { 1806 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1807 dev_warn(&umidi->dev->dev, 1808 "too many endpoints\n"); 1809 break; 1810 } 1811 } 1812 endpoints[epidx].out_ep = usb_endpoint_num(ep); 1813 if (usb_endpoint_xfer_int(ep)) 1814 endpoints[epidx].out_interval = ep->bInterval; 1815 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1816 /* 1817 * Low speed bulk transfers don't exist, so 1818 * force interrupt transfers for devices like 1819 * ESI MIDI Mate that try to use them anyway. 1820 */ 1821 endpoints[epidx].out_interval = 1; 1822 endpoints[epidx].out_cables = 1823 (1 << ms_ep->bNumEmbMIDIJack) - 1; 1824 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 1825 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1826 } else { 1827 if (endpoints[epidx].in_ep) { 1828 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1829 dev_warn(&umidi->dev->dev, 1830 "too many endpoints\n"); 1831 break; 1832 } 1833 } 1834 endpoints[epidx].in_ep = usb_endpoint_num(ep); 1835 if (usb_endpoint_xfer_int(ep)) 1836 endpoints[epidx].in_interval = ep->bInterval; 1837 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1838 endpoints[epidx].in_interval = 1; 1839 endpoints[epidx].in_cables = 1840 (1 << ms_ep->bNumEmbMIDIJack) - 1; 1841 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 1842 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1843 } 1844 } 1845 return 0; 1846 } 1847 1848 static int roland_load_info(struct snd_kcontrol *kcontrol, 1849 struct snd_ctl_elem_info *info) 1850 { 1851 static const char *const names[] = { "High Load", "Light Load" }; 1852 1853 return snd_ctl_enum_info(info, 1, 2, names); 1854 } 1855 1856 static int roland_load_get(struct snd_kcontrol *kcontrol, 1857 struct snd_ctl_elem_value *value) 1858 { 1859 value->value.enumerated.item[0] = kcontrol->private_value; 1860 return 0; 1861 } 1862 1863 static int roland_load_put(struct snd_kcontrol *kcontrol, 1864 struct snd_ctl_elem_value *value) 1865 { 1866 struct snd_usb_midi *umidi = kcontrol->private_data; 1867 int changed; 1868 1869 if (value->value.enumerated.item[0] > 1) 1870 return -EINVAL; 1871 mutex_lock(&umidi->mutex); 1872 changed = value->value.enumerated.item[0] != kcontrol->private_value; 1873 if (changed) 1874 kcontrol->private_value = value->value.enumerated.item[0]; 1875 mutex_unlock(&umidi->mutex); 1876 return changed; 1877 } 1878 1879 static struct snd_kcontrol_new roland_load_ctl = { 1880 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1881 .name = "MIDI Input Mode", 1882 .info = roland_load_info, 1883 .get = roland_load_get, 1884 .put = roland_load_put, 1885 .private_value = 1, 1886 }; 1887 1888 /* 1889 * On Roland devices, use the second alternate setting to be able to use 1890 * the interrupt input endpoint. 1891 */ 1892 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi *umidi) 1893 { 1894 struct usb_interface *intf; 1895 struct usb_host_interface *hostif; 1896 struct usb_interface_descriptor *intfd; 1897 1898 intf = umidi->iface; 1899 if (!intf || intf->num_altsetting != 2) 1900 return; 1901 1902 hostif = &intf->altsetting[1]; 1903 intfd = get_iface_desc(hostif); 1904 if (intfd->bNumEndpoints != 2 || 1905 (get_endpoint(hostif, 0)->bmAttributes & 1906 USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK || 1907 (get_endpoint(hostif, 1)->bmAttributes & 1908 USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) 1909 return; 1910 1911 dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n", 1912 intfd->bAlternateSetting); 1913 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1914 intfd->bAlternateSetting); 1915 1916 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi); 1917 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0) 1918 umidi->roland_load_ctl = NULL; 1919 } 1920 1921 /* 1922 * Try to find any usable endpoints in the interface. 1923 */ 1924 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi *umidi, 1925 struct snd_usb_midi_endpoint_info *endpoint, 1926 int max_endpoints) 1927 { 1928 struct usb_interface *intf; 1929 struct usb_host_interface *hostif; 1930 struct usb_interface_descriptor *intfd; 1931 struct usb_endpoint_descriptor *epd; 1932 int i, out_eps = 0, in_eps = 0; 1933 1934 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582) 1935 snd_usbmidi_switch_roland_altsetting(umidi); 1936 1937 if (endpoint[0].out_ep || endpoint[0].in_ep) 1938 return 0; 1939 1940 intf = umidi->iface; 1941 if (!intf || intf->num_altsetting < 1) 1942 return -ENOENT; 1943 hostif = intf->cur_altsetting; 1944 intfd = get_iface_desc(hostif); 1945 1946 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1947 epd = get_endpoint(hostif, i); 1948 if (!usb_endpoint_xfer_bulk(epd) && 1949 !usb_endpoint_xfer_int(epd)) 1950 continue; 1951 if (out_eps < max_endpoints && 1952 usb_endpoint_dir_out(epd)) { 1953 endpoint[out_eps].out_ep = usb_endpoint_num(epd); 1954 if (usb_endpoint_xfer_int(epd)) 1955 endpoint[out_eps].out_interval = epd->bInterval; 1956 ++out_eps; 1957 } 1958 if (in_eps < max_endpoints && 1959 usb_endpoint_dir_in(epd)) { 1960 endpoint[in_eps].in_ep = usb_endpoint_num(epd); 1961 if (usb_endpoint_xfer_int(epd)) 1962 endpoint[in_eps].in_interval = epd->bInterval; 1963 ++in_eps; 1964 } 1965 } 1966 return (out_eps || in_eps) ? 0 : -ENOENT; 1967 } 1968 1969 /* 1970 * Detects the endpoints for one-port-per-endpoint protocols. 1971 */ 1972 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi *umidi, 1973 struct snd_usb_midi_endpoint_info *endpoints) 1974 { 1975 int err, i; 1976 1977 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); 1978 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1979 if (endpoints[i].out_ep) 1980 endpoints[i].out_cables = 0x0001; 1981 if (endpoints[i].in_ep) 1982 endpoints[i].in_cables = 0x0001; 1983 } 1984 return err; 1985 } 1986 1987 /* 1988 * Detects the endpoints and ports of Yamaha devices. 1989 */ 1990 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi *umidi, 1991 struct snd_usb_midi_endpoint_info *endpoint) 1992 { 1993 struct usb_interface *intf; 1994 struct usb_host_interface *hostif; 1995 struct usb_interface_descriptor *intfd; 1996 uint8_t *cs_desc; 1997 1998 intf = umidi->iface; 1999 if (!intf) 2000 return -ENOENT; 2001 hostif = intf->altsetting; 2002 intfd = get_iface_desc(hostif); 2003 if (intfd->bNumEndpoints < 1) 2004 return -ENOENT; 2005 2006 /* 2007 * For each port there is one MIDI_IN/OUT_JACK descriptor, not 2008 * necessarily with any useful contents. So simply count 'em. 2009 */ 2010 for (cs_desc = hostif->extra; 2011 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2012 cs_desc += cs_desc[0]) { 2013 if (cs_desc[1] == USB_DT_CS_INTERFACE) { 2014 if (cs_desc[2] == UAC_MIDI_IN_JACK) 2015 endpoint->in_cables = 2016 (endpoint->in_cables << 1) | 1; 2017 else if (cs_desc[2] == UAC_MIDI_OUT_JACK) 2018 endpoint->out_cables = 2019 (endpoint->out_cables << 1) | 1; 2020 } 2021 } 2022 if (!endpoint->in_cables && !endpoint->out_cables) 2023 return -ENOENT; 2024 2025 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2026 } 2027 2028 /* 2029 * Detects the endpoints and ports of Roland devices. 2030 */ 2031 static int snd_usbmidi_detect_roland(struct snd_usb_midi *umidi, 2032 struct snd_usb_midi_endpoint_info *endpoint) 2033 { 2034 struct usb_interface *intf; 2035 struct usb_host_interface *hostif; 2036 u8 *cs_desc; 2037 2038 intf = umidi->iface; 2039 if (!intf) 2040 return -ENOENT; 2041 hostif = intf->altsetting; 2042 /* 2043 * Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>, 2044 * some have standard class descriptors, or both kinds, or neither. 2045 */ 2046 for (cs_desc = hostif->extra; 2047 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2048 cs_desc += cs_desc[0]) { 2049 if (cs_desc[0] >= 6 && 2050 cs_desc[1] == USB_DT_CS_INTERFACE && 2051 cs_desc[2] == 0xf1 && 2052 cs_desc[3] == 0x02) { 2053 endpoint->in_cables = (1 << cs_desc[4]) - 1; 2054 endpoint->out_cables = (1 << cs_desc[5]) - 1; 2055 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2056 } else if (cs_desc[0] >= 7 && 2057 cs_desc[1] == USB_DT_CS_INTERFACE && 2058 cs_desc[2] == UAC_HEADER) { 2059 return snd_usbmidi_get_ms_info(umidi, endpoint); 2060 } 2061 } 2062 2063 return -ENODEV; 2064 } 2065 2066 /* 2067 * Creates the endpoints and their ports for Midiman devices. 2068 */ 2069 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi *umidi, 2070 struct snd_usb_midi_endpoint_info *endpoint) 2071 { 2072 struct snd_usb_midi_endpoint_info ep_info; 2073 struct usb_interface *intf; 2074 struct usb_host_interface *hostif; 2075 struct usb_interface_descriptor *intfd; 2076 struct usb_endpoint_descriptor *epd; 2077 int cable, err; 2078 2079 intf = umidi->iface; 2080 if (!intf) 2081 return -ENOENT; 2082 hostif = intf->altsetting; 2083 intfd = get_iface_desc(hostif); 2084 /* 2085 * The various MidiSport devices have more or less random endpoint 2086 * numbers, so we have to identify the endpoints by their index in 2087 * the descriptor array, like the driver for that other OS does. 2088 * 2089 * There is one interrupt input endpoint for all input ports, one 2090 * bulk output endpoint for even-numbered ports, and one for odd- 2091 * numbered ports. Both bulk output endpoints have corresponding 2092 * input bulk endpoints (at indices 1 and 3) which aren't used. 2093 */ 2094 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { 2095 dev_dbg(&umidi->dev->dev, "not enough endpoints\n"); 2096 return -ENOENT; 2097 } 2098 2099 epd = get_endpoint(hostif, 0); 2100 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) { 2101 dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n"); 2102 return -ENXIO; 2103 } 2104 epd = get_endpoint(hostif, 2); 2105 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { 2106 dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n"); 2107 return -ENXIO; 2108 } 2109 if (endpoint->out_cables > 0x0001) { 2110 epd = get_endpoint(hostif, 4); 2111 if (!usb_endpoint_dir_out(epd) || 2112 !usb_endpoint_xfer_bulk(epd)) { 2113 dev_dbg(&umidi->dev->dev, 2114 "endpoint[4] isn't bulk output\n"); 2115 return -ENXIO; 2116 } 2117 } 2118 2119 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & 2120 USB_ENDPOINT_NUMBER_MASK; 2121 ep_info.out_interval = 0; 2122 ep_info.out_cables = endpoint->out_cables & 0x5555; 2123 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, 2124 &umidi->endpoints[0]); 2125 if (err < 0) 2126 return err; 2127 2128 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & 2129 USB_ENDPOINT_NUMBER_MASK; 2130 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; 2131 ep_info.in_cables = endpoint->in_cables; 2132 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, 2133 &umidi->endpoints[0]); 2134 if (err < 0) 2135 return err; 2136 2137 if (endpoint->out_cables > 0x0001) { 2138 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & 2139 USB_ENDPOINT_NUMBER_MASK; 2140 ep_info.out_cables = endpoint->out_cables & 0xaaaa; 2141 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, 2142 &umidi->endpoints[1]); 2143 if (err < 0) 2144 return err; 2145 } 2146 2147 for (cable = 0; cable < 0x10; ++cable) { 2148 if (endpoint->out_cables & (1 << cable)) 2149 snd_usbmidi_init_substream(umidi, 2150 SNDRV_RAWMIDI_STREAM_OUTPUT, 2151 cable, 2152 &umidi->endpoints[cable & 1].out->ports[cable].substream); 2153 if (endpoint->in_cables & (1 << cable)) 2154 snd_usbmidi_init_substream(umidi, 2155 SNDRV_RAWMIDI_STREAM_INPUT, 2156 cable, 2157 &umidi->endpoints[0].in->ports[cable].substream); 2158 } 2159 return 0; 2160 } 2161 2162 static struct snd_rawmidi_global_ops snd_usbmidi_ops = { 2163 .get_port_info = snd_usbmidi_get_port_info, 2164 }; 2165 2166 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi *umidi, 2167 int out_ports, int in_ports) 2168 { 2169 struct snd_rawmidi *rmidi; 2170 int err; 2171 2172 err = snd_rawmidi_new(umidi->card, "USB MIDI", 2173 umidi->next_midi_device++, 2174 out_ports, in_ports, &rmidi); 2175 if (err < 0) 2176 return err; 2177 strcpy(rmidi->name, umidi->card->shortname); 2178 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 2179 SNDRV_RAWMIDI_INFO_INPUT | 2180 SNDRV_RAWMIDI_INFO_DUPLEX; 2181 rmidi->ops = &snd_usbmidi_ops; 2182 rmidi->private_data = umidi; 2183 rmidi->private_free = snd_usbmidi_rawmidi_free; 2184 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, 2185 &snd_usbmidi_output_ops); 2186 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, 2187 &snd_usbmidi_input_ops); 2188 2189 umidi->rmidi = rmidi; 2190 return 0; 2191 } 2192 2193 /* 2194 * Temporarily stop input. 2195 */ 2196 void snd_usbmidi_input_stop(struct list_head *p) 2197 { 2198 struct snd_usb_midi *umidi; 2199 unsigned int i, j; 2200 2201 umidi = list_entry(p, struct snd_usb_midi, list); 2202 if (!umidi->input_running) 2203 return; 2204 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2205 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 2206 if (ep->in) 2207 for (j = 0; j < INPUT_URBS; ++j) 2208 usb_kill_urb(ep->in->urbs[j]); 2209 } 2210 umidi->input_running = 0; 2211 } 2212 EXPORT_SYMBOL(snd_usbmidi_input_stop); 2213 2214 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint *ep) 2215 { 2216 unsigned int i; 2217 2218 if (!ep) 2219 return; 2220 for (i = 0; i < INPUT_URBS; ++i) { 2221 struct urb *urb = ep->urbs[i]; 2222 urb->dev = ep->umidi->dev; 2223 snd_usbmidi_submit_urb(urb, GFP_KERNEL); 2224 } 2225 } 2226 2227 /* 2228 * Resume input after a call to snd_usbmidi_input_stop(). 2229 */ 2230 void snd_usbmidi_input_start(struct list_head *p) 2231 { 2232 struct snd_usb_midi *umidi; 2233 int i; 2234 2235 umidi = list_entry(p, struct snd_usb_midi, list); 2236 if (umidi->input_running || !umidi->opened[1]) 2237 return; 2238 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 2239 snd_usbmidi_input_start_ep(umidi->endpoints[i].in); 2240 umidi->input_running = 1; 2241 } 2242 EXPORT_SYMBOL(snd_usbmidi_input_start); 2243 2244 /* 2245 * Prepare for suspend. Typically called from the USB suspend callback. 2246 */ 2247 void snd_usbmidi_suspend(struct list_head *p) 2248 { 2249 struct snd_usb_midi *umidi; 2250 2251 umidi = list_entry(p, struct snd_usb_midi, list); 2252 mutex_lock(&umidi->mutex); 2253 snd_usbmidi_input_stop(p); 2254 mutex_unlock(&umidi->mutex); 2255 } 2256 EXPORT_SYMBOL(snd_usbmidi_suspend); 2257 2258 /* 2259 * Resume. Typically called from the USB resume callback. 2260 */ 2261 void snd_usbmidi_resume(struct list_head *p) 2262 { 2263 struct snd_usb_midi *umidi; 2264 2265 umidi = list_entry(p, struct snd_usb_midi, list); 2266 mutex_lock(&umidi->mutex); 2267 snd_usbmidi_input_start(p); 2268 mutex_unlock(&umidi->mutex); 2269 } 2270 EXPORT_SYMBOL(snd_usbmidi_resume); 2271 2272 /* 2273 * Creates and registers everything needed for a MIDI streaming interface. 2274 */ 2275 int snd_usbmidi_create(struct snd_card *card, 2276 struct usb_interface *iface, 2277 struct list_head *midi_list, 2278 const struct snd_usb_audio_quirk *quirk) 2279 { 2280 struct snd_usb_midi *umidi; 2281 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS]; 2282 int out_ports, in_ports; 2283 int i, err; 2284 2285 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL); 2286 if (!umidi) 2287 return -ENOMEM; 2288 umidi->dev = interface_to_usbdev(iface); 2289 umidi->card = card; 2290 umidi->iface = iface; 2291 umidi->quirk = quirk; 2292 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; 2293 init_timer(&umidi->error_timer); 2294 spin_lock_init(&umidi->disc_lock); 2295 init_rwsem(&umidi->disc_rwsem); 2296 mutex_init(&umidi->mutex); 2297 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor), 2298 le16_to_cpu(umidi->dev->descriptor.idProduct)); 2299 umidi->error_timer.function = snd_usbmidi_error_timer; 2300 umidi->error_timer.data = (unsigned long)umidi; 2301 2302 /* detect the endpoint(s) to use */ 2303 memset(endpoints, 0, sizeof(endpoints)); 2304 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) { 2305 case QUIRK_MIDI_STANDARD_INTERFACE: 2306 err = snd_usbmidi_get_ms_info(umidi, endpoints); 2307 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */ 2308 umidi->usb_protocol_ops = 2309 &snd_usbmidi_maudio_broken_running_status_ops; 2310 break; 2311 case QUIRK_MIDI_US122L: 2312 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops; 2313 /* fall through */ 2314 case QUIRK_MIDI_FIXED_ENDPOINT: 2315 memcpy(&endpoints[0], quirk->data, 2316 sizeof(struct snd_usb_midi_endpoint_info)); 2317 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2318 break; 2319 case QUIRK_MIDI_YAMAHA: 2320 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); 2321 break; 2322 case QUIRK_MIDI_ROLAND: 2323 err = snd_usbmidi_detect_roland(umidi, &endpoints[0]); 2324 break; 2325 case QUIRK_MIDI_MIDIMAN: 2326 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; 2327 memcpy(&endpoints[0], quirk->data, 2328 sizeof(struct snd_usb_midi_endpoint_info)); 2329 err = 0; 2330 break; 2331 case QUIRK_MIDI_NOVATION: 2332 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; 2333 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2334 break; 2335 case QUIRK_MIDI_RAW_BYTES: 2336 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops; 2337 /* 2338 * Interface 1 contains isochronous endpoints, but with the same 2339 * numbers as in interface 0. Since it is interface 1 that the 2340 * USB core has most recently seen, these descriptors are now 2341 * associated with the endpoint numbers. This will foul up our 2342 * attempts to submit bulk/interrupt URBs to the endpoints in 2343 * interface 0, so we have to make sure that the USB core looks 2344 * again at interface 0 by calling usb_set_interface() on it. 2345 */ 2346 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */ 2347 usb_set_interface(umidi->dev, 0, 0); 2348 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2349 break; 2350 case QUIRK_MIDI_EMAGIC: 2351 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; 2352 memcpy(&endpoints[0], quirk->data, 2353 sizeof(struct snd_usb_midi_endpoint_info)); 2354 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2355 break; 2356 case QUIRK_MIDI_CME: 2357 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops; 2358 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2359 break; 2360 case QUIRK_MIDI_AKAI: 2361 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops; 2362 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2363 /* endpoint 1 is input-only */ 2364 endpoints[1].out_cables = 0; 2365 break; 2366 case QUIRK_MIDI_FTDI: 2367 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops; 2368 2369 /* set baud rate to 31250 (48 MHz / 16 / 96) */ 2370 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0), 2371 3, 0x40, 0x60, 0, NULL, 0, 1000); 2372 if (err < 0) 2373 break; 2374 2375 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2376 break; 2377 default: 2378 dev_err(&umidi->dev->dev, "invalid quirk type %d\n", 2379 quirk->type); 2380 err = -ENXIO; 2381 break; 2382 } 2383 if (err < 0) { 2384 kfree(umidi); 2385 return err; 2386 } 2387 2388 /* create rawmidi device */ 2389 out_ports = 0; 2390 in_ports = 0; 2391 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2392 out_ports += hweight16(endpoints[i].out_cables); 2393 in_ports += hweight16(endpoints[i].in_cables); 2394 } 2395 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); 2396 if (err < 0) { 2397 kfree(umidi); 2398 return err; 2399 } 2400 2401 /* create endpoint/port structures */ 2402 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) 2403 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); 2404 else 2405 err = snd_usbmidi_create_endpoints(umidi, endpoints); 2406 if (err < 0) { 2407 snd_usbmidi_free(umidi); 2408 return err; 2409 } 2410 2411 usb_autopm_get_interface_no_resume(umidi->iface); 2412 2413 list_add_tail(&umidi->list, midi_list); 2414 return 0; 2415 } 2416 EXPORT_SYMBOL(snd_usbmidi_create); 2417