1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 */ 4 5 #include <linux/gfp.h> 6 #include <linux/init.h> 7 #include <linux/ratelimit.h> 8 #include <linux/usb.h> 9 #include <linux/usb/audio.h> 10 #include <linux/slab.h> 11 12 #include <sound/core.h> 13 #include <sound/pcm.h> 14 #include <sound/pcm_params.h> 15 16 #include "usbaudio.h" 17 #include "helper.h" 18 #include "card.h" 19 #include "endpoint.h" 20 #include "pcm.h" 21 #include "clock.h" 22 #include "quirks.h" 23 24 enum { 25 EP_STATE_STOPPED, 26 EP_STATE_RUNNING, 27 EP_STATE_STOPPING, 28 }; 29 30 /* interface refcounting */ 31 struct snd_usb_iface_ref { 32 unsigned char iface; 33 bool need_setup; 34 int opened; 35 struct list_head list; 36 }; 37 38 /* 39 * snd_usb_endpoint is a model that abstracts everything related to an 40 * USB endpoint and its streaming. 41 * 42 * There are functions to activate and deactivate the streaming URBs and 43 * optional callbacks to let the pcm logic handle the actual content of the 44 * packets for playback and record. Thus, the bus streaming and the audio 45 * handlers are fully decoupled. 46 * 47 * There are two different types of endpoints in audio applications. 48 * 49 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 50 * inbound and outbound traffic. 51 * 52 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 53 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 54 * (3 or 4 bytes). 55 * 56 * Each endpoint has to be configured prior to being used by calling 57 * snd_usb_endpoint_set_params(). 58 * 59 * The model incorporates a reference counting, so that multiple users 60 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 61 * only the first user will effectively start the URBs, and only the last 62 * one to stop it will tear the URBs down again. 63 */ 64 65 /* 66 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 67 * this will overflow at approx 524 kHz 68 */ 69 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 70 { 71 return ((rate << 13) + 62) / 125; 72 } 73 74 /* 75 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 76 * this will overflow at approx 4 MHz 77 */ 78 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 79 { 80 return ((rate << 10) + 62) / 125; 81 } 82 83 /* 84 * release a urb data 85 */ 86 static void release_urb_ctx(struct snd_urb_ctx *u) 87 { 88 if (u->buffer_size) 89 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 90 u->urb->transfer_buffer, 91 u->urb->transfer_dma); 92 usb_free_urb(u->urb); 93 u->urb = NULL; 94 } 95 96 static const char *usb_error_string(int err) 97 { 98 switch (err) { 99 case -ENODEV: 100 return "no device"; 101 case -ENOENT: 102 return "endpoint not enabled"; 103 case -EPIPE: 104 return "endpoint stalled"; 105 case -ENOSPC: 106 return "not enough bandwidth"; 107 case -ESHUTDOWN: 108 return "device disabled"; 109 case -EHOSTUNREACH: 110 return "device suspended"; 111 case -EINVAL: 112 case -EAGAIN: 113 case -EFBIG: 114 case -EMSGSIZE: 115 return "internal error"; 116 default: 117 return "unknown error"; 118 } 119 } 120 121 static inline bool ep_state_running(struct snd_usb_endpoint *ep) 122 { 123 return atomic_read(&ep->state) == EP_STATE_RUNNING; 124 } 125 126 static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new) 127 { 128 return atomic_cmpxchg(&ep->state, old, new) == old; 129 } 130 131 /** 132 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 133 * 134 * @ep: The snd_usb_endpoint 135 * 136 * Determine whether an endpoint is driven by an implicit feedback 137 * data endpoint source. 138 */ 139 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 140 { 141 return ep->implicit_fb_sync && usb_pipeout(ep->pipe); 142 } 143 144 /* 145 * Return the number of samples to be sent in the next packet 146 * for streaming based on information derived from sync endpoints 147 * 148 * This won't be used for implicit feedback which takes the packet size 149 * returned from the sync source 150 */ 151 static int slave_next_packet_size(struct snd_usb_endpoint *ep) 152 { 153 unsigned long flags; 154 int ret; 155 156 if (ep->fill_max) 157 return ep->maxframesize; 158 159 spin_lock_irqsave(&ep->lock, flags); 160 ep->phase = (ep->phase & 0xffff) 161 + (ep->freqm << ep->datainterval); 162 ret = min(ep->phase >> 16, ep->maxframesize); 163 spin_unlock_irqrestore(&ep->lock, flags); 164 165 return ret; 166 } 167 168 /* 169 * Return the number of samples to be sent in the next packet 170 * for adaptive and synchronous endpoints 171 */ 172 static int next_packet_size(struct snd_usb_endpoint *ep) 173 { 174 int ret; 175 176 if (ep->fill_max) 177 return ep->maxframesize; 178 179 ep->sample_accum += ep->sample_rem; 180 if (ep->sample_accum >= ep->pps) { 181 ep->sample_accum -= ep->pps; 182 ret = ep->packsize[1]; 183 } else { 184 ret = ep->packsize[0]; 185 } 186 187 return ret; 188 } 189 190 /* 191 * snd_usb_endpoint_next_packet_size: Return the number of samples to be sent 192 * in the next packet 193 */ 194 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep, 195 struct snd_urb_ctx *ctx, int idx) 196 { 197 if (ctx->packet_size[idx]) 198 return ctx->packet_size[idx]; 199 else if (ep->sync_source) 200 return slave_next_packet_size(ep); 201 else 202 return next_packet_size(ep); 203 } 204 205 static void call_retire_callback(struct snd_usb_endpoint *ep, 206 struct urb *urb) 207 { 208 struct snd_usb_substream *data_subs; 209 210 data_subs = READ_ONCE(ep->data_subs); 211 if (data_subs && ep->retire_data_urb) 212 ep->retire_data_urb(data_subs, urb); 213 } 214 215 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 216 struct snd_urb_ctx *urb_ctx) 217 { 218 call_retire_callback(ep, urb_ctx->urb); 219 } 220 221 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 222 struct snd_usb_endpoint *sender, 223 const struct urb *urb); 224 225 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 226 struct snd_urb_ctx *urb_ctx) 227 { 228 struct urb *urb = urb_ctx->urb; 229 struct snd_usb_endpoint *sync_sink; 230 231 if (unlikely(ep->skip_packets > 0)) { 232 ep->skip_packets--; 233 return; 234 } 235 236 sync_sink = READ_ONCE(ep->sync_sink); 237 if (sync_sink) 238 snd_usb_handle_sync_urb(sync_sink, ep, urb); 239 240 call_retire_callback(ep, urb); 241 } 242 243 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 244 struct snd_urb_ctx *ctx) 245 { 246 struct urb *urb = ctx->urb; 247 unsigned int offs = 0; 248 unsigned int extra = 0; 249 __le32 packet_length; 250 int i; 251 252 /* For tx_length_quirk, put packet length at start of packet */ 253 if (ep->chip->tx_length_quirk) 254 extra = sizeof(packet_length); 255 256 for (i = 0; i < ctx->packets; ++i) { 257 unsigned int offset; 258 unsigned int length; 259 int counts; 260 261 counts = snd_usb_endpoint_next_packet_size(ep, ctx, i); 262 length = counts * ep->stride; /* number of silent bytes */ 263 offset = offs * ep->stride + extra * i; 264 urb->iso_frame_desc[i].offset = offset; 265 urb->iso_frame_desc[i].length = length + extra; 266 if (extra) { 267 packet_length = cpu_to_le32(length); 268 memcpy(urb->transfer_buffer + offset, 269 &packet_length, sizeof(packet_length)); 270 } 271 memset(urb->transfer_buffer + offset + extra, 272 ep->silence_value, length); 273 offs += counts; 274 } 275 276 urb->number_of_packets = ctx->packets; 277 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 278 ctx->queued = 0; 279 } 280 281 /* 282 * Prepare a PLAYBACK urb for submission to the bus. 283 */ 284 static void prepare_outbound_urb(struct snd_usb_endpoint *ep, 285 struct snd_urb_ctx *ctx) 286 { 287 struct urb *urb = ctx->urb; 288 unsigned char *cp = urb->transfer_buffer; 289 struct snd_usb_substream *data_subs; 290 291 urb->dev = ep->chip->dev; /* we need to set this at each time */ 292 293 switch (ep->type) { 294 case SND_USB_ENDPOINT_TYPE_DATA: 295 data_subs = READ_ONCE(ep->data_subs); 296 if (data_subs && ep->prepare_data_urb) 297 ep->prepare_data_urb(data_subs, urb); 298 else /* no data provider, so send silence */ 299 prepare_silent_urb(ep, ctx); 300 break; 301 302 case SND_USB_ENDPOINT_TYPE_SYNC: 303 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 304 /* 305 * fill the length and offset of each urb descriptor. 306 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 307 */ 308 urb->iso_frame_desc[0].length = 4; 309 urb->iso_frame_desc[0].offset = 0; 310 cp[0] = ep->freqn; 311 cp[1] = ep->freqn >> 8; 312 cp[2] = ep->freqn >> 16; 313 cp[3] = ep->freqn >> 24; 314 } else { 315 /* 316 * fill the length and offset of each urb descriptor. 317 * the fixed 10.14 frequency is passed through the pipe. 318 */ 319 urb->iso_frame_desc[0].length = 3; 320 urb->iso_frame_desc[0].offset = 0; 321 cp[0] = ep->freqn >> 2; 322 cp[1] = ep->freqn >> 10; 323 cp[2] = ep->freqn >> 18; 324 } 325 326 break; 327 } 328 } 329 330 /* 331 * Prepare a CAPTURE or SYNC urb for submission to the bus. 332 */ 333 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep, 334 struct snd_urb_ctx *urb_ctx) 335 { 336 int i, offs; 337 struct urb *urb = urb_ctx->urb; 338 339 urb->dev = ep->chip->dev; /* we need to set this at each time */ 340 341 switch (ep->type) { 342 case SND_USB_ENDPOINT_TYPE_DATA: 343 offs = 0; 344 for (i = 0; i < urb_ctx->packets; i++) { 345 urb->iso_frame_desc[i].offset = offs; 346 urb->iso_frame_desc[i].length = ep->curpacksize; 347 offs += ep->curpacksize; 348 } 349 350 urb->transfer_buffer_length = offs; 351 urb->number_of_packets = urb_ctx->packets; 352 break; 353 354 case SND_USB_ENDPOINT_TYPE_SYNC: 355 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 356 urb->iso_frame_desc[0].offset = 0; 357 break; 358 } 359 } 360 361 /* notify an error as XRUN to the assigned PCM data substream */ 362 static void notify_xrun(struct snd_usb_endpoint *ep) 363 { 364 struct snd_usb_substream *data_subs; 365 366 data_subs = READ_ONCE(ep->data_subs); 367 if (data_subs && data_subs->pcm_substream) 368 snd_pcm_stop_xrun(data_subs->pcm_substream); 369 } 370 371 static struct snd_usb_packet_info * 372 next_packet_fifo_enqueue(struct snd_usb_endpoint *ep) 373 { 374 struct snd_usb_packet_info *p; 375 376 p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) % 377 ARRAY_SIZE(ep->next_packet); 378 ep->next_packet_queued++; 379 return p; 380 } 381 382 static struct snd_usb_packet_info * 383 next_packet_fifo_dequeue(struct snd_usb_endpoint *ep) 384 { 385 struct snd_usb_packet_info *p; 386 387 p = ep->next_packet + ep->next_packet_head; 388 ep->next_packet_head++; 389 ep->next_packet_head %= ARRAY_SIZE(ep->next_packet); 390 ep->next_packet_queued--; 391 return p; 392 } 393 394 /* 395 * Send output urbs that have been prepared previously. URBs are dequeued 396 * from ep->ready_playback_urbs and in case there aren't any available 397 * or there are no packets that have been prepared, this function does 398 * nothing. 399 * 400 * The reason why the functionality of sending and preparing URBs is separated 401 * is that host controllers don't guarantee the order in which they return 402 * inbound and outbound packets to their submitters. 403 * 404 * This function is only used for implicit feedback endpoints. For endpoints 405 * driven by dedicated sync endpoints, URBs are immediately re-submitted 406 * from their completion handler. 407 */ 408 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep) 409 { 410 while (ep_state_running(ep)) { 411 412 unsigned long flags; 413 struct snd_usb_packet_info *packet; 414 struct snd_urb_ctx *ctx = NULL; 415 int err, i; 416 417 spin_lock_irqsave(&ep->lock, flags); 418 if (ep->next_packet_queued > 0 && 419 !list_empty(&ep->ready_playback_urbs)) { 420 /* take URB out of FIFO */ 421 ctx = list_first_entry(&ep->ready_playback_urbs, 422 struct snd_urb_ctx, ready_list); 423 list_del_init(&ctx->ready_list); 424 425 packet = next_packet_fifo_dequeue(ep); 426 } 427 spin_unlock_irqrestore(&ep->lock, flags); 428 429 if (ctx == NULL) 430 return; 431 432 /* copy over the length information */ 433 for (i = 0; i < packet->packets; i++) 434 ctx->packet_size[i] = packet->packet_size[i]; 435 436 /* call the data handler to fill in playback data */ 437 prepare_outbound_urb(ep, ctx); 438 439 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 440 if (err < 0) { 441 usb_audio_err(ep->chip, 442 "Unable to submit urb #%d: %d at %s\n", 443 ctx->index, err, __func__); 444 notify_xrun(ep); 445 return; 446 } 447 448 set_bit(ctx->index, &ep->active_mask); 449 } 450 } 451 452 /* 453 * complete callback for urbs 454 */ 455 static void snd_complete_urb(struct urb *urb) 456 { 457 struct snd_urb_ctx *ctx = urb->context; 458 struct snd_usb_endpoint *ep = ctx->ep; 459 unsigned long flags; 460 int err; 461 462 if (unlikely(urb->status == -ENOENT || /* unlinked */ 463 urb->status == -ENODEV || /* device removed */ 464 urb->status == -ECONNRESET || /* unlinked */ 465 urb->status == -ESHUTDOWN)) /* device disabled */ 466 goto exit_clear; 467 /* device disconnected */ 468 if (unlikely(atomic_read(&ep->chip->shutdown))) 469 goto exit_clear; 470 471 if (unlikely(!ep_state_running(ep))) 472 goto exit_clear; 473 474 if (usb_pipeout(ep->pipe)) { 475 retire_outbound_urb(ep, ctx); 476 /* can be stopped during retire callback */ 477 if (unlikely(!ep_state_running(ep))) 478 goto exit_clear; 479 480 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 481 spin_lock_irqsave(&ep->lock, flags); 482 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 483 clear_bit(ctx->index, &ep->active_mask); 484 spin_unlock_irqrestore(&ep->lock, flags); 485 queue_pending_output_urbs(ep); 486 return; 487 } 488 489 prepare_outbound_urb(ep, ctx); 490 /* can be stopped during prepare callback */ 491 if (unlikely(!ep_state_running(ep))) 492 goto exit_clear; 493 } else { 494 retire_inbound_urb(ep, ctx); 495 /* can be stopped during retire callback */ 496 if (unlikely(!ep_state_running(ep))) 497 goto exit_clear; 498 499 prepare_inbound_urb(ep, ctx); 500 } 501 502 err = usb_submit_urb(urb, GFP_ATOMIC); 503 if (err == 0) 504 return; 505 506 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 507 notify_xrun(ep); 508 509 exit_clear: 510 clear_bit(ctx->index, &ep->active_mask); 511 } 512 513 /* 514 * Find or create a refcount object for the given interface 515 * 516 * The objects are released altogether in snd_usb_endpoint_free_all() 517 */ 518 static struct snd_usb_iface_ref * 519 iface_ref_find(struct snd_usb_audio *chip, int iface) 520 { 521 struct snd_usb_iface_ref *ip; 522 523 list_for_each_entry(ip, &chip->iface_ref_list, list) 524 if (ip->iface == iface) 525 return ip; 526 527 ip = kzalloc(sizeof(*ip), GFP_KERNEL); 528 if (!ip) 529 return NULL; 530 ip->iface = iface; 531 list_add_tail(&ip->list, &chip->iface_ref_list); 532 return ip; 533 } 534 535 /* 536 * Get the existing endpoint object corresponding EP 537 * Returns NULL if not present. 538 */ 539 struct snd_usb_endpoint * 540 snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num) 541 { 542 struct snd_usb_endpoint *ep; 543 544 list_for_each_entry(ep, &chip->ep_list, list) { 545 if (ep->ep_num == ep_num) 546 return ep; 547 } 548 549 return NULL; 550 } 551 552 #define ep_type_name(type) \ 553 (type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync") 554 555 /** 556 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 557 * 558 * @chip: The chip 559 * @ep_num: The number of the endpoint to use 560 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 561 * 562 * If the requested endpoint has not been added to the given chip before, 563 * a new instance is created. 564 * 565 * Returns zero on success or a negative error code. 566 * 567 * New endpoints will be added to chip->ep_list and freed by 568 * calling snd_usb_endpoint_free_all(). 569 * 570 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 571 * bNumEndpoints > 1 beforehand. 572 */ 573 int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type) 574 { 575 struct snd_usb_endpoint *ep; 576 bool is_playback; 577 578 ep = snd_usb_get_endpoint(chip, ep_num); 579 if (ep) 580 return 0; 581 582 usb_audio_dbg(chip, "Creating new %s endpoint #%x\n", 583 ep_type_name(type), 584 ep_num); 585 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 586 if (!ep) 587 return -ENOMEM; 588 589 ep->chip = chip; 590 spin_lock_init(&ep->lock); 591 ep->type = type; 592 ep->ep_num = ep_num; 593 INIT_LIST_HEAD(&ep->ready_playback_urbs); 594 595 is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 596 ep_num &= USB_ENDPOINT_NUMBER_MASK; 597 if (is_playback) 598 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 599 else 600 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 601 602 list_add_tail(&ep->list, &chip->ep_list); 603 return 0; 604 } 605 606 /* Set up syncinterval and maxsyncsize for a sync EP */ 607 static void endpoint_set_syncinterval(struct snd_usb_audio *chip, 608 struct snd_usb_endpoint *ep) 609 { 610 struct usb_host_interface *alts; 611 struct usb_endpoint_descriptor *desc; 612 613 alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting); 614 if (!alts) 615 return; 616 617 desc = get_endpoint(alts, ep->ep_idx); 618 if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 619 desc->bRefresh >= 1 && desc->bRefresh <= 9) 620 ep->syncinterval = desc->bRefresh; 621 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 622 ep->syncinterval = 1; 623 else if (desc->bInterval >= 1 && desc->bInterval <= 16) 624 ep->syncinterval = desc->bInterval - 1; 625 else 626 ep->syncinterval = 3; 627 628 ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize); 629 } 630 631 static bool endpoint_compatible(struct snd_usb_endpoint *ep, 632 const struct audioformat *fp, 633 const struct snd_pcm_hw_params *params) 634 { 635 if (!ep->opened) 636 return false; 637 if (ep->cur_audiofmt != fp) 638 return false; 639 if (ep->cur_rate != params_rate(params) || 640 ep->cur_format != params_format(params) || 641 ep->cur_period_frames != params_period_size(params) || 642 ep->cur_buffer_periods != params_periods(params)) 643 return false; 644 return true; 645 } 646 647 /* 648 * Check whether the given fp and hw params are compatible with the current 649 * setup of the target EP for implicit feedback sync 650 */ 651 bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip, 652 struct snd_usb_endpoint *ep, 653 const struct audioformat *fp, 654 const struct snd_pcm_hw_params *params) 655 { 656 bool ret; 657 658 mutex_lock(&chip->mutex); 659 ret = endpoint_compatible(ep, fp, params); 660 mutex_unlock(&chip->mutex); 661 return ret; 662 } 663 664 /* 665 * snd_usb_endpoint_open: Open the endpoint 666 * 667 * Called from hw_params to assign the endpoint to the substream. 668 * It's reference-counted, and only the first opener is allowed to set up 669 * arbitrary parameters. The later opener must be compatible with the 670 * former opened parameters. 671 * The endpoint needs to be closed via snd_usb_endpoint_close() later. 672 * 673 * Note that this function doesn't configure the endpoint. The substream 674 * needs to set it up later via snd_usb_endpoint_configure(). 675 */ 676 struct snd_usb_endpoint * 677 snd_usb_endpoint_open(struct snd_usb_audio *chip, 678 const struct audioformat *fp, 679 const struct snd_pcm_hw_params *params, 680 bool is_sync_ep) 681 { 682 struct snd_usb_endpoint *ep; 683 int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint; 684 685 mutex_lock(&chip->mutex); 686 ep = snd_usb_get_endpoint(chip, ep_num); 687 if (!ep) { 688 usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num); 689 goto unlock; 690 } 691 692 if (!ep->opened) { 693 if (is_sync_ep) { 694 ep->iface = fp->sync_iface; 695 ep->altsetting = fp->sync_altsetting; 696 ep->ep_idx = fp->sync_ep_idx; 697 } else { 698 ep->iface = fp->iface; 699 ep->altsetting = fp->altsetting; 700 ep->ep_idx = fp->ep_idx; 701 } 702 usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n", 703 ep_num, ep->iface, ep->altsetting, ep->ep_idx); 704 705 ep->iface_ref = iface_ref_find(chip, ep->iface); 706 if (!ep->iface_ref) { 707 ep = NULL; 708 goto unlock; 709 } 710 711 ep->cur_audiofmt = fp; 712 ep->cur_channels = fp->channels; 713 ep->cur_rate = params_rate(params); 714 ep->cur_format = params_format(params); 715 ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) * 716 ep->cur_channels / 8; 717 ep->cur_period_frames = params_period_size(params); 718 ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes; 719 ep->cur_buffer_periods = params_periods(params); 720 721 if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC) 722 endpoint_set_syncinterval(chip, ep); 723 724 ep->implicit_fb_sync = fp->implicit_fb; 725 ep->need_setup = true; 726 727 usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n", 728 ep->cur_channels, ep->cur_rate, 729 snd_pcm_format_name(ep->cur_format), 730 ep->cur_period_bytes, ep->cur_buffer_periods, 731 ep->implicit_fb_sync); 732 733 } else { 734 if (WARN_ON(!ep->iface_ref)) { 735 ep = NULL; 736 goto unlock; 737 } 738 739 if (!endpoint_compatible(ep, fp, params)) { 740 usb_audio_err(chip, "Incompatible EP setup for 0x%x\n", 741 ep_num); 742 ep = NULL; 743 goto unlock; 744 } 745 746 usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n", 747 ep_num, ep->opened); 748 } 749 750 if (!ep->iface_ref->opened++) 751 ep->iface_ref->need_setup = true; 752 753 ep->opened++; 754 755 unlock: 756 mutex_unlock(&chip->mutex); 757 return ep; 758 } 759 760 /* 761 * snd_usb_endpoint_set_sync: Link data and sync endpoints 762 * 763 * Pass NULL to sync_ep to unlink again 764 */ 765 void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip, 766 struct snd_usb_endpoint *data_ep, 767 struct snd_usb_endpoint *sync_ep) 768 { 769 data_ep->sync_source = sync_ep; 770 } 771 772 /* 773 * Set data endpoint callbacks and the assigned data stream 774 * 775 * Called at PCM trigger and cleanups. 776 * Pass NULL to deactivate each callback. 777 */ 778 void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep, 779 void (*prepare)(struct snd_usb_substream *subs, 780 struct urb *urb), 781 void (*retire)(struct snd_usb_substream *subs, 782 struct urb *urb), 783 struct snd_usb_substream *data_subs) 784 { 785 ep->prepare_data_urb = prepare; 786 ep->retire_data_urb = retire; 787 WRITE_ONCE(ep->data_subs, data_subs); 788 } 789 790 static int endpoint_set_interface(struct snd_usb_audio *chip, 791 struct snd_usb_endpoint *ep, 792 bool set) 793 { 794 int altset = set ? ep->altsetting : 0; 795 int err; 796 797 usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n", 798 ep->iface, altset, ep->ep_num); 799 err = usb_set_interface(chip->dev, ep->iface, altset); 800 if (err < 0) { 801 usb_audio_err(chip, "%d:%d: usb_set_interface failed (%d)\n", 802 ep->iface, altset, err); 803 return err; 804 } 805 806 snd_usb_set_interface_quirk(chip); 807 return 0; 808 } 809 810 /* 811 * snd_usb_endpoint_close: Close the endpoint 812 * 813 * Unreference the already opened endpoint via snd_usb_endpoint_open(). 814 */ 815 void snd_usb_endpoint_close(struct snd_usb_audio *chip, 816 struct snd_usb_endpoint *ep) 817 { 818 mutex_lock(&chip->mutex); 819 usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n", 820 ep->ep_num, ep->opened); 821 822 if (!--ep->iface_ref->opened) 823 endpoint_set_interface(chip, ep, false); 824 825 if (!--ep->opened) { 826 ep->iface = 0; 827 ep->altsetting = 0; 828 ep->cur_audiofmt = NULL; 829 ep->cur_rate = 0; 830 ep->iface_ref = NULL; 831 usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num); 832 } 833 mutex_unlock(&chip->mutex); 834 } 835 836 /* Prepare for suspening EP, called from the main suspend handler */ 837 void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep) 838 { 839 ep->need_setup = true; 840 if (ep->iface_ref) 841 ep->iface_ref->need_setup = true; 842 } 843 844 /* 845 * wait until all urbs are processed. 846 */ 847 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 848 { 849 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 850 int alive; 851 852 if (atomic_read(&ep->state) != EP_STATE_STOPPING) 853 return 0; 854 855 do { 856 alive = bitmap_weight(&ep->active_mask, ep->nurbs); 857 if (!alive) 858 break; 859 860 schedule_timeout_uninterruptible(1); 861 } while (time_before(jiffies, end_time)); 862 863 if (alive) 864 usb_audio_err(ep->chip, 865 "timeout: still %d active urbs on EP #%x\n", 866 alive, ep->ep_num); 867 868 if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) { 869 ep->sync_sink = NULL; 870 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 871 } 872 873 return 0; 874 } 875 876 /* sync the pending stop operation; 877 * this function itself doesn't trigger the stop operation 878 */ 879 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 880 { 881 if (ep) 882 wait_clear_urbs(ep); 883 } 884 885 /* 886 * Stop active urbs 887 * 888 * This function moves the EP to STOPPING state if it's being RUNNING. 889 */ 890 static int stop_urbs(struct snd_usb_endpoint *ep, bool force) 891 { 892 unsigned int i; 893 894 if (!force && atomic_read(&ep->running)) 895 return -EBUSY; 896 897 if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING)) 898 return 0; 899 900 INIT_LIST_HEAD(&ep->ready_playback_urbs); 901 ep->next_packet_head = 0; 902 ep->next_packet_queued = 0; 903 904 for (i = 0; i < ep->nurbs; i++) { 905 if (test_bit(i, &ep->active_mask)) { 906 if (!test_and_set_bit(i, &ep->unlink_mask)) { 907 struct urb *u = ep->urb[i].urb; 908 usb_unlink_urb(u); 909 } 910 } 911 } 912 913 return 0; 914 } 915 916 /* 917 * release an endpoint's urbs 918 */ 919 static int release_urbs(struct snd_usb_endpoint *ep, bool force) 920 { 921 int i, err; 922 923 /* route incoming urbs to nirvana */ 924 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 925 926 /* stop and unlink urbs */ 927 err = stop_urbs(ep, force); 928 if (err) 929 return err; 930 931 wait_clear_urbs(ep); 932 933 for (i = 0; i < ep->nurbs; i++) 934 release_urb_ctx(&ep->urb[i]); 935 936 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 937 ep->syncbuf, ep->sync_dma); 938 939 ep->syncbuf = NULL; 940 ep->nurbs = 0; 941 return 0; 942 } 943 944 /* 945 * configure a data endpoint 946 */ 947 static int data_ep_set_params(struct snd_usb_endpoint *ep) 948 { 949 struct snd_usb_audio *chip = ep->chip; 950 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 951 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 952 unsigned int max_urbs, i; 953 const struct audioformat *fmt = ep->cur_audiofmt; 954 int frame_bits = ep->cur_frame_bytes * 8; 955 int tx_length_quirk = (chip->tx_length_quirk && 956 usb_pipeout(ep->pipe)); 957 958 usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n", 959 ep->ep_num, ep->pipe); 960 961 if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 962 /* 963 * When operating in DSD DOP mode, the size of a sample frame 964 * in hardware differs from the actual physical format width 965 * because we need to make room for the DOP markers. 966 */ 967 frame_bits += ep->cur_channels << 3; 968 } 969 970 ep->datainterval = fmt->datainterval; 971 ep->stride = frame_bits >> 3; 972 973 switch (ep->cur_format) { 974 case SNDRV_PCM_FORMAT_U8: 975 ep->silence_value = 0x80; 976 break; 977 case SNDRV_PCM_FORMAT_DSD_U8: 978 case SNDRV_PCM_FORMAT_DSD_U16_LE: 979 case SNDRV_PCM_FORMAT_DSD_U32_LE: 980 case SNDRV_PCM_FORMAT_DSD_U16_BE: 981 case SNDRV_PCM_FORMAT_DSD_U32_BE: 982 ep->silence_value = 0x69; 983 break; 984 default: 985 ep->silence_value = 0; 986 } 987 988 /* assume max. frequency is 50% higher than nominal */ 989 ep->freqmax = ep->freqn + (ep->freqn >> 1); 990 /* Round up freqmax to nearest integer in order to calculate maximum 991 * packet size, which must represent a whole number of frames. 992 * This is accomplished by adding 0x0.ffff before converting the 993 * Q16.16 format into integer. 994 * In order to accurately calculate the maximum packet size when 995 * the data interval is more than 1 (i.e. ep->datainterval > 0), 996 * multiply by the data interval prior to rounding. For instance, 997 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 998 * frames with a data interval of 1, but 11 (10.25) frames with a 999 * data interval of 2. 1000 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 1001 * maximum datainterval value of 3, at USB full speed, higher for 1002 * USB high speed, noting that ep->freqmax is in units of 1003 * frames per packet in Q16.16 format.) 1004 */ 1005 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 1006 (frame_bits >> 3); 1007 if (tx_length_quirk) 1008 maxsize += sizeof(__le32); /* Space for length descriptor */ 1009 /* but wMaxPacketSize might reduce this */ 1010 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 1011 /* whatever fits into a max. size packet */ 1012 unsigned int data_maxsize = maxsize = ep->maxpacksize; 1013 1014 if (tx_length_quirk) 1015 /* Need to remove the length descriptor to calc freq */ 1016 data_maxsize -= sizeof(__le32); 1017 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 1018 << (16 - ep->datainterval); 1019 } 1020 1021 if (ep->fill_max) 1022 ep->curpacksize = ep->maxpacksize; 1023 else 1024 ep->curpacksize = maxsize; 1025 1026 if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) { 1027 packs_per_ms = 8 >> ep->datainterval; 1028 max_packs_per_urb = MAX_PACKS_HS; 1029 } else { 1030 packs_per_ms = 1; 1031 max_packs_per_urb = MAX_PACKS; 1032 } 1033 if (ep->sync_source && !ep->implicit_fb_sync) 1034 max_packs_per_urb = min(max_packs_per_urb, 1035 1U << ep->sync_source->syncinterval); 1036 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 1037 1038 /* 1039 * Capture endpoints need to use small URBs because there's no way 1040 * to tell in advance where the next period will end, and we don't 1041 * want the next URB to complete much after the period ends. 1042 * 1043 * Playback endpoints with implicit sync much use the same parameters 1044 * as their corresponding capture endpoint. 1045 */ 1046 if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) { 1047 1048 urb_packs = packs_per_ms; 1049 /* 1050 * Wireless devices can poll at a max rate of once per 4ms. 1051 * For dataintervals less than 5, increase the packet count to 1052 * allow the host controller to use bursting to fill in the 1053 * gaps. 1054 */ 1055 if (snd_usb_get_speed(chip->dev) == USB_SPEED_WIRELESS) { 1056 int interval = ep->datainterval; 1057 while (interval < 5) { 1058 urb_packs <<= 1; 1059 ++interval; 1060 } 1061 } 1062 /* make capture URBs <= 1 ms and smaller than a period */ 1063 urb_packs = min(max_packs_per_urb, urb_packs); 1064 while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes) 1065 urb_packs >>= 1; 1066 ep->nurbs = MAX_URBS; 1067 1068 /* 1069 * Playback endpoints without implicit sync are adjusted so that 1070 * a period fits as evenly as possible in the smallest number of 1071 * URBs. The total number of URBs is adjusted to the size of the 1072 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 1073 */ 1074 } else { 1075 /* determine how small a packet can be */ 1076 minsize = (ep->freqn >> (16 - ep->datainterval)) * 1077 (frame_bits >> 3); 1078 /* with sync from device, assume it can be 12% lower */ 1079 if (ep->sync_source) 1080 minsize -= minsize >> 3; 1081 minsize = max(minsize, 1u); 1082 1083 /* how many packets will contain an entire ALSA period? */ 1084 max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize); 1085 1086 /* how many URBs will contain a period? */ 1087 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 1088 max_packs_per_urb); 1089 /* how many packets are needed in each URB? */ 1090 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 1091 1092 /* limit the number of frames in a single URB */ 1093 ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames, 1094 urbs_per_period); 1095 1096 /* try to use enough URBs to contain an entire ALSA buffer */ 1097 max_urbs = min((unsigned) MAX_URBS, 1098 MAX_QUEUE * packs_per_ms / urb_packs); 1099 ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods); 1100 } 1101 1102 /* allocate and initialize data urbs */ 1103 for (i = 0; i < ep->nurbs; i++) { 1104 struct snd_urb_ctx *u = &ep->urb[i]; 1105 u->index = i; 1106 u->ep = ep; 1107 u->packets = urb_packs; 1108 u->buffer_size = maxsize * u->packets; 1109 1110 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 1111 u->packets++; /* for transfer delimiter */ 1112 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 1113 if (!u->urb) 1114 goto out_of_memory; 1115 1116 u->urb->transfer_buffer = 1117 usb_alloc_coherent(chip->dev, u->buffer_size, 1118 GFP_KERNEL, &u->urb->transfer_dma); 1119 if (!u->urb->transfer_buffer) 1120 goto out_of_memory; 1121 u->urb->pipe = ep->pipe; 1122 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1123 u->urb->interval = 1 << ep->datainterval; 1124 u->urb->context = u; 1125 u->urb->complete = snd_complete_urb; 1126 INIT_LIST_HEAD(&u->ready_list); 1127 } 1128 1129 return 0; 1130 1131 out_of_memory: 1132 release_urbs(ep, false); 1133 return -ENOMEM; 1134 } 1135 1136 /* 1137 * configure a sync endpoint 1138 */ 1139 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 1140 { 1141 struct snd_usb_audio *chip = ep->chip; 1142 int i; 1143 1144 usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n", 1145 ep->ep_num, ep->pipe); 1146 1147 ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4, 1148 GFP_KERNEL, &ep->sync_dma); 1149 if (!ep->syncbuf) 1150 return -ENOMEM; 1151 1152 for (i = 0; i < SYNC_URBS; i++) { 1153 struct snd_urb_ctx *u = &ep->urb[i]; 1154 u->index = i; 1155 u->ep = ep; 1156 u->packets = 1; 1157 u->urb = usb_alloc_urb(1, GFP_KERNEL); 1158 if (!u->urb) 1159 goto out_of_memory; 1160 u->urb->transfer_buffer = ep->syncbuf + i * 4; 1161 u->urb->transfer_dma = ep->sync_dma + i * 4; 1162 u->urb->transfer_buffer_length = 4; 1163 u->urb->pipe = ep->pipe; 1164 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1165 u->urb->number_of_packets = 1; 1166 u->urb->interval = 1 << ep->syncinterval; 1167 u->urb->context = u; 1168 u->urb->complete = snd_complete_urb; 1169 } 1170 1171 ep->nurbs = SYNC_URBS; 1172 1173 return 0; 1174 1175 out_of_memory: 1176 release_urbs(ep, false); 1177 return -ENOMEM; 1178 } 1179 1180 /* 1181 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 1182 * 1183 * Determine the number of URBs to be used on this endpoint. 1184 * An endpoint must be configured before it can be started. 1185 * An endpoint that is already running can not be reconfigured. 1186 */ 1187 static int snd_usb_endpoint_set_params(struct snd_usb_audio *chip, 1188 struct snd_usb_endpoint *ep) 1189 { 1190 const struct audioformat *fmt = ep->cur_audiofmt; 1191 int err; 1192 1193 /* release old buffers, if any */ 1194 err = release_urbs(ep, false); 1195 if (err < 0) 1196 return err; 1197 1198 ep->datainterval = fmt->datainterval; 1199 ep->maxpacksize = fmt->maxpacksize; 1200 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 1201 1202 if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) { 1203 ep->freqn = get_usb_full_speed_rate(ep->cur_rate); 1204 ep->pps = 1000 >> ep->datainterval; 1205 } else { 1206 ep->freqn = get_usb_high_speed_rate(ep->cur_rate); 1207 ep->pps = 8000 >> ep->datainterval; 1208 } 1209 1210 ep->sample_rem = ep->cur_rate % ep->pps; 1211 ep->packsize[0] = ep->cur_rate / ep->pps; 1212 ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps; 1213 1214 /* calculate the frequency in 16.16 format */ 1215 ep->freqm = ep->freqn; 1216 ep->freqshift = INT_MIN; 1217 1218 ep->phase = 0; 1219 1220 switch (ep->type) { 1221 case SND_USB_ENDPOINT_TYPE_DATA: 1222 err = data_ep_set_params(ep); 1223 break; 1224 case SND_USB_ENDPOINT_TYPE_SYNC: 1225 err = sync_ep_set_params(ep); 1226 break; 1227 default: 1228 err = -EINVAL; 1229 } 1230 1231 usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err); 1232 1233 if (err < 0) 1234 return err; 1235 1236 /* some unit conversions in runtime */ 1237 ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes; 1238 ep->curframesize = ep->curpacksize / ep->cur_frame_bytes; 1239 1240 return 0; 1241 } 1242 1243 /* 1244 * snd_usb_endpoint_configure: Configure the endpoint 1245 * 1246 * This function sets up the EP to be fully usable state. 1247 * It's called either from hw_params or prepare callback. 1248 * The function checks need_setup flag, and performs nothing unless needed, 1249 * so it's safe to call this multiple times. 1250 * 1251 * This returns zero if unchanged, 1 if the configuration has changed, 1252 * or a negative error code. 1253 */ 1254 int snd_usb_endpoint_configure(struct snd_usb_audio *chip, 1255 struct snd_usb_endpoint *ep) 1256 { 1257 bool iface_first; 1258 int err = 0; 1259 1260 mutex_lock(&chip->mutex); 1261 if (WARN_ON(!ep->iface_ref)) 1262 goto unlock; 1263 if (!ep->need_setup) 1264 goto unlock; 1265 1266 /* If the interface has been already set up, just set EP parameters */ 1267 if (!ep->iface_ref->need_setup) { 1268 /* sample rate setup of UAC1 is per endpoint, and we need 1269 * to update at each EP configuration 1270 */ 1271 if (ep->cur_audiofmt->protocol == UAC_VERSION_1) { 1272 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, 1273 ep->cur_rate); 1274 if (err < 0) 1275 goto unlock; 1276 } 1277 err = snd_usb_endpoint_set_params(chip, ep); 1278 if (err < 0) 1279 goto unlock; 1280 goto done; 1281 } 1282 1283 /* Need to deselect altsetting at first */ 1284 endpoint_set_interface(chip, ep, false); 1285 1286 /* Some UAC1 devices (e.g. Yamaha THR10) need the host interface 1287 * to be set up before parameter setups 1288 */ 1289 iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1; 1290 if (iface_first) { 1291 err = endpoint_set_interface(chip, ep, true); 1292 if (err < 0) 1293 goto unlock; 1294 } 1295 1296 err = snd_usb_init_pitch(chip, ep->cur_audiofmt); 1297 if (err < 0) 1298 goto unlock; 1299 1300 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, ep->cur_rate); 1301 if (err < 0) 1302 goto unlock; 1303 1304 err = snd_usb_endpoint_set_params(chip, ep); 1305 if (err < 0) 1306 goto unlock; 1307 1308 err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt); 1309 if (err < 0) 1310 goto unlock; 1311 1312 /* for UAC2/3, enable the interface altset here at last */ 1313 if (!iface_first) { 1314 err = endpoint_set_interface(chip, ep, true); 1315 if (err < 0) 1316 goto unlock; 1317 } 1318 1319 ep->iface_ref->need_setup = false; 1320 1321 done: 1322 ep->need_setup = false; 1323 err = 1; 1324 1325 unlock: 1326 mutex_unlock(&chip->mutex); 1327 return err; 1328 } 1329 1330 /** 1331 * snd_usb_endpoint_start: start an snd_usb_endpoint 1332 * 1333 * @ep: the endpoint to start 1334 * 1335 * A call to this function will increment the running count of the endpoint. 1336 * In case it is not already running, the URBs for this endpoint will be 1337 * submitted. Otherwise, this function does nothing. 1338 * 1339 * Must be balanced to calls of snd_usb_endpoint_stop(). 1340 * 1341 * Returns an error if the URB submission failed, 0 in all other cases. 1342 */ 1343 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) 1344 { 1345 int err; 1346 unsigned int i; 1347 1348 if (atomic_read(&ep->chip->shutdown)) 1349 return -EBADFD; 1350 1351 if (ep->sync_source) 1352 WRITE_ONCE(ep->sync_source->sync_sink, ep); 1353 1354 usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n", 1355 ep_type_name(ep->type), ep->ep_num, 1356 atomic_read(&ep->running)); 1357 1358 /* already running? */ 1359 if (atomic_inc_return(&ep->running) != 1) 1360 return 0; 1361 1362 ep->active_mask = 0; 1363 ep->unlink_mask = 0; 1364 ep->phase = 0; 1365 ep->sample_accum = 0; 1366 1367 snd_usb_endpoint_start_quirk(ep); 1368 1369 /* 1370 * If this endpoint has a data endpoint as implicit feedback source, 1371 * don't start the urbs here. Instead, mark them all as available, 1372 * wait for the record urbs to return and queue the playback urbs 1373 * from that context. 1374 */ 1375 1376 if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING)) 1377 goto __error; 1378 1379 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1380 !ep->chip->playback_first) { 1381 for (i = 0; i < ep->nurbs; i++) { 1382 struct snd_urb_ctx *ctx = ep->urb + i; 1383 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 1384 } 1385 1386 usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n"); 1387 return 0; 1388 } 1389 1390 for (i = 0; i < ep->nurbs; i++) { 1391 struct urb *urb = ep->urb[i].urb; 1392 1393 if (snd_BUG_ON(!urb)) 1394 goto __error; 1395 1396 if (usb_pipeout(ep->pipe)) { 1397 prepare_outbound_urb(ep, urb->context); 1398 } else { 1399 prepare_inbound_urb(ep, urb->context); 1400 } 1401 1402 err = usb_submit_urb(urb, GFP_ATOMIC); 1403 if (err < 0) { 1404 usb_audio_err(ep->chip, 1405 "cannot submit urb %d, error %d: %s\n", 1406 i, err, usb_error_string(err)); 1407 goto __error; 1408 } 1409 set_bit(i, &ep->active_mask); 1410 } 1411 1412 usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n", 1413 ep->nurbs, ep->ep_num); 1414 return 0; 1415 1416 __error: 1417 snd_usb_endpoint_stop(ep); 1418 return -EPIPE; 1419 } 1420 1421 /** 1422 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 1423 * 1424 * @ep: the endpoint to stop (may be NULL) 1425 * 1426 * A call to this function will decrement the running count of the endpoint. 1427 * In case the last user has requested the endpoint stop, the URBs will 1428 * actually be deactivated. 1429 * 1430 * Must be balanced to calls of snd_usb_endpoint_start(). 1431 * 1432 * The caller needs to synchronize the pending stop operation via 1433 * snd_usb_endpoint_sync_pending_stop(). 1434 */ 1435 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep) 1436 { 1437 if (!ep) 1438 return; 1439 1440 usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n", 1441 ep_type_name(ep->type), ep->ep_num, 1442 atomic_read(&ep->running)); 1443 1444 if (snd_BUG_ON(!atomic_read(&ep->running))) 1445 return; 1446 1447 if (!atomic_dec_return(&ep->running)) { 1448 if (ep->sync_source) 1449 WRITE_ONCE(ep->sync_source->sync_sink, NULL); 1450 stop_urbs(ep, false); 1451 } 1452 } 1453 1454 /** 1455 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1456 * 1457 * @ep: the endpoint to release 1458 * 1459 * This function does not care for the endpoint's running count but will tear 1460 * down all the streaming URBs immediately. 1461 */ 1462 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1463 { 1464 release_urbs(ep, true); 1465 } 1466 1467 /** 1468 * snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint 1469 * @chip: The chip 1470 * 1471 * This free all endpoints and those resources 1472 */ 1473 void snd_usb_endpoint_free_all(struct snd_usb_audio *chip) 1474 { 1475 struct snd_usb_endpoint *ep, *en; 1476 struct snd_usb_iface_ref *ip, *in; 1477 1478 list_for_each_entry_safe(ep, en, &chip->ep_list, list) 1479 kfree(ep); 1480 1481 list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list) 1482 kfree(ip); 1483 } 1484 1485 /* 1486 * snd_usb_handle_sync_urb: parse an USB sync packet 1487 * 1488 * @ep: the endpoint to handle the packet 1489 * @sender: the sending endpoint 1490 * @urb: the received packet 1491 * 1492 * This function is called from the context of an endpoint that received 1493 * the packet and is used to let another endpoint object handle the payload. 1494 */ 1495 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1496 struct snd_usb_endpoint *sender, 1497 const struct urb *urb) 1498 { 1499 int shift; 1500 unsigned int f; 1501 unsigned long flags; 1502 1503 snd_BUG_ON(ep == sender); 1504 1505 /* 1506 * In case the endpoint is operating in implicit feedback mode, prepare 1507 * a new outbound URB that has the same layout as the received packet 1508 * and add it to the list of pending urbs. queue_pending_output_urbs() 1509 * will take care of them later. 1510 */ 1511 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1512 atomic_read(&ep->running)) { 1513 1514 /* implicit feedback case */ 1515 int i, bytes = 0; 1516 struct snd_urb_ctx *in_ctx; 1517 struct snd_usb_packet_info *out_packet; 1518 1519 in_ctx = urb->context; 1520 1521 /* Count overall packet size */ 1522 for (i = 0; i < in_ctx->packets; i++) 1523 if (urb->iso_frame_desc[i].status == 0) 1524 bytes += urb->iso_frame_desc[i].actual_length; 1525 1526 /* 1527 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1528 * streaming once it received a 0-byte OUT URB 1529 */ 1530 if (bytes == 0) 1531 return; 1532 1533 spin_lock_irqsave(&ep->lock, flags); 1534 if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) { 1535 spin_unlock_irqrestore(&ep->lock, flags); 1536 usb_audio_err(ep->chip, 1537 "next package FIFO overflow EP 0x%x\n", 1538 ep->ep_num); 1539 notify_xrun(ep); 1540 return; 1541 } 1542 1543 out_packet = next_packet_fifo_enqueue(ep); 1544 1545 /* 1546 * Iterate through the inbound packet and prepare the lengths 1547 * for the output packet. The OUT packet we are about to send 1548 * will have the same amount of payload bytes per stride as the 1549 * IN packet we just received. Since the actual size is scaled 1550 * by the stride, use the sender stride to calculate the length 1551 * in case the number of channels differ between the implicitly 1552 * fed-back endpoint and the synchronizing endpoint. 1553 */ 1554 1555 out_packet->packets = in_ctx->packets; 1556 for (i = 0; i < in_ctx->packets; i++) { 1557 if (urb->iso_frame_desc[i].status == 0) 1558 out_packet->packet_size[i] = 1559 urb->iso_frame_desc[i].actual_length / sender->stride; 1560 else 1561 out_packet->packet_size[i] = 0; 1562 } 1563 1564 spin_unlock_irqrestore(&ep->lock, flags); 1565 queue_pending_output_urbs(ep); 1566 1567 return; 1568 } 1569 1570 /* 1571 * process after playback sync complete 1572 * 1573 * Full speed devices report feedback values in 10.14 format as samples 1574 * per frame, high speed devices in 16.16 format as samples per 1575 * microframe. 1576 * 1577 * Because the Audio Class 1 spec was written before USB 2.0, many high 1578 * speed devices use a wrong interpretation, some others use an 1579 * entirely different format. 1580 * 1581 * Therefore, we cannot predict what format any particular device uses 1582 * and must detect it automatically. 1583 */ 1584 1585 if (urb->iso_frame_desc[0].status != 0 || 1586 urb->iso_frame_desc[0].actual_length < 3) 1587 return; 1588 1589 f = le32_to_cpup(urb->transfer_buffer); 1590 if (urb->iso_frame_desc[0].actual_length == 3) 1591 f &= 0x00ffffff; 1592 else 1593 f &= 0x0fffffff; 1594 1595 if (f == 0) 1596 return; 1597 1598 if (unlikely(sender->tenor_fb_quirk)) { 1599 /* 1600 * Devices based on Tenor 8802 chipsets (TEAC UD-H01 1601 * and others) sometimes change the feedback value 1602 * by +/- 0x1.0000. 1603 */ 1604 if (f < ep->freqn - 0x8000) 1605 f += 0xf000; 1606 else if (f > ep->freqn + 0x8000) 1607 f -= 0xf000; 1608 } else if (unlikely(ep->freqshift == INT_MIN)) { 1609 /* 1610 * The first time we see a feedback value, determine its format 1611 * by shifting it left or right until it matches the nominal 1612 * frequency value. This assumes that the feedback does not 1613 * differ from the nominal value more than +50% or -25%. 1614 */ 1615 shift = 0; 1616 while (f < ep->freqn - ep->freqn / 4) { 1617 f <<= 1; 1618 shift++; 1619 } 1620 while (f > ep->freqn + ep->freqn / 2) { 1621 f >>= 1; 1622 shift--; 1623 } 1624 ep->freqshift = shift; 1625 } else if (ep->freqshift >= 0) 1626 f <<= ep->freqshift; 1627 else 1628 f >>= -ep->freqshift; 1629 1630 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1631 /* 1632 * If the frequency looks valid, set it. 1633 * This value is referred to in prepare_playback_urb(). 1634 */ 1635 spin_lock_irqsave(&ep->lock, flags); 1636 ep->freqm = f; 1637 spin_unlock_irqrestore(&ep->lock, flags); 1638 } else { 1639 /* 1640 * Out of range; maybe the shift value is wrong. 1641 * Reset it so that we autodetect again the next time. 1642 */ 1643 ep->freqshift = INT_MIN; 1644 } 1645 } 1646 1647