xref: /openbmc/linux/sound/usb/endpoint.c (revision 26721b02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  */
4 
5 #include <linux/gfp.h>
6 #include <linux/init.h>
7 #include <linux/ratelimit.h>
8 #include <linux/usb.h>
9 #include <linux/usb/audio.h>
10 #include <linux/slab.h>
11 
12 #include <sound/core.h>
13 #include <sound/pcm.h>
14 #include <sound/pcm_params.h>
15 
16 #include "usbaudio.h"
17 #include "helper.h"
18 #include "card.h"
19 #include "endpoint.h"
20 #include "pcm.h"
21 #include "quirks.h"
22 
23 #define EP_FLAG_RUNNING		1
24 #define EP_FLAG_STOPPING	2
25 
26 /*
27  * snd_usb_endpoint is a model that abstracts everything related to an
28  * USB endpoint and its streaming.
29  *
30  * There are functions to activate and deactivate the streaming URBs and
31  * optional callbacks to let the pcm logic handle the actual content of the
32  * packets for playback and record. Thus, the bus streaming and the audio
33  * handlers are fully decoupled.
34  *
35  * There are two different types of endpoints in audio applications.
36  *
37  * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
38  * inbound and outbound traffic.
39  *
40  * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
41  * expect the payload to carry Q10.14 / Q16.16 formatted sync information
42  * (3 or 4 bytes).
43  *
44  * Each endpoint has to be configured prior to being used by calling
45  * snd_usb_endpoint_set_params().
46  *
47  * The model incorporates a reference counting, so that multiple users
48  * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
49  * only the first user will effectively start the URBs, and only the last
50  * one to stop it will tear the URBs down again.
51  */
52 
53 /*
54  * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
55  * this will overflow at approx 524 kHz
56  */
57 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
58 {
59 	return ((rate << 13) + 62) / 125;
60 }
61 
62 /*
63  * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
64  * this will overflow at approx 4 MHz
65  */
66 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
67 {
68 	return ((rate << 10) + 62) / 125;
69 }
70 
71 /*
72  * release a urb data
73  */
74 static void release_urb_ctx(struct snd_urb_ctx *u)
75 {
76 	if (u->buffer_size)
77 		usb_free_coherent(u->ep->chip->dev, u->buffer_size,
78 				  u->urb->transfer_buffer,
79 				  u->urb->transfer_dma);
80 	usb_free_urb(u->urb);
81 	u->urb = NULL;
82 }
83 
84 static const char *usb_error_string(int err)
85 {
86 	switch (err) {
87 	case -ENODEV:
88 		return "no device";
89 	case -ENOENT:
90 		return "endpoint not enabled";
91 	case -EPIPE:
92 		return "endpoint stalled";
93 	case -ENOSPC:
94 		return "not enough bandwidth";
95 	case -ESHUTDOWN:
96 		return "device disabled";
97 	case -EHOSTUNREACH:
98 		return "device suspended";
99 	case -EINVAL:
100 	case -EAGAIN:
101 	case -EFBIG:
102 	case -EMSGSIZE:
103 		return "internal error";
104 	default:
105 		return "unknown error";
106 	}
107 }
108 
109 /**
110  * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
111  *
112  * @ep: The snd_usb_endpoint
113  *
114  * Determine whether an endpoint is driven by an implicit feedback
115  * data endpoint source.
116  */
117 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
118 {
119 	return  ep->sync_master &&
120 		ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
121 		ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
122 		usb_pipeout(ep->pipe);
123 }
124 
125 /*
126  * For streaming based on information derived from sync endpoints,
127  * prepare_outbound_urb_sizes() will call slave_next_packet_size() to
128  * determine the number of samples to be sent in the next packet.
129  *
130  * For implicit feedback, slave_next_packet_size() is unused.
131  */
132 int snd_usb_endpoint_slave_next_packet_size(struct snd_usb_endpoint *ep)
133 {
134 	unsigned long flags;
135 	int ret;
136 
137 	if (ep->fill_max)
138 		return ep->maxframesize;
139 
140 	spin_lock_irqsave(&ep->lock, flags);
141 	ep->phase = (ep->phase & 0xffff)
142 		+ (ep->freqm << ep->datainterval);
143 	ret = min(ep->phase >> 16, ep->maxframesize);
144 	spin_unlock_irqrestore(&ep->lock, flags);
145 
146 	return ret;
147 }
148 
149 /*
150  * For adaptive and synchronous endpoints, prepare_outbound_urb_sizes()
151  * will call next_packet_size() to determine the number of samples to be
152  * sent in the next packet.
153  */
154 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
155 {
156 	int ret;
157 
158 	if (ep->fill_max)
159 		return ep->maxframesize;
160 
161 	ep->sample_accum += ep->sample_rem;
162 	if (ep->sample_accum >= ep->pps) {
163 		ep->sample_accum -= ep->pps;
164 		ret = ep->packsize[1];
165 	} else {
166 		ret = ep->packsize[0];
167 	}
168 
169 	return ret;
170 }
171 
172 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
173 				struct snd_urb_ctx *urb_ctx)
174 {
175 	if (ep->retire_data_urb)
176 		ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
177 }
178 
179 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
180 			       struct snd_urb_ctx *urb_ctx)
181 {
182 	struct urb *urb = urb_ctx->urb;
183 
184 	if (unlikely(ep->skip_packets > 0)) {
185 		ep->skip_packets--;
186 		return;
187 	}
188 
189 	if (ep->sync_slave)
190 		snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
191 
192 	if (ep->retire_data_urb)
193 		ep->retire_data_urb(ep->data_subs, urb);
194 }
195 
196 static void prepare_silent_urb(struct snd_usb_endpoint *ep,
197 			       struct snd_urb_ctx *ctx)
198 {
199 	struct urb *urb = ctx->urb;
200 	unsigned int offs = 0;
201 	unsigned int extra = 0;
202 	__le32 packet_length;
203 	int i;
204 
205 	/* For tx_length_quirk, put packet length at start of packet */
206 	if (ep->chip->tx_length_quirk)
207 		extra = sizeof(packet_length);
208 
209 	for (i = 0; i < ctx->packets; ++i) {
210 		unsigned int offset;
211 		unsigned int length;
212 		int counts;
213 
214 		if (ctx->packet_size[i])
215 			counts = ctx->packet_size[i];
216 		else if (ep->sync_master)
217 			counts = snd_usb_endpoint_slave_next_packet_size(ep);
218 		else
219 			counts = snd_usb_endpoint_next_packet_size(ep);
220 
221 		length = counts * ep->stride; /* number of silent bytes */
222 		offset = offs * ep->stride + extra * i;
223 		urb->iso_frame_desc[i].offset = offset;
224 		urb->iso_frame_desc[i].length = length + extra;
225 		if (extra) {
226 			packet_length = cpu_to_le32(length);
227 			memcpy(urb->transfer_buffer + offset,
228 			       &packet_length, sizeof(packet_length));
229 		}
230 		memset(urb->transfer_buffer + offset + extra,
231 		       ep->silence_value, length);
232 		offs += counts;
233 	}
234 
235 	urb->number_of_packets = ctx->packets;
236 	urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra;
237 }
238 
239 /*
240  * Prepare a PLAYBACK urb for submission to the bus.
241  */
242 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
243 				 struct snd_urb_ctx *ctx)
244 {
245 	struct urb *urb = ctx->urb;
246 	unsigned char *cp = urb->transfer_buffer;
247 
248 	urb->dev = ep->chip->dev; /* we need to set this at each time */
249 
250 	switch (ep->type) {
251 	case SND_USB_ENDPOINT_TYPE_DATA:
252 		if (ep->prepare_data_urb) {
253 			ep->prepare_data_urb(ep->data_subs, urb);
254 		} else {
255 			/* no data provider, so send silence */
256 			prepare_silent_urb(ep, ctx);
257 		}
258 		break;
259 
260 	case SND_USB_ENDPOINT_TYPE_SYNC:
261 		if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
262 			/*
263 			 * fill the length and offset of each urb descriptor.
264 			 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
265 			 */
266 			urb->iso_frame_desc[0].length = 4;
267 			urb->iso_frame_desc[0].offset = 0;
268 			cp[0] = ep->freqn;
269 			cp[1] = ep->freqn >> 8;
270 			cp[2] = ep->freqn >> 16;
271 			cp[3] = ep->freqn >> 24;
272 		} else {
273 			/*
274 			 * fill the length and offset of each urb descriptor.
275 			 * the fixed 10.14 frequency is passed through the pipe.
276 			 */
277 			urb->iso_frame_desc[0].length = 3;
278 			urb->iso_frame_desc[0].offset = 0;
279 			cp[0] = ep->freqn >> 2;
280 			cp[1] = ep->freqn >> 10;
281 			cp[2] = ep->freqn >> 18;
282 		}
283 
284 		break;
285 	}
286 }
287 
288 /*
289  * Prepare a CAPTURE or SYNC urb for submission to the bus.
290  */
291 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
292 				       struct snd_urb_ctx *urb_ctx)
293 {
294 	int i, offs;
295 	struct urb *urb = urb_ctx->urb;
296 
297 	urb->dev = ep->chip->dev; /* we need to set this at each time */
298 
299 	switch (ep->type) {
300 	case SND_USB_ENDPOINT_TYPE_DATA:
301 		offs = 0;
302 		for (i = 0; i < urb_ctx->packets; i++) {
303 			urb->iso_frame_desc[i].offset = offs;
304 			urb->iso_frame_desc[i].length = ep->curpacksize;
305 			offs += ep->curpacksize;
306 		}
307 
308 		urb->transfer_buffer_length = offs;
309 		urb->number_of_packets = urb_ctx->packets;
310 		break;
311 
312 	case SND_USB_ENDPOINT_TYPE_SYNC:
313 		urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
314 		urb->iso_frame_desc[0].offset = 0;
315 		break;
316 	}
317 }
318 
319 /*
320  * Send output urbs that have been prepared previously. URBs are dequeued
321  * from ep->ready_playback_urbs and in case there there aren't any available
322  * or there are no packets that have been prepared, this function does
323  * nothing.
324  *
325  * The reason why the functionality of sending and preparing URBs is separated
326  * is that host controllers don't guarantee the order in which they return
327  * inbound and outbound packets to their submitters.
328  *
329  * This function is only used for implicit feedback endpoints. For endpoints
330  * driven by dedicated sync endpoints, URBs are immediately re-submitted
331  * from their completion handler.
332  */
333 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
334 {
335 	while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
336 
337 		unsigned long flags;
338 		struct snd_usb_packet_info *packet;
339 		struct snd_urb_ctx *ctx = NULL;
340 		int err, i;
341 
342 		spin_lock_irqsave(&ep->lock, flags);
343 		if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
344 			packet = ep->next_packet + ep->next_packet_read_pos;
345 			ep->next_packet_read_pos++;
346 			ep->next_packet_read_pos %= MAX_URBS;
347 
348 			/* take URB out of FIFO */
349 			if (!list_empty(&ep->ready_playback_urbs)) {
350 				ctx = list_first_entry(&ep->ready_playback_urbs,
351 					       struct snd_urb_ctx, ready_list);
352 				list_del_init(&ctx->ready_list);
353 			}
354 		}
355 		spin_unlock_irqrestore(&ep->lock, flags);
356 
357 		if (ctx == NULL)
358 			return;
359 
360 		/* copy over the length information */
361 		for (i = 0; i < packet->packets; i++)
362 			ctx->packet_size[i] = packet->packet_size[i];
363 
364 		/* call the data handler to fill in playback data */
365 		prepare_outbound_urb(ep, ctx);
366 
367 		err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
368 		if (err < 0)
369 			usb_audio_err(ep->chip,
370 				"Unable to submit urb #%d: %d (urb %p)\n",
371 				ctx->index, err, ctx->urb);
372 		else
373 			set_bit(ctx->index, &ep->active_mask);
374 	}
375 }
376 
377 /*
378  * complete callback for urbs
379  */
380 static void snd_complete_urb(struct urb *urb)
381 {
382 	struct snd_urb_ctx *ctx = urb->context;
383 	struct snd_usb_endpoint *ep = ctx->ep;
384 	struct snd_pcm_substream *substream;
385 	unsigned long flags;
386 	int err;
387 
388 	if (unlikely(urb->status == -ENOENT ||		/* unlinked */
389 		     urb->status == -ENODEV ||		/* device removed */
390 		     urb->status == -ECONNRESET ||	/* unlinked */
391 		     urb->status == -ESHUTDOWN))	/* device disabled */
392 		goto exit_clear;
393 	/* device disconnected */
394 	if (unlikely(atomic_read(&ep->chip->shutdown)))
395 		goto exit_clear;
396 
397 	if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
398 		goto exit_clear;
399 
400 	if (usb_pipeout(ep->pipe)) {
401 		retire_outbound_urb(ep, ctx);
402 		/* can be stopped during retire callback */
403 		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
404 			goto exit_clear;
405 
406 		if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
407 			spin_lock_irqsave(&ep->lock, flags);
408 			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
409 			spin_unlock_irqrestore(&ep->lock, flags);
410 			queue_pending_output_urbs(ep);
411 
412 			goto exit_clear;
413 		}
414 
415 		prepare_outbound_urb(ep, ctx);
416 		/* can be stopped during prepare callback */
417 		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
418 			goto exit_clear;
419 	} else {
420 		retire_inbound_urb(ep, ctx);
421 		/* can be stopped during retire callback */
422 		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
423 			goto exit_clear;
424 
425 		prepare_inbound_urb(ep, ctx);
426 	}
427 
428 	err = usb_submit_urb(urb, GFP_ATOMIC);
429 	if (err == 0)
430 		return;
431 
432 	usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
433 	if (ep->data_subs && ep->data_subs->pcm_substream) {
434 		substream = ep->data_subs->pcm_substream;
435 		snd_pcm_stop_xrun(substream);
436 	}
437 
438 exit_clear:
439 	clear_bit(ctx->index, &ep->active_mask);
440 }
441 
442 /**
443  * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
444  *
445  * @chip: The chip
446  * @alts: The USB host interface
447  * @ep_num: The number of the endpoint to use
448  * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
449  * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
450  *
451  * If the requested endpoint has not been added to the given chip before,
452  * a new instance is created. Otherwise, a pointer to the previoulsy
453  * created instance is returned. In case of any error, NULL is returned.
454  *
455  * New endpoints will be added to chip->ep_list and must be freed by
456  * calling snd_usb_endpoint_free().
457  *
458  * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that
459  * bNumEndpoints > 1 beforehand.
460  */
461 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
462 					      struct usb_host_interface *alts,
463 					      int ep_num, int direction, int type)
464 {
465 	struct snd_usb_endpoint *ep;
466 	int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
467 
468 	if (WARN_ON(!alts))
469 		return NULL;
470 
471 	mutex_lock(&chip->mutex);
472 
473 	list_for_each_entry(ep, &chip->ep_list, list) {
474 		if (ep->ep_num == ep_num &&
475 		    ep->iface == alts->desc.bInterfaceNumber &&
476 		    ep->altsetting == alts->desc.bAlternateSetting) {
477 			usb_audio_dbg(ep->chip,
478 				      "Re-using EP %x in iface %d,%d @%p\n",
479 					ep_num, ep->iface, ep->altsetting, ep);
480 			goto __exit_unlock;
481 		}
482 	}
483 
484 	usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
485 		    is_playback ? "playback" : "capture",
486 		    type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
487 		    ep_num);
488 
489 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
490 	if (!ep)
491 		goto __exit_unlock;
492 
493 	ep->chip = chip;
494 	spin_lock_init(&ep->lock);
495 	ep->type = type;
496 	ep->ep_num = ep_num;
497 	ep->iface = alts->desc.bInterfaceNumber;
498 	ep->altsetting = alts->desc.bAlternateSetting;
499 	INIT_LIST_HEAD(&ep->ready_playback_urbs);
500 	ep_num &= USB_ENDPOINT_NUMBER_MASK;
501 
502 	if (is_playback)
503 		ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
504 	else
505 		ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
506 
507 	if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
508 		if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
509 		    get_endpoint(alts, 1)->bRefresh >= 1 &&
510 		    get_endpoint(alts, 1)->bRefresh <= 9)
511 			ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
512 		else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
513 			ep->syncinterval = 1;
514 		else if (get_endpoint(alts, 1)->bInterval >= 1 &&
515 			 get_endpoint(alts, 1)->bInterval <= 16)
516 			ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
517 		else
518 			ep->syncinterval = 3;
519 
520 		ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
521 	}
522 
523 	list_add_tail(&ep->list, &chip->ep_list);
524 
525 	ep->is_implicit_feedback = 0;
526 
527 __exit_unlock:
528 	mutex_unlock(&chip->mutex);
529 
530 	return ep;
531 }
532 
533 /*
534  *  wait until all urbs are processed.
535  */
536 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
537 {
538 	unsigned long end_time = jiffies + msecs_to_jiffies(1000);
539 	int alive;
540 
541 	do {
542 		alive = bitmap_weight(&ep->active_mask, ep->nurbs);
543 		if (!alive)
544 			break;
545 
546 		schedule_timeout_uninterruptible(1);
547 	} while (time_before(jiffies, end_time));
548 
549 	if (alive)
550 		usb_audio_err(ep->chip,
551 			"timeout: still %d active urbs on EP #%x\n",
552 			alive, ep->ep_num);
553 	clear_bit(EP_FLAG_STOPPING, &ep->flags);
554 
555 	ep->data_subs = NULL;
556 	ep->sync_slave = NULL;
557 	ep->retire_data_urb = NULL;
558 	ep->prepare_data_urb = NULL;
559 
560 	return 0;
561 }
562 
563 /* sync the pending stop operation;
564  * this function itself doesn't trigger the stop operation
565  */
566 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
567 {
568 	if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
569 		wait_clear_urbs(ep);
570 }
571 
572 /*
573  * unlink active urbs.
574  */
575 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
576 {
577 	unsigned int i;
578 
579 	if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */
580 		return -EBADFD;
581 
582 	clear_bit(EP_FLAG_RUNNING, &ep->flags);
583 
584 	INIT_LIST_HEAD(&ep->ready_playback_urbs);
585 	ep->next_packet_read_pos = 0;
586 	ep->next_packet_write_pos = 0;
587 
588 	for (i = 0; i < ep->nurbs; i++) {
589 		if (test_bit(i, &ep->active_mask)) {
590 			if (!test_and_set_bit(i, &ep->unlink_mask)) {
591 				struct urb *u = ep->urb[i].urb;
592 				usb_unlink_urb(u);
593 			}
594 		}
595 	}
596 
597 	return 0;
598 }
599 
600 /*
601  * release an endpoint's urbs
602  */
603 static void release_urbs(struct snd_usb_endpoint *ep, int force)
604 {
605 	int i;
606 
607 	/* route incoming urbs to nirvana */
608 	ep->retire_data_urb = NULL;
609 	ep->prepare_data_urb = NULL;
610 
611 	/* stop urbs */
612 	deactivate_urbs(ep, force);
613 	wait_clear_urbs(ep);
614 
615 	for (i = 0; i < ep->nurbs; i++)
616 		release_urb_ctx(&ep->urb[i]);
617 
618 	usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
619 			  ep->syncbuf, ep->sync_dma);
620 
621 	ep->syncbuf = NULL;
622 	ep->nurbs = 0;
623 }
624 
625 /*
626  * Check data endpoint for format differences
627  */
628 static bool check_ep_params(struct snd_usb_endpoint *ep,
629 			      snd_pcm_format_t pcm_format,
630 			      unsigned int channels,
631 			      unsigned int period_bytes,
632 			      unsigned int frames_per_period,
633 			      unsigned int periods_per_buffer,
634 			      struct audioformat *fmt,
635 			      struct snd_usb_endpoint *sync_ep)
636 {
637 	unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
638 	unsigned int max_packs_per_period, urbs_per_period, urb_packs;
639 	unsigned int max_urbs;
640 	int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
641 	int tx_length_quirk = (ep->chip->tx_length_quirk &&
642 			       usb_pipeout(ep->pipe));
643 	bool ret = 1;
644 
645 	if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
646 		/*
647 		 * When operating in DSD DOP mode, the size of a sample frame
648 		 * in hardware differs from the actual physical format width
649 		 * because we need to make room for the DOP markers.
650 		 */
651 		frame_bits += channels << 3;
652 	}
653 
654 	ret = ret && (ep->datainterval == fmt->datainterval);
655 	ret = ret && (ep->stride == frame_bits >> 3);
656 
657 	switch (pcm_format) {
658 	case SNDRV_PCM_FORMAT_U8:
659 		ret = ret && (ep->silence_value == 0x80);
660 		break;
661 	case SNDRV_PCM_FORMAT_DSD_U8:
662 	case SNDRV_PCM_FORMAT_DSD_U16_LE:
663 	case SNDRV_PCM_FORMAT_DSD_U32_LE:
664 	case SNDRV_PCM_FORMAT_DSD_U16_BE:
665 	case SNDRV_PCM_FORMAT_DSD_U32_BE:
666 		ret = ret && (ep->silence_value == 0x69);
667 		break;
668 	default:
669 		ret = ret && (ep->silence_value == 0);
670 	}
671 
672 	/* assume max. frequency is 50% higher than nominal */
673 	ret = ret && (ep->freqmax == ep->freqn + (ep->freqn >> 1));
674 	/* Round up freqmax to nearest integer in order to calculate maximum
675 	 * packet size, which must represent a whole number of frames.
676 	 * This is accomplished by adding 0x0.ffff before converting the
677 	 * Q16.16 format into integer.
678 	 * In order to accurately calculate the maximum packet size when
679 	 * the data interval is more than 1 (i.e. ep->datainterval > 0),
680 	 * multiply by the data interval prior to rounding. For instance,
681 	 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
682 	 * frames with a data interval of 1, but 11 (10.25) frames with a
683 	 * data interval of 2.
684 	 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
685 	 * maximum datainterval value of 3, at USB full speed, higher for
686 	 * USB high speed, noting that ep->freqmax is in units of
687 	 * frames per packet in Q16.16 format.)
688 	 */
689 	maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
690 			 (frame_bits >> 3);
691 	if (tx_length_quirk)
692 		maxsize += sizeof(__le32); /* Space for length descriptor */
693 	/* but wMaxPacketSize might reduce this */
694 	if (ep->maxpacksize && ep->maxpacksize < maxsize) {
695 		/* whatever fits into a max. size packet */
696 		unsigned int data_maxsize = maxsize = ep->maxpacksize;
697 
698 		if (tx_length_quirk)
699 			/* Need to remove the length descriptor to calc freq */
700 			data_maxsize -= sizeof(__le32);
701 		ret = ret && (ep->freqmax == (data_maxsize / (frame_bits >> 3))
702 				<< (16 - ep->datainterval));
703 	}
704 
705 	if (ep->fill_max)
706 		ret = ret && (ep->curpacksize == ep->maxpacksize);
707 	else
708 		ret = ret && (ep->curpacksize == maxsize);
709 
710 	if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
711 		packs_per_ms = 8 >> ep->datainterval;
712 		max_packs_per_urb = MAX_PACKS_HS;
713 	} else {
714 		packs_per_ms = 1;
715 		max_packs_per_urb = MAX_PACKS;
716 	}
717 	if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
718 		max_packs_per_urb = min(max_packs_per_urb,
719 					1U << sync_ep->syncinterval);
720 	max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
721 
722 	/*
723 	 * Capture endpoints need to use small URBs because there's no way
724 	 * to tell in advance where the next period will end, and we don't
725 	 * want the next URB to complete much after the period ends.
726 	 *
727 	 * Playback endpoints with implicit sync much use the same parameters
728 	 * as their corresponding capture endpoint.
729 	 */
730 	if (usb_pipein(ep->pipe) ||
731 			snd_usb_endpoint_implicit_feedback_sink(ep)) {
732 
733 		urb_packs = packs_per_ms;
734 		/*
735 		 * Wireless devices can poll at a max rate of once per 4ms.
736 		 * For dataintervals less than 5, increase the packet count to
737 		 * allow the host controller to use bursting to fill in the
738 		 * gaps.
739 		 */
740 		if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
741 			int interval = ep->datainterval;
742 
743 			while (interval < 5) {
744 				urb_packs <<= 1;
745 				++interval;
746 			}
747 		}
748 		/* make capture URBs <= 1 ms and smaller than a period */
749 		urb_packs = min(max_packs_per_urb, urb_packs);
750 		while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
751 			urb_packs >>= 1;
752 		ret = ret && (ep->nurbs == MAX_URBS);
753 
754 	/*
755 	 * Playback endpoints without implicit sync are adjusted so that
756 	 * a period fits as evenly as possible in the smallest number of
757 	 * URBs.  The total number of URBs is adjusted to the size of the
758 	 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
759 	 */
760 	} else {
761 		/* determine how small a packet can be */
762 		minsize = (ep->freqn >> (16 - ep->datainterval)) *
763 				(frame_bits >> 3);
764 		/* with sync from device, assume it can be 12% lower */
765 		if (sync_ep)
766 			minsize -= minsize >> 3;
767 		minsize = max(minsize, 1u);
768 
769 		/* how many packets will contain an entire ALSA period? */
770 		max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
771 
772 		/* how many URBs will contain a period? */
773 		urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
774 				max_packs_per_urb);
775 		/* how many packets are needed in each URB? */
776 		urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
777 
778 		/* limit the number of frames in a single URB */
779 		ret = ret && (ep->max_urb_frames ==
780 			DIV_ROUND_UP(frames_per_period, urbs_per_period));
781 
782 		/* try to use enough URBs to contain an entire ALSA buffer */
783 		max_urbs = min((unsigned) MAX_URBS,
784 				MAX_QUEUE * packs_per_ms / urb_packs);
785 		ret = ret && (ep->nurbs == min(max_urbs,
786 				urbs_per_period * periods_per_buffer));
787 	}
788 
789 	ret = ret && (ep->datainterval == fmt->datainterval);
790 	ret = ret && (ep->maxpacksize == fmt->maxpacksize);
791 	ret = ret &&
792 		(ep->fill_max == !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX));
793 
794 	return ret;
795 }
796 
797 /*
798  * configure a data endpoint
799  */
800 static int data_ep_set_params(struct snd_usb_endpoint *ep,
801 			      snd_pcm_format_t pcm_format,
802 			      unsigned int channels,
803 			      unsigned int period_bytes,
804 			      unsigned int frames_per_period,
805 			      unsigned int periods_per_buffer,
806 			      struct audioformat *fmt,
807 			      struct snd_usb_endpoint *sync_ep)
808 {
809 	unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
810 	unsigned int max_packs_per_period, urbs_per_period, urb_packs;
811 	unsigned int max_urbs, i;
812 	int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
813 	int tx_length_quirk = (ep->chip->tx_length_quirk &&
814 			       usb_pipeout(ep->pipe));
815 
816 	if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
817 		/*
818 		 * When operating in DSD DOP mode, the size of a sample frame
819 		 * in hardware differs from the actual physical format width
820 		 * because we need to make room for the DOP markers.
821 		 */
822 		frame_bits += channels << 3;
823 	}
824 
825 	ep->datainterval = fmt->datainterval;
826 	ep->stride = frame_bits >> 3;
827 
828 	switch (pcm_format) {
829 	case SNDRV_PCM_FORMAT_U8:
830 		ep->silence_value = 0x80;
831 		break;
832 	case SNDRV_PCM_FORMAT_DSD_U8:
833 	case SNDRV_PCM_FORMAT_DSD_U16_LE:
834 	case SNDRV_PCM_FORMAT_DSD_U32_LE:
835 	case SNDRV_PCM_FORMAT_DSD_U16_BE:
836 	case SNDRV_PCM_FORMAT_DSD_U32_BE:
837 		ep->silence_value = 0x69;
838 		break;
839 	default:
840 		ep->silence_value = 0;
841 	}
842 
843 	/* assume max. frequency is 50% higher than nominal */
844 	ep->freqmax = ep->freqn + (ep->freqn >> 1);
845 	/* Round up freqmax to nearest integer in order to calculate maximum
846 	 * packet size, which must represent a whole number of frames.
847 	 * This is accomplished by adding 0x0.ffff before converting the
848 	 * Q16.16 format into integer.
849 	 * In order to accurately calculate the maximum packet size when
850 	 * the data interval is more than 1 (i.e. ep->datainterval > 0),
851 	 * multiply by the data interval prior to rounding. For instance,
852 	 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
853 	 * frames with a data interval of 1, but 11 (10.25) frames with a
854 	 * data interval of 2.
855 	 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
856 	 * maximum datainterval value of 3, at USB full speed, higher for
857 	 * USB high speed, noting that ep->freqmax is in units of
858 	 * frames per packet in Q16.16 format.)
859 	 */
860 	maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
861 			 (frame_bits >> 3);
862 	if (tx_length_quirk)
863 		maxsize += sizeof(__le32); /* Space for length descriptor */
864 	/* but wMaxPacketSize might reduce this */
865 	if (ep->maxpacksize && ep->maxpacksize < maxsize) {
866 		/* whatever fits into a max. size packet */
867 		unsigned int data_maxsize = maxsize = ep->maxpacksize;
868 
869 		if (tx_length_quirk)
870 			/* Need to remove the length descriptor to calc freq */
871 			data_maxsize -= sizeof(__le32);
872 		ep->freqmax = (data_maxsize / (frame_bits >> 3))
873 				<< (16 - ep->datainterval);
874 	}
875 
876 	if (ep->fill_max)
877 		ep->curpacksize = ep->maxpacksize;
878 	else
879 		ep->curpacksize = maxsize;
880 
881 	if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
882 		packs_per_ms = 8 >> ep->datainterval;
883 		max_packs_per_urb = MAX_PACKS_HS;
884 	} else {
885 		packs_per_ms = 1;
886 		max_packs_per_urb = MAX_PACKS;
887 	}
888 	if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
889 		max_packs_per_urb = min(max_packs_per_urb,
890 					1U << sync_ep->syncinterval);
891 	max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
892 
893 	/*
894 	 * Capture endpoints need to use small URBs because there's no way
895 	 * to tell in advance where the next period will end, and we don't
896 	 * want the next URB to complete much after the period ends.
897 	 *
898 	 * Playback endpoints with implicit sync much use the same parameters
899 	 * as their corresponding capture endpoint.
900 	 */
901 	if (usb_pipein(ep->pipe) ||
902 			snd_usb_endpoint_implicit_feedback_sink(ep)) {
903 
904 		urb_packs = packs_per_ms;
905 		/*
906 		 * Wireless devices can poll at a max rate of once per 4ms.
907 		 * For dataintervals less than 5, increase the packet count to
908 		 * allow the host controller to use bursting to fill in the
909 		 * gaps.
910 		 */
911 		if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
912 			int interval = ep->datainterval;
913 			while (interval < 5) {
914 				urb_packs <<= 1;
915 				++interval;
916 			}
917 		}
918 		/* make capture URBs <= 1 ms and smaller than a period */
919 		urb_packs = min(max_packs_per_urb, urb_packs);
920 		while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
921 			urb_packs >>= 1;
922 		ep->nurbs = MAX_URBS;
923 
924 	/*
925 	 * Playback endpoints without implicit sync are adjusted so that
926 	 * a period fits as evenly as possible in the smallest number of
927 	 * URBs.  The total number of URBs is adjusted to the size of the
928 	 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
929 	 */
930 	} else {
931 		/* determine how small a packet can be */
932 		minsize = (ep->freqn >> (16 - ep->datainterval)) *
933 				(frame_bits >> 3);
934 		/* with sync from device, assume it can be 12% lower */
935 		if (sync_ep)
936 			minsize -= minsize >> 3;
937 		minsize = max(minsize, 1u);
938 
939 		/* how many packets will contain an entire ALSA period? */
940 		max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
941 
942 		/* how many URBs will contain a period? */
943 		urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
944 				max_packs_per_urb);
945 		/* how many packets are needed in each URB? */
946 		urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
947 
948 		/* limit the number of frames in a single URB */
949 		ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
950 					urbs_per_period);
951 
952 		/* try to use enough URBs to contain an entire ALSA buffer */
953 		max_urbs = min((unsigned) MAX_URBS,
954 				MAX_QUEUE * packs_per_ms / urb_packs);
955 		ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
956 	}
957 
958 	/* allocate and initialize data urbs */
959 	for (i = 0; i < ep->nurbs; i++) {
960 		struct snd_urb_ctx *u = &ep->urb[i];
961 		u->index = i;
962 		u->ep = ep;
963 		u->packets = urb_packs;
964 		u->buffer_size = maxsize * u->packets;
965 
966 		if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
967 			u->packets++; /* for transfer delimiter */
968 		u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
969 		if (!u->urb)
970 			goto out_of_memory;
971 
972 		u->urb->transfer_buffer =
973 			usb_alloc_coherent(ep->chip->dev, u->buffer_size,
974 					   GFP_KERNEL, &u->urb->transfer_dma);
975 		if (!u->urb->transfer_buffer)
976 			goto out_of_memory;
977 		u->urb->pipe = ep->pipe;
978 		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
979 		u->urb->interval = 1 << ep->datainterval;
980 		u->urb->context = u;
981 		u->urb->complete = snd_complete_urb;
982 		INIT_LIST_HEAD(&u->ready_list);
983 	}
984 
985 	return 0;
986 
987 out_of_memory:
988 	release_urbs(ep, 0);
989 	return -ENOMEM;
990 }
991 
992 /*
993  * configure a sync endpoint
994  */
995 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
996 {
997 	int i;
998 
999 	ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
1000 					 GFP_KERNEL, &ep->sync_dma);
1001 	if (!ep->syncbuf)
1002 		return -ENOMEM;
1003 
1004 	for (i = 0; i < SYNC_URBS; i++) {
1005 		struct snd_urb_ctx *u = &ep->urb[i];
1006 		u->index = i;
1007 		u->ep = ep;
1008 		u->packets = 1;
1009 		u->urb = usb_alloc_urb(1, GFP_KERNEL);
1010 		if (!u->urb)
1011 			goto out_of_memory;
1012 		u->urb->transfer_buffer = ep->syncbuf + i * 4;
1013 		u->urb->transfer_dma = ep->sync_dma + i * 4;
1014 		u->urb->transfer_buffer_length = 4;
1015 		u->urb->pipe = ep->pipe;
1016 		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1017 		u->urb->number_of_packets = 1;
1018 		u->urb->interval = 1 << ep->syncinterval;
1019 		u->urb->context = u;
1020 		u->urb->complete = snd_complete_urb;
1021 	}
1022 
1023 	ep->nurbs = SYNC_URBS;
1024 
1025 	return 0;
1026 
1027 out_of_memory:
1028 	release_urbs(ep, 0);
1029 	return -ENOMEM;
1030 }
1031 
1032 /**
1033  * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
1034  *
1035  * @ep: the snd_usb_endpoint to configure
1036  * @pcm_format: the audio fomat.
1037  * @channels: the number of audio channels.
1038  * @period_bytes: the number of bytes in one alsa period.
1039  * @period_frames: the number of frames in one alsa period.
1040  * @buffer_periods: the number of periods in one alsa buffer.
1041  * @rate: the frame rate.
1042  * @fmt: the USB audio format information
1043  * @sync_ep: the sync endpoint to use, if any
1044  *
1045  * Determine the number of URBs to be used on this endpoint.
1046  * An endpoint must be configured before it can be started.
1047  * An endpoint that is already running can not be reconfigured.
1048  */
1049 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
1050 				snd_pcm_format_t pcm_format,
1051 				unsigned int channels,
1052 				unsigned int period_bytes,
1053 				unsigned int period_frames,
1054 				unsigned int buffer_periods,
1055 				unsigned int rate,
1056 				struct audioformat *fmt,
1057 				struct snd_usb_endpoint *sync_ep)
1058 {
1059 	int err;
1060 
1061 	if (ep->use_count != 0) {
1062 		bool check = ep->is_implicit_feedback &&
1063 			check_ep_params(ep, pcm_format,
1064 					     channels, period_bytes,
1065 					     period_frames, buffer_periods,
1066 					     fmt, sync_ep);
1067 
1068 		if (!check) {
1069 			usb_audio_warn(ep->chip,
1070 				"Unable to change format on ep #%x: already in use\n",
1071 				ep->ep_num);
1072 			return -EBUSY;
1073 		}
1074 
1075 		usb_audio_dbg(ep->chip,
1076 			      "Ep #%x already in use as implicit feedback but format not changed\n",
1077 			      ep->ep_num);
1078 		return 0;
1079 	}
1080 
1081 	/* release old buffers, if any */
1082 	release_urbs(ep, 0);
1083 
1084 	ep->datainterval = fmt->datainterval;
1085 	ep->maxpacksize = fmt->maxpacksize;
1086 	ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
1087 
1088 	if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL) {
1089 		ep->freqn = get_usb_full_speed_rate(rate);
1090 		ep->pps = 1000 >> ep->datainterval;
1091 	} else {
1092 		ep->freqn = get_usb_high_speed_rate(rate);
1093 		ep->pps = 8000 >> ep->datainterval;
1094 	}
1095 
1096 	ep->sample_rem = rate % ep->pps;
1097 	ep->packsize[0] = rate / ep->pps;
1098 	ep->packsize[1] = (rate + (ep->pps - 1)) / ep->pps;
1099 
1100 	/* calculate the frequency in 16.16 format */
1101 	ep->freqm = ep->freqn;
1102 	ep->freqshift = INT_MIN;
1103 
1104 	ep->phase = 0;
1105 
1106 	switch (ep->type) {
1107 	case  SND_USB_ENDPOINT_TYPE_DATA:
1108 		err = data_ep_set_params(ep, pcm_format, channels,
1109 					 period_bytes, period_frames,
1110 					 buffer_periods, fmt, sync_ep);
1111 		break;
1112 	case  SND_USB_ENDPOINT_TYPE_SYNC:
1113 		err = sync_ep_set_params(ep);
1114 		break;
1115 	default:
1116 		err = -EINVAL;
1117 	}
1118 
1119 	usb_audio_dbg(ep->chip,
1120 		"Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
1121 		ep->ep_num, ep->type, ep->nurbs, err);
1122 
1123 	return err;
1124 }
1125 
1126 /**
1127  * snd_usb_endpoint_start: start an snd_usb_endpoint
1128  *
1129  * @ep: the endpoint to start
1130  *
1131  * A call to this function will increment the use count of the endpoint.
1132  * In case it is not already running, the URBs for this endpoint will be
1133  * submitted. Otherwise, this function does nothing.
1134  *
1135  * Must be balanced to calls of snd_usb_endpoint_stop().
1136  *
1137  * Returns an error if the URB submission failed, 0 in all other cases.
1138  */
1139 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep)
1140 {
1141 	int err;
1142 	unsigned int i;
1143 
1144 	if (atomic_read(&ep->chip->shutdown))
1145 		return -EBADFD;
1146 
1147 	/* already running? */
1148 	if (++ep->use_count != 1)
1149 		return 0;
1150 
1151 	/* just to be sure */
1152 	deactivate_urbs(ep, false);
1153 
1154 	ep->active_mask = 0;
1155 	ep->unlink_mask = 0;
1156 	ep->phase = 0;
1157 	ep->sample_accum = 0;
1158 
1159 	snd_usb_endpoint_start_quirk(ep);
1160 
1161 	/*
1162 	 * If this endpoint has a data endpoint as implicit feedback source,
1163 	 * don't start the urbs here. Instead, mark them all as available,
1164 	 * wait for the record urbs to return and queue the playback urbs
1165 	 * from that context.
1166 	 */
1167 
1168 	set_bit(EP_FLAG_RUNNING, &ep->flags);
1169 
1170 	if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
1171 		for (i = 0; i < ep->nurbs; i++) {
1172 			struct snd_urb_ctx *ctx = ep->urb + i;
1173 			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
1174 		}
1175 
1176 		return 0;
1177 	}
1178 
1179 	for (i = 0; i < ep->nurbs; i++) {
1180 		struct urb *urb = ep->urb[i].urb;
1181 
1182 		if (snd_BUG_ON(!urb))
1183 			goto __error;
1184 
1185 		if (usb_pipeout(ep->pipe)) {
1186 			prepare_outbound_urb(ep, urb->context);
1187 		} else {
1188 			prepare_inbound_urb(ep, urb->context);
1189 		}
1190 
1191 		err = usb_submit_urb(urb, GFP_ATOMIC);
1192 		if (err < 0) {
1193 			usb_audio_err(ep->chip,
1194 				"cannot submit urb %d, error %d: %s\n",
1195 				i, err, usb_error_string(err));
1196 			goto __error;
1197 		}
1198 		set_bit(i, &ep->active_mask);
1199 	}
1200 
1201 	return 0;
1202 
1203 __error:
1204 	clear_bit(EP_FLAG_RUNNING, &ep->flags);
1205 	ep->use_count--;
1206 	deactivate_urbs(ep, false);
1207 	return -EPIPE;
1208 }
1209 
1210 /**
1211  * snd_usb_endpoint_stop: stop an snd_usb_endpoint
1212  *
1213  * @ep: the endpoint to stop (may be NULL)
1214  *
1215  * A call to this function will decrement the use count of the endpoint.
1216  * In case the last user has requested the endpoint stop, the URBs will
1217  * actually be deactivated.
1218  *
1219  * Must be balanced to calls of snd_usb_endpoint_start().
1220  *
1221  * The caller needs to synchronize the pending stop operation via
1222  * snd_usb_endpoint_sync_pending_stop().
1223  */
1224 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
1225 {
1226 	if (!ep)
1227 		return;
1228 
1229 	if (snd_BUG_ON(ep->use_count == 0))
1230 		return;
1231 
1232 	if (--ep->use_count == 0) {
1233 		deactivate_urbs(ep, false);
1234 		set_bit(EP_FLAG_STOPPING, &ep->flags);
1235 	}
1236 }
1237 
1238 /**
1239  * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
1240  *
1241  * @ep: the endpoint to deactivate
1242  *
1243  * If the endpoint is not currently in use, this functions will
1244  * deactivate its associated URBs.
1245  *
1246  * In case of any active users, this functions does nothing.
1247  */
1248 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
1249 {
1250 	if (!ep)
1251 		return;
1252 
1253 	if (ep->use_count != 0)
1254 		return;
1255 
1256 	deactivate_urbs(ep, true);
1257 	wait_clear_urbs(ep);
1258 }
1259 
1260 /**
1261  * snd_usb_endpoint_release: Tear down an snd_usb_endpoint
1262  *
1263  * @ep: the endpoint to release
1264  *
1265  * This function does not care for the endpoint's use count but will tear
1266  * down all the streaming URBs immediately.
1267  */
1268 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1269 {
1270 	release_urbs(ep, 1);
1271 }
1272 
1273 /**
1274  * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
1275  *
1276  * @ep: the endpoint to free
1277  *
1278  * This free all resources of the given ep.
1279  */
1280 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep)
1281 {
1282 	kfree(ep);
1283 }
1284 
1285 /**
1286  * snd_usb_handle_sync_urb: parse an USB sync packet
1287  *
1288  * @ep: the endpoint to handle the packet
1289  * @sender: the sending endpoint
1290  * @urb: the received packet
1291  *
1292  * This function is called from the context of an endpoint that received
1293  * the packet and is used to let another endpoint object handle the payload.
1294  */
1295 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1296 			     struct snd_usb_endpoint *sender,
1297 			     const struct urb *urb)
1298 {
1299 	int shift;
1300 	unsigned int f;
1301 	unsigned long flags;
1302 
1303 	snd_BUG_ON(ep == sender);
1304 
1305 	/*
1306 	 * In case the endpoint is operating in implicit feedback mode, prepare
1307 	 * a new outbound URB that has the same layout as the received packet
1308 	 * and add it to the list of pending urbs. queue_pending_output_urbs()
1309 	 * will take care of them later.
1310 	 */
1311 	if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1312 	    ep->use_count != 0) {
1313 
1314 		/* implicit feedback case */
1315 		int i, bytes = 0;
1316 		struct snd_urb_ctx *in_ctx;
1317 		struct snd_usb_packet_info *out_packet;
1318 
1319 		in_ctx = urb->context;
1320 
1321 		/* Count overall packet size */
1322 		for (i = 0; i < in_ctx->packets; i++)
1323 			if (urb->iso_frame_desc[i].status == 0)
1324 				bytes += urb->iso_frame_desc[i].actual_length;
1325 
1326 		/*
1327 		 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1328 		 * streaming once it received a 0-byte OUT URB
1329 		 */
1330 		if (bytes == 0)
1331 			return;
1332 
1333 		spin_lock_irqsave(&ep->lock, flags);
1334 		out_packet = ep->next_packet + ep->next_packet_write_pos;
1335 
1336 		/*
1337 		 * Iterate through the inbound packet and prepare the lengths
1338 		 * for the output packet. The OUT packet we are about to send
1339 		 * will have the same amount of payload bytes per stride as the
1340 		 * IN packet we just received. Since the actual size is scaled
1341 		 * by the stride, use the sender stride to calculate the length
1342 		 * in case the number of channels differ between the implicitly
1343 		 * fed-back endpoint and the synchronizing endpoint.
1344 		 */
1345 
1346 		out_packet->packets = in_ctx->packets;
1347 		for (i = 0; i < in_ctx->packets; i++) {
1348 			if (urb->iso_frame_desc[i].status == 0)
1349 				out_packet->packet_size[i] =
1350 					urb->iso_frame_desc[i].actual_length / sender->stride;
1351 			else
1352 				out_packet->packet_size[i] = 0;
1353 		}
1354 
1355 		ep->next_packet_write_pos++;
1356 		ep->next_packet_write_pos %= MAX_URBS;
1357 		spin_unlock_irqrestore(&ep->lock, flags);
1358 		queue_pending_output_urbs(ep);
1359 
1360 		return;
1361 	}
1362 
1363 	/*
1364 	 * process after playback sync complete
1365 	 *
1366 	 * Full speed devices report feedback values in 10.14 format as samples
1367 	 * per frame, high speed devices in 16.16 format as samples per
1368 	 * microframe.
1369 	 *
1370 	 * Because the Audio Class 1 spec was written before USB 2.0, many high
1371 	 * speed devices use a wrong interpretation, some others use an
1372 	 * entirely different format.
1373 	 *
1374 	 * Therefore, we cannot predict what format any particular device uses
1375 	 * and must detect it automatically.
1376 	 */
1377 
1378 	if (urb->iso_frame_desc[0].status != 0 ||
1379 	    urb->iso_frame_desc[0].actual_length < 3)
1380 		return;
1381 
1382 	f = le32_to_cpup(urb->transfer_buffer);
1383 	if (urb->iso_frame_desc[0].actual_length == 3)
1384 		f &= 0x00ffffff;
1385 	else
1386 		f &= 0x0fffffff;
1387 
1388 	if (f == 0)
1389 		return;
1390 
1391 	if (unlikely(sender->tenor_fb_quirk)) {
1392 		/*
1393 		 * Devices based on Tenor 8802 chipsets (TEAC UD-H01
1394 		 * and others) sometimes change the feedback value
1395 		 * by +/- 0x1.0000.
1396 		 */
1397 		if (f < ep->freqn - 0x8000)
1398 			f += 0xf000;
1399 		else if (f > ep->freqn + 0x8000)
1400 			f -= 0xf000;
1401 	} else if (unlikely(ep->freqshift == INT_MIN)) {
1402 		/*
1403 		 * The first time we see a feedback value, determine its format
1404 		 * by shifting it left or right until it matches the nominal
1405 		 * frequency value.  This assumes that the feedback does not
1406 		 * differ from the nominal value more than +50% or -25%.
1407 		 */
1408 		shift = 0;
1409 		while (f < ep->freqn - ep->freqn / 4) {
1410 			f <<= 1;
1411 			shift++;
1412 		}
1413 		while (f > ep->freqn + ep->freqn / 2) {
1414 			f >>= 1;
1415 			shift--;
1416 		}
1417 		ep->freqshift = shift;
1418 	} else if (ep->freqshift >= 0)
1419 		f <<= ep->freqshift;
1420 	else
1421 		f >>= -ep->freqshift;
1422 
1423 	if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1424 		/*
1425 		 * If the frequency looks valid, set it.
1426 		 * This value is referred to in prepare_playback_urb().
1427 		 */
1428 		spin_lock_irqsave(&ep->lock, flags);
1429 		ep->freqm = f;
1430 		spin_unlock_irqrestore(&ep->lock, flags);
1431 	} else {
1432 		/*
1433 		 * Out of range; maybe the shift value is wrong.
1434 		 * Reset it so that we autodetect again the next time.
1435 		 */
1436 		ep->freqshift = INT_MIN;
1437 	}
1438 }
1439 
1440