1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 */ 4 5 #include <linux/gfp.h> 6 #include <linux/init.h> 7 #include <linux/ratelimit.h> 8 #include <linux/usb.h> 9 #include <linux/usb/audio.h> 10 #include <linux/slab.h> 11 12 #include <sound/core.h> 13 #include <sound/pcm.h> 14 #include <sound/pcm_params.h> 15 16 #include "usbaudio.h" 17 #include "helper.h" 18 #include "card.h" 19 #include "endpoint.h" 20 #include "pcm.h" 21 #include "clock.h" 22 #include "quirks.h" 23 24 enum { 25 EP_STATE_STOPPED, 26 EP_STATE_RUNNING, 27 EP_STATE_STOPPING, 28 }; 29 30 /* interface refcounting */ 31 struct snd_usb_iface_ref { 32 unsigned char iface; 33 bool need_setup; 34 int opened; 35 int altset; 36 struct list_head list; 37 }; 38 39 /* clock refcounting */ 40 struct snd_usb_clock_ref { 41 unsigned char clock; 42 atomic_t locked; 43 int opened; 44 int rate; 45 bool need_setup; 46 struct list_head list; 47 }; 48 49 /* 50 * snd_usb_endpoint is a model that abstracts everything related to an 51 * USB endpoint and its streaming. 52 * 53 * There are functions to activate and deactivate the streaming URBs and 54 * optional callbacks to let the pcm logic handle the actual content of the 55 * packets for playback and record. Thus, the bus streaming and the audio 56 * handlers are fully decoupled. 57 * 58 * There are two different types of endpoints in audio applications. 59 * 60 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 61 * inbound and outbound traffic. 62 * 63 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 64 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 65 * (3 or 4 bytes). 66 * 67 * Each endpoint has to be configured prior to being used by calling 68 * snd_usb_endpoint_set_params(). 69 * 70 * The model incorporates a reference counting, so that multiple users 71 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 72 * only the first user will effectively start the URBs, and only the last 73 * one to stop it will tear the URBs down again. 74 */ 75 76 /* 77 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 78 * this will overflow at approx 524 kHz 79 */ 80 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 81 { 82 return ((rate << 13) + 62) / 125; 83 } 84 85 /* 86 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 87 * this will overflow at approx 4 MHz 88 */ 89 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 90 { 91 return ((rate << 10) + 62) / 125; 92 } 93 94 /* 95 * release a urb data 96 */ 97 static void release_urb_ctx(struct snd_urb_ctx *u) 98 { 99 if (u->urb && u->buffer_size) 100 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 101 u->urb->transfer_buffer, 102 u->urb->transfer_dma); 103 usb_free_urb(u->urb); 104 u->urb = NULL; 105 u->buffer_size = 0; 106 } 107 108 static const char *usb_error_string(int err) 109 { 110 switch (err) { 111 case -ENODEV: 112 return "no device"; 113 case -ENOENT: 114 return "endpoint not enabled"; 115 case -EPIPE: 116 return "endpoint stalled"; 117 case -ENOSPC: 118 return "not enough bandwidth"; 119 case -ESHUTDOWN: 120 return "device disabled"; 121 case -EHOSTUNREACH: 122 return "device suspended"; 123 case -EINVAL: 124 case -EAGAIN: 125 case -EFBIG: 126 case -EMSGSIZE: 127 return "internal error"; 128 default: 129 return "unknown error"; 130 } 131 } 132 133 static inline bool ep_state_running(struct snd_usb_endpoint *ep) 134 { 135 return atomic_read(&ep->state) == EP_STATE_RUNNING; 136 } 137 138 static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new) 139 { 140 return atomic_try_cmpxchg(&ep->state, &old, new); 141 } 142 143 /** 144 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 145 * 146 * @ep: The snd_usb_endpoint 147 * 148 * Determine whether an endpoint is driven by an implicit feedback 149 * data endpoint source. 150 */ 151 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 152 { 153 return ep->implicit_fb_sync && usb_pipeout(ep->pipe); 154 } 155 156 /* 157 * Return the number of samples to be sent in the next packet 158 * for streaming based on information derived from sync endpoints 159 * 160 * This won't be used for implicit feedback which takes the packet size 161 * returned from the sync source 162 */ 163 static int slave_next_packet_size(struct snd_usb_endpoint *ep, 164 unsigned int avail) 165 { 166 unsigned long flags; 167 unsigned int phase; 168 int ret; 169 170 if (ep->fill_max) 171 return ep->maxframesize; 172 173 spin_lock_irqsave(&ep->lock, flags); 174 phase = (ep->phase & 0xffff) + (ep->freqm << ep->datainterval); 175 ret = min(phase >> 16, ep->maxframesize); 176 if (avail && ret >= avail) 177 ret = -EAGAIN; 178 else 179 ep->phase = phase; 180 spin_unlock_irqrestore(&ep->lock, flags); 181 182 return ret; 183 } 184 185 /* 186 * Return the number of samples to be sent in the next packet 187 * for adaptive and synchronous endpoints 188 */ 189 static int next_packet_size(struct snd_usb_endpoint *ep, unsigned int avail) 190 { 191 unsigned int sample_accum; 192 int ret; 193 194 if (ep->fill_max) 195 return ep->maxframesize; 196 197 sample_accum = ep->sample_accum + ep->sample_rem; 198 if (sample_accum >= ep->pps) { 199 sample_accum -= ep->pps; 200 ret = ep->packsize[1]; 201 } else { 202 ret = ep->packsize[0]; 203 } 204 if (avail && ret >= avail) 205 ret = -EAGAIN; 206 else 207 ep->sample_accum = sample_accum; 208 209 return ret; 210 } 211 212 /* 213 * snd_usb_endpoint_next_packet_size: Return the number of samples to be sent 214 * in the next packet 215 * 216 * If the size is equal or exceeds @avail, don't proceed but return -EAGAIN 217 * Exception: @avail = 0 for skipping the check. 218 */ 219 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep, 220 struct snd_urb_ctx *ctx, int idx, 221 unsigned int avail) 222 { 223 unsigned int packet; 224 225 packet = ctx->packet_size[idx]; 226 if (packet) { 227 if (avail && packet >= avail) 228 return -EAGAIN; 229 return packet; 230 } 231 232 if (ep->sync_source) 233 return slave_next_packet_size(ep, avail); 234 else 235 return next_packet_size(ep, avail); 236 } 237 238 static void call_retire_callback(struct snd_usb_endpoint *ep, 239 struct urb *urb) 240 { 241 struct snd_usb_substream *data_subs; 242 243 data_subs = READ_ONCE(ep->data_subs); 244 if (data_subs && ep->retire_data_urb) 245 ep->retire_data_urb(data_subs, urb); 246 } 247 248 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 249 struct snd_urb_ctx *urb_ctx) 250 { 251 call_retire_callback(ep, urb_ctx->urb); 252 } 253 254 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 255 struct snd_usb_endpoint *sender, 256 const struct urb *urb); 257 258 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 259 struct snd_urb_ctx *urb_ctx) 260 { 261 struct urb *urb = urb_ctx->urb; 262 struct snd_usb_endpoint *sync_sink; 263 264 if (unlikely(ep->skip_packets > 0)) { 265 ep->skip_packets--; 266 return; 267 } 268 269 sync_sink = READ_ONCE(ep->sync_sink); 270 if (sync_sink) 271 snd_usb_handle_sync_urb(sync_sink, ep, urb); 272 273 call_retire_callback(ep, urb); 274 } 275 276 static inline bool has_tx_length_quirk(struct snd_usb_audio *chip) 277 { 278 return chip->quirk_flags & QUIRK_FLAG_TX_LENGTH; 279 } 280 281 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 282 struct snd_urb_ctx *ctx) 283 { 284 struct urb *urb = ctx->urb; 285 unsigned int offs = 0; 286 unsigned int extra = 0; 287 __le32 packet_length; 288 int i; 289 290 /* For tx_length_quirk, put packet length at start of packet */ 291 if (has_tx_length_quirk(ep->chip)) 292 extra = sizeof(packet_length); 293 294 for (i = 0; i < ctx->packets; ++i) { 295 unsigned int offset; 296 unsigned int length; 297 int counts; 298 299 counts = snd_usb_endpoint_next_packet_size(ep, ctx, i, 0); 300 length = counts * ep->stride; /* number of silent bytes */ 301 offset = offs * ep->stride + extra * i; 302 urb->iso_frame_desc[i].offset = offset; 303 urb->iso_frame_desc[i].length = length + extra; 304 if (extra) { 305 packet_length = cpu_to_le32(length); 306 memcpy(urb->transfer_buffer + offset, 307 &packet_length, sizeof(packet_length)); 308 } 309 memset(urb->transfer_buffer + offset + extra, 310 ep->silence_value, length); 311 offs += counts; 312 } 313 314 urb->number_of_packets = ctx->packets; 315 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 316 ctx->queued = 0; 317 } 318 319 /* 320 * Prepare a PLAYBACK urb for submission to the bus. 321 */ 322 static int prepare_outbound_urb(struct snd_usb_endpoint *ep, 323 struct snd_urb_ctx *ctx, 324 bool in_stream_lock) 325 { 326 struct urb *urb = ctx->urb; 327 unsigned char *cp = urb->transfer_buffer; 328 struct snd_usb_substream *data_subs; 329 330 urb->dev = ep->chip->dev; /* we need to set this at each time */ 331 332 switch (ep->type) { 333 case SND_USB_ENDPOINT_TYPE_DATA: 334 data_subs = READ_ONCE(ep->data_subs); 335 if (data_subs && ep->prepare_data_urb) 336 return ep->prepare_data_urb(data_subs, urb, in_stream_lock); 337 /* no data provider, so send silence */ 338 prepare_silent_urb(ep, ctx); 339 break; 340 341 case SND_USB_ENDPOINT_TYPE_SYNC: 342 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 343 /* 344 * fill the length and offset of each urb descriptor. 345 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 346 */ 347 urb->iso_frame_desc[0].length = 4; 348 urb->iso_frame_desc[0].offset = 0; 349 cp[0] = ep->freqn; 350 cp[1] = ep->freqn >> 8; 351 cp[2] = ep->freqn >> 16; 352 cp[3] = ep->freqn >> 24; 353 } else { 354 /* 355 * fill the length and offset of each urb descriptor. 356 * the fixed 10.14 frequency is passed through the pipe. 357 */ 358 urb->iso_frame_desc[0].length = 3; 359 urb->iso_frame_desc[0].offset = 0; 360 cp[0] = ep->freqn >> 2; 361 cp[1] = ep->freqn >> 10; 362 cp[2] = ep->freqn >> 18; 363 } 364 365 break; 366 } 367 return 0; 368 } 369 370 /* 371 * Prepare a CAPTURE or SYNC urb for submission to the bus. 372 */ 373 static int prepare_inbound_urb(struct snd_usb_endpoint *ep, 374 struct snd_urb_ctx *urb_ctx) 375 { 376 int i, offs; 377 struct urb *urb = urb_ctx->urb; 378 379 urb->dev = ep->chip->dev; /* we need to set this at each time */ 380 381 switch (ep->type) { 382 case SND_USB_ENDPOINT_TYPE_DATA: 383 offs = 0; 384 for (i = 0; i < urb_ctx->packets; i++) { 385 urb->iso_frame_desc[i].offset = offs; 386 urb->iso_frame_desc[i].length = ep->curpacksize; 387 offs += ep->curpacksize; 388 } 389 390 urb->transfer_buffer_length = offs; 391 urb->number_of_packets = urb_ctx->packets; 392 break; 393 394 case SND_USB_ENDPOINT_TYPE_SYNC: 395 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 396 urb->iso_frame_desc[0].offset = 0; 397 break; 398 } 399 return 0; 400 } 401 402 /* notify an error as XRUN to the assigned PCM data substream */ 403 static void notify_xrun(struct snd_usb_endpoint *ep) 404 { 405 struct snd_usb_substream *data_subs; 406 407 data_subs = READ_ONCE(ep->data_subs); 408 if (data_subs && data_subs->pcm_substream) 409 snd_pcm_stop_xrun(data_subs->pcm_substream); 410 } 411 412 static struct snd_usb_packet_info * 413 next_packet_fifo_enqueue(struct snd_usb_endpoint *ep) 414 { 415 struct snd_usb_packet_info *p; 416 417 p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) % 418 ARRAY_SIZE(ep->next_packet); 419 ep->next_packet_queued++; 420 return p; 421 } 422 423 static struct snd_usb_packet_info * 424 next_packet_fifo_dequeue(struct snd_usb_endpoint *ep) 425 { 426 struct snd_usb_packet_info *p; 427 428 p = ep->next_packet + ep->next_packet_head; 429 ep->next_packet_head++; 430 ep->next_packet_head %= ARRAY_SIZE(ep->next_packet); 431 ep->next_packet_queued--; 432 return p; 433 } 434 435 static void push_back_to_ready_list(struct snd_usb_endpoint *ep, 436 struct snd_urb_ctx *ctx) 437 { 438 unsigned long flags; 439 440 spin_lock_irqsave(&ep->lock, flags); 441 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 442 spin_unlock_irqrestore(&ep->lock, flags); 443 } 444 445 /* 446 * Send output urbs that have been prepared previously. URBs are dequeued 447 * from ep->ready_playback_urbs and in case there aren't any available 448 * or there are no packets that have been prepared, this function does 449 * nothing. 450 * 451 * The reason why the functionality of sending and preparing URBs is separated 452 * is that host controllers don't guarantee the order in which they return 453 * inbound and outbound packets to their submitters. 454 * 455 * This function is used both for implicit feedback endpoints and in low- 456 * latency playback mode. 457 */ 458 int snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep, 459 bool in_stream_lock) 460 { 461 bool implicit_fb = snd_usb_endpoint_implicit_feedback_sink(ep); 462 463 while (ep_state_running(ep)) { 464 465 unsigned long flags; 466 struct snd_usb_packet_info *packet; 467 struct snd_urb_ctx *ctx = NULL; 468 int err, i; 469 470 spin_lock_irqsave(&ep->lock, flags); 471 if ((!implicit_fb || ep->next_packet_queued > 0) && 472 !list_empty(&ep->ready_playback_urbs)) { 473 /* take URB out of FIFO */ 474 ctx = list_first_entry(&ep->ready_playback_urbs, 475 struct snd_urb_ctx, ready_list); 476 list_del_init(&ctx->ready_list); 477 if (implicit_fb) 478 packet = next_packet_fifo_dequeue(ep); 479 } 480 spin_unlock_irqrestore(&ep->lock, flags); 481 482 if (ctx == NULL) 483 break; 484 485 /* copy over the length information */ 486 if (implicit_fb) { 487 for (i = 0; i < packet->packets; i++) 488 ctx->packet_size[i] = packet->packet_size[i]; 489 } 490 491 /* call the data handler to fill in playback data */ 492 err = prepare_outbound_urb(ep, ctx, in_stream_lock); 493 /* can be stopped during prepare callback */ 494 if (unlikely(!ep_state_running(ep))) 495 break; 496 if (err < 0) { 497 /* push back to ready list again for -EAGAIN */ 498 if (err == -EAGAIN) { 499 push_back_to_ready_list(ep, ctx); 500 break; 501 } 502 503 if (!in_stream_lock) 504 notify_xrun(ep); 505 return -EPIPE; 506 } 507 508 if (!atomic_read(&ep->chip->shutdown)) 509 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 510 else 511 err = -ENODEV; 512 if (err < 0) { 513 if (!atomic_read(&ep->chip->shutdown)) { 514 usb_audio_err(ep->chip, 515 "Unable to submit urb #%d: %d at %s\n", 516 ctx->index, err, __func__); 517 if (!in_stream_lock) 518 notify_xrun(ep); 519 } 520 return -EPIPE; 521 } 522 523 set_bit(ctx->index, &ep->active_mask); 524 atomic_inc(&ep->submitted_urbs); 525 } 526 527 return 0; 528 } 529 530 /* 531 * complete callback for urbs 532 */ 533 static void snd_complete_urb(struct urb *urb) 534 { 535 struct snd_urb_ctx *ctx = urb->context; 536 struct snd_usb_endpoint *ep = ctx->ep; 537 int err; 538 539 if (unlikely(urb->status == -ENOENT || /* unlinked */ 540 urb->status == -ENODEV || /* device removed */ 541 urb->status == -ECONNRESET || /* unlinked */ 542 urb->status == -ESHUTDOWN)) /* device disabled */ 543 goto exit_clear; 544 /* device disconnected */ 545 if (unlikely(atomic_read(&ep->chip->shutdown))) 546 goto exit_clear; 547 548 if (unlikely(!ep_state_running(ep))) 549 goto exit_clear; 550 551 if (usb_pipeout(ep->pipe)) { 552 retire_outbound_urb(ep, ctx); 553 /* can be stopped during retire callback */ 554 if (unlikely(!ep_state_running(ep))) 555 goto exit_clear; 556 557 /* in low-latency and implicit-feedback modes, push back the 558 * URB to ready list at first, then process as much as possible 559 */ 560 if (ep->lowlatency_playback || 561 snd_usb_endpoint_implicit_feedback_sink(ep)) { 562 push_back_to_ready_list(ep, ctx); 563 clear_bit(ctx->index, &ep->active_mask); 564 snd_usb_queue_pending_output_urbs(ep, false); 565 atomic_dec(&ep->submitted_urbs); /* decrement at last */ 566 return; 567 } 568 569 /* in non-lowlatency mode, no error handling for prepare */ 570 prepare_outbound_urb(ep, ctx, false); 571 /* can be stopped during prepare callback */ 572 if (unlikely(!ep_state_running(ep))) 573 goto exit_clear; 574 } else { 575 retire_inbound_urb(ep, ctx); 576 /* can be stopped during retire callback */ 577 if (unlikely(!ep_state_running(ep))) 578 goto exit_clear; 579 580 prepare_inbound_urb(ep, ctx); 581 } 582 583 if (!atomic_read(&ep->chip->shutdown)) 584 err = usb_submit_urb(urb, GFP_ATOMIC); 585 else 586 err = -ENODEV; 587 if (err == 0) 588 return; 589 590 if (!atomic_read(&ep->chip->shutdown)) { 591 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 592 notify_xrun(ep); 593 } 594 595 exit_clear: 596 clear_bit(ctx->index, &ep->active_mask); 597 atomic_dec(&ep->submitted_urbs); 598 } 599 600 /* 601 * Find or create a refcount object for the given interface 602 * 603 * The objects are released altogether in snd_usb_endpoint_free_all() 604 */ 605 static struct snd_usb_iface_ref * 606 iface_ref_find(struct snd_usb_audio *chip, int iface) 607 { 608 struct snd_usb_iface_ref *ip; 609 610 list_for_each_entry(ip, &chip->iface_ref_list, list) 611 if (ip->iface == iface) 612 return ip; 613 614 ip = kzalloc(sizeof(*ip), GFP_KERNEL); 615 if (!ip) 616 return NULL; 617 ip->iface = iface; 618 list_add_tail(&ip->list, &chip->iface_ref_list); 619 return ip; 620 } 621 622 /* Similarly, a refcount object for clock */ 623 static struct snd_usb_clock_ref * 624 clock_ref_find(struct snd_usb_audio *chip, int clock) 625 { 626 struct snd_usb_clock_ref *ref; 627 628 list_for_each_entry(ref, &chip->clock_ref_list, list) 629 if (ref->clock == clock) 630 return ref; 631 632 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 633 if (!ref) 634 return NULL; 635 ref->clock = clock; 636 atomic_set(&ref->locked, 0); 637 list_add_tail(&ref->list, &chip->clock_ref_list); 638 return ref; 639 } 640 641 /* 642 * Get the existing endpoint object corresponding EP 643 * Returns NULL if not present. 644 */ 645 struct snd_usb_endpoint * 646 snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num) 647 { 648 struct snd_usb_endpoint *ep; 649 650 list_for_each_entry(ep, &chip->ep_list, list) { 651 if (ep->ep_num == ep_num) 652 return ep; 653 } 654 655 return NULL; 656 } 657 658 #define ep_type_name(type) \ 659 (type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync") 660 661 /** 662 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 663 * 664 * @chip: The chip 665 * @ep_num: The number of the endpoint to use 666 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 667 * 668 * If the requested endpoint has not been added to the given chip before, 669 * a new instance is created. 670 * 671 * Returns zero on success or a negative error code. 672 * 673 * New endpoints will be added to chip->ep_list and freed by 674 * calling snd_usb_endpoint_free_all(). 675 * 676 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 677 * bNumEndpoints > 1 beforehand. 678 */ 679 int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type) 680 { 681 struct snd_usb_endpoint *ep; 682 bool is_playback; 683 684 ep = snd_usb_get_endpoint(chip, ep_num); 685 if (ep) 686 return 0; 687 688 usb_audio_dbg(chip, "Creating new %s endpoint #%x\n", 689 ep_type_name(type), 690 ep_num); 691 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 692 if (!ep) 693 return -ENOMEM; 694 695 ep->chip = chip; 696 spin_lock_init(&ep->lock); 697 ep->type = type; 698 ep->ep_num = ep_num; 699 INIT_LIST_HEAD(&ep->ready_playback_urbs); 700 atomic_set(&ep->submitted_urbs, 0); 701 702 is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 703 ep_num &= USB_ENDPOINT_NUMBER_MASK; 704 if (is_playback) 705 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 706 else 707 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 708 709 list_add_tail(&ep->list, &chip->ep_list); 710 return 0; 711 } 712 713 /* Set up syncinterval and maxsyncsize for a sync EP */ 714 static void endpoint_set_syncinterval(struct snd_usb_audio *chip, 715 struct snd_usb_endpoint *ep) 716 { 717 struct usb_host_interface *alts; 718 struct usb_endpoint_descriptor *desc; 719 720 alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting); 721 if (!alts) 722 return; 723 724 desc = get_endpoint(alts, ep->ep_idx); 725 if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 726 desc->bRefresh >= 1 && desc->bRefresh <= 9) 727 ep->syncinterval = desc->bRefresh; 728 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 729 ep->syncinterval = 1; 730 else if (desc->bInterval >= 1 && desc->bInterval <= 16) 731 ep->syncinterval = desc->bInterval - 1; 732 else 733 ep->syncinterval = 3; 734 735 ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize); 736 } 737 738 static bool endpoint_compatible(struct snd_usb_endpoint *ep, 739 const struct audioformat *fp, 740 const struct snd_pcm_hw_params *params) 741 { 742 if (!ep->opened) 743 return false; 744 if (ep->cur_audiofmt != fp) 745 return false; 746 if (ep->cur_rate != params_rate(params) || 747 ep->cur_format != params_format(params) || 748 ep->cur_period_frames != params_period_size(params) || 749 ep->cur_buffer_periods != params_periods(params)) 750 return false; 751 return true; 752 } 753 754 /* 755 * Check whether the given fp and hw params are compatible with the current 756 * setup of the target EP for implicit feedback sync 757 */ 758 bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip, 759 struct snd_usb_endpoint *ep, 760 const struct audioformat *fp, 761 const struct snd_pcm_hw_params *params) 762 { 763 bool ret; 764 765 mutex_lock(&chip->mutex); 766 ret = endpoint_compatible(ep, fp, params); 767 mutex_unlock(&chip->mutex); 768 return ret; 769 } 770 771 /* 772 * snd_usb_endpoint_open: Open the endpoint 773 * 774 * Called from hw_params to assign the endpoint to the substream. 775 * It's reference-counted, and only the first opener is allowed to set up 776 * arbitrary parameters. The later opener must be compatible with the 777 * former opened parameters. 778 * The endpoint needs to be closed via snd_usb_endpoint_close() later. 779 * 780 * Note that this function doesn't configure the endpoint. The substream 781 * needs to set it up later via snd_usb_endpoint_set_params() and 782 * snd_usb_endpoint_prepare(). 783 */ 784 struct snd_usb_endpoint * 785 snd_usb_endpoint_open(struct snd_usb_audio *chip, 786 const struct audioformat *fp, 787 const struct snd_pcm_hw_params *params, 788 bool is_sync_ep, 789 bool fixed_rate) 790 { 791 struct snd_usb_endpoint *ep; 792 int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint; 793 794 mutex_lock(&chip->mutex); 795 ep = snd_usb_get_endpoint(chip, ep_num); 796 if (!ep) { 797 usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num); 798 goto unlock; 799 } 800 801 if (!ep->opened) { 802 if (is_sync_ep) { 803 ep->iface = fp->sync_iface; 804 ep->altsetting = fp->sync_altsetting; 805 ep->ep_idx = fp->sync_ep_idx; 806 } else { 807 ep->iface = fp->iface; 808 ep->altsetting = fp->altsetting; 809 ep->ep_idx = fp->ep_idx; 810 } 811 usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n", 812 ep_num, ep->iface, ep->altsetting, ep->ep_idx); 813 814 ep->iface_ref = iface_ref_find(chip, ep->iface); 815 if (!ep->iface_ref) { 816 ep = NULL; 817 goto unlock; 818 } 819 820 if (fp->protocol != UAC_VERSION_1) { 821 ep->clock_ref = clock_ref_find(chip, fp->clock); 822 if (!ep->clock_ref) { 823 ep = NULL; 824 goto unlock; 825 } 826 ep->clock_ref->opened++; 827 } 828 829 ep->cur_audiofmt = fp; 830 ep->cur_channels = fp->channels; 831 ep->cur_rate = params_rate(params); 832 ep->cur_format = params_format(params); 833 ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) * 834 ep->cur_channels / 8; 835 ep->cur_period_frames = params_period_size(params); 836 ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes; 837 ep->cur_buffer_periods = params_periods(params); 838 839 if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC) 840 endpoint_set_syncinterval(chip, ep); 841 842 ep->implicit_fb_sync = fp->implicit_fb; 843 ep->need_setup = true; 844 ep->need_prepare = true; 845 ep->fixed_rate = fixed_rate; 846 847 usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n", 848 ep->cur_channels, ep->cur_rate, 849 snd_pcm_format_name(ep->cur_format), 850 ep->cur_period_bytes, ep->cur_buffer_periods, 851 ep->implicit_fb_sync); 852 853 } else { 854 if (WARN_ON(!ep->iface_ref)) { 855 ep = NULL; 856 goto unlock; 857 } 858 859 if (!endpoint_compatible(ep, fp, params)) { 860 usb_audio_err(chip, "Incompatible EP setup for 0x%x\n", 861 ep_num); 862 ep = NULL; 863 goto unlock; 864 } 865 866 usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n", 867 ep_num, ep->opened); 868 } 869 870 if (!ep->iface_ref->opened++) 871 ep->iface_ref->need_setup = true; 872 873 ep->opened++; 874 875 unlock: 876 mutex_unlock(&chip->mutex); 877 return ep; 878 } 879 880 /* 881 * snd_usb_endpoint_set_sync: Link data and sync endpoints 882 * 883 * Pass NULL to sync_ep to unlink again 884 */ 885 void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip, 886 struct snd_usb_endpoint *data_ep, 887 struct snd_usb_endpoint *sync_ep) 888 { 889 data_ep->sync_source = sync_ep; 890 } 891 892 /* 893 * Set data endpoint callbacks and the assigned data stream 894 * 895 * Called at PCM trigger and cleanups. 896 * Pass NULL to deactivate each callback. 897 */ 898 void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep, 899 int (*prepare)(struct snd_usb_substream *subs, 900 struct urb *urb, 901 bool in_stream_lock), 902 void (*retire)(struct snd_usb_substream *subs, 903 struct urb *urb), 904 struct snd_usb_substream *data_subs) 905 { 906 ep->prepare_data_urb = prepare; 907 ep->retire_data_urb = retire; 908 if (data_subs) 909 ep->lowlatency_playback = data_subs->lowlatency_playback; 910 else 911 ep->lowlatency_playback = false; 912 WRITE_ONCE(ep->data_subs, data_subs); 913 } 914 915 static int endpoint_set_interface(struct snd_usb_audio *chip, 916 struct snd_usb_endpoint *ep, 917 bool set) 918 { 919 int altset = set ? ep->altsetting : 0; 920 int err; 921 922 if (ep->iface_ref->altset == altset) 923 return 0; 924 925 usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n", 926 ep->iface, altset, ep->ep_num); 927 err = usb_set_interface(chip->dev, ep->iface, altset); 928 if (err < 0) { 929 usb_audio_err_ratelimited( 930 chip, "%d:%d: usb_set_interface failed (%d)\n", 931 ep->iface, altset, err); 932 return err; 933 } 934 935 if (chip->quirk_flags & QUIRK_FLAG_IFACE_DELAY) 936 msleep(50); 937 ep->iface_ref->altset = altset; 938 return 0; 939 } 940 941 /* 942 * snd_usb_endpoint_close: Close the endpoint 943 * 944 * Unreference the already opened endpoint via snd_usb_endpoint_open(). 945 */ 946 void snd_usb_endpoint_close(struct snd_usb_audio *chip, 947 struct snd_usb_endpoint *ep) 948 { 949 mutex_lock(&chip->mutex); 950 usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n", 951 ep->ep_num, ep->opened); 952 953 if (!--ep->iface_ref->opened && 954 !(chip->quirk_flags & QUIRK_FLAG_IFACE_SKIP_CLOSE)) 955 endpoint_set_interface(chip, ep, false); 956 957 if (!--ep->opened) { 958 if (ep->clock_ref) { 959 if (!--ep->clock_ref->opened) 960 ep->clock_ref->rate = 0; 961 } 962 ep->iface = 0; 963 ep->altsetting = 0; 964 ep->cur_audiofmt = NULL; 965 ep->cur_rate = 0; 966 ep->iface_ref = NULL; 967 ep->clock_ref = NULL; 968 usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num); 969 } 970 mutex_unlock(&chip->mutex); 971 } 972 973 /* Prepare for suspening EP, called from the main suspend handler */ 974 void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep) 975 { 976 ep->need_prepare = true; 977 if (ep->iface_ref) 978 ep->iface_ref->need_setup = true; 979 if (ep->clock_ref) 980 ep->clock_ref->rate = 0; 981 } 982 983 /* 984 * wait until all urbs are processed. 985 */ 986 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 987 { 988 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 989 int alive; 990 991 if (atomic_read(&ep->state) != EP_STATE_STOPPING) 992 return 0; 993 994 do { 995 alive = atomic_read(&ep->submitted_urbs); 996 if (!alive) 997 break; 998 999 schedule_timeout_uninterruptible(1); 1000 } while (time_before(jiffies, end_time)); 1001 1002 if (alive) 1003 usb_audio_err(ep->chip, 1004 "timeout: still %d active urbs on EP #%x\n", 1005 alive, ep->ep_num); 1006 1007 if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) { 1008 ep->sync_sink = NULL; 1009 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 1010 } 1011 1012 return 0; 1013 } 1014 1015 /* sync the pending stop operation; 1016 * this function itself doesn't trigger the stop operation 1017 */ 1018 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 1019 { 1020 if (ep) 1021 wait_clear_urbs(ep); 1022 } 1023 1024 /* 1025 * Stop active urbs 1026 * 1027 * This function moves the EP to STOPPING state if it's being RUNNING. 1028 */ 1029 static int stop_urbs(struct snd_usb_endpoint *ep, bool force, bool keep_pending) 1030 { 1031 unsigned int i; 1032 unsigned long flags; 1033 1034 if (!force && atomic_read(&ep->running)) 1035 return -EBUSY; 1036 1037 if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING)) 1038 return 0; 1039 1040 spin_lock_irqsave(&ep->lock, flags); 1041 INIT_LIST_HEAD(&ep->ready_playback_urbs); 1042 ep->next_packet_head = 0; 1043 ep->next_packet_queued = 0; 1044 spin_unlock_irqrestore(&ep->lock, flags); 1045 1046 if (keep_pending) 1047 return 0; 1048 1049 for (i = 0; i < ep->nurbs; i++) { 1050 if (test_bit(i, &ep->active_mask)) { 1051 if (!test_and_set_bit(i, &ep->unlink_mask)) { 1052 struct urb *u = ep->urb[i].urb; 1053 usb_unlink_urb(u); 1054 } 1055 } 1056 } 1057 1058 return 0; 1059 } 1060 1061 /* 1062 * release an endpoint's urbs 1063 */ 1064 static int release_urbs(struct snd_usb_endpoint *ep, bool force) 1065 { 1066 int i, err; 1067 1068 /* route incoming urbs to nirvana */ 1069 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 1070 1071 /* stop and unlink urbs */ 1072 err = stop_urbs(ep, force, false); 1073 if (err) 1074 return err; 1075 1076 wait_clear_urbs(ep); 1077 1078 for (i = 0; i < ep->nurbs; i++) 1079 release_urb_ctx(&ep->urb[i]); 1080 1081 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 1082 ep->syncbuf, ep->sync_dma); 1083 1084 ep->syncbuf = NULL; 1085 ep->nurbs = 0; 1086 return 0; 1087 } 1088 1089 /* 1090 * configure a data endpoint 1091 */ 1092 static int data_ep_set_params(struct snd_usb_endpoint *ep) 1093 { 1094 struct snd_usb_audio *chip = ep->chip; 1095 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 1096 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 1097 unsigned int max_urbs, i; 1098 const struct audioformat *fmt = ep->cur_audiofmt; 1099 int frame_bits = ep->cur_frame_bytes * 8; 1100 int tx_length_quirk = (has_tx_length_quirk(chip) && 1101 usb_pipeout(ep->pipe)); 1102 1103 usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n", 1104 ep->ep_num, ep->pipe); 1105 1106 if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 1107 /* 1108 * When operating in DSD DOP mode, the size of a sample frame 1109 * in hardware differs from the actual physical format width 1110 * because we need to make room for the DOP markers. 1111 */ 1112 frame_bits += ep->cur_channels << 3; 1113 } 1114 1115 ep->datainterval = fmt->datainterval; 1116 ep->stride = frame_bits >> 3; 1117 1118 switch (ep->cur_format) { 1119 case SNDRV_PCM_FORMAT_U8: 1120 ep->silence_value = 0x80; 1121 break; 1122 case SNDRV_PCM_FORMAT_DSD_U8: 1123 case SNDRV_PCM_FORMAT_DSD_U16_LE: 1124 case SNDRV_PCM_FORMAT_DSD_U32_LE: 1125 case SNDRV_PCM_FORMAT_DSD_U16_BE: 1126 case SNDRV_PCM_FORMAT_DSD_U32_BE: 1127 ep->silence_value = 0x69; 1128 break; 1129 default: 1130 ep->silence_value = 0; 1131 } 1132 1133 /* assume max. frequency is 50% higher than nominal */ 1134 ep->freqmax = ep->freqn + (ep->freqn >> 1); 1135 /* Round up freqmax to nearest integer in order to calculate maximum 1136 * packet size, which must represent a whole number of frames. 1137 * This is accomplished by adding 0x0.ffff before converting the 1138 * Q16.16 format into integer. 1139 * In order to accurately calculate the maximum packet size when 1140 * the data interval is more than 1 (i.e. ep->datainterval > 0), 1141 * multiply by the data interval prior to rounding. For instance, 1142 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 1143 * frames with a data interval of 1, but 11 (10.25) frames with a 1144 * data interval of 2. 1145 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 1146 * maximum datainterval value of 3, at USB full speed, higher for 1147 * USB high speed, noting that ep->freqmax is in units of 1148 * frames per packet in Q16.16 format.) 1149 */ 1150 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 1151 (frame_bits >> 3); 1152 if (tx_length_quirk) 1153 maxsize += sizeof(__le32); /* Space for length descriptor */ 1154 /* but wMaxPacketSize might reduce this */ 1155 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 1156 /* whatever fits into a max. size packet */ 1157 unsigned int data_maxsize = maxsize = ep->maxpacksize; 1158 1159 if (tx_length_quirk) 1160 /* Need to remove the length descriptor to calc freq */ 1161 data_maxsize -= sizeof(__le32); 1162 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 1163 << (16 - ep->datainterval); 1164 } 1165 1166 if (ep->fill_max) 1167 ep->curpacksize = ep->maxpacksize; 1168 else 1169 ep->curpacksize = maxsize; 1170 1171 if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) { 1172 packs_per_ms = 8 >> ep->datainterval; 1173 max_packs_per_urb = MAX_PACKS_HS; 1174 } else { 1175 packs_per_ms = 1; 1176 max_packs_per_urb = MAX_PACKS; 1177 } 1178 if (ep->sync_source && !ep->implicit_fb_sync) 1179 max_packs_per_urb = min(max_packs_per_urb, 1180 1U << ep->sync_source->syncinterval); 1181 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 1182 1183 /* 1184 * Capture endpoints need to use small URBs because there's no way 1185 * to tell in advance where the next period will end, and we don't 1186 * want the next URB to complete much after the period ends. 1187 * 1188 * Playback endpoints with implicit sync much use the same parameters 1189 * as their corresponding capture endpoint. 1190 */ 1191 if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) { 1192 1193 /* make capture URBs <= 1 ms and smaller than a period */ 1194 urb_packs = min(max_packs_per_urb, packs_per_ms); 1195 while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes) 1196 urb_packs >>= 1; 1197 ep->nurbs = MAX_URBS; 1198 1199 /* 1200 * Playback endpoints without implicit sync are adjusted so that 1201 * a period fits as evenly as possible in the smallest number of 1202 * URBs. The total number of URBs is adjusted to the size of the 1203 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 1204 */ 1205 } else { 1206 /* determine how small a packet can be */ 1207 minsize = (ep->freqn >> (16 - ep->datainterval)) * 1208 (frame_bits >> 3); 1209 /* with sync from device, assume it can be 12% lower */ 1210 if (ep->sync_source) 1211 minsize -= minsize >> 3; 1212 minsize = max(minsize, 1u); 1213 1214 /* how many packets will contain an entire ALSA period? */ 1215 max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize); 1216 1217 /* how many URBs will contain a period? */ 1218 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 1219 max_packs_per_urb); 1220 /* how many packets are needed in each URB? */ 1221 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 1222 1223 /* limit the number of frames in a single URB */ 1224 ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames, 1225 urbs_per_period); 1226 1227 /* try to use enough URBs to contain an entire ALSA buffer */ 1228 max_urbs = min((unsigned) MAX_URBS, 1229 MAX_QUEUE * packs_per_ms / urb_packs); 1230 ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods); 1231 } 1232 1233 /* allocate and initialize data urbs */ 1234 for (i = 0; i < ep->nurbs; i++) { 1235 struct snd_urb_ctx *u = &ep->urb[i]; 1236 u->index = i; 1237 u->ep = ep; 1238 u->packets = urb_packs; 1239 u->buffer_size = maxsize * u->packets; 1240 1241 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 1242 u->packets++; /* for transfer delimiter */ 1243 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 1244 if (!u->urb) 1245 goto out_of_memory; 1246 1247 u->urb->transfer_buffer = 1248 usb_alloc_coherent(chip->dev, u->buffer_size, 1249 GFP_KERNEL, &u->urb->transfer_dma); 1250 if (!u->urb->transfer_buffer) 1251 goto out_of_memory; 1252 u->urb->pipe = ep->pipe; 1253 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1254 u->urb->interval = 1 << ep->datainterval; 1255 u->urb->context = u; 1256 u->urb->complete = snd_complete_urb; 1257 INIT_LIST_HEAD(&u->ready_list); 1258 } 1259 1260 return 0; 1261 1262 out_of_memory: 1263 release_urbs(ep, false); 1264 return -ENOMEM; 1265 } 1266 1267 /* 1268 * configure a sync endpoint 1269 */ 1270 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 1271 { 1272 struct snd_usb_audio *chip = ep->chip; 1273 int i; 1274 1275 usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n", 1276 ep->ep_num, ep->pipe); 1277 1278 ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4, 1279 GFP_KERNEL, &ep->sync_dma); 1280 if (!ep->syncbuf) 1281 return -ENOMEM; 1282 1283 ep->nurbs = SYNC_URBS; 1284 for (i = 0; i < SYNC_URBS; i++) { 1285 struct snd_urb_ctx *u = &ep->urb[i]; 1286 u->index = i; 1287 u->ep = ep; 1288 u->packets = 1; 1289 u->urb = usb_alloc_urb(1, GFP_KERNEL); 1290 if (!u->urb) 1291 goto out_of_memory; 1292 u->urb->transfer_buffer = ep->syncbuf + i * 4; 1293 u->urb->transfer_dma = ep->sync_dma + i * 4; 1294 u->urb->transfer_buffer_length = 4; 1295 u->urb->pipe = ep->pipe; 1296 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1297 u->urb->number_of_packets = 1; 1298 u->urb->interval = 1 << ep->syncinterval; 1299 u->urb->context = u; 1300 u->urb->complete = snd_complete_urb; 1301 } 1302 1303 return 0; 1304 1305 out_of_memory: 1306 release_urbs(ep, false); 1307 return -ENOMEM; 1308 } 1309 1310 /* update the rate of the referred clock; return the actual rate */ 1311 static int update_clock_ref_rate(struct snd_usb_audio *chip, 1312 struct snd_usb_endpoint *ep) 1313 { 1314 struct snd_usb_clock_ref *clock = ep->clock_ref; 1315 int rate = ep->cur_rate; 1316 1317 if (!clock || clock->rate == rate) 1318 return rate; 1319 if (clock->rate) { 1320 if (atomic_read(&clock->locked)) 1321 return clock->rate; 1322 if (clock->rate != rate) { 1323 usb_audio_err(chip, "Mismatched sample rate %d vs %d for EP 0x%x\n", 1324 clock->rate, rate, ep->ep_num); 1325 return clock->rate; 1326 } 1327 } 1328 clock->rate = rate; 1329 clock->need_setup = true; 1330 return rate; 1331 } 1332 1333 /* 1334 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 1335 * 1336 * It's called either from hw_params callback. 1337 * Determine the number of URBs to be used on this endpoint. 1338 * An endpoint must be configured before it can be started. 1339 * An endpoint that is already running can not be reconfigured. 1340 */ 1341 int snd_usb_endpoint_set_params(struct snd_usb_audio *chip, 1342 struct snd_usb_endpoint *ep) 1343 { 1344 const struct audioformat *fmt = ep->cur_audiofmt; 1345 int err = 0; 1346 1347 mutex_lock(&chip->mutex); 1348 if (!ep->need_setup) 1349 goto unlock; 1350 1351 /* release old buffers, if any */ 1352 err = release_urbs(ep, false); 1353 if (err < 0) 1354 goto unlock; 1355 1356 ep->datainterval = fmt->datainterval; 1357 ep->maxpacksize = fmt->maxpacksize; 1358 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 1359 1360 if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) { 1361 ep->freqn = get_usb_full_speed_rate(ep->cur_rate); 1362 ep->pps = 1000 >> ep->datainterval; 1363 } else { 1364 ep->freqn = get_usb_high_speed_rate(ep->cur_rate); 1365 ep->pps = 8000 >> ep->datainterval; 1366 } 1367 1368 ep->sample_rem = ep->cur_rate % ep->pps; 1369 ep->packsize[0] = ep->cur_rate / ep->pps; 1370 ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps; 1371 1372 /* calculate the frequency in 16.16 format */ 1373 ep->freqm = ep->freqn; 1374 ep->freqshift = INT_MIN; 1375 1376 ep->phase = 0; 1377 1378 switch (ep->type) { 1379 case SND_USB_ENDPOINT_TYPE_DATA: 1380 err = data_ep_set_params(ep); 1381 break; 1382 case SND_USB_ENDPOINT_TYPE_SYNC: 1383 err = sync_ep_set_params(ep); 1384 break; 1385 default: 1386 err = -EINVAL; 1387 } 1388 1389 usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err); 1390 1391 if (err < 0) 1392 goto unlock; 1393 1394 /* some unit conversions in runtime */ 1395 ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes; 1396 ep->curframesize = ep->curpacksize / ep->cur_frame_bytes; 1397 1398 err = update_clock_ref_rate(chip, ep); 1399 if (err >= 0) { 1400 ep->need_setup = false; 1401 err = 0; 1402 } 1403 1404 unlock: 1405 mutex_unlock(&chip->mutex); 1406 return err; 1407 } 1408 1409 static int init_sample_rate(struct snd_usb_audio *chip, 1410 struct snd_usb_endpoint *ep) 1411 { 1412 struct snd_usb_clock_ref *clock = ep->clock_ref; 1413 int rate, err; 1414 1415 rate = update_clock_ref_rate(chip, ep); 1416 if (rate < 0) 1417 return rate; 1418 if (clock && !clock->need_setup) 1419 return 0; 1420 1421 if (!ep->fixed_rate) { 1422 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, rate); 1423 if (err < 0) { 1424 if (clock) 1425 clock->rate = 0; /* reset rate */ 1426 return err; 1427 } 1428 } 1429 1430 if (clock) 1431 clock->need_setup = false; 1432 return 0; 1433 } 1434 1435 /* 1436 * snd_usb_endpoint_prepare: Prepare the endpoint 1437 * 1438 * This function sets up the EP to be fully usable state. 1439 * It's called either from prepare callback. 1440 * The function checks need_setup flag, and performs nothing unless needed, 1441 * so it's safe to call this multiple times. 1442 * 1443 * This returns zero if unchanged, 1 if the configuration has changed, 1444 * or a negative error code. 1445 */ 1446 int snd_usb_endpoint_prepare(struct snd_usb_audio *chip, 1447 struct snd_usb_endpoint *ep) 1448 { 1449 bool iface_first; 1450 int err = 0; 1451 1452 mutex_lock(&chip->mutex); 1453 if (WARN_ON(!ep->iface_ref)) 1454 goto unlock; 1455 if (!ep->need_prepare) 1456 goto unlock; 1457 1458 /* If the interface has been already set up, just set EP parameters */ 1459 if (!ep->iface_ref->need_setup) { 1460 /* sample rate setup of UAC1 is per endpoint, and we need 1461 * to update at each EP configuration 1462 */ 1463 if (ep->cur_audiofmt->protocol == UAC_VERSION_1) { 1464 err = init_sample_rate(chip, ep); 1465 if (err < 0) 1466 goto unlock; 1467 } 1468 goto done; 1469 } 1470 1471 /* Need to deselect altsetting at first */ 1472 endpoint_set_interface(chip, ep, false); 1473 1474 /* Some UAC1 devices (e.g. Yamaha THR10) need the host interface 1475 * to be set up before parameter setups 1476 */ 1477 iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1; 1478 /* Workaround for devices that require the interface setup at first like UAC1 */ 1479 if (chip->quirk_flags & QUIRK_FLAG_SET_IFACE_FIRST) 1480 iface_first = true; 1481 if (iface_first) { 1482 err = endpoint_set_interface(chip, ep, true); 1483 if (err < 0) 1484 goto unlock; 1485 } 1486 1487 err = snd_usb_init_pitch(chip, ep->cur_audiofmt); 1488 if (err < 0) 1489 goto unlock; 1490 1491 err = init_sample_rate(chip, ep); 1492 if (err < 0) 1493 goto unlock; 1494 1495 err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt); 1496 if (err < 0) 1497 goto unlock; 1498 1499 /* for UAC2/3, enable the interface altset here at last */ 1500 if (!iface_first) { 1501 err = endpoint_set_interface(chip, ep, true); 1502 if (err < 0) 1503 goto unlock; 1504 } 1505 1506 ep->iface_ref->need_setup = false; 1507 1508 done: 1509 ep->need_prepare = false; 1510 err = 1; 1511 1512 unlock: 1513 mutex_unlock(&chip->mutex); 1514 return err; 1515 } 1516 1517 /* get the current rate set to the given clock by any endpoint */ 1518 int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock) 1519 { 1520 struct snd_usb_clock_ref *ref; 1521 int rate = 0; 1522 1523 if (!clock) 1524 return 0; 1525 mutex_lock(&chip->mutex); 1526 list_for_each_entry(ref, &chip->clock_ref_list, list) { 1527 if (ref->clock == clock) { 1528 rate = ref->rate; 1529 break; 1530 } 1531 } 1532 mutex_unlock(&chip->mutex); 1533 return rate; 1534 } 1535 1536 /** 1537 * snd_usb_endpoint_start: start an snd_usb_endpoint 1538 * 1539 * @ep: the endpoint to start 1540 * 1541 * A call to this function will increment the running count of the endpoint. 1542 * In case it is not already running, the URBs for this endpoint will be 1543 * submitted. Otherwise, this function does nothing. 1544 * 1545 * Must be balanced to calls of snd_usb_endpoint_stop(). 1546 * 1547 * Returns an error if the URB submission failed, 0 in all other cases. 1548 */ 1549 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) 1550 { 1551 bool is_playback = usb_pipeout(ep->pipe); 1552 int err; 1553 unsigned int i; 1554 1555 if (atomic_read(&ep->chip->shutdown)) 1556 return -EBADFD; 1557 1558 if (ep->sync_source) 1559 WRITE_ONCE(ep->sync_source->sync_sink, ep); 1560 1561 usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n", 1562 ep_type_name(ep->type), ep->ep_num, 1563 atomic_read(&ep->running)); 1564 1565 /* already running? */ 1566 if (atomic_inc_return(&ep->running) != 1) 1567 return 0; 1568 1569 if (ep->clock_ref) 1570 atomic_inc(&ep->clock_ref->locked); 1571 1572 ep->active_mask = 0; 1573 ep->unlink_mask = 0; 1574 ep->phase = 0; 1575 ep->sample_accum = 0; 1576 1577 snd_usb_endpoint_start_quirk(ep); 1578 1579 /* 1580 * If this endpoint has a data endpoint as implicit feedback source, 1581 * don't start the urbs here. Instead, mark them all as available, 1582 * wait for the record urbs to return and queue the playback urbs 1583 * from that context. 1584 */ 1585 1586 if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING)) 1587 goto __error; 1588 1589 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1590 !(ep->chip->quirk_flags & QUIRK_FLAG_PLAYBACK_FIRST)) { 1591 usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n"); 1592 i = 0; 1593 goto fill_rest; 1594 } 1595 1596 for (i = 0; i < ep->nurbs; i++) { 1597 struct urb *urb = ep->urb[i].urb; 1598 1599 if (snd_BUG_ON(!urb)) 1600 goto __error; 1601 1602 if (is_playback) 1603 err = prepare_outbound_urb(ep, urb->context, true); 1604 else 1605 err = prepare_inbound_urb(ep, urb->context); 1606 if (err < 0) { 1607 /* stop filling at applptr */ 1608 if (err == -EAGAIN) 1609 break; 1610 usb_audio_dbg(ep->chip, 1611 "EP 0x%x: failed to prepare urb: %d\n", 1612 ep->ep_num, err); 1613 goto __error; 1614 } 1615 1616 if (!atomic_read(&ep->chip->shutdown)) 1617 err = usb_submit_urb(urb, GFP_ATOMIC); 1618 else 1619 err = -ENODEV; 1620 if (err < 0) { 1621 if (!atomic_read(&ep->chip->shutdown)) 1622 usb_audio_err(ep->chip, 1623 "cannot submit urb %d, error %d: %s\n", 1624 i, err, usb_error_string(err)); 1625 goto __error; 1626 } 1627 set_bit(i, &ep->active_mask); 1628 atomic_inc(&ep->submitted_urbs); 1629 } 1630 1631 if (!i) { 1632 usb_audio_dbg(ep->chip, "XRUN at starting EP 0x%x\n", 1633 ep->ep_num); 1634 goto __error; 1635 } 1636 1637 usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n", 1638 i, ep->ep_num); 1639 1640 fill_rest: 1641 /* put the remaining URBs to ready list */ 1642 if (is_playback) { 1643 for (; i < ep->nurbs; i++) 1644 push_back_to_ready_list(ep, ep->urb + i); 1645 } 1646 1647 return 0; 1648 1649 __error: 1650 snd_usb_endpoint_stop(ep, false); 1651 return -EPIPE; 1652 } 1653 1654 /** 1655 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 1656 * 1657 * @ep: the endpoint to stop (may be NULL) 1658 * @keep_pending: keep in-flight URBs 1659 * 1660 * A call to this function will decrement the running count of the endpoint. 1661 * In case the last user has requested the endpoint stop, the URBs will 1662 * actually be deactivated. 1663 * 1664 * Must be balanced to calls of snd_usb_endpoint_start(). 1665 * 1666 * The caller needs to synchronize the pending stop operation via 1667 * snd_usb_endpoint_sync_pending_stop(). 1668 */ 1669 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending) 1670 { 1671 if (!ep) 1672 return; 1673 1674 usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n", 1675 ep_type_name(ep->type), ep->ep_num, 1676 atomic_read(&ep->running)); 1677 1678 if (snd_BUG_ON(!atomic_read(&ep->running))) 1679 return; 1680 1681 if (!atomic_dec_return(&ep->running)) { 1682 if (ep->sync_source) 1683 WRITE_ONCE(ep->sync_source->sync_sink, NULL); 1684 stop_urbs(ep, false, keep_pending); 1685 if (ep->clock_ref) 1686 atomic_dec(&ep->clock_ref->locked); 1687 1688 if (ep->chip->quirk_flags & QUIRK_FLAG_FORCE_IFACE_RESET && 1689 usb_pipeout(ep->pipe)) { 1690 ep->need_prepare = true; 1691 if (ep->iface_ref) 1692 ep->iface_ref->need_setup = true; 1693 } 1694 } 1695 } 1696 1697 /** 1698 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1699 * 1700 * @ep: the endpoint to release 1701 * 1702 * This function does not care for the endpoint's running count but will tear 1703 * down all the streaming URBs immediately. 1704 */ 1705 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1706 { 1707 release_urbs(ep, true); 1708 } 1709 1710 /** 1711 * snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint 1712 * @chip: The chip 1713 * 1714 * This free all endpoints and those resources 1715 */ 1716 void snd_usb_endpoint_free_all(struct snd_usb_audio *chip) 1717 { 1718 struct snd_usb_endpoint *ep, *en; 1719 struct snd_usb_iface_ref *ip, *in; 1720 struct snd_usb_clock_ref *cp, *cn; 1721 1722 list_for_each_entry_safe(ep, en, &chip->ep_list, list) 1723 kfree(ep); 1724 1725 list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list) 1726 kfree(ip); 1727 1728 list_for_each_entry_safe(cp, cn, &chip->clock_ref_list, list) 1729 kfree(cp); 1730 } 1731 1732 /* 1733 * snd_usb_handle_sync_urb: parse an USB sync packet 1734 * 1735 * @ep: the endpoint to handle the packet 1736 * @sender: the sending endpoint 1737 * @urb: the received packet 1738 * 1739 * This function is called from the context of an endpoint that received 1740 * the packet and is used to let another endpoint object handle the payload. 1741 */ 1742 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1743 struct snd_usb_endpoint *sender, 1744 const struct urb *urb) 1745 { 1746 int shift; 1747 unsigned int f; 1748 unsigned long flags; 1749 1750 snd_BUG_ON(ep == sender); 1751 1752 /* 1753 * In case the endpoint is operating in implicit feedback mode, prepare 1754 * a new outbound URB that has the same layout as the received packet 1755 * and add it to the list of pending urbs. queue_pending_output_urbs() 1756 * will take care of them later. 1757 */ 1758 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1759 atomic_read(&ep->running)) { 1760 1761 /* implicit feedback case */ 1762 int i, bytes = 0; 1763 struct snd_urb_ctx *in_ctx; 1764 struct snd_usb_packet_info *out_packet; 1765 1766 in_ctx = urb->context; 1767 1768 /* Count overall packet size */ 1769 for (i = 0; i < in_ctx->packets; i++) 1770 if (urb->iso_frame_desc[i].status == 0) 1771 bytes += urb->iso_frame_desc[i].actual_length; 1772 1773 /* 1774 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1775 * streaming once it received a 0-byte OUT URB 1776 */ 1777 if (bytes == 0) 1778 return; 1779 1780 spin_lock_irqsave(&ep->lock, flags); 1781 if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) { 1782 spin_unlock_irqrestore(&ep->lock, flags); 1783 usb_audio_err(ep->chip, 1784 "next package FIFO overflow EP 0x%x\n", 1785 ep->ep_num); 1786 notify_xrun(ep); 1787 return; 1788 } 1789 1790 out_packet = next_packet_fifo_enqueue(ep); 1791 1792 /* 1793 * Iterate through the inbound packet and prepare the lengths 1794 * for the output packet. The OUT packet we are about to send 1795 * will have the same amount of payload bytes per stride as the 1796 * IN packet we just received. Since the actual size is scaled 1797 * by the stride, use the sender stride to calculate the length 1798 * in case the number of channels differ between the implicitly 1799 * fed-back endpoint and the synchronizing endpoint. 1800 */ 1801 1802 out_packet->packets = in_ctx->packets; 1803 for (i = 0; i < in_ctx->packets; i++) { 1804 if (urb->iso_frame_desc[i].status == 0) 1805 out_packet->packet_size[i] = 1806 urb->iso_frame_desc[i].actual_length / sender->stride; 1807 else 1808 out_packet->packet_size[i] = 0; 1809 } 1810 1811 spin_unlock_irqrestore(&ep->lock, flags); 1812 snd_usb_queue_pending_output_urbs(ep, false); 1813 1814 return; 1815 } 1816 1817 /* 1818 * process after playback sync complete 1819 * 1820 * Full speed devices report feedback values in 10.14 format as samples 1821 * per frame, high speed devices in 16.16 format as samples per 1822 * microframe. 1823 * 1824 * Because the Audio Class 1 spec was written before USB 2.0, many high 1825 * speed devices use a wrong interpretation, some others use an 1826 * entirely different format. 1827 * 1828 * Therefore, we cannot predict what format any particular device uses 1829 * and must detect it automatically. 1830 */ 1831 1832 if (urb->iso_frame_desc[0].status != 0 || 1833 urb->iso_frame_desc[0].actual_length < 3) 1834 return; 1835 1836 f = le32_to_cpup(urb->transfer_buffer); 1837 if (urb->iso_frame_desc[0].actual_length == 3) 1838 f &= 0x00ffffff; 1839 else 1840 f &= 0x0fffffff; 1841 1842 if (f == 0) 1843 return; 1844 1845 if (unlikely(sender->tenor_fb_quirk)) { 1846 /* 1847 * Devices based on Tenor 8802 chipsets (TEAC UD-H01 1848 * and others) sometimes change the feedback value 1849 * by +/- 0x1.0000. 1850 */ 1851 if (f < ep->freqn - 0x8000) 1852 f += 0xf000; 1853 else if (f > ep->freqn + 0x8000) 1854 f -= 0xf000; 1855 } else if (unlikely(ep->freqshift == INT_MIN)) { 1856 /* 1857 * The first time we see a feedback value, determine its format 1858 * by shifting it left or right until it matches the nominal 1859 * frequency value. This assumes that the feedback does not 1860 * differ from the nominal value more than +50% or -25%. 1861 */ 1862 shift = 0; 1863 while (f < ep->freqn - ep->freqn / 4) { 1864 f <<= 1; 1865 shift++; 1866 } 1867 while (f > ep->freqn + ep->freqn / 2) { 1868 f >>= 1; 1869 shift--; 1870 } 1871 ep->freqshift = shift; 1872 } else if (ep->freqshift >= 0) 1873 f <<= ep->freqshift; 1874 else 1875 f >>= -ep->freqshift; 1876 1877 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1878 /* 1879 * If the frequency looks valid, set it. 1880 * This value is referred to in prepare_playback_urb(). 1881 */ 1882 spin_lock_irqsave(&ep->lock, flags); 1883 ep->freqm = f; 1884 spin_unlock_irqrestore(&ep->lock, flags); 1885 } else { 1886 /* 1887 * Out of range; maybe the shift value is wrong. 1888 * Reset it so that we autodetect again the next time. 1889 */ 1890 ep->freqshift = INT_MIN; 1891 } 1892 } 1893 1894