1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 15 * 16 */ 17 18 #include <linux/gfp.h> 19 #include <linux/init.h> 20 #include <linux/ratelimit.h> 21 #include <linux/usb.h> 22 #include <linux/usb/audio.h> 23 #include <linux/slab.h> 24 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 29 #include "usbaudio.h" 30 #include "helper.h" 31 #include "card.h" 32 #include "endpoint.h" 33 #include "pcm.h" 34 #include "quirks.h" 35 36 #define EP_FLAG_RUNNING 1 37 #define EP_FLAG_STOPPING 2 38 39 /* 40 * snd_usb_endpoint is a model that abstracts everything related to an 41 * USB endpoint and its streaming. 42 * 43 * There are functions to activate and deactivate the streaming URBs and 44 * optional callbacks to let the pcm logic handle the actual content of the 45 * packets for playback and record. Thus, the bus streaming and the audio 46 * handlers are fully decoupled. 47 * 48 * There are two different types of endpoints in audio applications. 49 * 50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 51 * inbound and outbound traffic. 52 * 53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 55 * (3 or 4 bytes). 56 * 57 * Each endpoint has to be configured prior to being used by calling 58 * snd_usb_endpoint_set_params(). 59 * 60 * The model incorporates a reference counting, so that multiple users 61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 62 * only the first user will effectively start the URBs, and only the last 63 * one to stop it will tear the URBs down again. 64 */ 65 66 /* 67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 68 * this will overflow at approx 524 kHz 69 */ 70 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 71 { 72 return ((rate << 13) + 62) / 125; 73 } 74 75 /* 76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 77 * this will overflow at approx 4 MHz 78 */ 79 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 80 { 81 return ((rate << 10) + 62) / 125; 82 } 83 84 /* 85 * release a urb data 86 */ 87 static void release_urb_ctx(struct snd_urb_ctx *u) 88 { 89 if (u->buffer_size) 90 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 91 u->urb->transfer_buffer, 92 u->urb->transfer_dma); 93 usb_free_urb(u->urb); 94 u->urb = NULL; 95 } 96 97 static const char *usb_error_string(int err) 98 { 99 switch (err) { 100 case -ENODEV: 101 return "no device"; 102 case -ENOENT: 103 return "endpoint not enabled"; 104 case -EPIPE: 105 return "endpoint stalled"; 106 case -ENOSPC: 107 return "not enough bandwidth"; 108 case -ESHUTDOWN: 109 return "device disabled"; 110 case -EHOSTUNREACH: 111 return "device suspended"; 112 case -EINVAL: 113 case -EAGAIN: 114 case -EFBIG: 115 case -EMSGSIZE: 116 return "internal error"; 117 default: 118 return "unknown error"; 119 } 120 } 121 122 /** 123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 124 * 125 * @ep: The snd_usb_endpoint 126 * 127 * Determine whether an endpoint is driven by an implicit feedback 128 * data endpoint source. 129 */ 130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 131 { 132 return ep->sync_master && 133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA && 134 ep->type == SND_USB_ENDPOINT_TYPE_DATA && 135 usb_pipeout(ep->pipe); 136 } 137 138 /* 139 * For streaming based on information derived from sync endpoints, 140 * prepare_outbound_urb_sizes() will call next_packet_size() to 141 * determine the number of samples to be sent in the next packet. 142 * 143 * For implicit feedback, next_packet_size() is unused. 144 */ 145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep) 146 { 147 unsigned long flags; 148 int ret; 149 150 if (ep->fill_max) 151 return ep->maxframesize; 152 153 spin_lock_irqsave(&ep->lock, flags); 154 ep->phase = (ep->phase & 0xffff) 155 + (ep->freqm << ep->datainterval); 156 ret = min(ep->phase >> 16, ep->maxframesize); 157 spin_unlock_irqrestore(&ep->lock, flags); 158 159 return ret; 160 } 161 162 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 163 struct snd_urb_ctx *urb_ctx) 164 { 165 if (ep->retire_data_urb) 166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb); 167 } 168 169 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 170 struct snd_urb_ctx *urb_ctx) 171 { 172 struct urb *urb = urb_ctx->urb; 173 174 if (unlikely(ep->skip_packets > 0)) { 175 ep->skip_packets--; 176 return; 177 } 178 179 if (ep->sync_slave) 180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb); 181 182 if (ep->retire_data_urb) 183 ep->retire_data_urb(ep->data_subs, urb); 184 } 185 186 /* 187 * Prepare a PLAYBACK urb for submission to the bus. 188 */ 189 static void prepare_outbound_urb(struct snd_usb_endpoint *ep, 190 struct snd_urb_ctx *ctx) 191 { 192 int i; 193 struct urb *urb = ctx->urb; 194 unsigned char *cp = urb->transfer_buffer; 195 196 urb->dev = ep->chip->dev; /* we need to set this at each time */ 197 198 switch (ep->type) { 199 case SND_USB_ENDPOINT_TYPE_DATA: 200 if (ep->prepare_data_urb) { 201 ep->prepare_data_urb(ep->data_subs, urb); 202 } else { 203 /* no data provider, so send silence */ 204 unsigned int offs = 0; 205 for (i = 0; i < ctx->packets; ++i) { 206 int counts; 207 208 if (ctx->packet_size[i]) 209 counts = ctx->packet_size[i]; 210 else 211 counts = snd_usb_endpoint_next_packet_size(ep); 212 213 urb->iso_frame_desc[i].offset = offs * ep->stride; 214 urb->iso_frame_desc[i].length = counts * ep->stride; 215 offs += counts; 216 } 217 218 urb->number_of_packets = ctx->packets; 219 urb->transfer_buffer_length = offs * ep->stride; 220 memset(urb->transfer_buffer, ep->silence_value, 221 offs * ep->stride); 222 } 223 break; 224 225 case SND_USB_ENDPOINT_TYPE_SYNC: 226 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 227 /* 228 * fill the length and offset of each urb descriptor. 229 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 230 */ 231 urb->iso_frame_desc[0].length = 4; 232 urb->iso_frame_desc[0].offset = 0; 233 cp[0] = ep->freqn; 234 cp[1] = ep->freqn >> 8; 235 cp[2] = ep->freqn >> 16; 236 cp[3] = ep->freqn >> 24; 237 } else { 238 /* 239 * fill the length and offset of each urb descriptor. 240 * the fixed 10.14 frequency is passed through the pipe. 241 */ 242 urb->iso_frame_desc[0].length = 3; 243 urb->iso_frame_desc[0].offset = 0; 244 cp[0] = ep->freqn >> 2; 245 cp[1] = ep->freqn >> 10; 246 cp[2] = ep->freqn >> 18; 247 } 248 249 break; 250 } 251 } 252 253 /* 254 * Prepare a CAPTURE or SYNC urb for submission to the bus. 255 */ 256 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep, 257 struct snd_urb_ctx *urb_ctx) 258 { 259 int i, offs; 260 struct urb *urb = urb_ctx->urb; 261 262 urb->dev = ep->chip->dev; /* we need to set this at each time */ 263 264 switch (ep->type) { 265 case SND_USB_ENDPOINT_TYPE_DATA: 266 offs = 0; 267 for (i = 0; i < urb_ctx->packets; i++) { 268 urb->iso_frame_desc[i].offset = offs; 269 urb->iso_frame_desc[i].length = ep->curpacksize; 270 offs += ep->curpacksize; 271 } 272 273 urb->transfer_buffer_length = offs; 274 urb->number_of_packets = urb_ctx->packets; 275 break; 276 277 case SND_USB_ENDPOINT_TYPE_SYNC: 278 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 279 urb->iso_frame_desc[0].offset = 0; 280 break; 281 } 282 } 283 284 /* 285 * Send output urbs that have been prepared previously. URBs are dequeued 286 * from ep->ready_playback_urbs and in case there there aren't any available 287 * or there are no packets that have been prepared, this function does 288 * nothing. 289 * 290 * The reason why the functionality of sending and preparing URBs is separated 291 * is that host controllers don't guarantee the order in which they return 292 * inbound and outbound packets to their submitters. 293 * 294 * This function is only used for implicit feedback endpoints. For endpoints 295 * driven by dedicated sync endpoints, URBs are immediately re-submitted 296 * from their completion handler. 297 */ 298 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep) 299 { 300 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) { 301 302 unsigned long flags; 303 struct snd_usb_packet_info *uninitialized_var(packet); 304 struct snd_urb_ctx *ctx = NULL; 305 struct urb *urb; 306 int err, i; 307 308 spin_lock_irqsave(&ep->lock, flags); 309 if (ep->next_packet_read_pos != ep->next_packet_write_pos) { 310 packet = ep->next_packet + ep->next_packet_read_pos; 311 ep->next_packet_read_pos++; 312 ep->next_packet_read_pos %= MAX_URBS; 313 314 /* take URB out of FIFO */ 315 if (!list_empty(&ep->ready_playback_urbs)) 316 ctx = list_first_entry(&ep->ready_playback_urbs, 317 struct snd_urb_ctx, ready_list); 318 } 319 spin_unlock_irqrestore(&ep->lock, flags); 320 321 if (ctx == NULL) 322 return; 323 324 list_del_init(&ctx->ready_list); 325 urb = ctx->urb; 326 327 /* copy over the length information */ 328 for (i = 0; i < packet->packets; i++) 329 ctx->packet_size[i] = packet->packet_size[i]; 330 331 /* call the data handler to fill in playback data */ 332 prepare_outbound_urb(ep, ctx); 333 334 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 335 if (err < 0) 336 usb_audio_err(ep->chip, 337 "Unable to submit urb #%d: %d (urb %p)\n", 338 ctx->index, err, ctx->urb); 339 else 340 set_bit(ctx->index, &ep->active_mask); 341 } 342 } 343 344 /* 345 * complete callback for urbs 346 */ 347 static void snd_complete_urb(struct urb *urb) 348 { 349 struct snd_urb_ctx *ctx = urb->context; 350 struct snd_usb_endpoint *ep = ctx->ep; 351 struct snd_pcm_substream *substream; 352 unsigned long flags; 353 int err; 354 355 if (unlikely(urb->status == -ENOENT || /* unlinked */ 356 urb->status == -ENODEV || /* device removed */ 357 urb->status == -ECONNRESET || /* unlinked */ 358 urb->status == -ESHUTDOWN)) /* device disabled */ 359 goto exit_clear; 360 /* device disconnected */ 361 if (unlikely(atomic_read(&ep->chip->shutdown))) 362 goto exit_clear; 363 364 if (usb_pipeout(ep->pipe)) { 365 retire_outbound_urb(ep, ctx); 366 /* can be stopped during retire callback */ 367 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 368 goto exit_clear; 369 370 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 371 spin_lock_irqsave(&ep->lock, flags); 372 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 373 spin_unlock_irqrestore(&ep->lock, flags); 374 queue_pending_output_urbs(ep); 375 376 goto exit_clear; 377 } 378 379 prepare_outbound_urb(ep, ctx); 380 } else { 381 retire_inbound_urb(ep, ctx); 382 /* can be stopped during retire callback */ 383 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 384 goto exit_clear; 385 386 prepare_inbound_urb(ep, ctx); 387 } 388 389 err = usb_submit_urb(urb, GFP_ATOMIC); 390 if (err == 0) 391 return; 392 393 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 394 if (ep->data_subs && ep->data_subs->pcm_substream) { 395 substream = ep->data_subs->pcm_substream; 396 snd_pcm_stop_xrun(substream); 397 } 398 399 exit_clear: 400 clear_bit(ctx->index, &ep->active_mask); 401 } 402 403 /** 404 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 405 * 406 * @chip: The chip 407 * @alts: The USB host interface 408 * @ep_num: The number of the endpoint to use 409 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE 410 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 411 * 412 * If the requested endpoint has not been added to the given chip before, 413 * a new instance is created. Otherwise, a pointer to the previoulsy 414 * created instance is returned. In case of any error, NULL is returned. 415 * 416 * New endpoints will be added to chip->ep_list and must be freed by 417 * calling snd_usb_endpoint_free(). 418 */ 419 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip, 420 struct usb_host_interface *alts, 421 int ep_num, int direction, int type) 422 { 423 struct snd_usb_endpoint *ep; 424 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK; 425 426 if (WARN_ON(!alts)) 427 return NULL; 428 429 mutex_lock(&chip->mutex); 430 431 list_for_each_entry(ep, &chip->ep_list, list) { 432 if (ep->ep_num == ep_num && 433 ep->iface == alts->desc.bInterfaceNumber && 434 ep->altsetting == alts->desc.bAlternateSetting) { 435 usb_audio_dbg(ep->chip, 436 "Re-using EP %x in iface %d,%d @%p\n", 437 ep_num, ep->iface, ep->altsetting, ep); 438 goto __exit_unlock; 439 } 440 } 441 442 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n", 443 is_playback ? "playback" : "capture", 444 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync", 445 ep_num); 446 447 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 448 if (!ep) 449 goto __exit_unlock; 450 451 ep->chip = chip; 452 spin_lock_init(&ep->lock); 453 ep->type = type; 454 ep->ep_num = ep_num; 455 ep->iface = alts->desc.bInterfaceNumber; 456 ep->altsetting = alts->desc.bAlternateSetting; 457 INIT_LIST_HEAD(&ep->ready_playback_urbs); 458 ep_num &= USB_ENDPOINT_NUMBER_MASK; 459 460 if (is_playback) 461 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 462 else 463 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 464 465 if (type == SND_USB_ENDPOINT_TYPE_SYNC) { 466 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 467 get_endpoint(alts, 1)->bRefresh >= 1 && 468 get_endpoint(alts, 1)->bRefresh <= 9) 469 ep->syncinterval = get_endpoint(alts, 1)->bRefresh; 470 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 471 ep->syncinterval = 1; 472 else if (get_endpoint(alts, 1)->bInterval >= 1 && 473 get_endpoint(alts, 1)->bInterval <= 16) 474 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1; 475 else 476 ep->syncinterval = 3; 477 478 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize); 479 480 if (chip->usb_id == USB_ID(0x0644, 0x8038) /* TEAC UD-H01 */ && 481 ep->syncmaxsize == 4) 482 ep->udh01_fb_quirk = 1; 483 } 484 485 list_add_tail(&ep->list, &chip->ep_list); 486 487 __exit_unlock: 488 mutex_unlock(&chip->mutex); 489 490 return ep; 491 } 492 493 /* 494 * wait until all urbs are processed. 495 */ 496 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 497 { 498 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 499 int alive; 500 501 do { 502 alive = bitmap_weight(&ep->active_mask, ep->nurbs); 503 if (!alive) 504 break; 505 506 schedule_timeout_uninterruptible(1); 507 } while (time_before(jiffies, end_time)); 508 509 if (alive) 510 usb_audio_err(ep->chip, 511 "timeout: still %d active urbs on EP #%x\n", 512 alive, ep->ep_num); 513 clear_bit(EP_FLAG_STOPPING, &ep->flags); 514 515 return 0; 516 } 517 518 /* sync the pending stop operation; 519 * this function itself doesn't trigger the stop operation 520 */ 521 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 522 { 523 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags)) 524 wait_clear_urbs(ep); 525 } 526 527 /* 528 * unlink active urbs. 529 */ 530 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force) 531 { 532 unsigned int i; 533 534 if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */ 535 return -EBADFD; 536 537 clear_bit(EP_FLAG_RUNNING, &ep->flags); 538 539 INIT_LIST_HEAD(&ep->ready_playback_urbs); 540 ep->next_packet_read_pos = 0; 541 ep->next_packet_write_pos = 0; 542 543 for (i = 0; i < ep->nurbs; i++) { 544 if (test_bit(i, &ep->active_mask)) { 545 if (!test_and_set_bit(i, &ep->unlink_mask)) { 546 struct urb *u = ep->urb[i].urb; 547 usb_unlink_urb(u); 548 } 549 } 550 } 551 552 return 0; 553 } 554 555 /* 556 * release an endpoint's urbs 557 */ 558 static void release_urbs(struct snd_usb_endpoint *ep, int force) 559 { 560 int i; 561 562 /* route incoming urbs to nirvana */ 563 ep->retire_data_urb = NULL; 564 ep->prepare_data_urb = NULL; 565 566 /* stop urbs */ 567 deactivate_urbs(ep, force); 568 wait_clear_urbs(ep); 569 570 for (i = 0; i < ep->nurbs; i++) 571 release_urb_ctx(&ep->urb[i]); 572 573 if (ep->syncbuf) 574 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 575 ep->syncbuf, ep->sync_dma); 576 577 ep->syncbuf = NULL; 578 ep->nurbs = 0; 579 } 580 581 /* 582 * configure a data endpoint 583 */ 584 static int data_ep_set_params(struct snd_usb_endpoint *ep, 585 snd_pcm_format_t pcm_format, 586 unsigned int channels, 587 unsigned int period_bytes, 588 unsigned int frames_per_period, 589 unsigned int periods_per_buffer, 590 struct audioformat *fmt, 591 struct snd_usb_endpoint *sync_ep) 592 { 593 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 594 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 595 unsigned int max_urbs, i; 596 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels; 597 598 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 599 /* 600 * When operating in DSD DOP mode, the size of a sample frame 601 * in hardware differs from the actual physical format width 602 * because we need to make room for the DOP markers. 603 */ 604 frame_bits += channels << 3; 605 } 606 607 ep->datainterval = fmt->datainterval; 608 ep->stride = frame_bits >> 3; 609 ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0; 610 611 /* assume max. frequency is 25% higher than nominal */ 612 ep->freqmax = ep->freqn + (ep->freqn >> 2); 613 maxsize = ((ep->freqmax + 0xffff) * (frame_bits >> 3)) 614 >> (16 - ep->datainterval); 615 /* but wMaxPacketSize might reduce this */ 616 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 617 /* whatever fits into a max. size packet */ 618 maxsize = ep->maxpacksize; 619 ep->freqmax = (maxsize / (frame_bits >> 3)) 620 << (16 - ep->datainterval); 621 } 622 623 if (ep->fill_max) 624 ep->curpacksize = ep->maxpacksize; 625 else 626 ep->curpacksize = maxsize; 627 628 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) { 629 packs_per_ms = 8 >> ep->datainterval; 630 max_packs_per_urb = MAX_PACKS_HS; 631 } else { 632 packs_per_ms = 1; 633 max_packs_per_urb = MAX_PACKS; 634 } 635 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep)) 636 max_packs_per_urb = min(max_packs_per_urb, 637 1U << sync_ep->syncinterval); 638 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 639 640 /* 641 * Capture endpoints need to use small URBs because there's no way 642 * to tell in advance where the next period will end, and we don't 643 * want the next URB to complete much after the period ends. 644 * 645 * Playback endpoints with implicit sync much use the same parameters 646 * as their corresponding capture endpoint. 647 */ 648 if (usb_pipein(ep->pipe) || 649 snd_usb_endpoint_implicit_feedback_sink(ep)) { 650 651 urb_packs = packs_per_ms; 652 /* 653 * Wireless devices can poll at a max rate of once per 4ms. 654 * For dataintervals less than 5, increase the packet count to 655 * allow the host controller to use bursting to fill in the 656 * gaps. 657 */ 658 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) { 659 int interval = ep->datainterval; 660 while (interval < 5) { 661 urb_packs <<= 1; 662 ++interval; 663 } 664 } 665 /* make capture URBs <= 1 ms and smaller than a period */ 666 urb_packs = min(max_packs_per_urb, urb_packs); 667 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes) 668 urb_packs >>= 1; 669 ep->nurbs = MAX_URBS; 670 671 /* 672 * Playback endpoints without implicit sync are adjusted so that 673 * a period fits as evenly as possible in the smallest number of 674 * URBs. The total number of URBs is adjusted to the size of the 675 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 676 */ 677 } else { 678 /* determine how small a packet can be */ 679 minsize = (ep->freqn >> (16 - ep->datainterval)) * 680 (frame_bits >> 3); 681 /* with sync from device, assume it can be 12% lower */ 682 if (sync_ep) 683 minsize -= minsize >> 3; 684 minsize = max(minsize, 1u); 685 686 /* how many packets will contain an entire ALSA period? */ 687 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize); 688 689 /* how many URBs will contain a period? */ 690 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 691 max_packs_per_urb); 692 /* how many packets are needed in each URB? */ 693 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 694 695 /* limit the number of frames in a single URB */ 696 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period, 697 urbs_per_period); 698 699 /* try to use enough URBs to contain an entire ALSA buffer */ 700 max_urbs = min((unsigned) MAX_URBS, 701 MAX_QUEUE * packs_per_ms / urb_packs); 702 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer); 703 } 704 705 /* allocate and initialize data urbs */ 706 for (i = 0; i < ep->nurbs; i++) { 707 struct snd_urb_ctx *u = &ep->urb[i]; 708 u->index = i; 709 u->ep = ep; 710 u->packets = urb_packs; 711 u->buffer_size = maxsize * u->packets; 712 713 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 714 u->packets++; /* for transfer delimiter */ 715 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 716 if (!u->urb) 717 goto out_of_memory; 718 719 u->urb->transfer_buffer = 720 usb_alloc_coherent(ep->chip->dev, u->buffer_size, 721 GFP_KERNEL, &u->urb->transfer_dma); 722 if (!u->urb->transfer_buffer) 723 goto out_of_memory; 724 u->urb->pipe = ep->pipe; 725 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 726 u->urb->interval = 1 << ep->datainterval; 727 u->urb->context = u; 728 u->urb->complete = snd_complete_urb; 729 INIT_LIST_HEAD(&u->ready_list); 730 } 731 732 return 0; 733 734 out_of_memory: 735 release_urbs(ep, 0); 736 return -ENOMEM; 737 } 738 739 /* 740 * configure a sync endpoint 741 */ 742 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 743 { 744 int i; 745 746 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4, 747 GFP_KERNEL, &ep->sync_dma); 748 if (!ep->syncbuf) 749 return -ENOMEM; 750 751 for (i = 0; i < SYNC_URBS; i++) { 752 struct snd_urb_ctx *u = &ep->urb[i]; 753 u->index = i; 754 u->ep = ep; 755 u->packets = 1; 756 u->urb = usb_alloc_urb(1, GFP_KERNEL); 757 if (!u->urb) 758 goto out_of_memory; 759 u->urb->transfer_buffer = ep->syncbuf + i * 4; 760 u->urb->transfer_dma = ep->sync_dma + i * 4; 761 u->urb->transfer_buffer_length = 4; 762 u->urb->pipe = ep->pipe; 763 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 764 u->urb->number_of_packets = 1; 765 u->urb->interval = 1 << ep->syncinterval; 766 u->urb->context = u; 767 u->urb->complete = snd_complete_urb; 768 } 769 770 ep->nurbs = SYNC_URBS; 771 772 return 0; 773 774 out_of_memory: 775 release_urbs(ep, 0); 776 return -ENOMEM; 777 } 778 779 /** 780 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 781 * 782 * @ep: the snd_usb_endpoint to configure 783 * @pcm_format: the audio fomat. 784 * @channels: the number of audio channels. 785 * @period_bytes: the number of bytes in one alsa period. 786 * @period_frames: the number of frames in one alsa period. 787 * @buffer_periods: the number of periods in one alsa buffer. 788 * @rate: the frame rate. 789 * @fmt: the USB audio format information 790 * @sync_ep: the sync endpoint to use, if any 791 * 792 * Determine the number of URBs to be used on this endpoint. 793 * An endpoint must be configured before it can be started. 794 * An endpoint that is already running can not be reconfigured. 795 */ 796 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep, 797 snd_pcm_format_t pcm_format, 798 unsigned int channels, 799 unsigned int period_bytes, 800 unsigned int period_frames, 801 unsigned int buffer_periods, 802 unsigned int rate, 803 struct audioformat *fmt, 804 struct snd_usb_endpoint *sync_ep) 805 { 806 int err; 807 808 if (ep->use_count != 0) { 809 usb_audio_warn(ep->chip, 810 "Unable to change format on ep #%x: already in use\n", 811 ep->ep_num); 812 return -EBUSY; 813 } 814 815 /* release old buffers, if any */ 816 release_urbs(ep, 0); 817 818 ep->datainterval = fmt->datainterval; 819 ep->maxpacksize = fmt->maxpacksize; 820 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 821 822 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL) 823 ep->freqn = get_usb_full_speed_rate(rate); 824 else 825 ep->freqn = get_usb_high_speed_rate(rate); 826 827 /* calculate the frequency in 16.16 format */ 828 ep->freqm = ep->freqn; 829 ep->freqshift = INT_MIN; 830 831 ep->phase = 0; 832 833 switch (ep->type) { 834 case SND_USB_ENDPOINT_TYPE_DATA: 835 err = data_ep_set_params(ep, pcm_format, channels, 836 period_bytes, period_frames, 837 buffer_periods, fmt, sync_ep); 838 break; 839 case SND_USB_ENDPOINT_TYPE_SYNC: 840 err = sync_ep_set_params(ep); 841 break; 842 default: 843 err = -EINVAL; 844 } 845 846 usb_audio_dbg(ep->chip, 847 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n", 848 ep->ep_num, ep->type, ep->nurbs, err); 849 850 return err; 851 } 852 853 /** 854 * snd_usb_endpoint_start: start an snd_usb_endpoint 855 * 856 * @ep: the endpoint to start 857 * @can_sleep: flag indicating whether the operation is executed in 858 * non-atomic context 859 * 860 * A call to this function will increment the use count of the endpoint. 861 * In case it is not already running, the URBs for this endpoint will be 862 * submitted. Otherwise, this function does nothing. 863 * 864 * Must be balanced to calls of snd_usb_endpoint_stop(). 865 * 866 * Returns an error if the URB submission failed, 0 in all other cases. 867 */ 868 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep) 869 { 870 int err; 871 unsigned int i; 872 873 if (atomic_read(&ep->chip->shutdown)) 874 return -EBADFD; 875 876 /* already running? */ 877 if (++ep->use_count != 1) 878 return 0; 879 880 /* just to be sure */ 881 deactivate_urbs(ep, false); 882 if (can_sleep) 883 wait_clear_urbs(ep); 884 885 ep->active_mask = 0; 886 ep->unlink_mask = 0; 887 ep->phase = 0; 888 889 snd_usb_endpoint_start_quirk(ep); 890 891 /* 892 * If this endpoint has a data endpoint as implicit feedback source, 893 * don't start the urbs here. Instead, mark them all as available, 894 * wait for the record urbs to return and queue the playback urbs 895 * from that context. 896 */ 897 898 set_bit(EP_FLAG_RUNNING, &ep->flags); 899 900 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 901 for (i = 0; i < ep->nurbs; i++) { 902 struct snd_urb_ctx *ctx = ep->urb + i; 903 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 904 } 905 906 return 0; 907 } 908 909 for (i = 0; i < ep->nurbs; i++) { 910 struct urb *urb = ep->urb[i].urb; 911 912 if (snd_BUG_ON(!urb)) 913 goto __error; 914 915 if (usb_pipeout(ep->pipe)) { 916 prepare_outbound_urb(ep, urb->context); 917 } else { 918 prepare_inbound_urb(ep, urb->context); 919 } 920 921 err = usb_submit_urb(urb, GFP_ATOMIC); 922 if (err < 0) { 923 usb_audio_err(ep->chip, 924 "cannot submit urb %d, error %d: %s\n", 925 i, err, usb_error_string(err)); 926 goto __error; 927 } 928 set_bit(i, &ep->active_mask); 929 } 930 931 return 0; 932 933 __error: 934 clear_bit(EP_FLAG_RUNNING, &ep->flags); 935 ep->use_count--; 936 deactivate_urbs(ep, false); 937 return -EPIPE; 938 } 939 940 /** 941 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 942 * 943 * @ep: the endpoint to stop (may be NULL) 944 * 945 * A call to this function will decrement the use count of the endpoint. 946 * In case the last user has requested the endpoint stop, the URBs will 947 * actually be deactivated. 948 * 949 * Must be balanced to calls of snd_usb_endpoint_start(). 950 * 951 * The caller needs to synchronize the pending stop operation via 952 * snd_usb_endpoint_sync_pending_stop(). 953 */ 954 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep) 955 { 956 if (!ep) 957 return; 958 959 if (snd_BUG_ON(ep->use_count == 0)) 960 return; 961 962 if (--ep->use_count == 0) { 963 deactivate_urbs(ep, false); 964 ep->data_subs = NULL; 965 ep->sync_slave = NULL; 966 ep->retire_data_urb = NULL; 967 ep->prepare_data_urb = NULL; 968 set_bit(EP_FLAG_STOPPING, &ep->flags); 969 } 970 } 971 972 /** 973 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint 974 * 975 * @ep: the endpoint to deactivate 976 * 977 * If the endpoint is not currently in use, this functions will 978 * deactivate its associated URBs. 979 * 980 * In case of any active users, this functions does nothing. 981 */ 982 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep) 983 { 984 if (!ep) 985 return; 986 987 if (ep->use_count != 0) 988 return; 989 990 deactivate_urbs(ep, true); 991 wait_clear_urbs(ep); 992 } 993 994 /** 995 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 996 * 997 * @ep: the endpoint to release 998 * 999 * This function does not care for the endpoint's use count but will tear 1000 * down all the streaming URBs immediately. 1001 */ 1002 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1003 { 1004 release_urbs(ep, 1); 1005 } 1006 1007 /** 1008 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint 1009 * 1010 * @ep: the endpoint to free 1011 * 1012 * This free all resources of the given ep. 1013 */ 1014 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep) 1015 { 1016 kfree(ep); 1017 } 1018 1019 /** 1020 * snd_usb_handle_sync_urb: parse an USB sync packet 1021 * 1022 * @ep: the endpoint to handle the packet 1023 * @sender: the sending endpoint 1024 * @urb: the received packet 1025 * 1026 * This function is called from the context of an endpoint that received 1027 * the packet and is used to let another endpoint object handle the payload. 1028 */ 1029 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1030 struct snd_usb_endpoint *sender, 1031 const struct urb *urb) 1032 { 1033 int shift; 1034 unsigned int f; 1035 unsigned long flags; 1036 1037 snd_BUG_ON(ep == sender); 1038 1039 /* 1040 * In case the endpoint is operating in implicit feedback mode, prepare 1041 * a new outbound URB that has the same layout as the received packet 1042 * and add it to the list of pending urbs. queue_pending_output_urbs() 1043 * will take care of them later. 1044 */ 1045 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1046 ep->use_count != 0) { 1047 1048 /* implicit feedback case */ 1049 int i, bytes = 0; 1050 struct snd_urb_ctx *in_ctx; 1051 struct snd_usb_packet_info *out_packet; 1052 1053 in_ctx = urb->context; 1054 1055 /* Count overall packet size */ 1056 for (i = 0; i < in_ctx->packets; i++) 1057 if (urb->iso_frame_desc[i].status == 0) 1058 bytes += urb->iso_frame_desc[i].actual_length; 1059 1060 /* 1061 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1062 * streaming once it received a 0-byte OUT URB 1063 */ 1064 if (bytes == 0) 1065 return; 1066 1067 spin_lock_irqsave(&ep->lock, flags); 1068 out_packet = ep->next_packet + ep->next_packet_write_pos; 1069 1070 /* 1071 * Iterate through the inbound packet and prepare the lengths 1072 * for the output packet. The OUT packet we are about to send 1073 * will have the same amount of payload bytes per stride as the 1074 * IN packet we just received. Since the actual size is scaled 1075 * by the stride, use the sender stride to calculate the length 1076 * in case the number of channels differ between the implicitly 1077 * fed-back endpoint and the synchronizing endpoint. 1078 */ 1079 1080 out_packet->packets = in_ctx->packets; 1081 for (i = 0; i < in_ctx->packets; i++) { 1082 if (urb->iso_frame_desc[i].status == 0) 1083 out_packet->packet_size[i] = 1084 urb->iso_frame_desc[i].actual_length / sender->stride; 1085 else 1086 out_packet->packet_size[i] = 0; 1087 } 1088 1089 ep->next_packet_write_pos++; 1090 ep->next_packet_write_pos %= MAX_URBS; 1091 spin_unlock_irqrestore(&ep->lock, flags); 1092 queue_pending_output_urbs(ep); 1093 1094 return; 1095 } 1096 1097 /* 1098 * process after playback sync complete 1099 * 1100 * Full speed devices report feedback values in 10.14 format as samples 1101 * per frame, high speed devices in 16.16 format as samples per 1102 * microframe. 1103 * 1104 * Because the Audio Class 1 spec was written before USB 2.0, many high 1105 * speed devices use a wrong interpretation, some others use an 1106 * entirely different format. 1107 * 1108 * Therefore, we cannot predict what format any particular device uses 1109 * and must detect it automatically. 1110 */ 1111 1112 if (urb->iso_frame_desc[0].status != 0 || 1113 urb->iso_frame_desc[0].actual_length < 3) 1114 return; 1115 1116 f = le32_to_cpup(urb->transfer_buffer); 1117 if (urb->iso_frame_desc[0].actual_length == 3) 1118 f &= 0x00ffffff; 1119 else 1120 f &= 0x0fffffff; 1121 1122 if (f == 0) 1123 return; 1124 1125 if (unlikely(sender->udh01_fb_quirk)) { 1126 /* 1127 * The TEAC UD-H01 firmware sometimes changes the feedback value 1128 * by +/- 0x1.0000. 1129 */ 1130 if (f < ep->freqn - 0x8000) 1131 f += 0x10000; 1132 else if (f > ep->freqn + 0x8000) 1133 f -= 0x10000; 1134 } else if (unlikely(ep->freqshift == INT_MIN)) { 1135 /* 1136 * The first time we see a feedback value, determine its format 1137 * by shifting it left or right until it matches the nominal 1138 * frequency value. This assumes that the feedback does not 1139 * differ from the nominal value more than +50% or -25%. 1140 */ 1141 shift = 0; 1142 while (f < ep->freqn - ep->freqn / 4) { 1143 f <<= 1; 1144 shift++; 1145 } 1146 while (f > ep->freqn + ep->freqn / 2) { 1147 f >>= 1; 1148 shift--; 1149 } 1150 ep->freqshift = shift; 1151 } else if (ep->freqshift >= 0) 1152 f <<= ep->freqshift; 1153 else 1154 f >>= -ep->freqshift; 1155 1156 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1157 /* 1158 * If the frequency looks valid, set it. 1159 * This value is referred to in prepare_playback_urb(). 1160 */ 1161 spin_lock_irqsave(&ep->lock, flags); 1162 ep->freqm = f; 1163 spin_unlock_irqrestore(&ep->lock, flags); 1164 } else { 1165 /* 1166 * Out of range; maybe the shift value is wrong. 1167 * Reset it so that we autodetect again the next time. 1168 */ 1169 ep->freqshift = INT_MIN; 1170 } 1171 } 1172 1173