1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 15 * 16 */ 17 18 #include <linux/gfp.h> 19 #include <linux/init.h> 20 #include <linux/ratelimit.h> 21 #include <linux/usb.h> 22 #include <linux/usb/audio.h> 23 #include <linux/slab.h> 24 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 29 #include "usbaudio.h" 30 #include "helper.h" 31 #include "card.h" 32 #include "endpoint.h" 33 #include "pcm.h" 34 #include "quirks.h" 35 36 #define EP_FLAG_RUNNING 1 37 #define EP_FLAG_STOPPING 2 38 39 /* 40 * snd_usb_endpoint is a model that abstracts everything related to an 41 * USB endpoint and its streaming. 42 * 43 * There are functions to activate and deactivate the streaming URBs and 44 * optional callbacks to let the pcm logic handle the actual content of the 45 * packets for playback and record. Thus, the bus streaming and the audio 46 * handlers are fully decoupled. 47 * 48 * There are two different types of endpoints in audio applications. 49 * 50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 51 * inbound and outbound traffic. 52 * 53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 55 * (3 or 4 bytes). 56 * 57 * Each endpoint has to be configured prior to being used by calling 58 * snd_usb_endpoint_set_params(). 59 * 60 * The model incorporates a reference counting, so that multiple users 61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 62 * only the first user will effectively start the URBs, and only the last 63 * one to stop it will tear the URBs down again. 64 */ 65 66 /* 67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 68 * this will overflow at approx 524 kHz 69 */ 70 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 71 { 72 return ((rate << 13) + 62) / 125; 73 } 74 75 /* 76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 77 * this will overflow at approx 4 MHz 78 */ 79 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 80 { 81 return ((rate << 10) + 62) / 125; 82 } 83 84 /* 85 * release a urb data 86 */ 87 static void release_urb_ctx(struct snd_urb_ctx *u) 88 { 89 if (u->buffer_size) 90 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 91 u->urb->transfer_buffer, 92 u->urb->transfer_dma); 93 usb_free_urb(u->urb); 94 u->urb = NULL; 95 } 96 97 static const char *usb_error_string(int err) 98 { 99 switch (err) { 100 case -ENODEV: 101 return "no device"; 102 case -ENOENT: 103 return "endpoint not enabled"; 104 case -EPIPE: 105 return "endpoint stalled"; 106 case -ENOSPC: 107 return "not enough bandwidth"; 108 case -ESHUTDOWN: 109 return "device disabled"; 110 case -EHOSTUNREACH: 111 return "device suspended"; 112 case -EINVAL: 113 case -EAGAIN: 114 case -EFBIG: 115 case -EMSGSIZE: 116 return "internal error"; 117 default: 118 return "unknown error"; 119 } 120 } 121 122 /** 123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 124 * 125 * @ep: The snd_usb_endpoint 126 * 127 * Determine whether an endpoint is driven by an implicit feedback 128 * data endpoint source. 129 */ 130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 131 { 132 return ep->sync_master && 133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA && 134 ep->type == SND_USB_ENDPOINT_TYPE_DATA && 135 usb_pipeout(ep->pipe); 136 } 137 138 /* 139 * For streaming based on information derived from sync endpoints, 140 * prepare_outbound_urb_sizes() will call next_packet_size() to 141 * determine the number of samples to be sent in the next packet. 142 * 143 * For implicit feedback, next_packet_size() is unused. 144 */ 145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep) 146 { 147 unsigned long flags; 148 int ret; 149 150 if (ep->fill_max) 151 return ep->maxframesize; 152 153 spin_lock_irqsave(&ep->lock, flags); 154 ep->phase = (ep->phase & 0xffff) 155 + (ep->freqm << ep->datainterval); 156 ret = min(ep->phase >> 16, ep->maxframesize); 157 spin_unlock_irqrestore(&ep->lock, flags); 158 159 return ret; 160 } 161 162 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 163 struct snd_urb_ctx *urb_ctx) 164 { 165 if (ep->retire_data_urb) 166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb); 167 } 168 169 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 170 struct snd_urb_ctx *urb_ctx) 171 { 172 struct urb *urb = urb_ctx->urb; 173 174 if (unlikely(ep->skip_packets > 0)) { 175 ep->skip_packets--; 176 return; 177 } 178 179 if (ep->sync_slave) 180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb); 181 182 if (ep->retire_data_urb) 183 ep->retire_data_urb(ep->data_subs, urb); 184 } 185 186 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 187 struct snd_urb_ctx *ctx) 188 { 189 struct urb *urb = ctx->urb; 190 unsigned int offs = 0; 191 unsigned int extra = 0; 192 __le32 packet_length; 193 int i; 194 195 /* For tx_length_quirk, put packet length at start of packet */ 196 if (ep->chip->tx_length_quirk) 197 extra = sizeof(packet_length); 198 199 for (i = 0; i < ctx->packets; ++i) { 200 unsigned int offset; 201 unsigned int length; 202 int counts; 203 204 if (ctx->packet_size[i]) 205 counts = ctx->packet_size[i]; 206 else 207 counts = snd_usb_endpoint_next_packet_size(ep); 208 209 length = counts * ep->stride; /* number of silent bytes */ 210 offset = offs * ep->stride + extra * i; 211 urb->iso_frame_desc[i].offset = offset; 212 urb->iso_frame_desc[i].length = length + extra; 213 if (extra) { 214 packet_length = cpu_to_le32(length); 215 memcpy(urb->transfer_buffer + offset, 216 &packet_length, sizeof(packet_length)); 217 } 218 memset(urb->transfer_buffer + offset + extra, 219 ep->silence_value, length); 220 offs += counts; 221 } 222 223 urb->number_of_packets = ctx->packets; 224 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 225 } 226 227 /* 228 * Prepare a PLAYBACK urb for submission to the bus. 229 */ 230 static void prepare_outbound_urb(struct snd_usb_endpoint *ep, 231 struct snd_urb_ctx *ctx) 232 { 233 struct urb *urb = ctx->urb; 234 unsigned char *cp = urb->transfer_buffer; 235 236 urb->dev = ep->chip->dev; /* we need to set this at each time */ 237 238 switch (ep->type) { 239 case SND_USB_ENDPOINT_TYPE_DATA: 240 if (ep->prepare_data_urb) { 241 ep->prepare_data_urb(ep->data_subs, urb); 242 } else { 243 /* no data provider, so send silence */ 244 prepare_silent_urb(ep, ctx); 245 } 246 break; 247 248 case SND_USB_ENDPOINT_TYPE_SYNC: 249 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 250 /* 251 * fill the length and offset of each urb descriptor. 252 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 253 */ 254 urb->iso_frame_desc[0].length = 4; 255 urb->iso_frame_desc[0].offset = 0; 256 cp[0] = ep->freqn; 257 cp[1] = ep->freqn >> 8; 258 cp[2] = ep->freqn >> 16; 259 cp[3] = ep->freqn >> 24; 260 } else { 261 /* 262 * fill the length and offset of each urb descriptor. 263 * the fixed 10.14 frequency is passed through the pipe. 264 */ 265 urb->iso_frame_desc[0].length = 3; 266 urb->iso_frame_desc[0].offset = 0; 267 cp[0] = ep->freqn >> 2; 268 cp[1] = ep->freqn >> 10; 269 cp[2] = ep->freqn >> 18; 270 } 271 272 break; 273 } 274 } 275 276 /* 277 * Prepare a CAPTURE or SYNC urb for submission to the bus. 278 */ 279 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep, 280 struct snd_urb_ctx *urb_ctx) 281 { 282 int i, offs; 283 struct urb *urb = urb_ctx->urb; 284 285 urb->dev = ep->chip->dev; /* we need to set this at each time */ 286 287 switch (ep->type) { 288 case SND_USB_ENDPOINT_TYPE_DATA: 289 offs = 0; 290 for (i = 0; i < urb_ctx->packets; i++) { 291 urb->iso_frame_desc[i].offset = offs; 292 urb->iso_frame_desc[i].length = ep->curpacksize; 293 offs += ep->curpacksize; 294 } 295 296 urb->transfer_buffer_length = offs; 297 urb->number_of_packets = urb_ctx->packets; 298 break; 299 300 case SND_USB_ENDPOINT_TYPE_SYNC: 301 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 302 urb->iso_frame_desc[0].offset = 0; 303 break; 304 } 305 } 306 307 /* 308 * Send output urbs that have been prepared previously. URBs are dequeued 309 * from ep->ready_playback_urbs and in case there there aren't any available 310 * or there are no packets that have been prepared, this function does 311 * nothing. 312 * 313 * The reason why the functionality of sending and preparing URBs is separated 314 * is that host controllers don't guarantee the order in which they return 315 * inbound and outbound packets to their submitters. 316 * 317 * This function is only used for implicit feedback endpoints. For endpoints 318 * driven by dedicated sync endpoints, URBs are immediately re-submitted 319 * from their completion handler. 320 */ 321 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep) 322 { 323 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) { 324 325 unsigned long flags; 326 struct snd_usb_packet_info *uninitialized_var(packet); 327 struct snd_urb_ctx *ctx = NULL; 328 struct urb *urb; 329 int err, i; 330 331 spin_lock_irqsave(&ep->lock, flags); 332 if (ep->next_packet_read_pos != ep->next_packet_write_pos) { 333 packet = ep->next_packet + ep->next_packet_read_pos; 334 ep->next_packet_read_pos++; 335 ep->next_packet_read_pos %= MAX_URBS; 336 337 /* take URB out of FIFO */ 338 if (!list_empty(&ep->ready_playback_urbs)) 339 ctx = list_first_entry(&ep->ready_playback_urbs, 340 struct snd_urb_ctx, ready_list); 341 } 342 spin_unlock_irqrestore(&ep->lock, flags); 343 344 if (ctx == NULL) 345 return; 346 347 list_del_init(&ctx->ready_list); 348 urb = ctx->urb; 349 350 /* copy over the length information */ 351 for (i = 0; i < packet->packets; i++) 352 ctx->packet_size[i] = packet->packet_size[i]; 353 354 /* call the data handler to fill in playback data */ 355 prepare_outbound_urb(ep, ctx); 356 357 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 358 if (err < 0) 359 usb_audio_err(ep->chip, 360 "Unable to submit urb #%d: %d (urb %p)\n", 361 ctx->index, err, ctx->urb); 362 else 363 set_bit(ctx->index, &ep->active_mask); 364 } 365 } 366 367 /* 368 * complete callback for urbs 369 */ 370 static void snd_complete_urb(struct urb *urb) 371 { 372 struct snd_urb_ctx *ctx = urb->context; 373 struct snd_usb_endpoint *ep = ctx->ep; 374 struct snd_pcm_substream *substream; 375 unsigned long flags; 376 int err; 377 378 if (unlikely(urb->status == -ENOENT || /* unlinked */ 379 urb->status == -ENODEV || /* device removed */ 380 urb->status == -ECONNRESET || /* unlinked */ 381 urb->status == -ESHUTDOWN)) /* device disabled */ 382 goto exit_clear; 383 /* device disconnected */ 384 if (unlikely(atomic_read(&ep->chip->shutdown))) 385 goto exit_clear; 386 387 if (usb_pipeout(ep->pipe)) { 388 retire_outbound_urb(ep, ctx); 389 /* can be stopped during retire callback */ 390 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 391 goto exit_clear; 392 393 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 394 spin_lock_irqsave(&ep->lock, flags); 395 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 396 spin_unlock_irqrestore(&ep->lock, flags); 397 queue_pending_output_urbs(ep); 398 399 goto exit_clear; 400 } 401 402 prepare_outbound_urb(ep, ctx); 403 } else { 404 retire_inbound_urb(ep, ctx); 405 /* can be stopped during retire callback */ 406 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 407 goto exit_clear; 408 409 prepare_inbound_urb(ep, ctx); 410 } 411 412 err = usb_submit_urb(urb, GFP_ATOMIC); 413 if (err == 0) 414 return; 415 416 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 417 if (ep->data_subs && ep->data_subs->pcm_substream) { 418 substream = ep->data_subs->pcm_substream; 419 snd_pcm_stop_xrun(substream); 420 } 421 422 exit_clear: 423 clear_bit(ctx->index, &ep->active_mask); 424 } 425 426 /** 427 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 428 * 429 * @chip: The chip 430 * @alts: The USB host interface 431 * @ep_num: The number of the endpoint to use 432 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE 433 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 434 * 435 * If the requested endpoint has not been added to the given chip before, 436 * a new instance is created. Otherwise, a pointer to the previoulsy 437 * created instance is returned. In case of any error, NULL is returned. 438 * 439 * New endpoints will be added to chip->ep_list and must be freed by 440 * calling snd_usb_endpoint_free(). 441 * 442 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 443 * bNumEndpoints > 1 beforehand. 444 */ 445 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip, 446 struct usb_host_interface *alts, 447 int ep_num, int direction, int type) 448 { 449 struct snd_usb_endpoint *ep; 450 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK; 451 452 if (WARN_ON(!alts)) 453 return NULL; 454 455 mutex_lock(&chip->mutex); 456 457 list_for_each_entry(ep, &chip->ep_list, list) { 458 if (ep->ep_num == ep_num && 459 ep->iface == alts->desc.bInterfaceNumber && 460 ep->altsetting == alts->desc.bAlternateSetting) { 461 usb_audio_dbg(ep->chip, 462 "Re-using EP %x in iface %d,%d @%p\n", 463 ep_num, ep->iface, ep->altsetting, ep); 464 goto __exit_unlock; 465 } 466 } 467 468 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n", 469 is_playback ? "playback" : "capture", 470 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync", 471 ep_num); 472 473 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 474 if (!ep) 475 goto __exit_unlock; 476 477 ep->chip = chip; 478 spin_lock_init(&ep->lock); 479 ep->type = type; 480 ep->ep_num = ep_num; 481 ep->iface = alts->desc.bInterfaceNumber; 482 ep->altsetting = alts->desc.bAlternateSetting; 483 INIT_LIST_HEAD(&ep->ready_playback_urbs); 484 ep_num &= USB_ENDPOINT_NUMBER_MASK; 485 486 if (is_playback) 487 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 488 else 489 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 490 491 if (type == SND_USB_ENDPOINT_TYPE_SYNC) { 492 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 493 get_endpoint(alts, 1)->bRefresh >= 1 && 494 get_endpoint(alts, 1)->bRefresh <= 9) 495 ep->syncinterval = get_endpoint(alts, 1)->bRefresh; 496 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 497 ep->syncinterval = 1; 498 else if (get_endpoint(alts, 1)->bInterval >= 1 && 499 get_endpoint(alts, 1)->bInterval <= 16) 500 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1; 501 else 502 ep->syncinterval = 3; 503 504 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize); 505 506 if (chip->usb_id == USB_ID(0x0644, 0x8038) /* TEAC UD-H01 */ && 507 ep->syncmaxsize == 4) 508 ep->udh01_fb_quirk = 1; 509 } 510 511 list_add_tail(&ep->list, &chip->ep_list); 512 513 __exit_unlock: 514 mutex_unlock(&chip->mutex); 515 516 return ep; 517 } 518 519 /* 520 * wait until all urbs are processed. 521 */ 522 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 523 { 524 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 525 int alive; 526 527 do { 528 alive = bitmap_weight(&ep->active_mask, ep->nurbs); 529 if (!alive) 530 break; 531 532 schedule_timeout_uninterruptible(1); 533 } while (time_before(jiffies, end_time)); 534 535 if (alive) 536 usb_audio_err(ep->chip, 537 "timeout: still %d active urbs on EP #%x\n", 538 alive, ep->ep_num); 539 clear_bit(EP_FLAG_STOPPING, &ep->flags); 540 541 return 0; 542 } 543 544 /* sync the pending stop operation; 545 * this function itself doesn't trigger the stop operation 546 */ 547 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 548 { 549 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags)) 550 wait_clear_urbs(ep); 551 } 552 553 /* 554 * unlink active urbs. 555 */ 556 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force) 557 { 558 unsigned int i; 559 560 if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */ 561 return -EBADFD; 562 563 clear_bit(EP_FLAG_RUNNING, &ep->flags); 564 565 INIT_LIST_HEAD(&ep->ready_playback_urbs); 566 ep->next_packet_read_pos = 0; 567 ep->next_packet_write_pos = 0; 568 569 for (i = 0; i < ep->nurbs; i++) { 570 if (test_bit(i, &ep->active_mask)) { 571 if (!test_and_set_bit(i, &ep->unlink_mask)) { 572 struct urb *u = ep->urb[i].urb; 573 usb_unlink_urb(u); 574 } 575 } 576 } 577 578 return 0; 579 } 580 581 /* 582 * release an endpoint's urbs 583 */ 584 static void release_urbs(struct snd_usb_endpoint *ep, int force) 585 { 586 int i; 587 588 /* route incoming urbs to nirvana */ 589 ep->retire_data_urb = NULL; 590 ep->prepare_data_urb = NULL; 591 592 /* stop urbs */ 593 deactivate_urbs(ep, force); 594 wait_clear_urbs(ep); 595 596 for (i = 0; i < ep->nurbs; i++) 597 release_urb_ctx(&ep->urb[i]); 598 599 if (ep->syncbuf) 600 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 601 ep->syncbuf, ep->sync_dma); 602 603 ep->syncbuf = NULL; 604 ep->nurbs = 0; 605 } 606 607 /* 608 * configure a data endpoint 609 */ 610 static int data_ep_set_params(struct snd_usb_endpoint *ep, 611 snd_pcm_format_t pcm_format, 612 unsigned int channels, 613 unsigned int period_bytes, 614 unsigned int frames_per_period, 615 unsigned int periods_per_buffer, 616 struct audioformat *fmt, 617 struct snd_usb_endpoint *sync_ep) 618 { 619 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 620 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 621 unsigned int max_urbs, i; 622 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels; 623 int tx_length_quirk = (ep->chip->tx_length_quirk && 624 usb_pipeout(ep->pipe)); 625 626 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 627 /* 628 * When operating in DSD DOP mode, the size of a sample frame 629 * in hardware differs from the actual physical format width 630 * because we need to make room for the DOP markers. 631 */ 632 frame_bits += channels << 3; 633 } 634 635 ep->datainterval = fmt->datainterval; 636 ep->stride = frame_bits >> 3; 637 ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0; 638 639 /* assume max. frequency is 25% higher than nominal */ 640 ep->freqmax = ep->freqn + (ep->freqn >> 2); 641 /* Round up freqmax to nearest integer in order to calculate maximum 642 * packet size, which must represent a whole number of frames. 643 * This is accomplished by adding 0x0.ffff before converting the 644 * Q16.16 format into integer. 645 * In order to accurately calculate the maximum packet size when 646 * the data interval is more than 1 (i.e. ep->datainterval > 0), 647 * multiply by the data interval prior to rounding. For instance, 648 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 649 * frames with a data interval of 1, but 11 (10.25) frames with a 650 * data interval of 2. 651 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 652 * maximum datainterval value of 3, at USB full speed, higher for 653 * USB high speed, noting that ep->freqmax is in units of 654 * frames per packet in Q16.16 format.) 655 */ 656 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 657 (frame_bits >> 3); 658 if (tx_length_quirk) 659 maxsize += sizeof(__le32); /* Space for length descriptor */ 660 /* but wMaxPacketSize might reduce this */ 661 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 662 /* whatever fits into a max. size packet */ 663 unsigned int data_maxsize = maxsize = ep->maxpacksize; 664 665 if (tx_length_quirk) 666 /* Need to remove the length descriptor to calc freq */ 667 data_maxsize -= sizeof(__le32); 668 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 669 << (16 - ep->datainterval); 670 } 671 672 if (ep->fill_max) 673 ep->curpacksize = ep->maxpacksize; 674 else 675 ep->curpacksize = maxsize; 676 677 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) { 678 packs_per_ms = 8 >> ep->datainterval; 679 max_packs_per_urb = MAX_PACKS_HS; 680 } else { 681 packs_per_ms = 1; 682 max_packs_per_urb = MAX_PACKS; 683 } 684 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep)) 685 max_packs_per_urb = min(max_packs_per_urb, 686 1U << sync_ep->syncinterval); 687 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 688 689 /* 690 * Capture endpoints need to use small URBs because there's no way 691 * to tell in advance where the next period will end, and we don't 692 * want the next URB to complete much after the period ends. 693 * 694 * Playback endpoints with implicit sync much use the same parameters 695 * as their corresponding capture endpoint. 696 */ 697 if (usb_pipein(ep->pipe) || 698 snd_usb_endpoint_implicit_feedback_sink(ep)) { 699 700 urb_packs = packs_per_ms; 701 /* 702 * Wireless devices can poll at a max rate of once per 4ms. 703 * For dataintervals less than 5, increase the packet count to 704 * allow the host controller to use bursting to fill in the 705 * gaps. 706 */ 707 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) { 708 int interval = ep->datainterval; 709 while (interval < 5) { 710 urb_packs <<= 1; 711 ++interval; 712 } 713 } 714 /* make capture URBs <= 1 ms and smaller than a period */ 715 urb_packs = min(max_packs_per_urb, urb_packs); 716 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes) 717 urb_packs >>= 1; 718 ep->nurbs = MAX_URBS; 719 720 /* 721 * Playback endpoints without implicit sync are adjusted so that 722 * a period fits as evenly as possible in the smallest number of 723 * URBs. The total number of URBs is adjusted to the size of the 724 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 725 */ 726 } else { 727 /* determine how small a packet can be */ 728 minsize = (ep->freqn >> (16 - ep->datainterval)) * 729 (frame_bits >> 3); 730 /* with sync from device, assume it can be 12% lower */ 731 if (sync_ep) 732 minsize -= minsize >> 3; 733 minsize = max(minsize, 1u); 734 735 /* how many packets will contain an entire ALSA period? */ 736 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize); 737 738 /* how many URBs will contain a period? */ 739 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 740 max_packs_per_urb); 741 /* how many packets are needed in each URB? */ 742 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 743 744 /* limit the number of frames in a single URB */ 745 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period, 746 urbs_per_period); 747 748 /* try to use enough URBs to contain an entire ALSA buffer */ 749 max_urbs = min((unsigned) MAX_URBS, 750 MAX_QUEUE * packs_per_ms / urb_packs); 751 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer); 752 } 753 754 /* allocate and initialize data urbs */ 755 for (i = 0; i < ep->nurbs; i++) { 756 struct snd_urb_ctx *u = &ep->urb[i]; 757 u->index = i; 758 u->ep = ep; 759 u->packets = urb_packs; 760 u->buffer_size = maxsize * u->packets; 761 762 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 763 u->packets++; /* for transfer delimiter */ 764 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 765 if (!u->urb) 766 goto out_of_memory; 767 768 u->urb->transfer_buffer = 769 usb_alloc_coherent(ep->chip->dev, u->buffer_size, 770 GFP_KERNEL, &u->urb->transfer_dma); 771 if (!u->urb->transfer_buffer) 772 goto out_of_memory; 773 u->urb->pipe = ep->pipe; 774 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 775 u->urb->interval = 1 << ep->datainterval; 776 u->urb->context = u; 777 u->urb->complete = snd_complete_urb; 778 INIT_LIST_HEAD(&u->ready_list); 779 } 780 781 return 0; 782 783 out_of_memory: 784 release_urbs(ep, 0); 785 return -ENOMEM; 786 } 787 788 /* 789 * configure a sync endpoint 790 */ 791 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 792 { 793 int i; 794 795 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4, 796 GFP_KERNEL, &ep->sync_dma); 797 if (!ep->syncbuf) 798 return -ENOMEM; 799 800 for (i = 0; i < SYNC_URBS; i++) { 801 struct snd_urb_ctx *u = &ep->urb[i]; 802 u->index = i; 803 u->ep = ep; 804 u->packets = 1; 805 u->urb = usb_alloc_urb(1, GFP_KERNEL); 806 if (!u->urb) 807 goto out_of_memory; 808 u->urb->transfer_buffer = ep->syncbuf + i * 4; 809 u->urb->transfer_dma = ep->sync_dma + i * 4; 810 u->urb->transfer_buffer_length = 4; 811 u->urb->pipe = ep->pipe; 812 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 813 u->urb->number_of_packets = 1; 814 u->urb->interval = 1 << ep->syncinterval; 815 u->urb->context = u; 816 u->urb->complete = snd_complete_urb; 817 } 818 819 ep->nurbs = SYNC_URBS; 820 821 return 0; 822 823 out_of_memory: 824 release_urbs(ep, 0); 825 return -ENOMEM; 826 } 827 828 /** 829 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 830 * 831 * @ep: the snd_usb_endpoint to configure 832 * @pcm_format: the audio fomat. 833 * @channels: the number of audio channels. 834 * @period_bytes: the number of bytes in one alsa period. 835 * @period_frames: the number of frames in one alsa period. 836 * @buffer_periods: the number of periods in one alsa buffer. 837 * @rate: the frame rate. 838 * @fmt: the USB audio format information 839 * @sync_ep: the sync endpoint to use, if any 840 * 841 * Determine the number of URBs to be used on this endpoint. 842 * An endpoint must be configured before it can be started. 843 * An endpoint that is already running can not be reconfigured. 844 */ 845 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep, 846 snd_pcm_format_t pcm_format, 847 unsigned int channels, 848 unsigned int period_bytes, 849 unsigned int period_frames, 850 unsigned int buffer_periods, 851 unsigned int rate, 852 struct audioformat *fmt, 853 struct snd_usb_endpoint *sync_ep) 854 { 855 int err; 856 857 if (ep->use_count != 0) { 858 usb_audio_warn(ep->chip, 859 "Unable to change format on ep #%x: already in use\n", 860 ep->ep_num); 861 return -EBUSY; 862 } 863 864 /* release old buffers, if any */ 865 release_urbs(ep, 0); 866 867 ep->datainterval = fmt->datainterval; 868 ep->maxpacksize = fmt->maxpacksize; 869 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 870 871 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL) 872 ep->freqn = get_usb_full_speed_rate(rate); 873 else 874 ep->freqn = get_usb_high_speed_rate(rate); 875 876 /* calculate the frequency in 16.16 format */ 877 ep->freqm = ep->freqn; 878 ep->freqshift = INT_MIN; 879 880 ep->phase = 0; 881 882 switch (ep->type) { 883 case SND_USB_ENDPOINT_TYPE_DATA: 884 err = data_ep_set_params(ep, pcm_format, channels, 885 period_bytes, period_frames, 886 buffer_periods, fmt, sync_ep); 887 break; 888 case SND_USB_ENDPOINT_TYPE_SYNC: 889 err = sync_ep_set_params(ep); 890 break; 891 default: 892 err = -EINVAL; 893 } 894 895 usb_audio_dbg(ep->chip, 896 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n", 897 ep->ep_num, ep->type, ep->nurbs, err); 898 899 return err; 900 } 901 902 /** 903 * snd_usb_endpoint_start: start an snd_usb_endpoint 904 * 905 * @ep: the endpoint to start 906 * @can_sleep: flag indicating whether the operation is executed in 907 * non-atomic context 908 * 909 * A call to this function will increment the use count of the endpoint. 910 * In case it is not already running, the URBs for this endpoint will be 911 * submitted. Otherwise, this function does nothing. 912 * 913 * Must be balanced to calls of snd_usb_endpoint_stop(). 914 * 915 * Returns an error if the URB submission failed, 0 in all other cases. 916 */ 917 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep) 918 { 919 int err; 920 unsigned int i; 921 922 if (atomic_read(&ep->chip->shutdown)) 923 return -EBADFD; 924 925 /* already running? */ 926 if (++ep->use_count != 1) 927 return 0; 928 929 /* just to be sure */ 930 deactivate_urbs(ep, false); 931 if (can_sleep) 932 wait_clear_urbs(ep); 933 934 ep->active_mask = 0; 935 ep->unlink_mask = 0; 936 ep->phase = 0; 937 938 snd_usb_endpoint_start_quirk(ep); 939 940 /* 941 * If this endpoint has a data endpoint as implicit feedback source, 942 * don't start the urbs here. Instead, mark them all as available, 943 * wait for the record urbs to return and queue the playback urbs 944 * from that context. 945 */ 946 947 set_bit(EP_FLAG_RUNNING, &ep->flags); 948 949 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 950 for (i = 0; i < ep->nurbs; i++) { 951 struct snd_urb_ctx *ctx = ep->urb + i; 952 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 953 } 954 955 return 0; 956 } 957 958 for (i = 0; i < ep->nurbs; i++) { 959 struct urb *urb = ep->urb[i].urb; 960 961 if (snd_BUG_ON(!urb)) 962 goto __error; 963 964 if (usb_pipeout(ep->pipe)) { 965 prepare_outbound_urb(ep, urb->context); 966 } else { 967 prepare_inbound_urb(ep, urb->context); 968 } 969 970 err = usb_submit_urb(urb, GFP_ATOMIC); 971 if (err < 0) { 972 usb_audio_err(ep->chip, 973 "cannot submit urb %d, error %d: %s\n", 974 i, err, usb_error_string(err)); 975 goto __error; 976 } 977 set_bit(i, &ep->active_mask); 978 } 979 980 return 0; 981 982 __error: 983 clear_bit(EP_FLAG_RUNNING, &ep->flags); 984 ep->use_count--; 985 deactivate_urbs(ep, false); 986 return -EPIPE; 987 } 988 989 /** 990 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 991 * 992 * @ep: the endpoint to stop (may be NULL) 993 * 994 * A call to this function will decrement the use count of the endpoint. 995 * In case the last user has requested the endpoint stop, the URBs will 996 * actually be deactivated. 997 * 998 * Must be balanced to calls of snd_usb_endpoint_start(). 999 * 1000 * The caller needs to synchronize the pending stop operation via 1001 * snd_usb_endpoint_sync_pending_stop(). 1002 */ 1003 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep) 1004 { 1005 if (!ep) 1006 return; 1007 1008 if (snd_BUG_ON(ep->use_count == 0)) 1009 return; 1010 1011 if (--ep->use_count == 0) { 1012 deactivate_urbs(ep, false); 1013 ep->data_subs = NULL; 1014 ep->sync_slave = NULL; 1015 ep->retire_data_urb = NULL; 1016 ep->prepare_data_urb = NULL; 1017 set_bit(EP_FLAG_STOPPING, &ep->flags); 1018 } 1019 } 1020 1021 /** 1022 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint 1023 * 1024 * @ep: the endpoint to deactivate 1025 * 1026 * If the endpoint is not currently in use, this functions will 1027 * deactivate its associated URBs. 1028 * 1029 * In case of any active users, this functions does nothing. 1030 */ 1031 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep) 1032 { 1033 if (!ep) 1034 return; 1035 1036 if (ep->use_count != 0) 1037 return; 1038 1039 deactivate_urbs(ep, true); 1040 wait_clear_urbs(ep); 1041 } 1042 1043 /** 1044 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1045 * 1046 * @ep: the endpoint to release 1047 * 1048 * This function does not care for the endpoint's use count but will tear 1049 * down all the streaming URBs immediately. 1050 */ 1051 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1052 { 1053 release_urbs(ep, 1); 1054 } 1055 1056 /** 1057 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint 1058 * 1059 * @ep: the endpoint to free 1060 * 1061 * This free all resources of the given ep. 1062 */ 1063 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep) 1064 { 1065 kfree(ep); 1066 } 1067 1068 /** 1069 * snd_usb_handle_sync_urb: parse an USB sync packet 1070 * 1071 * @ep: the endpoint to handle the packet 1072 * @sender: the sending endpoint 1073 * @urb: the received packet 1074 * 1075 * This function is called from the context of an endpoint that received 1076 * the packet and is used to let another endpoint object handle the payload. 1077 */ 1078 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1079 struct snd_usb_endpoint *sender, 1080 const struct urb *urb) 1081 { 1082 int shift; 1083 unsigned int f; 1084 unsigned long flags; 1085 1086 snd_BUG_ON(ep == sender); 1087 1088 /* 1089 * In case the endpoint is operating in implicit feedback mode, prepare 1090 * a new outbound URB that has the same layout as the received packet 1091 * and add it to the list of pending urbs. queue_pending_output_urbs() 1092 * will take care of them later. 1093 */ 1094 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1095 ep->use_count != 0) { 1096 1097 /* implicit feedback case */ 1098 int i, bytes = 0; 1099 struct snd_urb_ctx *in_ctx; 1100 struct snd_usb_packet_info *out_packet; 1101 1102 in_ctx = urb->context; 1103 1104 /* Count overall packet size */ 1105 for (i = 0; i < in_ctx->packets; i++) 1106 if (urb->iso_frame_desc[i].status == 0) 1107 bytes += urb->iso_frame_desc[i].actual_length; 1108 1109 /* 1110 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1111 * streaming once it received a 0-byte OUT URB 1112 */ 1113 if (bytes == 0) 1114 return; 1115 1116 spin_lock_irqsave(&ep->lock, flags); 1117 out_packet = ep->next_packet + ep->next_packet_write_pos; 1118 1119 /* 1120 * Iterate through the inbound packet and prepare the lengths 1121 * for the output packet. The OUT packet we are about to send 1122 * will have the same amount of payload bytes per stride as the 1123 * IN packet we just received. Since the actual size is scaled 1124 * by the stride, use the sender stride to calculate the length 1125 * in case the number of channels differ between the implicitly 1126 * fed-back endpoint and the synchronizing endpoint. 1127 */ 1128 1129 out_packet->packets = in_ctx->packets; 1130 for (i = 0; i < in_ctx->packets; i++) { 1131 if (urb->iso_frame_desc[i].status == 0) 1132 out_packet->packet_size[i] = 1133 urb->iso_frame_desc[i].actual_length / sender->stride; 1134 else 1135 out_packet->packet_size[i] = 0; 1136 } 1137 1138 ep->next_packet_write_pos++; 1139 ep->next_packet_write_pos %= MAX_URBS; 1140 spin_unlock_irqrestore(&ep->lock, flags); 1141 queue_pending_output_urbs(ep); 1142 1143 return; 1144 } 1145 1146 /* 1147 * process after playback sync complete 1148 * 1149 * Full speed devices report feedback values in 10.14 format as samples 1150 * per frame, high speed devices in 16.16 format as samples per 1151 * microframe. 1152 * 1153 * Because the Audio Class 1 spec was written before USB 2.0, many high 1154 * speed devices use a wrong interpretation, some others use an 1155 * entirely different format. 1156 * 1157 * Therefore, we cannot predict what format any particular device uses 1158 * and must detect it automatically. 1159 */ 1160 1161 if (urb->iso_frame_desc[0].status != 0 || 1162 urb->iso_frame_desc[0].actual_length < 3) 1163 return; 1164 1165 f = le32_to_cpup(urb->transfer_buffer); 1166 if (urb->iso_frame_desc[0].actual_length == 3) 1167 f &= 0x00ffffff; 1168 else 1169 f &= 0x0fffffff; 1170 1171 if (f == 0) 1172 return; 1173 1174 if (unlikely(sender->udh01_fb_quirk)) { 1175 /* 1176 * The TEAC UD-H01 firmware sometimes changes the feedback value 1177 * by +/- 0x1.0000. 1178 */ 1179 if (f < ep->freqn - 0x8000) 1180 f += 0x10000; 1181 else if (f > ep->freqn + 0x8000) 1182 f -= 0x10000; 1183 } else if (unlikely(ep->freqshift == INT_MIN)) { 1184 /* 1185 * The first time we see a feedback value, determine its format 1186 * by shifting it left or right until it matches the nominal 1187 * frequency value. This assumes that the feedback does not 1188 * differ from the nominal value more than +50% or -25%. 1189 */ 1190 shift = 0; 1191 while (f < ep->freqn - ep->freqn / 4) { 1192 f <<= 1; 1193 shift++; 1194 } 1195 while (f > ep->freqn + ep->freqn / 2) { 1196 f >>= 1; 1197 shift--; 1198 } 1199 ep->freqshift = shift; 1200 } else if (ep->freqshift >= 0) 1201 f <<= ep->freqshift; 1202 else 1203 f >>= -ep->freqshift; 1204 1205 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1206 /* 1207 * If the frequency looks valid, set it. 1208 * This value is referred to in prepare_playback_urb(). 1209 */ 1210 spin_lock_irqsave(&ep->lock, flags); 1211 ep->freqm = f; 1212 spin_unlock_irqrestore(&ep->lock, flags); 1213 } else { 1214 /* 1215 * Out of range; maybe the shift value is wrong. 1216 * Reset it so that we autodetect again the next time. 1217 */ 1218 ep->freqshift = INT_MIN; 1219 } 1220 } 1221 1222