1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 15 * 16 */ 17 18 #include <linux/gfp.h> 19 #include <linux/init.h> 20 #include <linux/ratelimit.h> 21 #include <linux/usb.h> 22 #include <linux/usb/audio.h> 23 #include <linux/slab.h> 24 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 29 #include "usbaudio.h" 30 #include "helper.h" 31 #include "card.h" 32 #include "endpoint.h" 33 #include "pcm.h" 34 #include "quirks.h" 35 36 #define EP_FLAG_RUNNING 1 37 #define EP_FLAG_STOPPING 2 38 39 /* 40 * snd_usb_endpoint is a model that abstracts everything related to an 41 * USB endpoint and its streaming. 42 * 43 * There are functions to activate and deactivate the streaming URBs and 44 * optional callbacks to let the pcm logic handle the actual content of the 45 * packets for playback and record. Thus, the bus streaming and the audio 46 * handlers are fully decoupled. 47 * 48 * There are two different types of endpoints in audio applications. 49 * 50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 51 * inbound and outbound traffic. 52 * 53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 55 * (3 or 4 bytes). 56 * 57 * Each endpoint has to be configured prior to being used by calling 58 * snd_usb_endpoint_set_params(). 59 * 60 * The model incorporates a reference counting, so that multiple users 61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 62 * only the first user will effectively start the URBs, and only the last 63 * one to stop it will tear the URBs down again. 64 */ 65 66 /* 67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 68 * this will overflow at approx 524 kHz 69 */ 70 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 71 { 72 return ((rate << 13) + 62) / 125; 73 } 74 75 /* 76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 77 * this will overflow at approx 4 MHz 78 */ 79 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 80 { 81 return ((rate << 10) + 62) / 125; 82 } 83 84 /* 85 * release a urb data 86 */ 87 static void release_urb_ctx(struct snd_urb_ctx *u) 88 { 89 if (u->buffer_size) 90 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 91 u->urb->transfer_buffer, 92 u->urb->transfer_dma); 93 usb_free_urb(u->urb); 94 u->urb = NULL; 95 } 96 97 static const char *usb_error_string(int err) 98 { 99 switch (err) { 100 case -ENODEV: 101 return "no device"; 102 case -ENOENT: 103 return "endpoint not enabled"; 104 case -EPIPE: 105 return "endpoint stalled"; 106 case -ENOSPC: 107 return "not enough bandwidth"; 108 case -ESHUTDOWN: 109 return "device disabled"; 110 case -EHOSTUNREACH: 111 return "device suspended"; 112 case -EINVAL: 113 case -EAGAIN: 114 case -EFBIG: 115 case -EMSGSIZE: 116 return "internal error"; 117 default: 118 return "unknown error"; 119 } 120 } 121 122 /** 123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 124 * 125 * @ep: The snd_usb_endpoint 126 * 127 * Determine whether an endpoint is driven by an implicit feedback 128 * data endpoint source. 129 */ 130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 131 { 132 return ep->sync_master && 133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA && 134 ep->type == SND_USB_ENDPOINT_TYPE_DATA && 135 usb_pipeout(ep->pipe); 136 } 137 138 /* 139 * For streaming based on information derived from sync endpoints, 140 * prepare_outbound_urb_sizes() will call next_packet_size() to 141 * determine the number of samples to be sent in the next packet. 142 * 143 * For implicit feedback, next_packet_size() is unused. 144 */ 145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep) 146 { 147 unsigned long flags; 148 int ret; 149 150 if (ep->fill_max) 151 return ep->maxframesize; 152 153 spin_lock_irqsave(&ep->lock, flags); 154 ep->phase = (ep->phase & 0xffff) 155 + (ep->freqm << ep->datainterval); 156 ret = min(ep->phase >> 16, ep->maxframesize); 157 spin_unlock_irqrestore(&ep->lock, flags); 158 159 return ret; 160 } 161 162 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 163 struct snd_urb_ctx *urb_ctx) 164 { 165 if (ep->retire_data_urb) 166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb); 167 } 168 169 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 170 struct snd_urb_ctx *urb_ctx) 171 { 172 struct urb *urb = urb_ctx->urb; 173 174 if (unlikely(ep->skip_packets > 0)) { 175 ep->skip_packets--; 176 return; 177 } 178 179 if (ep->sync_slave) 180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb); 181 182 if (ep->retire_data_urb) 183 ep->retire_data_urb(ep->data_subs, urb); 184 } 185 186 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 187 struct snd_urb_ctx *ctx) 188 { 189 struct urb *urb = ctx->urb; 190 unsigned int offs = 0; 191 unsigned int extra = 0; 192 __le32 packet_length; 193 int i; 194 195 /* For tx_length_quirk, put packet length at start of packet */ 196 if (ep->chip->tx_length_quirk) 197 extra = sizeof(packet_length); 198 199 for (i = 0; i < ctx->packets; ++i) { 200 unsigned int offset; 201 unsigned int length; 202 int counts; 203 204 if (ctx->packet_size[i]) 205 counts = ctx->packet_size[i]; 206 else 207 counts = snd_usb_endpoint_next_packet_size(ep); 208 209 length = counts * ep->stride; /* number of silent bytes */ 210 offset = offs * ep->stride + extra * i; 211 urb->iso_frame_desc[i].offset = offset; 212 urb->iso_frame_desc[i].length = length + extra; 213 if (extra) { 214 packet_length = cpu_to_le32(length); 215 memcpy(urb->transfer_buffer + offset, 216 &packet_length, sizeof(packet_length)); 217 } 218 memset(urb->transfer_buffer + offset + extra, 219 ep->silence_value, length); 220 offs += counts; 221 } 222 223 urb->number_of_packets = ctx->packets; 224 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 225 } 226 227 /* 228 * Prepare a PLAYBACK urb for submission to the bus. 229 */ 230 static void prepare_outbound_urb(struct snd_usb_endpoint *ep, 231 struct snd_urb_ctx *ctx) 232 { 233 struct urb *urb = ctx->urb; 234 unsigned char *cp = urb->transfer_buffer; 235 236 urb->dev = ep->chip->dev; /* we need to set this at each time */ 237 238 switch (ep->type) { 239 case SND_USB_ENDPOINT_TYPE_DATA: 240 if (ep->prepare_data_urb) { 241 ep->prepare_data_urb(ep->data_subs, urb); 242 } else { 243 /* no data provider, so send silence */ 244 prepare_silent_urb(ep, ctx); 245 } 246 break; 247 248 case SND_USB_ENDPOINT_TYPE_SYNC: 249 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 250 /* 251 * fill the length and offset of each urb descriptor. 252 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 253 */ 254 urb->iso_frame_desc[0].length = 4; 255 urb->iso_frame_desc[0].offset = 0; 256 cp[0] = ep->freqn; 257 cp[1] = ep->freqn >> 8; 258 cp[2] = ep->freqn >> 16; 259 cp[3] = ep->freqn >> 24; 260 } else { 261 /* 262 * fill the length and offset of each urb descriptor. 263 * the fixed 10.14 frequency is passed through the pipe. 264 */ 265 urb->iso_frame_desc[0].length = 3; 266 urb->iso_frame_desc[0].offset = 0; 267 cp[0] = ep->freqn >> 2; 268 cp[1] = ep->freqn >> 10; 269 cp[2] = ep->freqn >> 18; 270 } 271 272 break; 273 } 274 } 275 276 /* 277 * Prepare a CAPTURE or SYNC urb for submission to the bus. 278 */ 279 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep, 280 struct snd_urb_ctx *urb_ctx) 281 { 282 int i, offs; 283 struct urb *urb = urb_ctx->urb; 284 285 urb->dev = ep->chip->dev; /* we need to set this at each time */ 286 287 switch (ep->type) { 288 case SND_USB_ENDPOINT_TYPE_DATA: 289 offs = 0; 290 for (i = 0; i < urb_ctx->packets; i++) { 291 urb->iso_frame_desc[i].offset = offs; 292 urb->iso_frame_desc[i].length = ep->curpacksize; 293 offs += ep->curpacksize; 294 } 295 296 urb->transfer_buffer_length = offs; 297 urb->number_of_packets = urb_ctx->packets; 298 break; 299 300 case SND_USB_ENDPOINT_TYPE_SYNC: 301 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 302 urb->iso_frame_desc[0].offset = 0; 303 break; 304 } 305 } 306 307 /* 308 * Send output urbs that have been prepared previously. URBs are dequeued 309 * from ep->ready_playback_urbs and in case there there aren't any available 310 * or there are no packets that have been prepared, this function does 311 * nothing. 312 * 313 * The reason why the functionality of sending and preparing URBs is separated 314 * is that host controllers don't guarantee the order in which they return 315 * inbound and outbound packets to their submitters. 316 * 317 * This function is only used for implicit feedback endpoints. For endpoints 318 * driven by dedicated sync endpoints, URBs are immediately re-submitted 319 * from their completion handler. 320 */ 321 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep) 322 { 323 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) { 324 325 unsigned long flags; 326 struct snd_usb_packet_info *uninitialized_var(packet); 327 struct snd_urb_ctx *ctx = NULL; 328 struct urb *urb; 329 int err, i; 330 331 spin_lock_irqsave(&ep->lock, flags); 332 if (ep->next_packet_read_pos != ep->next_packet_write_pos) { 333 packet = ep->next_packet + ep->next_packet_read_pos; 334 ep->next_packet_read_pos++; 335 ep->next_packet_read_pos %= MAX_URBS; 336 337 /* take URB out of FIFO */ 338 if (!list_empty(&ep->ready_playback_urbs)) 339 ctx = list_first_entry(&ep->ready_playback_urbs, 340 struct snd_urb_ctx, ready_list); 341 } 342 spin_unlock_irqrestore(&ep->lock, flags); 343 344 if (ctx == NULL) 345 return; 346 347 list_del_init(&ctx->ready_list); 348 urb = ctx->urb; 349 350 /* copy over the length information */ 351 for (i = 0; i < packet->packets; i++) 352 ctx->packet_size[i] = packet->packet_size[i]; 353 354 /* call the data handler to fill in playback data */ 355 prepare_outbound_urb(ep, ctx); 356 357 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 358 if (err < 0) 359 usb_audio_err(ep->chip, 360 "Unable to submit urb #%d: %d (urb %p)\n", 361 ctx->index, err, ctx->urb); 362 else 363 set_bit(ctx->index, &ep->active_mask); 364 } 365 } 366 367 /* 368 * complete callback for urbs 369 */ 370 static void snd_complete_urb(struct urb *urb) 371 { 372 struct snd_urb_ctx *ctx = urb->context; 373 struct snd_usb_endpoint *ep = ctx->ep; 374 struct snd_pcm_substream *substream; 375 unsigned long flags; 376 int err; 377 378 if (unlikely(urb->status == -ENOENT || /* unlinked */ 379 urb->status == -ENODEV || /* device removed */ 380 urb->status == -ECONNRESET || /* unlinked */ 381 urb->status == -ESHUTDOWN)) /* device disabled */ 382 goto exit_clear; 383 /* device disconnected */ 384 if (unlikely(atomic_read(&ep->chip->shutdown))) 385 goto exit_clear; 386 387 if (usb_pipeout(ep->pipe)) { 388 retire_outbound_urb(ep, ctx); 389 /* can be stopped during retire callback */ 390 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 391 goto exit_clear; 392 393 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 394 spin_lock_irqsave(&ep->lock, flags); 395 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 396 spin_unlock_irqrestore(&ep->lock, flags); 397 queue_pending_output_urbs(ep); 398 399 goto exit_clear; 400 } 401 402 prepare_outbound_urb(ep, ctx); 403 } else { 404 retire_inbound_urb(ep, ctx); 405 /* can be stopped during retire callback */ 406 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 407 goto exit_clear; 408 409 prepare_inbound_urb(ep, ctx); 410 } 411 412 err = usb_submit_urb(urb, GFP_ATOMIC); 413 if (err == 0) 414 return; 415 416 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 417 if (ep->data_subs && ep->data_subs->pcm_substream) { 418 substream = ep->data_subs->pcm_substream; 419 snd_pcm_stop_xrun(substream); 420 } 421 422 exit_clear: 423 clear_bit(ctx->index, &ep->active_mask); 424 } 425 426 /** 427 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 428 * 429 * @chip: The chip 430 * @alts: The USB host interface 431 * @ep_num: The number of the endpoint to use 432 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE 433 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 434 * 435 * If the requested endpoint has not been added to the given chip before, 436 * a new instance is created. Otherwise, a pointer to the previoulsy 437 * created instance is returned. In case of any error, NULL is returned. 438 * 439 * New endpoints will be added to chip->ep_list and must be freed by 440 * calling snd_usb_endpoint_free(). 441 */ 442 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip, 443 struct usb_host_interface *alts, 444 int ep_num, int direction, int type) 445 { 446 struct snd_usb_endpoint *ep; 447 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK; 448 449 if (WARN_ON(!alts)) 450 return NULL; 451 452 mutex_lock(&chip->mutex); 453 454 list_for_each_entry(ep, &chip->ep_list, list) { 455 if (ep->ep_num == ep_num && 456 ep->iface == alts->desc.bInterfaceNumber && 457 ep->altsetting == alts->desc.bAlternateSetting) { 458 usb_audio_dbg(ep->chip, 459 "Re-using EP %x in iface %d,%d @%p\n", 460 ep_num, ep->iface, ep->altsetting, ep); 461 goto __exit_unlock; 462 } 463 } 464 465 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n", 466 is_playback ? "playback" : "capture", 467 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync", 468 ep_num); 469 470 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 471 if (!ep) 472 goto __exit_unlock; 473 474 ep->chip = chip; 475 spin_lock_init(&ep->lock); 476 ep->type = type; 477 ep->ep_num = ep_num; 478 ep->iface = alts->desc.bInterfaceNumber; 479 ep->altsetting = alts->desc.bAlternateSetting; 480 INIT_LIST_HEAD(&ep->ready_playback_urbs); 481 ep_num &= USB_ENDPOINT_NUMBER_MASK; 482 483 if (is_playback) 484 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 485 else 486 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 487 488 if (type == SND_USB_ENDPOINT_TYPE_SYNC) { 489 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 490 get_endpoint(alts, 1)->bRefresh >= 1 && 491 get_endpoint(alts, 1)->bRefresh <= 9) 492 ep->syncinterval = get_endpoint(alts, 1)->bRefresh; 493 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 494 ep->syncinterval = 1; 495 else if (get_endpoint(alts, 1)->bInterval >= 1 && 496 get_endpoint(alts, 1)->bInterval <= 16) 497 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1; 498 else 499 ep->syncinterval = 3; 500 501 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize); 502 503 if (chip->usb_id == USB_ID(0x0644, 0x8038) /* TEAC UD-H01 */ && 504 ep->syncmaxsize == 4) 505 ep->udh01_fb_quirk = 1; 506 } 507 508 list_add_tail(&ep->list, &chip->ep_list); 509 510 __exit_unlock: 511 mutex_unlock(&chip->mutex); 512 513 return ep; 514 } 515 516 /* 517 * wait until all urbs are processed. 518 */ 519 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 520 { 521 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 522 int alive; 523 524 do { 525 alive = bitmap_weight(&ep->active_mask, ep->nurbs); 526 if (!alive) 527 break; 528 529 schedule_timeout_uninterruptible(1); 530 } while (time_before(jiffies, end_time)); 531 532 if (alive) 533 usb_audio_err(ep->chip, 534 "timeout: still %d active urbs on EP #%x\n", 535 alive, ep->ep_num); 536 clear_bit(EP_FLAG_STOPPING, &ep->flags); 537 538 return 0; 539 } 540 541 /* sync the pending stop operation; 542 * this function itself doesn't trigger the stop operation 543 */ 544 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 545 { 546 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags)) 547 wait_clear_urbs(ep); 548 } 549 550 /* 551 * unlink active urbs. 552 */ 553 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force) 554 { 555 unsigned int i; 556 557 if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */ 558 return -EBADFD; 559 560 clear_bit(EP_FLAG_RUNNING, &ep->flags); 561 562 INIT_LIST_HEAD(&ep->ready_playback_urbs); 563 ep->next_packet_read_pos = 0; 564 ep->next_packet_write_pos = 0; 565 566 for (i = 0; i < ep->nurbs; i++) { 567 if (test_bit(i, &ep->active_mask)) { 568 if (!test_and_set_bit(i, &ep->unlink_mask)) { 569 struct urb *u = ep->urb[i].urb; 570 usb_unlink_urb(u); 571 } 572 } 573 } 574 575 return 0; 576 } 577 578 /* 579 * release an endpoint's urbs 580 */ 581 static void release_urbs(struct snd_usb_endpoint *ep, int force) 582 { 583 int i; 584 585 /* route incoming urbs to nirvana */ 586 ep->retire_data_urb = NULL; 587 ep->prepare_data_urb = NULL; 588 589 /* stop urbs */ 590 deactivate_urbs(ep, force); 591 wait_clear_urbs(ep); 592 593 for (i = 0; i < ep->nurbs; i++) 594 release_urb_ctx(&ep->urb[i]); 595 596 if (ep->syncbuf) 597 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 598 ep->syncbuf, ep->sync_dma); 599 600 ep->syncbuf = NULL; 601 ep->nurbs = 0; 602 } 603 604 /* 605 * configure a data endpoint 606 */ 607 static int data_ep_set_params(struct snd_usb_endpoint *ep, 608 snd_pcm_format_t pcm_format, 609 unsigned int channels, 610 unsigned int period_bytes, 611 unsigned int frames_per_period, 612 unsigned int periods_per_buffer, 613 struct audioformat *fmt, 614 struct snd_usb_endpoint *sync_ep) 615 { 616 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 617 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 618 unsigned int max_urbs, i; 619 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels; 620 int tx_length_quirk = (ep->chip->tx_length_quirk && 621 usb_pipeout(ep->pipe)); 622 623 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 624 /* 625 * When operating in DSD DOP mode, the size of a sample frame 626 * in hardware differs from the actual physical format width 627 * because we need to make room for the DOP markers. 628 */ 629 frame_bits += channels << 3; 630 } 631 632 ep->datainterval = fmt->datainterval; 633 ep->stride = frame_bits >> 3; 634 ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0; 635 636 /* assume max. frequency is 25% higher than nominal */ 637 ep->freqmax = ep->freqn + (ep->freqn >> 2); 638 /* Round up freqmax to nearest integer in order to calculate maximum 639 * packet size, which must represent a whole number of frames. 640 * This is accomplished by adding 0x0.ffff before converting the 641 * Q16.16 format into integer. 642 * In order to accurately calculate the maximum packet size when 643 * the data interval is more than 1 (i.e. ep->datainterval > 0), 644 * multiply by the data interval prior to rounding. For instance, 645 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 646 * frames with a data interval of 1, but 11 (10.25) frames with a 647 * data interval of 2. 648 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 649 * maximum datainterval value of 3, at USB full speed, higher for 650 * USB high speed, noting that ep->freqmax is in units of 651 * frames per packet in Q16.16 format.) 652 */ 653 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 654 (frame_bits >> 3); 655 if (tx_length_quirk) 656 maxsize += sizeof(__le32); /* Space for length descriptor */ 657 /* but wMaxPacketSize might reduce this */ 658 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 659 /* whatever fits into a max. size packet */ 660 unsigned int data_maxsize = maxsize = ep->maxpacksize; 661 662 if (tx_length_quirk) 663 /* Need to remove the length descriptor to calc freq */ 664 data_maxsize -= sizeof(__le32); 665 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 666 << (16 - ep->datainterval); 667 } 668 669 if (ep->fill_max) 670 ep->curpacksize = ep->maxpacksize; 671 else 672 ep->curpacksize = maxsize; 673 674 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) { 675 packs_per_ms = 8 >> ep->datainterval; 676 max_packs_per_urb = MAX_PACKS_HS; 677 } else { 678 packs_per_ms = 1; 679 max_packs_per_urb = MAX_PACKS; 680 } 681 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep)) 682 max_packs_per_urb = min(max_packs_per_urb, 683 1U << sync_ep->syncinterval); 684 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 685 686 /* 687 * Capture endpoints need to use small URBs because there's no way 688 * to tell in advance where the next period will end, and we don't 689 * want the next URB to complete much after the period ends. 690 * 691 * Playback endpoints with implicit sync much use the same parameters 692 * as their corresponding capture endpoint. 693 */ 694 if (usb_pipein(ep->pipe) || 695 snd_usb_endpoint_implicit_feedback_sink(ep)) { 696 697 urb_packs = packs_per_ms; 698 /* 699 * Wireless devices can poll at a max rate of once per 4ms. 700 * For dataintervals less than 5, increase the packet count to 701 * allow the host controller to use bursting to fill in the 702 * gaps. 703 */ 704 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) { 705 int interval = ep->datainterval; 706 while (interval < 5) { 707 urb_packs <<= 1; 708 ++interval; 709 } 710 } 711 /* make capture URBs <= 1 ms and smaller than a period */ 712 urb_packs = min(max_packs_per_urb, urb_packs); 713 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes) 714 urb_packs >>= 1; 715 ep->nurbs = MAX_URBS; 716 717 /* 718 * Playback endpoints without implicit sync are adjusted so that 719 * a period fits as evenly as possible in the smallest number of 720 * URBs. The total number of URBs is adjusted to the size of the 721 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 722 */ 723 } else { 724 /* determine how small a packet can be */ 725 minsize = (ep->freqn >> (16 - ep->datainterval)) * 726 (frame_bits >> 3); 727 /* with sync from device, assume it can be 12% lower */ 728 if (sync_ep) 729 minsize -= minsize >> 3; 730 minsize = max(minsize, 1u); 731 732 /* how many packets will contain an entire ALSA period? */ 733 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize); 734 735 /* how many URBs will contain a period? */ 736 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 737 max_packs_per_urb); 738 /* how many packets are needed in each URB? */ 739 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 740 741 /* limit the number of frames in a single URB */ 742 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period, 743 urbs_per_period); 744 745 /* try to use enough URBs to contain an entire ALSA buffer */ 746 max_urbs = min((unsigned) MAX_URBS, 747 MAX_QUEUE * packs_per_ms / urb_packs); 748 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer); 749 } 750 751 /* allocate and initialize data urbs */ 752 for (i = 0; i < ep->nurbs; i++) { 753 struct snd_urb_ctx *u = &ep->urb[i]; 754 u->index = i; 755 u->ep = ep; 756 u->packets = urb_packs; 757 u->buffer_size = maxsize * u->packets; 758 759 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 760 u->packets++; /* for transfer delimiter */ 761 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 762 if (!u->urb) 763 goto out_of_memory; 764 765 u->urb->transfer_buffer = 766 usb_alloc_coherent(ep->chip->dev, u->buffer_size, 767 GFP_KERNEL, &u->urb->transfer_dma); 768 if (!u->urb->transfer_buffer) 769 goto out_of_memory; 770 u->urb->pipe = ep->pipe; 771 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 772 u->urb->interval = 1 << ep->datainterval; 773 u->urb->context = u; 774 u->urb->complete = snd_complete_urb; 775 INIT_LIST_HEAD(&u->ready_list); 776 } 777 778 return 0; 779 780 out_of_memory: 781 release_urbs(ep, 0); 782 return -ENOMEM; 783 } 784 785 /* 786 * configure a sync endpoint 787 */ 788 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 789 { 790 int i; 791 792 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4, 793 GFP_KERNEL, &ep->sync_dma); 794 if (!ep->syncbuf) 795 return -ENOMEM; 796 797 for (i = 0; i < SYNC_URBS; i++) { 798 struct snd_urb_ctx *u = &ep->urb[i]; 799 u->index = i; 800 u->ep = ep; 801 u->packets = 1; 802 u->urb = usb_alloc_urb(1, GFP_KERNEL); 803 if (!u->urb) 804 goto out_of_memory; 805 u->urb->transfer_buffer = ep->syncbuf + i * 4; 806 u->urb->transfer_dma = ep->sync_dma + i * 4; 807 u->urb->transfer_buffer_length = 4; 808 u->urb->pipe = ep->pipe; 809 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 810 u->urb->number_of_packets = 1; 811 u->urb->interval = 1 << ep->syncinterval; 812 u->urb->context = u; 813 u->urb->complete = snd_complete_urb; 814 } 815 816 ep->nurbs = SYNC_URBS; 817 818 return 0; 819 820 out_of_memory: 821 release_urbs(ep, 0); 822 return -ENOMEM; 823 } 824 825 /** 826 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 827 * 828 * @ep: the snd_usb_endpoint to configure 829 * @pcm_format: the audio fomat. 830 * @channels: the number of audio channels. 831 * @period_bytes: the number of bytes in one alsa period. 832 * @period_frames: the number of frames in one alsa period. 833 * @buffer_periods: the number of periods in one alsa buffer. 834 * @rate: the frame rate. 835 * @fmt: the USB audio format information 836 * @sync_ep: the sync endpoint to use, if any 837 * 838 * Determine the number of URBs to be used on this endpoint. 839 * An endpoint must be configured before it can be started. 840 * An endpoint that is already running can not be reconfigured. 841 */ 842 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep, 843 snd_pcm_format_t pcm_format, 844 unsigned int channels, 845 unsigned int period_bytes, 846 unsigned int period_frames, 847 unsigned int buffer_periods, 848 unsigned int rate, 849 struct audioformat *fmt, 850 struct snd_usb_endpoint *sync_ep) 851 { 852 int err; 853 854 if (ep->use_count != 0) { 855 usb_audio_warn(ep->chip, 856 "Unable to change format on ep #%x: already in use\n", 857 ep->ep_num); 858 return -EBUSY; 859 } 860 861 /* release old buffers, if any */ 862 release_urbs(ep, 0); 863 864 ep->datainterval = fmt->datainterval; 865 ep->maxpacksize = fmt->maxpacksize; 866 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 867 868 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL) 869 ep->freqn = get_usb_full_speed_rate(rate); 870 else 871 ep->freqn = get_usb_high_speed_rate(rate); 872 873 /* calculate the frequency in 16.16 format */ 874 ep->freqm = ep->freqn; 875 ep->freqshift = INT_MIN; 876 877 ep->phase = 0; 878 879 switch (ep->type) { 880 case SND_USB_ENDPOINT_TYPE_DATA: 881 err = data_ep_set_params(ep, pcm_format, channels, 882 period_bytes, period_frames, 883 buffer_periods, fmt, sync_ep); 884 break; 885 case SND_USB_ENDPOINT_TYPE_SYNC: 886 err = sync_ep_set_params(ep); 887 break; 888 default: 889 err = -EINVAL; 890 } 891 892 usb_audio_dbg(ep->chip, 893 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n", 894 ep->ep_num, ep->type, ep->nurbs, err); 895 896 return err; 897 } 898 899 /** 900 * snd_usb_endpoint_start: start an snd_usb_endpoint 901 * 902 * @ep: the endpoint to start 903 * @can_sleep: flag indicating whether the operation is executed in 904 * non-atomic context 905 * 906 * A call to this function will increment the use count of the endpoint. 907 * In case it is not already running, the URBs for this endpoint will be 908 * submitted. Otherwise, this function does nothing. 909 * 910 * Must be balanced to calls of snd_usb_endpoint_stop(). 911 * 912 * Returns an error if the URB submission failed, 0 in all other cases. 913 */ 914 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep) 915 { 916 int err; 917 unsigned int i; 918 919 if (atomic_read(&ep->chip->shutdown)) 920 return -EBADFD; 921 922 /* already running? */ 923 if (++ep->use_count != 1) 924 return 0; 925 926 /* just to be sure */ 927 deactivate_urbs(ep, false); 928 if (can_sleep) 929 wait_clear_urbs(ep); 930 931 ep->active_mask = 0; 932 ep->unlink_mask = 0; 933 ep->phase = 0; 934 935 snd_usb_endpoint_start_quirk(ep); 936 937 /* 938 * If this endpoint has a data endpoint as implicit feedback source, 939 * don't start the urbs here. Instead, mark them all as available, 940 * wait for the record urbs to return and queue the playback urbs 941 * from that context. 942 */ 943 944 set_bit(EP_FLAG_RUNNING, &ep->flags); 945 946 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 947 for (i = 0; i < ep->nurbs; i++) { 948 struct snd_urb_ctx *ctx = ep->urb + i; 949 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 950 } 951 952 return 0; 953 } 954 955 for (i = 0; i < ep->nurbs; i++) { 956 struct urb *urb = ep->urb[i].urb; 957 958 if (snd_BUG_ON(!urb)) 959 goto __error; 960 961 if (usb_pipeout(ep->pipe)) { 962 prepare_outbound_urb(ep, urb->context); 963 } else { 964 prepare_inbound_urb(ep, urb->context); 965 } 966 967 err = usb_submit_urb(urb, GFP_ATOMIC); 968 if (err < 0) { 969 usb_audio_err(ep->chip, 970 "cannot submit urb %d, error %d: %s\n", 971 i, err, usb_error_string(err)); 972 goto __error; 973 } 974 set_bit(i, &ep->active_mask); 975 } 976 977 return 0; 978 979 __error: 980 clear_bit(EP_FLAG_RUNNING, &ep->flags); 981 ep->use_count--; 982 deactivate_urbs(ep, false); 983 return -EPIPE; 984 } 985 986 /** 987 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 988 * 989 * @ep: the endpoint to stop (may be NULL) 990 * 991 * A call to this function will decrement the use count of the endpoint. 992 * In case the last user has requested the endpoint stop, the URBs will 993 * actually be deactivated. 994 * 995 * Must be balanced to calls of snd_usb_endpoint_start(). 996 * 997 * The caller needs to synchronize the pending stop operation via 998 * snd_usb_endpoint_sync_pending_stop(). 999 */ 1000 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep) 1001 { 1002 if (!ep) 1003 return; 1004 1005 if (snd_BUG_ON(ep->use_count == 0)) 1006 return; 1007 1008 if (--ep->use_count == 0) { 1009 deactivate_urbs(ep, false); 1010 ep->data_subs = NULL; 1011 ep->sync_slave = NULL; 1012 ep->retire_data_urb = NULL; 1013 ep->prepare_data_urb = NULL; 1014 set_bit(EP_FLAG_STOPPING, &ep->flags); 1015 } 1016 } 1017 1018 /** 1019 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint 1020 * 1021 * @ep: the endpoint to deactivate 1022 * 1023 * If the endpoint is not currently in use, this functions will 1024 * deactivate its associated URBs. 1025 * 1026 * In case of any active users, this functions does nothing. 1027 */ 1028 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep) 1029 { 1030 if (!ep) 1031 return; 1032 1033 if (ep->use_count != 0) 1034 return; 1035 1036 deactivate_urbs(ep, true); 1037 wait_clear_urbs(ep); 1038 } 1039 1040 /** 1041 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1042 * 1043 * @ep: the endpoint to release 1044 * 1045 * This function does not care for the endpoint's use count but will tear 1046 * down all the streaming URBs immediately. 1047 */ 1048 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1049 { 1050 release_urbs(ep, 1); 1051 } 1052 1053 /** 1054 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint 1055 * 1056 * @ep: the endpoint to free 1057 * 1058 * This free all resources of the given ep. 1059 */ 1060 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep) 1061 { 1062 kfree(ep); 1063 } 1064 1065 /** 1066 * snd_usb_handle_sync_urb: parse an USB sync packet 1067 * 1068 * @ep: the endpoint to handle the packet 1069 * @sender: the sending endpoint 1070 * @urb: the received packet 1071 * 1072 * This function is called from the context of an endpoint that received 1073 * the packet and is used to let another endpoint object handle the payload. 1074 */ 1075 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1076 struct snd_usb_endpoint *sender, 1077 const struct urb *urb) 1078 { 1079 int shift; 1080 unsigned int f; 1081 unsigned long flags; 1082 1083 snd_BUG_ON(ep == sender); 1084 1085 /* 1086 * In case the endpoint is operating in implicit feedback mode, prepare 1087 * a new outbound URB that has the same layout as the received packet 1088 * and add it to the list of pending urbs. queue_pending_output_urbs() 1089 * will take care of them later. 1090 */ 1091 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1092 ep->use_count != 0) { 1093 1094 /* implicit feedback case */ 1095 int i, bytes = 0; 1096 struct snd_urb_ctx *in_ctx; 1097 struct snd_usb_packet_info *out_packet; 1098 1099 in_ctx = urb->context; 1100 1101 /* Count overall packet size */ 1102 for (i = 0; i < in_ctx->packets; i++) 1103 if (urb->iso_frame_desc[i].status == 0) 1104 bytes += urb->iso_frame_desc[i].actual_length; 1105 1106 /* 1107 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1108 * streaming once it received a 0-byte OUT URB 1109 */ 1110 if (bytes == 0) 1111 return; 1112 1113 spin_lock_irqsave(&ep->lock, flags); 1114 out_packet = ep->next_packet + ep->next_packet_write_pos; 1115 1116 /* 1117 * Iterate through the inbound packet and prepare the lengths 1118 * for the output packet. The OUT packet we are about to send 1119 * will have the same amount of payload bytes per stride as the 1120 * IN packet we just received. Since the actual size is scaled 1121 * by the stride, use the sender stride to calculate the length 1122 * in case the number of channels differ between the implicitly 1123 * fed-back endpoint and the synchronizing endpoint. 1124 */ 1125 1126 out_packet->packets = in_ctx->packets; 1127 for (i = 0; i < in_ctx->packets; i++) { 1128 if (urb->iso_frame_desc[i].status == 0) 1129 out_packet->packet_size[i] = 1130 urb->iso_frame_desc[i].actual_length / sender->stride; 1131 else 1132 out_packet->packet_size[i] = 0; 1133 } 1134 1135 ep->next_packet_write_pos++; 1136 ep->next_packet_write_pos %= MAX_URBS; 1137 spin_unlock_irqrestore(&ep->lock, flags); 1138 queue_pending_output_urbs(ep); 1139 1140 return; 1141 } 1142 1143 /* 1144 * process after playback sync complete 1145 * 1146 * Full speed devices report feedback values in 10.14 format as samples 1147 * per frame, high speed devices in 16.16 format as samples per 1148 * microframe. 1149 * 1150 * Because the Audio Class 1 spec was written before USB 2.0, many high 1151 * speed devices use a wrong interpretation, some others use an 1152 * entirely different format. 1153 * 1154 * Therefore, we cannot predict what format any particular device uses 1155 * and must detect it automatically. 1156 */ 1157 1158 if (urb->iso_frame_desc[0].status != 0 || 1159 urb->iso_frame_desc[0].actual_length < 3) 1160 return; 1161 1162 f = le32_to_cpup(urb->transfer_buffer); 1163 if (urb->iso_frame_desc[0].actual_length == 3) 1164 f &= 0x00ffffff; 1165 else 1166 f &= 0x0fffffff; 1167 1168 if (f == 0) 1169 return; 1170 1171 if (unlikely(sender->udh01_fb_quirk)) { 1172 /* 1173 * The TEAC UD-H01 firmware sometimes changes the feedback value 1174 * by +/- 0x1.0000. 1175 */ 1176 if (f < ep->freqn - 0x8000) 1177 f += 0x10000; 1178 else if (f > ep->freqn + 0x8000) 1179 f -= 0x10000; 1180 } else if (unlikely(ep->freqshift == INT_MIN)) { 1181 /* 1182 * The first time we see a feedback value, determine its format 1183 * by shifting it left or right until it matches the nominal 1184 * frequency value. This assumes that the feedback does not 1185 * differ from the nominal value more than +50% or -25%. 1186 */ 1187 shift = 0; 1188 while (f < ep->freqn - ep->freqn / 4) { 1189 f <<= 1; 1190 shift++; 1191 } 1192 while (f > ep->freqn + ep->freqn / 2) { 1193 f >>= 1; 1194 shift--; 1195 } 1196 ep->freqshift = shift; 1197 } else if (ep->freqshift >= 0) 1198 f <<= ep->freqshift; 1199 else 1200 f >>= -ep->freqshift; 1201 1202 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1203 /* 1204 * If the frequency looks valid, set it. 1205 * This value is referred to in prepare_playback_urb(). 1206 */ 1207 spin_lock_irqsave(&ep->lock, flags); 1208 ep->freqm = f; 1209 spin_unlock_irqrestore(&ep->lock, flags); 1210 } else { 1211 /* 1212 * Out of range; maybe the shift value is wrong. 1213 * Reset it so that we autodetect again the next time. 1214 */ 1215 ep->freqshift = INT_MIN; 1216 } 1217 } 1218 1219