1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 15 * 16 */ 17 18 #include <linux/gfp.h> 19 #include <linux/init.h> 20 #include <linux/ratelimit.h> 21 #include <linux/usb.h> 22 #include <linux/usb/audio.h> 23 #include <linux/slab.h> 24 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 29 #include "usbaudio.h" 30 #include "helper.h" 31 #include "card.h" 32 #include "endpoint.h" 33 #include "pcm.h" 34 #include "quirks.h" 35 36 #define EP_FLAG_RUNNING 1 37 #define EP_FLAG_STOPPING 2 38 39 /* 40 * snd_usb_endpoint is a model that abstracts everything related to an 41 * USB endpoint and its streaming. 42 * 43 * There are functions to activate and deactivate the streaming URBs and 44 * optional callbacks to let the pcm logic handle the actual content of the 45 * packets for playback and record. Thus, the bus streaming and the audio 46 * handlers are fully decoupled. 47 * 48 * There are two different types of endpoints in audio applications. 49 * 50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 51 * inbound and outbound traffic. 52 * 53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 55 * (3 or 4 bytes). 56 * 57 * Each endpoint has to be configured prior to being used by calling 58 * snd_usb_endpoint_set_params(). 59 * 60 * The model incorporates a reference counting, so that multiple users 61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 62 * only the first user will effectively start the URBs, and only the last 63 * one to stop it will tear the URBs down again. 64 */ 65 66 /* 67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 68 * this will overflow at approx 524 kHz 69 */ 70 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 71 { 72 return ((rate << 13) + 62) / 125; 73 } 74 75 /* 76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 77 * this will overflow at approx 4 MHz 78 */ 79 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 80 { 81 return ((rate << 10) + 62) / 125; 82 } 83 84 /* 85 * release a urb data 86 */ 87 static void release_urb_ctx(struct snd_urb_ctx *u) 88 { 89 if (u->buffer_size) 90 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 91 u->urb->transfer_buffer, 92 u->urb->transfer_dma); 93 usb_free_urb(u->urb); 94 u->urb = NULL; 95 } 96 97 static const char *usb_error_string(int err) 98 { 99 switch (err) { 100 case -ENODEV: 101 return "no device"; 102 case -ENOENT: 103 return "endpoint not enabled"; 104 case -EPIPE: 105 return "endpoint stalled"; 106 case -ENOSPC: 107 return "not enough bandwidth"; 108 case -ESHUTDOWN: 109 return "device disabled"; 110 case -EHOSTUNREACH: 111 return "device suspended"; 112 case -EINVAL: 113 case -EAGAIN: 114 case -EFBIG: 115 case -EMSGSIZE: 116 return "internal error"; 117 default: 118 return "unknown error"; 119 } 120 } 121 122 /** 123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 124 * 125 * @ep: The snd_usb_endpoint 126 * 127 * Determine whether an endpoint is driven by an implicit feedback 128 * data endpoint source. 129 */ 130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 131 { 132 return ep->sync_master && 133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA && 134 ep->type == SND_USB_ENDPOINT_TYPE_DATA && 135 usb_pipeout(ep->pipe); 136 } 137 138 /* 139 * For streaming based on information derived from sync endpoints, 140 * prepare_outbound_urb_sizes() will call next_packet_size() to 141 * determine the number of samples to be sent in the next packet. 142 * 143 * For implicit feedback, next_packet_size() is unused. 144 */ 145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep) 146 { 147 unsigned long flags; 148 int ret; 149 150 if (ep->fill_max) 151 return ep->maxframesize; 152 153 spin_lock_irqsave(&ep->lock, flags); 154 ep->phase = (ep->phase & 0xffff) 155 + (ep->freqm << ep->datainterval); 156 ret = min(ep->phase >> 16, ep->maxframesize); 157 spin_unlock_irqrestore(&ep->lock, flags); 158 159 return ret; 160 } 161 162 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 163 struct snd_urb_ctx *urb_ctx) 164 { 165 if (ep->retire_data_urb) 166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb); 167 } 168 169 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 170 struct snd_urb_ctx *urb_ctx) 171 { 172 struct urb *urb = urb_ctx->urb; 173 174 if (unlikely(ep->skip_packets > 0)) { 175 ep->skip_packets--; 176 return; 177 } 178 179 if (ep->sync_slave) 180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb); 181 182 if (ep->retire_data_urb) 183 ep->retire_data_urb(ep->data_subs, urb); 184 } 185 186 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 187 struct snd_urb_ctx *ctx) 188 { 189 struct urb *urb = ctx->urb; 190 unsigned int offs = 0; 191 unsigned int extra = 0; 192 __le32 packet_length; 193 int i; 194 195 /* For tx_length_quirk, put packet length at start of packet */ 196 if (ep->chip->tx_length_quirk) 197 extra = sizeof(packet_length); 198 199 for (i = 0; i < ctx->packets; ++i) { 200 unsigned int offset; 201 unsigned int length; 202 int counts; 203 204 if (ctx->packet_size[i]) 205 counts = ctx->packet_size[i]; 206 else 207 counts = snd_usb_endpoint_next_packet_size(ep); 208 209 length = counts * ep->stride; /* number of silent bytes */ 210 offset = offs * ep->stride + extra * i; 211 urb->iso_frame_desc[i].offset = offset; 212 urb->iso_frame_desc[i].length = length + extra; 213 if (extra) { 214 packet_length = cpu_to_le32(length); 215 memcpy(urb->transfer_buffer + offset, 216 &packet_length, sizeof(packet_length)); 217 } 218 memset(urb->transfer_buffer + offset + extra, 219 ep->silence_value, length); 220 offs += counts; 221 } 222 223 urb->number_of_packets = ctx->packets; 224 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 225 } 226 227 /* 228 * Prepare a PLAYBACK urb for submission to the bus. 229 */ 230 static void prepare_outbound_urb(struct snd_usb_endpoint *ep, 231 struct snd_urb_ctx *ctx) 232 { 233 struct urb *urb = ctx->urb; 234 unsigned char *cp = urb->transfer_buffer; 235 236 urb->dev = ep->chip->dev; /* we need to set this at each time */ 237 238 switch (ep->type) { 239 case SND_USB_ENDPOINT_TYPE_DATA: 240 if (ep->prepare_data_urb) { 241 ep->prepare_data_urb(ep->data_subs, urb); 242 } else { 243 /* no data provider, so send silence */ 244 prepare_silent_urb(ep, ctx); 245 } 246 break; 247 248 case SND_USB_ENDPOINT_TYPE_SYNC: 249 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 250 /* 251 * fill the length and offset of each urb descriptor. 252 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 253 */ 254 urb->iso_frame_desc[0].length = 4; 255 urb->iso_frame_desc[0].offset = 0; 256 cp[0] = ep->freqn; 257 cp[1] = ep->freqn >> 8; 258 cp[2] = ep->freqn >> 16; 259 cp[3] = ep->freqn >> 24; 260 } else { 261 /* 262 * fill the length and offset of each urb descriptor. 263 * the fixed 10.14 frequency is passed through the pipe. 264 */ 265 urb->iso_frame_desc[0].length = 3; 266 urb->iso_frame_desc[0].offset = 0; 267 cp[0] = ep->freqn >> 2; 268 cp[1] = ep->freqn >> 10; 269 cp[2] = ep->freqn >> 18; 270 } 271 272 break; 273 } 274 } 275 276 /* 277 * Prepare a CAPTURE or SYNC urb for submission to the bus. 278 */ 279 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep, 280 struct snd_urb_ctx *urb_ctx) 281 { 282 int i, offs; 283 struct urb *urb = urb_ctx->urb; 284 285 urb->dev = ep->chip->dev; /* we need to set this at each time */ 286 287 switch (ep->type) { 288 case SND_USB_ENDPOINT_TYPE_DATA: 289 offs = 0; 290 for (i = 0; i < urb_ctx->packets; i++) { 291 urb->iso_frame_desc[i].offset = offs; 292 urb->iso_frame_desc[i].length = ep->curpacksize; 293 offs += ep->curpacksize; 294 } 295 296 urb->transfer_buffer_length = offs; 297 urb->number_of_packets = urb_ctx->packets; 298 break; 299 300 case SND_USB_ENDPOINT_TYPE_SYNC: 301 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 302 urb->iso_frame_desc[0].offset = 0; 303 break; 304 } 305 } 306 307 /* 308 * Send output urbs that have been prepared previously. URBs are dequeued 309 * from ep->ready_playback_urbs and in case there there aren't any available 310 * or there are no packets that have been prepared, this function does 311 * nothing. 312 * 313 * The reason why the functionality of sending and preparing URBs is separated 314 * is that host controllers don't guarantee the order in which they return 315 * inbound and outbound packets to their submitters. 316 * 317 * This function is only used for implicit feedback endpoints. For endpoints 318 * driven by dedicated sync endpoints, URBs are immediately re-submitted 319 * from their completion handler. 320 */ 321 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep) 322 { 323 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) { 324 325 unsigned long flags; 326 struct snd_usb_packet_info *uninitialized_var(packet); 327 struct snd_urb_ctx *ctx = NULL; 328 int err, i; 329 330 spin_lock_irqsave(&ep->lock, flags); 331 if (ep->next_packet_read_pos != ep->next_packet_write_pos) { 332 packet = ep->next_packet + ep->next_packet_read_pos; 333 ep->next_packet_read_pos++; 334 ep->next_packet_read_pos %= MAX_URBS; 335 336 /* take URB out of FIFO */ 337 if (!list_empty(&ep->ready_playback_urbs)) 338 ctx = list_first_entry(&ep->ready_playback_urbs, 339 struct snd_urb_ctx, ready_list); 340 } 341 spin_unlock_irqrestore(&ep->lock, flags); 342 343 if (ctx == NULL) 344 return; 345 346 list_del_init(&ctx->ready_list); 347 348 /* copy over the length information */ 349 for (i = 0; i < packet->packets; i++) 350 ctx->packet_size[i] = packet->packet_size[i]; 351 352 /* call the data handler to fill in playback data */ 353 prepare_outbound_urb(ep, ctx); 354 355 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 356 if (err < 0) 357 usb_audio_err(ep->chip, 358 "Unable to submit urb #%d: %d (urb %p)\n", 359 ctx->index, err, ctx->urb); 360 else 361 set_bit(ctx->index, &ep->active_mask); 362 } 363 } 364 365 /* 366 * complete callback for urbs 367 */ 368 static void snd_complete_urb(struct urb *urb) 369 { 370 struct snd_urb_ctx *ctx = urb->context; 371 struct snd_usb_endpoint *ep = ctx->ep; 372 struct snd_pcm_substream *substream; 373 unsigned long flags; 374 int err; 375 376 if (unlikely(urb->status == -ENOENT || /* unlinked */ 377 urb->status == -ENODEV || /* device removed */ 378 urb->status == -ECONNRESET || /* unlinked */ 379 urb->status == -ESHUTDOWN)) /* device disabled */ 380 goto exit_clear; 381 /* device disconnected */ 382 if (unlikely(atomic_read(&ep->chip->shutdown))) 383 goto exit_clear; 384 385 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 386 goto exit_clear; 387 388 if (usb_pipeout(ep->pipe)) { 389 retire_outbound_urb(ep, ctx); 390 /* can be stopped during retire callback */ 391 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 392 goto exit_clear; 393 394 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 395 spin_lock_irqsave(&ep->lock, flags); 396 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 397 spin_unlock_irqrestore(&ep->lock, flags); 398 queue_pending_output_urbs(ep); 399 400 goto exit_clear; 401 } 402 403 prepare_outbound_urb(ep, ctx); 404 } else { 405 retire_inbound_urb(ep, ctx); 406 /* can be stopped during retire callback */ 407 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags))) 408 goto exit_clear; 409 410 prepare_inbound_urb(ep, ctx); 411 } 412 413 err = usb_submit_urb(urb, GFP_ATOMIC); 414 if (err == 0) 415 return; 416 417 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 418 if (ep->data_subs && ep->data_subs->pcm_substream) { 419 substream = ep->data_subs->pcm_substream; 420 snd_pcm_stop_xrun(substream); 421 } 422 423 exit_clear: 424 clear_bit(ctx->index, &ep->active_mask); 425 } 426 427 /** 428 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 429 * 430 * @chip: The chip 431 * @alts: The USB host interface 432 * @ep_num: The number of the endpoint to use 433 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE 434 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 435 * 436 * If the requested endpoint has not been added to the given chip before, 437 * a new instance is created. Otherwise, a pointer to the previoulsy 438 * created instance is returned. In case of any error, NULL is returned. 439 * 440 * New endpoints will be added to chip->ep_list and must be freed by 441 * calling snd_usb_endpoint_free(). 442 * 443 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 444 * bNumEndpoints > 1 beforehand. 445 */ 446 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip, 447 struct usb_host_interface *alts, 448 int ep_num, int direction, int type) 449 { 450 struct snd_usb_endpoint *ep; 451 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK; 452 453 if (WARN_ON(!alts)) 454 return NULL; 455 456 mutex_lock(&chip->mutex); 457 458 list_for_each_entry(ep, &chip->ep_list, list) { 459 if (ep->ep_num == ep_num && 460 ep->iface == alts->desc.bInterfaceNumber && 461 ep->altsetting == alts->desc.bAlternateSetting) { 462 usb_audio_dbg(ep->chip, 463 "Re-using EP %x in iface %d,%d @%p\n", 464 ep_num, ep->iface, ep->altsetting, ep); 465 goto __exit_unlock; 466 } 467 } 468 469 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n", 470 is_playback ? "playback" : "capture", 471 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync", 472 ep_num); 473 474 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 475 if (!ep) 476 goto __exit_unlock; 477 478 ep->chip = chip; 479 spin_lock_init(&ep->lock); 480 ep->type = type; 481 ep->ep_num = ep_num; 482 ep->iface = alts->desc.bInterfaceNumber; 483 ep->altsetting = alts->desc.bAlternateSetting; 484 INIT_LIST_HEAD(&ep->ready_playback_urbs); 485 ep_num &= USB_ENDPOINT_NUMBER_MASK; 486 487 if (is_playback) 488 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 489 else 490 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 491 492 if (type == SND_USB_ENDPOINT_TYPE_SYNC) { 493 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 494 get_endpoint(alts, 1)->bRefresh >= 1 && 495 get_endpoint(alts, 1)->bRefresh <= 9) 496 ep->syncinterval = get_endpoint(alts, 1)->bRefresh; 497 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 498 ep->syncinterval = 1; 499 else if (get_endpoint(alts, 1)->bInterval >= 1 && 500 get_endpoint(alts, 1)->bInterval <= 16) 501 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1; 502 else 503 ep->syncinterval = 3; 504 505 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize); 506 } 507 508 list_add_tail(&ep->list, &chip->ep_list); 509 510 __exit_unlock: 511 mutex_unlock(&chip->mutex); 512 513 return ep; 514 } 515 516 /* 517 * wait until all urbs are processed. 518 */ 519 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 520 { 521 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 522 int alive; 523 524 do { 525 alive = bitmap_weight(&ep->active_mask, ep->nurbs); 526 if (!alive) 527 break; 528 529 schedule_timeout_uninterruptible(1); 530 } while (time_before(jiffies, end_time)); 531 532 if (alive) 533 usb_audio_err(ep->chip, 534 "timeout: still %d active urbs on EP #%x\n", 535 alive, ep->ep_num); 536 clear_bit(EP_FLAG_STOPPING, &ep->flags); 537 538 ep->data_subs = NULL; 539 ep->sync_slave = NULL; 540 ep->retire_data_urb = NULL; 541 ep->prepare_data_urb = NULL; 542 543 return 0; 544 } 545 546 /* sync the pending stop operation; 547 * this function itself doesn't trigger the stop operation 548 */ 549 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 550 { 551 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags)) 552 wait_clear_urbs(ep); 553 } 554 555 /* 556 * unlink active urbs. 557 */ 558 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force) 559 { 560 unsigned int i; 561 562 if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */ 563 return -EBADFD; 564 565 clear_bit(EP_FLAG_RUNNING, &ep->flags); 566 567 INIT_LIST_HEAD(&ep->ready_playback_urbs); 568 ep->next_packet_read_pos = 0; 569 ep->next_packet_write_pos = 0; 570 571 for (i = 0; i < ep->nurbs; i++) { 572 if (test_bit(i, &ep->active_mask)) { 573 if (!test_and_set_bit(i, &ep->unlink_mask)) { 574 struct urb *u = ep->urb[i].urb; 575 usb_unlink_urb(u); 576 } 577 } 578 } 579 580 return 0; 581 } 582 583 /* 584 * release an endpoint's urbs 585 */ 586 static void release_urbs(struct snd_usb_endpoint *ep, int force) 587 { 588 int i; 589 590 /* route incoming urbs to nirvana */ 591 ep->retire_data_urb = NULL; 592 ep->prepare_data_urb = NULL; 593 594 /* stop urbs */ 595 deactivate_urbs(ep, force); 596 wait_clear_urbs(ep); 597 598 for (i = 0; i < ep->nurbs; i++) 599 release_urb_ctx(&ep->urb[i]); 600 601 if (ep->syncbuf) 602 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 603 ep->syncbuf, ep->sync_dma); 604 605 ep->syncbuf = NULL; 606 ep->nurbs = 0; 607 } 608 609 /* 610 * configure a data endpoint 611 */ 612 static int data_ep_set_params(struct snd_usb_endpoint *ep, 613 snd_pcm_format_t pcm_format, 614 unsigned int channels, 615 unsigned int period_bytes, 616 unsigned int frames_per_period, 617 unsigned int periods_per_buffer, 618 struct audioformat *fmt, 619 struct snd_usb_endpoint *sync_ep) 620 { 621 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 622 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 623 unsigned int max_urbs, i; 624 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels; 625 int tx_length_quirk = (ep->chip->tx_length_quirk && 626 usb_pipeout(ep->pipe)); 627 628 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 629 /* 630 * When operating in DSD DOP mode, the size of a sample frame 631 * in hardware differs from the actual physical format width 632 * because we need to make room for the DOP markers. 633 */ 634 frame_bits += channels << 3; 635 } 636 637 ep->datainterval = fmt->datainterval; 638 ep->stride = frame_bits >> 3; 639 640 switch (pcm_format) { 641 case SNDRV_PCM_FORMAT_U8: 642 ep->silence_value = 0x80; 643 break; 644 case SNDRV_PCM_FORMAT_DSD_U8: 645 case SNDRV_PCM_FORMAT_DSD_U16_LE: 646 case SNDRV_PCM_FORMAT_DSD_U32_LE: 647 case SNDRV_PCM_FORMAT_DSD_U16_BE: 648 case SNDRV_PCM_FORMAT_DSD_U32_BE: 649 ep->silence_value = 0x69; 650 break; 651 default: 652 ep->silence_value = 0; 653 } 654 655 /* assume max. frequency is 50% higher than nominal */ 656 ep->freqmax = ep->freqn + (ep->freqn >> 1); 657 /* Round up freqmax to nearest integer in order to calculate maximum 658 * packet size, which must represent a whole number of frames. 659 * This is accomplished by adding 0x0.ffff before converting the 660 * Q16.16 format into integer. 661 * In order to accurately calculate the maximum packet size when 662 * the data interval is more than 1 (i.e. ep->datainterval > 0), 663 * multiply by the data interval prior to rounding. For instance, 664 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 665 * frames with a data interval of 1, but 11 (10.25) frames with a 666 * data interval of 2. 667 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 668 * maximum datainterval value of 3, at USB full speed, higher for 669 * USB high speed, noting that ep->freqmax is in units of 670 * frames per packet in Q16.16 format.) 671 */ 672 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 673 (frame_bits >> 3); 674 if (tx_length_quirk) 675 maxsize += sizeof(__le32); /* Space for length descriptor */ 676 /* but wMaxPacketSize might reduce this */ 677 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 678 /* whatever fits into a max. size packet */ 679 unsigned int data_maxsize = maxsize = ep->maxpacksize; 680 681 if (tx_length_quirk) 682 /* Need to remove the length descriptor to calc freq */ 683 data_maxsize -= sizeof(__le32); 684 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 685 << (16 - ep->datainterval); 686 } 687 688 if (ep->fill_max) 689 ep->curpacksize = ep->maxpacksize; 690 else 691 ep->curpacksize = maxsize; 692 693 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) { 694 packs_per_ms = 8 >> ep->datainterval; 695 max_packs_per_urb = MAX_PACKS_HS; 696 } else { 697 packs_per_ms = 1; 698 max_packs_per_urb = MAX_PACKS; 699 } 700 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep)) 701 max_packs_per_urb = min(max_packs_per_urb, 702 1U << sync_ep->syncinterval); 703 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 704 705 /* 706 * Capture endpoints need to use small URBs because there's no way 707 * to tell in advance where the next period will end, and we don't 708 * want the next URB to complete much after the period ends. 709 * 710 * Playback endpoints with implicit sync much use the same parameters 711 * as their corresponding capture endpoint. 712 */ 713 if (usb_pipein(ep->pipe) || 714 snd_usb_endpoint_implicit_feedback_sink(ep)) { 715 716 urb_packs = packs_per_ms; 717 /* 718 * Wireless devices can poll at a max rate of once per 4ms. 719 * For dataintervals less than 5, increase the packet count to 720 * allow the host controller to use bursting to fill in the 721 * gaps. 722 */ 723 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) { 724 int interval = ep->datainterval; 725 while (interval < 5) { 726 urb_packs <<= 1; 727 ++interval; 728 } 729 } 730 /* make capture URBs <= 1 ms and smaller than a period */ 731 urb_packs = min(max_packs_per_urb, urb_packs); 732 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes) 733 urb_packs >>= 1; 734 ep->nurbs = MAX_URBS; 735 736 /* 737 * Playback endpoints without implicit sync are adjusted so that 738 * a period fits as evenly as possible in the smallest number of 739 * URBs. The total number of URBs is adjusted to the size of the 740 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 741 */ 742 } else { 743 /* determine how small a packet can be */ 744 minsize = (ep->freqn >> (16 - ep->datainterval)) * 745 (frame_bits >> 3); 746 /* with sync from device, assume it can be 12% lower */ 747 if (sync_ep) 748 minsize -= minsize >> 3; 749 minsize = max(minsize, 1u); 750 751 /* how many packets will contain an entire ALSA period? */ 752 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize); 753 754 /* how many URBs will contain a period? */ 755 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 756 max_packs_per_urb); 757 /* how many packets are needed in each URB? */ 758 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 759 760 /* limit the number of frames in a single URB */ 761 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period, 762 urbs_per_period); 763 764 /* try to use enough URBs to contain an entire ALSA buffer */ 765 max_urbs = min((unsigned) MAX_URBS, 766 MAX_QUEUE * packs_per_ms / urb_packs); 767 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer); 768 } 769 770 /* allocate and initialize data urbs */ 771 for (i = 0; i < ep->nurbs; i++) { 772 struct snd_urb_ctx *u = &ep->urb[i]; 773 u->index = i; 774 u->ep = ep; 775 u->packets = urb_packs; 776 u->buffer_size = maxsize * u->packets; 777 778 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 779 u->packets++; /* for transfer delimiter */ 780 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 781 if (!u->urb) 782 goto out_of_memory; 783 784 u->urb->transfer_buffer = 785 usb_alloc_coherent(ep->chip->dev, u->buffer_size, 786 GFP_KERNEL, &u->urb->transfer_dma); 787 if (!u->urb->transfer_buffer) 788 goto out_of_memory; 789 u->urb->pipe = ep->pipe; 790 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 791 u->urb->interval = 1 << ep->datainterval; 792 u->urb->context = u; 793 u->urb->complete = snd_complete_urb; 794 INIT_LIST_HEAD(&u->ready_list); 795 } 796 797 return 0; 798 799 out_of_memory: 800 release_urbs(ep, 0); 801 return -ENOMEM; 802 } 803 804 /* 805 * configure a sync endpoint 806 */ 807 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 808 { 809 int i; 810 811 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4, 812 GFP_KERNEL, &ep->sync_dma); 813 if (!ep->syncbuf) 814 return -ENOMEM; 815 816 for (i = 0; i < SYNC_URBS; i++) { 817 struct snd_urb_ctx *u = &ep->urb[i]; 818 u->index = i; 819 u->ep = ep; 820 u->packets = 1; 821 u->urb = usb_alloc_urb(1, GFP_KERNEL); 822 if (!u->urb) 823 goto out_of_memory; 824 u->urb->transfer_buffer = ep->syncbuf + i * 4; 825 u->urb->transfer_dma = ep->sync_dma + i * 4; 826 u->urb->transfer_buffer_length = 4; 827 u->urb->pipe = ep->pipe; 828 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 829 u->urb->number_of_packets = 1; 830 u->urb->interval = 1 << ep->syncinterval; 831 u->urb->context = u; 832 u->urb->complete = snd_complete_urb; 833 } 834 835 ep->nurbs = SYNC_URBS; 836 837 return 0; 838 839 out_of_memory: 840 release_urbs(ep, 0); 841 return -ENOMEM; 842 } 843 844 /** 845 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 846 * 847 * @ep: the snd_usb_endpoint to configure 848 * @pcm_format: the audio fomat. 849 * @channels: the number of audio channels. 850 * @period_bytes: the number of bytes in one alsa period. 851 * @period_frames: the number of frames in one alsa period. 852 * @buffer_periods: the number of periods in one alsa buffer. 853 * @rate: the frame rate. 854 * @fmt: the USB audio format information 855 * @sync_ep: the sync endpoint to use, if any 856 * 857 * Determine the number of URBs to be used on this endpoint. 858 * An endpoint must be configured before it can be started. 859 * An endpoint that is already running can not be reconfigured. 860 */ 861 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep, 862 snd_pcm_format_t pcm_format, 863 unsigned int channels, 864 unsigned int period_bytes, 865 unsigned int period_frames, 866 unsigned int buffer_periods, 867 unsigned int rate, 868 struct audioformat *fmt, 869 struct snd_usb_endpoint *sync_ep) 870 { 871 int err; 872 873 if (ep->use_count != 0) { 874 usb_audio_warn(ep->chip, 875 "Unable to change format on ep #%x: already in use\n", 876 ep->ep_num); 877 return -EBUSY; 878 } 879 880 /* release old buffers, if any */ 881 release_urbs(ep, 0); 882 883 ep->datainterval = fmt->datainterval; 884 ep->maxpacksize = fmt->maxpacksize; 885 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 886 887 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL) 888 ep->freqn = get_usb_full_speed_rate(rate); 889 else 890 ep->freqn = get_usb_high_speed_rate(rate); 891 892 /* calculate the frequency in 16.16 format */ 893 ep->freqm = ep->freqn; 894 ep->freqshift = INT_MIN; 895 896 ep->phase = 0; 897 898 switch (ep->type) { 899 case SND_USB_ENDPOINT_TYPE_DATA: 900 err = data_ep_set_params(ep, pcm_format, channels, 901 period_bytes, period_frames, 902 buffer_periods, fmt, sync_ep); 903 break; 904 case SND_USB_ENDPOINT_TYPE_SYNC: 905 err = sync_ep_set_params(ep); 906 break; 907 default: 908 err = -EINVAL; 909 } 910 911 usb_audio_dbg(ep->chip, 912 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n", 913 ep->ep_num, ep->type, ep->nurbs, err); 914 915 return err; 916 } 917 918 /** 919 * snd_usb_endpoint_start: start an snd_usb_endpoint 920 * 921 * @ep: the endpoint to start 922 * 923 * A call to this function will increment the use count of the endpoint. 924 * In case it is not already running, the URBs for this endpoint will be 925 * submitted. Otherwise, this function does nothing. 926 * 927 * Must be balanced to calls of snd_usb_endpoint_stop(). 928 * 929 * Returns an error if the URB submission failed, 0 in all other cases. 930 */ 931 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) 932 { 933 int err; 934 unsigned int i; 935 936 if (atomic_read(&ep->chip->shutdown)) 937 return -EBADFD; 938 939 /* already running? */ 940 if (++ep->use_count != 1) 941 return 0; 942 943 /* just to be sure */ 944 deactivate_urbs(ep, false); 945 946 ep->active_mask = 0; 947 ep->unlink_mask = 0; 948 ep->phase = 0; 949 950 snd_usb_endpoint_start_quirk(ep); 951 952 /* 953 * If this endpoint has a data endpoint as implicit feedback source, 954 * don't start the urbs here. Instead, mark them all as available, 955 * wait for the record urbs to return and queue the playback urbs 956 * from that context. 957 */ 958 959 set_bit(EP_FLAG_RUNNING, &ep->flags); 960 961 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 962 for (i = 0; i < ep->nurbs; i++) { 963 struct snd_urb_ctx *ctx = ep->urb + i; 964 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 965 } 966 967 return 0; 968 } 969 970 for (i = 0; i < ep->nurbs; i++) { 971 struct urb *urb = ep->urb[i].urb; 972 973 if (snd_BUG_ON(!urb)) 974 goto __error; 975 976 if (usb_pipeout(ep->pipe)) { 977 prepare_outbound_urb(ep, urb->context); 978 } else { 979 prepare_inbound_urb(ep, urb->context); 980 } 981 982 err = usb_submit_urb(urb, GFP_ATOMIC); 983 if (err < 0) { 984 usb_audio_err(ep->chip, 985 "cannot submit urb %d, error %d: %s\n", 986 i, err, usb_error_string(err)); 987 goto __error; 988 } 989 set_bit(i, &ep->active_mask); 990 } 991 992 return 0; 993 994 __error: 995 clear_bit(EP_FLAG_RUNNING, &ep->flags); 996 ep->use_count--; 997 deactivate_urbs(ep, false); 998 return -EPIPE; 999 } 1000 1001 /** 1002 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 1003 * 1004 * @ep: the endpoint to stop (may be NULL) 1005 * 1006 * A call to this function will decrement the use count of the endpoint. 1007 * In case the last user has requested the endpoint stop, the URBs will 1008 * actually be deactivated. 1009 * 1010 * Must be balanced to calls of snd_usb_endpoint_start(). 1011 * 1012 * The caller needs to synchronize the pending stop operation via 1013 * snd_usb_endpoint_sync_pending_stop(). 1014 */ 1015 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep) 1016 { 1017 if (!ep) 1018 return; 1019 1020 if (snd_BUG_ON(ep->use_count == 0)) 1021 return; 1022 1023 if (--ep->use_count == 0) { 1024 deactivate_urbs(ep, false); 1025 set_bit(EP_FLAG_STOPPING, &ep->flags); 1026 } 1027 } 1028 1029 /** 1030 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint 1031 * 1032 * @ep: the endpoint to deactivate 1033 * 1034 * If the endpoint is not currently in use, this functions will 1035 * deactivate its associated URBs. 1036 * 1037 * In case of any active users, this functions does nothing. 1038 */ 1039 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep) 1040 { 1041 if (!ep) 1042 return; 1043 1044 if (ep->use_count != 0) 1045 return; 1046 1047 deactivate_urbs(ep, true); 1048 wait_clear_urbs(ep); 1049 } 1050 1051 /** 1052 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1053 * 1054 * @ep: the endpoint to release 1055 * 1056 * This function does not care for the endpoint's use count but will tear 1057 * down all the streaming URBs immediately. 1058 */ 1059 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1060 { 1061 release_urbs(ep, 1); 1062 } 1063 1064 /** 1065 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint 1066 * 1067 * @ep: the endpoint to free 1068 * 1069 * This free all resources of the given ep. 1070 */ 1071 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep) 1072 { 1073 kfree(ep); 1074 } 1075 1076 /** 1077 * snd_usb_handle_sync_urb: parse an USB sync packet 1078 * 1079 * @ep: the endpoint to handle the packet 1080 * @sender: the sending endpoint 1081 * @urb: the received packet 1082 * 1083 * This function is called from the context of an endpoint that received 1084 * the packet and is used to let another endpoint object handle the payload. 1085 */ 1086 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1087 struct snd_usb_endpoint *sender, 1088 const struct urb *urb) 1089 { 1090 int shift; 1091 unsigned int f; 1092 unsigned long flags; 1093 1094 snd_BUG_ON(ep == sender); 1095 1096 /* 1097 * In case the endpoint is operating in implicit feedback mode, prepare 1098 * a new outbound URB that has the same layout as the received packet 1099 * and add it to the list of pending urbs. queue_pending_output_urbs() 1100 * will take care of them later. 1101 */ 1102 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1103 ep->use_count != 0) { 1104 1105 /* implicit feedback case */ 1106 int i, bytes = 0; 1107 struct snd_urb_ctx *in_ctx; 1108 struct snd_usb_packet_info *out_packet; 1109 1110 in_ctx = urb->context; 1111 1112 /* Count overall packet size */ 1113 for (i = 0; i < in_ctx->packets; i++) 1114 if (urb->iso_frame_desc[i].status == 0) 1115 bytes += urb->iso_frame_desc[i].actual_length; 1116 1117 /* 1118 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1119 * streaming once it received a 0-byte OUT URB 1120 */ 1121 if (bytes == 0) 1122 return; 1123 1124 spin_lock_irqsave(&ep->lock, flags); 1125 out_packet = ep->next_packet + ep->next_packet_write_pos; 1126 1127 /* 1128 * Iterate through the inbound packet and prepare the lengths 1129 * for the output packet. The OUT packet we are about to send 1130 * will have the same amount of payload bytes per stride as the 1131 * IN packet we just received. Since the actual size is scaled 1132 * by the stride, use the sender stride to calculate the length 1133 * in case the number of channels differ between the implicitly 1134 * fed-back endpoint and the synchronizing endpoint. 1135 */ 1136 1137 out_packet->packets = in_ctx->packets; 1138 for (i = 0; i < in_ctx->packets; i++) { 1139 if (urb->iso_frame_desc[i].status == 0) 1140 out_packet->packet_size[i] = 1141 urb->iso_frame_desc[i].actual_length / sender->stride; 1142 else 1143 out_packet->packet_size[i] = 0; 1144 } 1145 1146 ep->next_packet_write_pos++; 1147 ep->next_packet_write_pos %= MAX_URBS; 1148 spin_unlock_irqrestore(&ep->lock, flags); 1149 queue_pending_output_urbs(ep); 1150 1151 return; 1152 } 1153 1154 /* 1155 * process after playback sync complete 1156 * 1157 * Full speed devices report feedback values in 10.14 format as samples 1158 * per frame, high speed devices in 16.16 format as samples per 1159 * microframe. 1160 * 1161 * Because the Audio Class 1 spec was written before USB 2.0, many high 1162 * speed devices use a wrong interpretation, some others use an 1163 * entirely different format. 1164 * 1165 * Therefore, we cannot predict what format any particular device uses 1166 * and must detect it automatically. 1167 */ 1168 1169 if (urb->iso_frame_desc[0].status != 0 || 1170 urb->iso_frame_desc[0].actual_length < 3) 1171 return; 1172 1173 f = le32_to_cpup(urb->transfer_buffer); 1174 if (urb->iso_frame_desc[0].actual_length == 3) 1175 f &= 0x00ffffff; 1176 else 1177 f &= 0x0fffffff; 1178 1179 if (f == 0) 1180 return; 1181 1182 if (unlikely(sender->tenor_fb_quirk)) { 1183 /* 1184 * Devices based on Tenor 8802 chipsets (TEAC UD-H01 1185 * and others) sometimes change the feedback value 1186 * by +/- 0x1.0000. 1187 */ 1188 if (f < ep->freqn - 0x8000) 1189 f += 0xf000; 1190 else if (f > ep->freqn + 0x8000) 1191 f -= 0xf000; 1192 } else if (unlikely(ep->freqshift == INT_MIN)) { 1193 /* 1194 * The first time we see a feedback value, determine its format 1195 * by shifting it left or right until it matches the nominal 1196 * frequency value. This assumes that the feedback does not 1197 * differ from the nominal value more than +50% or -25%. 1198 */ 1199 shift = 0; 1200 while (f < ep->freqn - ep->freqn / 4) { 1201 f <<= 1; 1202 shift++; 1203 } 1204 while (f > ep->freqn + ep->freqn / 2) { 1205 f >>= 1; 1206 shift--; 1207 } 1208 ep->freqshift = shift; 1209 } else if (ep->freqshift >= 0) 1210 f <<= ep->freqshift; 1211 else 1212 f >>= -ep->freqshift; 1213 1214 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1215 /* 1216 * If the frequency looks valid, set it. 1217 * This value is referred to in prepare_playback_urb(). 1218 */ 1219 spin_lock_irqsave(&ep->lock, flags); 1220 ep->freqm = f; 1221 spin_unlock_irqrestore(&ep->lock, flags); 1222 } else { 1223 /* 1224 * Out of range; maybe the shift value is wrong. 1225 * Reset it so that we autodetect again the next time. 1226 */ 1227 ep->freqshift = INT_MIN; 1228 } 1229 } 1230 1231