xref: /openbmc/linux/sound/sparc/dbri.c (revision e190bfe5)
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6  *
7  * Based entirely upon drivers/sbus/audio/dbri.c which is:
8  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10  *
11  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12  * on Sun SPARCStation 10, 20, LX and Voyager models.
13  *
14  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15  *   data time multiplexer with ISDN support (aka T7259)
16  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18  *   Documentation:
19  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20  *     Sparc Technology Business (courtesy of Sun Support)
21  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22  *     available from the Lucent (formerly AT&T microelectronics) home
23  *     page.
24  *   - http://www.freesoft.org/Linux/DBRI/
25  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27  *   Documentation: from the Crystal Semiconductor home page.
28  *
29  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30  * memory and a serial device (long pipes, no. 0-15) or between two serial
31  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32  * device (short pipes).
33  * A timeslot defines the bit-offset and no. of bits read from a serial device.
34  * The timeslots are linked to 6 circular lists, one for each direction for
35  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36  * (the second one is a monitor/tee pipe, valid only for serial input).
37  *
38  * The mmcodec is connected via the CHI bus and needs the data & some
39  * parameters (volume, output selection) time multiplexed in 8 byte
40  * chunks. It also has a control mode, which serves for audio format setting.
41  *
42  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43  * the same CHI bus, so I thought perhaps it is possible to use the on-board
44  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45  * audio devices. But the SUN HW group decided against it, at least on my
46  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47  * connected.
48  *
49  * I've tried to stick to the following function naming conventions:
50  * snd_*	ALSA stuff
51  * cs4215_*	CS4215 codec specific stuff
52  * dbri_*	DBRI high-level stuff
53  * other	DBRI low-level stuff
54  */
55 
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/gfp.h>
62 
63 #include <sound/core.h>
64 #include <sound/pcm.h>
65 #include <sound/pcm_params.h>
66 #include <sound/info.h>
67 #include <sound/control.h>
68 #include <sound/initval.h>
69 
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <asm/atomic.h>
73 
74 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
75 MODULE_DESCRIPTION("Sun DBRI");
76 MODULE_LICENSE("GPL");
77 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
78 
79 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
80 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
81 /* Enable this card */
82 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
83 
84 module_param_array(index, int, NULL, 0444);
85 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
86 module_param_array(id, charp, NULL, 0444);
87 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
88 module_param_array(enable, bool, NULL, 0444);
89 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
90 
91 #undef DBRI_DEBUG
92 
93 #define D_INT	(1<<0)
94 #define D_GEN	(1<<1)
95 #define D_CMD	(1<<2)
96 #define D_MM	(1<<3)
97 #define D_USR	(1<<4)
98 #define D_DESC	(1<<5)
99 
100 static int dbri_debug;
101 module_param(dbri_debug, int, 0644);
102 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
103 
104 #ifdef DBRI_DEBUG
105 static char *cmds[] = {
106 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
107 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
108 };
109 
110 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
111 
112 #else
113 #define dprintk(a, x...) do { } while (0)
114 
115 #endif				/* DBRI_DEBUG */
116 
117 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
118 				    (intr << 27) |	\
119 				    value)
120 
121 /***************************************************************************
122 	CS4215 specific definitions and structures
123 ****************************************************************************/
124 
125 struct cs4215 {
126 	__u8 data[4];		/* Data mode: Time slots 5-8 */
127 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
128 	__u8 onboard;
129 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
130 	volatile __u32 status;
131 	volatile __u32 version;
132 	__u8 precision;		/* In bits, either 8 or 16 */
133 	__u8 channels;		/* 1 or 2 */
134 };
135 
136 /*
137  * Control mode first
138  */
139 
140 /* Time Slot 1, Status register */
141 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
142 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
143 				/* 0: line: 2.8V, speaker 8V */
144 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
145 #define CS4215_RSRVD_1  (1<<5)
146 
147 /* Time Slot 2, Data Format Register */
148 #define CS4215_DFR_LINEAR16	0
149 #define CS4215_DFR_ULAW		1
150 #define CS4215_DFR_ALAW		2
151 #define CS4215_DFR_LINEAR8	3
152 #define CS4215_DFR_STEREO	(1<<2)
153 static struct {
154 	unsigned short freq;
155 	unsigned char xtal;
156 	unsigned char csval;
157 } CS4215_FREQ[] = {
158 	{  8000, (1 << 4), (0 << 3) },
159 	{ 16000, (1 << 4), (1 << 3) },
160 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
161 	{ 32000, (1 << 4), (3 << 3) },
162      /* {    NA, (1 << 4), (4 << 3) }, */
163      /* {    NA, (1 << 4), (5 << 3) }, */
164 	{ 48000, (1 << 4), (6 << 3) },
165 	{  9600, (1 << 4), (7 << 3) },
166 	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
167 	{ 11025, (2 << 4), (1 << 3) },
168 	{ 18900, (2 << 4), (2 << 3) },
169 	{ 22050, (2 << 4), (3 << 3) },
170 	{ 37800, (2 << 4), (4 << 3) },
171 	{ 44100, (2 << 4), (5 << 3) },
172 	{ 33075, (2 << 4), (6 << 3) },
173 	{  6615, (2 << 4), (7 << 3) },
174 	{ 0, 0, 0}
175 };
176 
177 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
178 
179 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
180 
181 /* Time Slot 3, Serial Port Control register */
182 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
183 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
184 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
185 #define CS4215_BSEL_128	(1<<2)
186 #define CS4215_BSEL_256	(2<<2)
187 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
188 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
189 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
190 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
191 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
192 
193 /* Time Slot 4, Test Register */
194 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
195 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
196 
197 /* Time Slot 5, Parallel Port Register */
198 /* Read only here and the same as the in data mode */
199 
200 /* Time Slot 6, Reserved  */
201 
202 /* Time Slot 7, Version Register  */
203 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
204 
205 /* Time Slot 8, Reserved  */
206 
207 /*
208  * Data mode
209  */
210 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
211 
212 /* Time Slot 5, Output Setting  */
213 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
214 #define CS4215_LE	(1<<6)	/* Line Out Enable */
215 #define CS4215_HE	(1<<7)	/* Headphone Enable */
216 
217 /* Time Slot 6, Output Setting  */
218 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
219 #define CS4215_SE	(1<<6)	/* Speaker Enable */
220 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
221 
222 /* Time Slot 7, Input Setting */
223 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
224 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
225 #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
226 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
227 #define CS4215_PIO1	(1<<7)
228 
229 /* Time Slot 8, Input Setting */
230 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
231 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
232 
233 /***************************************************************************
234 		DBRI specific definitions and structures
235 ****************************************************************************/
236 
237 /* DBRI main registers */
238 #define REG0	0x00		/* Status and Control */
239 #define REG1	0x04		/* Mode and Interrupt */
240 #define REG2	0x08		/* Parallel IO */
241 #define REG3	0x0c		/* Test */
242 #define REG8	0x20		/* Command Queue Pointer */
243 #define REG9	0x24		/* Interrupt Queue Pointer */
244 
245 #define DBRI_NO_CMDS	64
246 #define DBRI_INT_BLK	64
247 #define DBRI_NO_DESCS	64
248 #define DBRI_NO_PIPES	32
249 #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
250 
251 #define DBRI_REC	0
252 #define DBRI_PLAY	1
253 #define DBRI_NO_STREAMS	2
254 
255 /* One transmit/receive descriptor */
256 /* When ba != 0 descriptor is used */
257 struct dbri_mem {
258 	volatile __u32 word1;
259 	__u32 ba;	/* Transmit/Receive Buffer Address */
260 	__u32 nda;	/* Next Descriptor Address */
261 	volatile __u32 word4;
262 };
263 
264 /* This structure is in a DMA region where it can accessed by both
265  * the CPU and the DBRI
266  */
267 struct dbri_dma {
268 	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
269 	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
270 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
271 };
272 
273 #define dbri_dma_off(member, elem)	\
274 	((u32)(unsigned long)		\
275 	 (&(((struct dbri_dma *)0)->member[elem])))
276 
277 enum in_or_out { PIPEinput, PIPEoutput };
278 
279 struct dbri_pipe {
280 	u32 sdp;		/* SDP command word */
281 	int nextpipe;		/* Next pipe in linked list */
282 	int length;		/* Length of timeslot (bits) */
283 	int first_desc;		/* Index of first descriptor */
284 	int desc;		/* Index of active descriptor */
285 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
286 };
287 
288 /* Per stream (playback or record) information */
289 struct dbri_streaminfo {
290 	struct snd_pcm_substream *substream;
291 	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
292 	int size;		/* Size of DMA buffer             */
293 	size_t offset;		/* offset in user buffer          */
294 	int pipe;		/* Data pipe used                 */
295 	int left_gain;		/* mixer elements                 */
296 	int right_gain;
297 };
298 
299 /* This structure holds the information for both chips (DBRI & CS4215) */
300 struct snd_dbri {
301 	int regs_size, irq;	/* Needed for unload */
302 	struct of_device *op;	/* OF device info */
303 	spinlock_t lock;
304 
305 	struct dbri_dma *dma;	/* Pointer to our DMA block */
306 	u32 dma_dvma;		/* DBRI visible DMA address */
307 
308 	void __iomem *regs;	/* dbri HW regs */
309 	int dbri_irqp;		/* intr queue pointer */
310 
311 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
312 	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
313 	spinlock_t cmdlock;	/* Protects cmd queue accesses */
314 	s32 *cmdptr;		/* Pointer to the last queued cmd */
315 
316 	int chi_bpf;
317 
318 	struct cs4215 mm;	/* mmcodec special info */
319 				/* per stream (playback/record) info */
320 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
321 };
322 
323 #define DBRI_MAX_VOLUME		63	/* Output volume */
324 #define DBRI_MAX_GAIN		15	/* Input gain */
325 
326 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
327 #define D_P		(1<<15)	/* Program command & queue pointer valid */
328 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
329 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
330 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
331 #define D_X		(1<<7)	/* Sanity Timer Disable */
332 #define D_T		(1<<6)	/* Permit activation of the TE interface */
333 #define D_N		(1<<5)	/* Permit activation of the NT interface */
334 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
335 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
336 #define D_D		(1<<2)	/* Disable Master Mode */
337 #define D_H		(1<<1)	/* Halt for Analysis */
338 #define D_R		(1<<0)	/* Soft Reset */
339 
340 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
341 #define D_LITTLE_END	(1<<8)	/* Byte Order */
342 #define D_BIG_END	(0<<8)	/* Byte Order */
343 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
344 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
345 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
346 #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
347 #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
348 
349 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
350 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
351 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
352 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
353 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
354 #define D_ENPIO		(0xf0)	/* Enable all the pins */
355 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
356 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
357 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
358 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
359 
360 /* DBRI Commands (Page 20) */
361 #define D_WAIT		0x0	/* Stop execution */
362 #define D_PAUSE		0x1	/* Flush long pipes */
363 #define D_JUMP		0x2	/* New command queue */
364 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
365 #define D_REX		0x4	/* Report command execution via interrupt */
366 #define D_SDP		0x5	/* Setup Data Pipe */
367 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
368 #define D_DTS		0x7	/* Define Time Slot */
369 #define D_SSP		0x8	/* Set short Data Pipe */
370 #define D_CHI		0x9	/* Set CHI Global Mode */
371 #define D_NT		0xa	/* NT Command */
372 #define D_TE		0xb	/* TE Command */
373 #define D_CDEC		0xc	/* Codec setup */
374 #define D_TEST		0xd	/* No comment */
375 #define D_CDM		0xe	/* CHI Data mode command */
376 
377 /* Special bits for some commands */
378 #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
379 
380 /* Setup Data Pipe */
381 /* IRM */
382 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
383 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
384 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
385 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
386 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
387 
388 /* Pipe data MODE */
389 #define D_SDP_MEM	(0<<13)	/* To/from memory */
390 #define D_SDP_HDLC	(2<<13)
391 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
392 #define D_SDP_SER	(4<<13)	/* Serial to serial */
393 #define D_SDP_FIXED	(6<<13)	/* Short only */
394 #define D_SDP_MODE(v)	((v)&(7<<13))
395 
396 #define D_SDP_TO_SER	(1<<12)	/* Direction */
397 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
398 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
399 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
400 #define D_SDP_P		(1<<10)	/* Pointer Valid */
401 #define D_SDP_A		(1<<8)	/* Abort */
402 #define D_SDP_C		(1<<7)	/* Clear */
403 
404 /* Define Time Slot */
405 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
406 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
407 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
408 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
409 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
410 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
411 
412 /* Time Slot defines */
413 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
414 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
415 #define D_TS_DI		(1<<13)	/* Data Invert */
416 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
417 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
418 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
419 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
420 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
421 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
422 
423 /* Concentration Highway Interface Modes */
424 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
425 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
426 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
427 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
428 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
429 #define D_CHI_FD	(1<<11)	/* Frame Drive */
430 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
431 
432 /* NT: These are here for completeness */
433 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
434 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
435 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
436 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
437 #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
438 #define D_NT_FT		(1<<12)	/* Fixed Timing */
439 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
440 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
441 #define D_NT_ACT	(1<<9)	/* Activate Interface */
442 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
443 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
444 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
445 #define D_NT_FACT	(1<<1)	/* Force Activation */
446 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
447 
448 /* Codec Setup */
449 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
450 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
451 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
452 
453 /* Test */
454 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
455 #define D_TEST_SIZE(v)	((v)<<11)	/* */
456 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
457 #define D_TEST_PROC	0x6	/* Microprocessor test */
458 #define D_TEST_SER	0x7	/* Serial-Controller test */
459 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
460 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
461 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
462 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
463 #define D_TEST_DUMP	0xe	/* ROM Dump */
464 
465 /* CHI Data Mode */
466 #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
467 #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
468 #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
469 #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
470 #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
471 #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
472 
473 /* The Interrupts */
474 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
475 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
476 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
477 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
478 #define D_INTR_EOL	5	/* End of List */
479 #define D_INTR_CMDI	6	/* Command has bean read */
480 #define D_INTR_XCMP	8	/* Transmission of frame complete */
481 #define D_INTR_SBRI	9	/* BRI status change info */
482 #define D_INTR_FXDT	10	/* Fixed data change */
483 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
484 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
485 #define D_INTR_DBYT	12	/* Dropped by frame slip */
486 #define D_INTR_RBYT	13	/* Repeated by frame slip */
487 #define D_INTR_LINT	14	/* Lost Interrupt */
488 #define D_INTR_UNDR	15	/* DMA underrun */
489 
490 #define D_INTR_TE	32
491 #define D_INTR_NT	34
492 #define D_INTR_CHI	36
493 #define D_INTR_CMD	38
494 
495 #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
496 #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
497 #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
498 #define D_INTR_GETVAL(v)	((v) & 0xffff)
499 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
500 
501 #define D_P_0		0	/* TE receive anchor */
502 #define D_P_1		1	/* TE transmit anchor */
503 #define D_P_2		2	/* NT transmit anchor */
504 #define D_P_3		3	/* NT receive anchor */
505 #define D_P_4		4	/* CHI send data */
506 #define D_P_5		5	/* CHI receive data */
507 #define D_P_6		6	/* */
508 #define D_P_7		7	/* */
509 #define D_P_8		8	/* */
510 #define D_P_9		9	/* */
511 #define D_P_10		10	/* */
512 #define D_P_11		11	/* */
513 #define D_P_12		12	/* */
514 #define D_P_13		13	/* */
515 #define D_P_14		14	/* */
516 #define D_P_15		15	/* */
517 #define D_P_16		16	/* CHI anchor pipe */
518 #define D_P_17		17	/* CHI send */
519 #define D_P_18		18	/* CHI receive */
520 #define D_P_19		19	/* CHI receive */
521 #define D_P_20		20	/* CHI receive */
522 #define D_P_21		21	/* */
523 #define D_P_22		22	/* */
524 #define D_P_23		23	/* */
525 #define D_P_24		24	/* */
526 #define D_P_25		25	/* */
527 #define D_P_26		26	/* */
528 #define D_P_27		27	/* */
529 #define D_P_28		28	/* */
530 #define D_P_29		29	/* */
531 #define D_P_30		30	/* */
532 #define D_P_31		31	/* */
533 
534 /* Transmit descriptor defines */
535 #define DBRI_TD_F	(1 << 31)	/* End of Frame */
536 #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
537 #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
538 #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
539 #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
540 #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
541 #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
542 #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
543 #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
544 #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
545 #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
546 			/* Maximum buffer size per TD: almost 8KB */
547 #define DBRI_TD_MAXCNT	((1 << 13) - 4)
548 
549 /* Receive descriptor defines */
550 #define DBRI_RD_F	(1 << 31)	/* End of Frame */
551 #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
552 #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
553 #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
554 #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
555 #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
556 #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
557 #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
558 #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
559 #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
560 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
561 
562 /* stream_info[] access */
563 /* Translate the ALSA direction into the array index */
564 #define DBRI_STREAMNO(substream)				\
565 		(substream->stream ==				\
566 		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
567 
568 /* Return a pointer to dbri_streaminfo */
569 #define DBRI_STREAM(dbri, substream)	\
570 		&dbri->stream_info[DBRI_STREAMNO(substream)]
571 
572 /*
573  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
574  * So we have to reverse the bits. Note: not all bit lengths are supported
575  */
576 static __u32 reverse_bytes(__u32 b, int len)
577 {
578 	switch (len) {
579 	case 32:
580 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
581 	case 16:
582 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
583 	case 8:
584 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
585 	case 4:
586 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
587 	case 2:
588 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
589 	case 1:
590 	case 0:
591 		break;
592 	default:
593 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
594 	};
595 
596 	return b;
597 }
598 
599 /*
600 ****************************************************************************
601 ************** DBRI initialization and command synchronization *************
602 ****************************************************************************
603 
604 Commands are sent to the DBRI by building a list of them in memory,
605 then writing the address of the first list item to DBRI register 8.
606 The list is terminated with a WAIT command, which generates a
607 CPU interrupt to signal completion.
608 
609 Since the DBRI can run in parallel with the CPU, several means of
610 synchronization present themselves. The method implemented here uses
611 the dbri_cmdwait() to wait for execution of batch of sent commands.
612 
613 A circular command buffer is used here. A new command is being added
614 while another can be executed. The scheme works by adding two WAIT commands
615 after each sent batch of commands. When the next batch is prepared it is
616 added after the WAIT commands then the WAITs are replaced with single JUMP
617 command to the new batch. The the DBRI is forced to reread the last WAIT
618 command (replaced by the JUMP by then). If the DBRI is still executing
619 previous commands the request to reread the WAIT command is ignored.
620 
621 Every time a routine wants to write commands to the DBRI, it must
622 first call dbri_cmdlock() and get pointer to a free space in
623 dbri->dma->cmd buffer. After this, the commands can be written to
624 the buffer, and dbri_cmdsend() is called with the final pointer value
625 to send them to the DBRI.
626 
627 */
628 
629 #define MAXLOOPS 20
630 /*
631  * Wait for the current command string to execute
632  */
633 static void dbri_cmdwait(struct snd_dbri *dbri)
634 {
635 	int maxloops = MAXLOOPS;
636 	unsigned long flags;
637 
638 	/* Delay if previous commands are still being processed */
639 	spin_lock_irqsave(&dbri->lock, flags);
640 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
641 		spin_unlock_irqrestore(&dbri->lock, flags);
642 		msleep_interruptible(1);
643 		spin_lock_irqsave(&dbri->lock, flags);
644 	}
645 	spin_unlock_irqrestore(&dbri->lock, flags);
646 
647 	if (maxloops == 0)
648 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
649 	else
650 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
651 			MAXLOOPS - maxloops - 1);
652 }
653 /*
654  * Lock the command queue and return pointer to space for len cmd words
655  * It locks the cmdlock spinlock.
656  */
657 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
658 {
659 	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
660 	len += 2;
661 	spin_lock(&dbri->cmdlock);
662 	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
663 		return dbri->cmdptr + 2;
664 	else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
665 		return dbri->dma->cmd;
666 	else
667 		printk(KERN_ERR "DBRI: no space for commands.");
668 
669 	return NULL;
670 }
671 
672 /*
673  * Send prepared cmd string. It works by writing a JUMP cmd into
674  * the last WAIT cmd and force DBRI to reread the cmd.
675  * The JUMP cmd points to the new cmd string.
676  * It also releases the cmdlock spinlock.
677  *
678  * Lock must be held before calling this.
679  */
680 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
681 {
682 	s32 tmp, addr;
683 	static int wait_id = 0;
684 
685 	wait_id++;
686 	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
687 	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
688 	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
689 
690 	/* Replace the last command with JUMP */
691 	addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
692 	*(dbri->cmdptr+1) = addr;
693 	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
694 
695 #ifdef DBRI_DEBUG
696 	if (cmd > dbri->cmdptr) {
697 		s32 *ptr;
698 
699 		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
700 			dprintk(D_CMD, "cmd: %lx:%08x\n",
701 				(unsigned long)ptr, *ptr);
702 	} else {
703 		s32 *ptr = dbri->cmdptr;
704 
705 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
706 		ptr++;
707 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
708 		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
709 			dprintk(D_CMD, "cmd: %lx:%08x\n",
710 				(unsigned long)ptr, *ptr);
711 	}
712 #endif
713 
714 	/* Reread the last command */
715 	tmp = sbus_readl(dbri->regs + REG0);
716 	tmp |= D_P;
717 	sbus_writel(tmp, dbri->regs + REG0);
718 
719 	dbri->cmdptr = cmd;
720 	spin_unlock(&dbri->cmdlock);
721 }
722 
723 /* Lock must be held when calling this */
724 static void dbri_reset(struct snd_dbri *dbri)
725 {
726 	int i;
727 	u32 tmp;
728 
729 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
730 		sbus_readl(dbri->regs + REG0),
731 		sbus_readl(dbri->regs + REG2),
732 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
733 
734 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
735 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
736 		udelay(10);
737 
738 	/* A brute approach - DBRI falls back to working burst size by itself
739 	 * On SS20 D_S does not work, so do not try so high. */
740 	tmp = sbus_readl(dbri->regs + REG0);
741 	tmp |= D_G | D_E;
742 	tmp &= ~D_S;
743 	sbus_writel(tmp, dbri->regs + REG0);
744 }
745 
746 /* Lock must not be held before calling this */
747 static void __devinit dbri_initialize(struct snd_dbri *dbri)
748 {
749 	s32 *cmd;
750 	u32 dma_addr;
751 	unsigned long flags;
752 	int n;
753 
754 	spin_lock_irqsave(&dbri->lock, flags);
755 
756 	dbri_reset(dbri);
757 
758 	/* Initialize pipes */
759 	for (n = 0; n < DBRI_NO_PIPES; n++)
760 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
761 
762 	spin_lock_init(&dbri->cmdlock);
763 	/*
764 	 * Initialize the interrupt ring buffer.
765 	 */
766 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
767 	dbri->dma->intr[0] = dma_addr;
768 	dbri->dbri_irqp = 1;
769 	/*
770 	 * Set up the interrupt queue
771 	 */
772 	spin_lock(&dbri->cmdlock);
773 	cmd = dbri->cmdptr = dbri->dma->cmd;
774 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
775 	*(cmd++) = dma_addr;
776 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
777 	dbri->cmdptr = cmd;
778 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
779 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
780 	dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
781 	sbus_writel(dma_addr, dbri->regs + REG8);
782 	spin_unlock(&dbri->cmdlock);
783 
784 	spin_unlock_irqrestore(&dbri->lock, flags);
785 	dbri_cmdwait(dbri);
786 }
787 
788 /*
789 ****************************************************************************
790 ************************** DBRI data pipe management ***********************
791 ****************************************************************************
792 
793 While DBRI control functions use the command and interrupt buffers, the
794 main data path takes the form of data pipes, which can be short (command
795 and interrupt driven), or long (attached to DMA buffers).  These functions
796 provide a rudimentary means of setting up and managing the DBRI's pipes,
797 but the calling functions have to make sure they respect the pipes' linked
798 list ordering, among other things.  The transmit and receive functions
799 here interface closely with the transmit and receive interrupt code.
800 
801 */
802 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
803 {
804 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
805 }
806 
807 /* reset_pipe(dbri, pipe)
808  *
809  * Called on an in-use pipe to clear anything being transmitted or received
810  * Lock must be held before calling this.
811  */
812 static void reset_pipe(struct snd_dbri *dbri, int pipe)
813 {
814 	int sdp;
815 	int desc;
816 	s32 *cmd;
817 
818 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
819 		printk(KERN_ERR "DBRI: reset_pipe called with "
820 			"illegal pipe number\n");
821 		return;
822 	}
823 
824 	sdp = dbri->pipes[pipe].sdp;
825 	if (sdp == 0) {
826 		printk(KERN_ERR "DBRI: reset_pipe called "
827 			"on uninitialized pipe\n");
828 		return;
829 	}
830 
831 	cmd = dbri_cmdlock(dbri, 3);
832 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
833 	*(cmd++) = 0;
834 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
835 	dbri_cmdsend(dbri, cmd, 3);
836 
837 	desc = dbri->pipes[pipe].first_desc;
838 	if (desc >= 0)
839 		do {
840 			dbri->dma->desc[desc].ba = 0;
841 			dbri->dma->desc[desc].nda = 0;
842 			desc = dbri->next_desc[desc];
843 		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
844 
845 	dbri->pipes[pipe].desc = -1;
846 	dbri->pipes[pipe].first_desc = -1;
847 }
848 
849 /*
850  * Lock must be held before calling this.
851  */
852 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
853 {
854 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
855 		printk(KERN_ERR "DBRI: setup_pipe called "
856 			"with illegal pipe number\n");
857 		return;
858 	}
859 
860 	if ((sdp & 0xf800) != sdp) {
861 		printk(KERN_ERR "DBRI: setup_pipe called "
862 			"with strange SDP value\n");
863 		/* sdp &= 0xf800; */
864 	}
865 
866 	/* If this is a fixed receive pipe, arrange for an interrupt
867 	 * every time its data changes
868 	 */
869 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
870 		sdp |= D_SDP_CHANGE;
871 
872 	sdp |= D_PIPE(pipe);
873 	dbri->pipes[pipe].sdp = sdp;
874 	dbri->pipes[pipe].desc = -1;
875 	dbri->pipes[pipe].first_desc = -1;
876 
877 	reset_pipe(dbri, pipe);
878 }
879 
880 /*
881  * Lock must be held before calling this.
882  */
883 static void link_time_slot(struct snd_dbri *dbri, int pipe,
884 			   int prevpipe, int nextpipe,
885 			   int length, int cycle)
886 {
887 	s32 *cmd;
888 	int val;
889 
890 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
891 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
892 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
893 		printk(KERN_ERR
894 		    "DBRI: link_time_slot called with illegal pipe number\n");
895 		return;
896 	}
897 
898 	if (dbri->pipes[pipe].sdp == 0
899 			|| dbri->pipes[prevpipe].sdp == 0
900 			|| dbri->pipes[nextpipe].sdp == 0) {
901 		printk(KERN_ERR "DBRI: link_time_slot called "
902 			"on uninitialized pipe\n");
903 		return;
904 	}
905 
906 	dbri->pipes[prevpipe].nextpipe = pipe;
907 	dbri->pipes[pipe].nextpipe = nextpipe;
908 	dbri->pipes[pipe].length = length;
909 
910 	cmd = dbri_cmdlock(dbri, 4);
911 
912 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
913 		/* Deal with CHI special case:
914 		 * "If transmission on edges 0 or 1 is desired, then cycle n
915 		 *  (where n = # of bit times per frame...) must be used."
916 		 *                  - DBRI data sheet, page 11
917 		 */
918 		if (prevpipe == 16 && cycle == 0)
919 			cycle = dbri->chi_bpf;
920 
921 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
922 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
923 		*(cmd++) = 0;
924 		*(cmd++) =
925 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
926 	} else {
927 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
928 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
929 		*(cmd++) =
930 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
931 		*(cmd++) = 0;
932 	}
933 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
934 
935 	dbri_cmdsend(dbri, cmd, 4);
936 }
937 
938 #if 0
939 /*
940  * Lock must be held before calling this.
941  */
942 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
943 			     enum in_or_out direction, int prevpipe,
944 			     int nextpipe)
945 {
946 	s32 *cmd;
947 	int val;
948 
949 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
950 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
951 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
952 		printk(KERN_ERR
953 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
954 		return;
955 	}
956 
957 	cmd = dbri_cmdlock(dbri, 4);
958 
959 	if (direction == PIPEinput) {
960 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
961 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
962 		*(cmd++) = D_TS_NEXT(nextpipe);
963 		*(cmd++) = 0;
964 	} else {
965 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
966 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
967 		*(cmd++) = 0;
968 		*(cmd++) = D_TS_NEXT(nextpipe);
969 	}
970 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
971 
972 	dbri_cmdsend(dbri, cmd, 4);
973 }
974 #endif
975 
976 /* xmit_fixed() / recv_fixed()
977  *
978  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
979  * expected to change much, and which we don't need to buffer.
980  * The DBRI only interrupts us when the data changes (receive pipes),
981  * or only changes the data when this function is called (transmit pipes).
982  * Only short pipes (numbers 16-31) can be used in fixed data mode.
983  *
984  * These function operate on a 32-bit field, no matter how large
985  * the actual time slot is.  The interrupt handler takes care of bit
986  * ordering and alignment.  An 8-bit time slot will always end up
987  * in the low-order 8 bits, filled either MSB-first or LSB-first,
988  * depending on the settings passed to setup_pipe().
989  *
990  * Lock must not be held before calling it.
991  */
992 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
993 {
994 	s32 *cmd;
995 	unsigned long flags;
996 
997 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
998 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
999 		return;
1000 	}
1001 
1002 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1003 		printk(KERN_ERR "DBRI: xmit_fixed: "
1004 			"Uninitialized pipe %d\n", pipe);
1005 		return;
1006 	}
1007 
1008 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1009 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1010 		return;
1011 	}
1012 
1013 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1014 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1015 			pipe);
1016 		return;
1017 	}
1018 
1019 	/* DBRI short pipes always transmit LSB first */
1020 
1021 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1022 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1023 
1024 	cmd = dbri_cmdlock(dbri, 3);
1025 
1026 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1027 	*(cmd++) = data;
1028 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1029 
1030 	spin_lock_irqsave(&dbri->lock, flags);
1031 	dbri_cmdsend(dbri, cmd, 3);
1032 	spin_unlock_irqrestore(&dbri->lock, flags);
1033 	dbri_cmdwait(dbri);
1034 
1035 }
1036 
1037 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1038 {
1039 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1040 		printk(KERN_ERR "DBRI: recv_fixed called with "
1041 			"illegal pipe number\n");
1042 		return;
1043 	}
1044 
1045 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1046 		printk(KERN_ERR "DBRI: recv_fixed called on "
1047 			"non-fixed pipe %d\n", pipe);
1048 		return;
1049 	}
1050 
1051 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1052 		printk(KERN_ERR "DBRI: recv_fixed called on "
1053 			"transmit pipe %d\n", pipe);
1054 		return;
1055 	}
1056 
1057 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1058 }
1059 
1060 /* setup_descs()
1061  *
1062  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1063  * with a DMA buffer.
1064  *
1065  * Only pipe numbers 0-15 can be used in this mode.
1066  *
1067  * This function takes a stream number pointing to a data buffer,
1068  * and work by building chains of descriptors which identify the
1069  * data buffers.  Buffers too large for a single descriptor will
1070  * be spread across multiple descriptors.
1071  *
1072  * All descriptors create a ring buffer.
1073  *
1074  * Lock must be held before calling this.
1075  */
1076 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1077 {
1078 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1079 	__u32 dvma_buffer;
1080 	int desc;
1081 	int len;
1082 	int first_desc = -1;
1083 	int last_desc = -1;
1084 
1085 	if (info->pipe < 0 || info->pipe > 15) {
1086 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1087 		return -2;
1088 	}
1089 
1090 	if (dbri->pipes[info->pipe].sdp == 0) {
1091 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1092 		       info->pipe);
1093 		return -2;
1094 	}
1095 
1096 	dvma_buffer = info->dvma_buffer;
1097 	len = info->size;
1098 
1099 	if (streamno == DBRI_PLAY) {
1100 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1101 			printk(KERN_ERR "DBRI: setup_descs: "
1102 				"Called on receive pipe %d\n", info->pipe);
1103 			return -2;
1104 		}
1105 	} else {
1106 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1107 			printk(KERN_ERR
1108 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1109 			     info->pipe);
1110 			return -2;
1111 		}
1112 		/* Should be able to queue multiple buffers
1113 		 * to receive on a pipe
1114 		 */
1115 		if (pipe_active(dbri, info->pipe)) {
1116 			printk(KERN_ERR "DBRI: recv_on_pipe: "
1117 				"Called on active pipe %d\n", info->pipe);
1118 			return -2;
1119 		}
1120 
1121 		/* Make sure buffer size is multiple of four */
1122 		len &= ~3;
1123 	}
1124 
1125 	/* Free descriptors if pipe has any */
1126 	desc = dbri->pipes[info->pipe].first_desc;
1127 	if (desc >= 0)
1128 		do {
1129 			dbri->dma->desc[desc].ba = 0;
1130 			dbri->dma->desc[desc].nda = 0;
1131 			desc = dbri->next_desc[desc];
1132 		} while (desc != -1 &&
1133 			 desc != dbri->pipes[info->pipe].first_desc);
1134 
1135 	dbri->pipes[info->pipe].desc = -1;
1136 	dbri->pipes[info->pipe].first_desc = -1;
1137 
1138 	desc = 0;
1139 	while (len > 0) {
1140 		int mylen;
1141 
1142 		for (; desc < DBRI_NO_DESCS; desc++) {
1143 			if (!dbri->dma->desc[desc].ba)
1144 				break;
1145 		}
1146 
1147 		if (desc == DBRI_NO_DESCS) {
1148 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1149 			return -1;
1150 		}
1151 
1152 		if (len > DBRI_TD_MAXCNT)
1153 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1154 		else
1155 			mylen = len;
1156 
1157 		if (mylen > period)
1158 			mylen = period;
1159 
1160 		dbri->next_desc[desc] = -1;
1161 		dbri->dma->desc[desc].ba = dvma_buffer;
1162 		dbri->dma->desc[desc].nda = 0;
1163 
1164 		if (streamno == DBRI_PLAY) {
1165 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1166 			dbri->dma->desc[desc].word4 = 0;
1167 			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1168 		} else {
1169 			dbri->dma->desc[desc].word1 = 0;
1170 			dbri->dma->desc[desc].word4 =
1171 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1172 		}
1173 
1174 		if (first_desc == -1)
1175 			first_desc = desc;
1176 		else {
1177 			dbri->next_desc[last_desc] = desc;
1178 			dbri->dma->desc[last_desc].nda =
1179 			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1180 		}
1181 
1182 		last_desc = desc;
1183 		dvma_buffer += mylen;
1184 		len -= mylen;
1185 	}
1186 
1187 	if (first_desc == -1 || last_desc == -1) {
1188 		printk(KERN_ERR "DBRI: setup_descs: "
1189 			" Not enough descriptors available\n");
1190 		return -1;
1191 	}
1192 
1193 	dbri->dma->desc[last_desc].nda =
1194 	    dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1195 	dbri->next_desc[last_desc] = first_desc;
1196 	dbri->pipes[info->pipe].first_desc = first_desc;
1197 	dbri->pipes[info->pipe].desc = first_desc;
1198 
1199 #ifdef DBRI_DEBUG
1200 	for (desc = first_desc; desc != -1;) {
1201 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1202 			desc,
1203 			dbri->dma->desc[desc].word1,
1204 			dbri->dma->desc[desc].ba,
1205 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1206 			desc = dbri->next_desc[desc];
1207 			if (desc == first_desc)
1208 				break;
1209 	}
1210 #endif
1211 	return 0;
1212 }
1213 
1214 /*
1215 ****************************************************************************
1216 ************************** DBRI - CHI interface ****************************
1217 ****************************************************************************
1218 
1219 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1220 multiplexed serial interface which the DBRI can operate in either master
1221 (give clock/frame sync) or slave (take clock/frame sync) mode.
1222 
1223 */
1224 
1225 enum master_or_slave { CHImaster, CHIslave };
1226 
1227 /*
1228  * Lock must not be held before calling it.
1229  */
1230 static void reset_chi(struct snd_dbri *dbri,
1231 		      enum master_or_slave master_or_slave,
1232 		      int bits_per_frame)
1233 {
1234 	s32 *cmd;
1235 	int val;
1236 
1237 	/* Set CHI Anchor: Pipe 16 */
1238 
1239 	cmd = dbri_cmdlock(dbri, 4);
1240 	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1241 		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1242 	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1243 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1246 	dbri_cmdsend(dbri, cmd, 4);
1247 
1248 	dbri->pipes[16].sdp = 1;
1249 	dbri->pipes[16].nextpipe = 16;
1250 
1251 	cmd = dbri_cmdlock(dbri, 4);
1252 
1253 	if (master_or_slave == CHIslave) {
1254 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1255 		 *
1256 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1257 		 * IR     = give immediate CHI status interrupt
1258 		 * EN     = give CHI status interrupt upon change
1259 		 */
1260 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1261 	} else {
1262 		/* Setup DBRI for CHI Master - generate clock, FS
1263 		 *
1264 		 * BPF				=  bits per 8 kHz frame
1265 		 * 12.288 MHz / CHICM_divisor	= clock rate
1266 		 * FD = 1 - drive CHIFS on rising edge of CHICK
1267 		 */
1268 		int clockrate = bits_per_frame * 8;
1269 		int divisor = 12288 / clockrate;
1270 
1271 		if (divisor > 255 || divisor * clockrate != 12288)
1272 			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1273 				"in setup_chi\n");
1274 
1275 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1276 				    | D_CHI_BPF(bits_per_frame));
1277 	}
1278 
1279 	dbri->chi_bpf = bits_per_frame;
1280 
1281 	/* CHI Data Mode
1282 	 *
1283 	 * RCE   =  0 - receive on falling edge of CHICK
1284 	 * XCE   =  1 - transmit on rising edge of CHICK
1285 	 * XEN   =  1 - enable transmitter
1286 	 * REN   =  1 - enable receiver
1287 	 */
1288 
1289 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1291 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1292 
1293 	dbri_cmdsend(dbri, cmd, 4);
1294 }
1295 
1296 /*
1297 ****************************************************************************
1298 *********************** CS4215 audio codec management **********************
1299 ****************************************************************************
1300 
1301 In the standard SPARC audio configuration, the CS4215 codec is attached
1302 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1303 
1304  * Lock must not be held before calling it.
1305 
1306 */
1307 static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1308 {
1309 	unsigned long flags;
1310 
1311 	spin_lock_irqsave(&dbri->lock, flags);
1312 	/*
1313 	 * Data mode:
1314 	 * Pipe  4: Send timeslots 1-4 (audio data)
1315 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1316 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1317 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1318 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1319 	 *          not relevant for us (only for doublechecking).
1320 	 *
1321 	 * Control mode:
1322 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1323 	 * Pipe 18: Receive timeslot 1 (clb).
1324 	 * Pipe 19: Receive timeslot 7 (version).
1325 	 */
1326 
1327 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1328 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1329 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1330 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1331 
1332 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1333 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335 	spin_unlock_irqrestore(&dbri->lock, flags);
1336 
1337 	dbri_cmdwait(dbri);
1338 }
1339 
1340 static __devinit int cs4215_init_data(struct cs4215 *mm)
1341 {
1342 	/*
1343 	 * No action, memory resetting only.
1344 	 *
1345 	 * Data Time Slot 5-8
1346 	 * Speaker,Line and Headphone enable. Gain set to the half.
1347 	 * Input is mike.
1348 	 */
1349 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1350 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1351 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1352 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1353 
1354 	/*
1355 	 * Control Time Slot 1-4
1356 	 * 0: Default I/O voltage scale
1357 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1358 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1359 	 * 3: Tests disabled
1360 	 */
1361 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1362 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1363 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1364 	mm->ctrl[3] = 0;
1365 
1366 	mm->status = 0;
1367 	mm->version = 0xff;
1368 	mm->precision = 8;	/* For ULAW */
1369 	mm->channels = 1;
1370 
1371 	return 0;
1372 }
1373 
1374 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1375 {
1376 	if (muted) {
1377 		dbri->mm.data[0] |= 63;
1378 		dbri->mm.data[1] |= 63;
1379 		dbri->mm.data[2] &= ~15;
1380 		dbri->mm.data[3] &= ~15;
1381 	} else {
1382 		/* Start by setting the playback attenuation. */
1383 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1384 		int left_gain = info->left_gain & 0x3f;
1385 		int right_gain = info->right_gain & 0x3f;
1386 
1387 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1388 		dbri->mm.data[1] &= ~0x3f;
1389 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1390 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1391 
1392 		/* Now set the recording gain. */
1393 		info = &dbri->stream_info[DBRI_REC];
1394 		left_gain = info->left_gain & 0xf;
1395 		right_gain = info->right_gain & 0xf;
1396 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1397 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1398 	}
1399 
1400 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1401 }
1402 
1403 /*
1404  * Set the CS4215 to data mode.
1405  */
1406 static void cs4215_open(struct snd_dbri *dbri)
1407 {
1408 	int data_width;
1409 	u32 tmp;
1410 	unsigned long flags;
1411 
1412 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1413 		dbri->mm.channels, dbri->mm.precision);
1414 
1415 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1416 	 * to make sure this takes.  This avoids clicking noises.
1417 	 */
1418 
1419 	cs4215_setdata(dbri, 1);
1420 	udelay(125);
1421 
1422 	/*
1423 	 * Data mode:
1424 	 * Pipe  4: Send timeslots 1-4 (audio data)
1425 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1426 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1427 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1428 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1429 	 *          not relevant for us (only for doublechecking).
1430 	 *
1431 	 * Just like in control mode, the time slots are all offset by eight
1432 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1433 	 * even if it's the CHI master.  Don't ask me...
1434 	 */
1435 	spin_lock_irqsave(&dbri->lock, flags);
1436 	tmp = sbus_readl(dbri->regs + REG0);
1437 	tmp &= ~(D_C);		/* Disable CHI */
1438 	sbus_writel(tmp, dbri->regs + REG0);
1439 
1440 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1441 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1442 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1443 
1444 	reset_chi(dbri, CHIslave, 128);
1445 
1446 	/* Note: this next doesn't work for 8-bit stereo, because the two
1447 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1448 	 * (See CS4215 datasheet Fig 15)
1449 	 *
1450 	 * DBRI non-contiguous mode would be required to make this work.
1451 	 */
1452 	data_width = dbri->mm.channels * dbri->mm.precision;
1453 
1454 	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1455 	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1456 	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1457 	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1458 
1459 	/* FIXME: enable CHI after _setdata? */
1460 	tmp = sbus_readl(dbri->regs + REG0);
1461 	tmp |= D_C;		/* Enable CHI */
1462 	sbus_writel(tmp, dbri->regs + REG0);
1463 	spin_unlock_irqrestore(&dbri->lock, flags);
1464 
1465 	cs4215_setdata(dbri, 0);
1466 }
1467 
1468 /*
1469  * Send the control information (i.e. audio format)
1470  */
1471 static int cs4215_setctrl(struct snd_dbri *dbri)
1472 {
1473 	int i, val;
1474 	u32 tmp;
1475 	unsigned long flags;
1476 
1477 	/* FIXME - let the CPU do something useful during these delays */
1478 
1479 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1480 	 * to make sure this takes.  This avoids clicking noises.
1481 	 */
1482 	cs4215_setdata(dbri, 1);
1483 	udelay(125);
1484 
1485 	/*
1486 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1487 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1488 	 */
1489 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1490 	sbus_writel(val, dbri->regs + REG2);
1491 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1492 	udelay(34);
1493 
1494 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1495 	 * operate as CHI master, supplying clocking and frame synchronization.
1496 	 *
1497 	 * In Data mode, however, the CS4215 must be CHI master to insure
1498 	 * that its data stream is synchronous with its codec.
1499 	 *
1500 	 * The upshot of all this?  We start by putting the DBRI into master
1501 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1502 	 * into Data mode and put the DBRI into slave mode.  Various timing
1503 	 * requirements must be observed along the way.
1504 	 *
1505 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1506 	 * others?), the addressing of the CS4215's time slots is
1507 	 * offset by eight bits, so we add eight to all the "cycle"
1508 	 * values in the Define Time Slot (DTS) commands.  This is
1509 	 * done in hardware by a TI 248 that delays the DBRI->4215
1510 	 * frame sync signal by eight clock cycles.  Anybody know why?
1511 	 */
1512 	spin_lock_irqsave(&dbri->lock, flags);
1513 	tmp = sbus_readl(dbri->regs + REG0);
1514 	tmp &= ~D_C;		/* Disable CHI */
1515 	sbus_writel(tmp, dbri->regs + REG0);
1516 
1517 	reset_chi(dbri, CHImaster, 128);
1518 
1519 	/*
1520 	 * Control mode:
1521 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1522 	 * Pipe 18: Receive timeslot 1 (clb).
1523 	 * Pipe 19: Receive timeslot 7 (version).
1524 	 */
1525 
1526 	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1527 	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1528 	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1529 	spin_unlock_irqrestore(&dbri->lock, flags);
1530 
1531 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1532 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1533 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1534 
1535 	spin_lock_irqsave(&dbri->lock, flags);
1536 	tmp = sbus_readl(dbri->regs + REG0);
1537 	tmp |= D_C;		/* Enable CHI */
1538 	sbus_writel(tmp, dbri->regs + REG0);
1539 	spin_unlock_irqrestore(&dbri->lock, flags);
1540 
1541 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1542 		msleep_interruptible(1);
1543 
1544 	if (i == 0) {
1545 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1546 			dbri->mm.status);
1547 		return -1;
1548 	}
1549 
1550 	/* Disable changes to our copy of the version number, as we are about
1551 	 * to leave control mode.
1552 	 */
1553 	recv_fixed(dbri, 19, NULL);
1554 
1555 	/* Terminate CS4215 control mode - data sheet says
1556 	 * "Set CLB=1 and send two more frames of valid control info"
1557 	 */
1558 	dbri->mm.ctrl[0] |= CS4215_CLB;
1559 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1560 
1561 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1562 	udelay(250);
1563 
1564 	cs4215_setdata(dbri, 0);
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  * Setup the codec with the sampling rate, audio format and number of
1571  * channels.
1572  * As part of the process we resend the settings for the data
1573  * timeslots as well.
1574  */
1575 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1576 			  snd_pcm_format_t format, unsigned int channels)
1577 {
1578 	int freq_idx;
1579 	int ret = 0;
1580 
1581 	/* Lookup index for this rate */
1582 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1583 		if (CS4215_FREQ[freq_idx].freq == rate)
1584 			break;
1585 	}
1586 	if (CS4215_FREQ[freq_idx].freq != rate) {
1587 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1588 		return -1;
1589 	}
1590 
1591 	switch (format) {
1592 	case SNDRV_PCM_FORMAT_MU_LAW:
1593 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1594 		dbri->mm.precision = 8;
1595 		break;
1596 	case SNDRV_PCM_FORMAT_A_LAW:
1597 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1598 		dbri->mm.precision = 8;
1599 		break;
1600 	case SNDRV_PCM_FORMAT_U8:
1601 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1602 		dbri->mm.precision = 8;
1603 		break;
1604 	case SNDRV_PCM_FORMAT_S16_BE:
1605 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1606 		dbri->mm.precision = 16;
1607 		break;
1608 	default:
1609 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1610 		return -1;
1611 	}
1612 
1613 	/* Add rate parameters */
1614 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1615 	dbri->mm.ctrl[2] = CS4215_XCLK |
1616 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1617 
1618 	dbri->mm.channels = channels;
1619 	if (channels == 2)
1620 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1621 
1622 	ret = cs4215_setctrl(dbri);
1623 	if (ret == 0)
1624 		cs4215_open(dbri);	/* set codec to data mode */
1625 
1626 	return ret;
1627 }
1628 
1629 /*
1630  *
1631  */
1632 static __devinit int cs4215_init(struct snd_dbri *dbri)
1633 {
1634 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1635 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1636 
1637 	/* Look for the cs4215 chips */
1638 	if (reg2 & D_PIO2) {
1639 		dprintk(D_MM, "Onboard CS4215 detected\n");
1640 		dbri->mm.onboard = 1;
1641 	}
1642 	if (reg2 & D_PIO0) {
1643 		dprintk(D_MM, "Speakerbox detected\n");
1644 		dbri->mm.onboard = 0;
1645 
1646 		if (reg2 & D_PIO2) {
1647 			printk(KERN_INFO "DBRI: Using speakerbox / "
1648 			       "ignoring onboard mmcodec.\n");
1649 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1650 		}
1651 	}
1652 
1653 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1654 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1655 		return -EIO;
1656 	}
1657 
1658 	cs4215_setup_pipes(dbri);
1659 	cs4215_init_data(&dbri->mm);
1660 
1661 	/* Enable capture of the status & version timeslots. */
1662 	recv_fixed(dbri, 18, &dbri->mm.status);
1663 	recv_fixed(dbri, 19, &dbri->mm.version);
1664 
1665 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1666 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1667 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1668 			dbri->mm.offset);
1669 		return -EIO;
1670 	}
1671 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1672 
1673 	return 0;
1674 }
1675 
1676 /*
1677 ****************************************************************************
1678 *************************** DBRI interrupt handler *************************
1679 ****************************************************************************
1680 
1681 The DBRI communicates with the CPU mainly via a circular interrupt
1682 buffer.  When an interrupt is signaled, the CPU walks through the
1683 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1684 Complicated interrupts are handled by dedicated functions (which
1685 appear first in this file).  Any pending interrupts can be serviced by
1686 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1687 interrupts are disabled.
1688 
1689 */
1690 
1691 /* xmit_descs()
1692  *
1693  * Starts transmitting the current TD's for recording/playing.
1694  * For playback, ALSA has filled the DMA memory with new data (we hope).
1695  */
1696 static void xmit_descs(struct snd_dbri *dbri)
1697 {
1698 	struct dbri_streaminfo *info;
1699 	s32 *cmd;
1700 	unsigned long flags;
1701 	int first_td;
1702 
1703 	if (dbri == NULL)
1704 		return;		/* Disabled */
1705 
1706 	info = &dbri->stream_info[DBRI_REC];
1707 	spin_lock_irqsave(&dbri->lock, flags);
1708 
1709 	if (info->pipe >= 0) {
1710 		first_td = dbri->pipes[info->pipe].first_desc;
1711 
1712 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1713 
1714 		/* Stream could be closed by the time we run. */
1715 		if (first_td >= 0) {
1716 			cmd = dbri_cmdlock(dbri, 2);
1717 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1718 					    dbri->pipes[info->pipe].sdp
1719 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1720 			*(cmd++) = dbri->dma_dvma +
1721 				   dbri_dma_off(desc, first_td);
1722 			dbri_cmdsend(dbri, cmd, 2);
1723 
1724 			/* Reset our admin of the pipe. */
1725 			dbri->pipes[info->pipe].desc = first_td;
1726 		}
1727 	}
1728 
1729 	info = &dbri->stream_info[DBRI_PLAY];
1730 
1731 	if (info->pipe >= 0) {
1732 		first_td = dbri->pipes[info->pipe].first_desc;
1733 
1734 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1735 
1736 		/* Stream could be closed by the time we run. */
1737 		if (first_td >= 0) {
1738 			cmd = dbri_cmdlock(dbri, 2);
1739 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1740 					    dbri->pipes[info->pipe].sdp
1741 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1742 			*(cmd++) = dbri->dma_dvma +
1743 				   dbri_dma_off(desc, first_td);
1744 			dbri_cmdsend(dbri, cmd, 2);
1745 
1746 			/* Reset our admin of the pipe. */
1747 			dbri->pipes[info->pipe].desc = first_td;
1748 		}
1749 	}
1750 
1751 	spin_unlock_irqrestore(&dbri->lock, flags);
1752 }
1753 
1754 /* transmission_complete_intr()
1755  *
1756  * Called by main interrupt handler when DBRI signals transmission complete
1757  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1758  *
1759  * Walks through the pipe's list of transmit buffer descriptors and marks
1760  * them as available. Stops when the first descriptor is found without
1761  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1762  *
1763  * The DMA buffers are not released. They form a ring buffer and
1764  * they are filled by ALSA while others are transmitted by DMA.
1765  *
1766  */
1767 
1768 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1769 {
1770 	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1771 	int td = dbri->pipes[pipe].desc;
1772 	int status;
1773 
1774 	while (td >= 0) {
1775 		if (td >= DBRI_NO_DESCS) {
1776 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1777 			return;
1778 		}
1779 
1780 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1781 		if (!(status & DBRI_TD_TBC))
1782 			break;
1783 
1784 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1785 
1786 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1787 		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1788 
1789 		td = dbri->next_desc[td];
1790 		dbri->pipes[pipe].desc = td;
1791 	}
1792 
1793 	/* Notify ALSA */
1794 	spin_unlock(&dbri->lock);
1795 	snd_pcm_period_elapsed(info->substream);
1796 	spin_lock(&dbri->lock);
1797 }
1798 
1799 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1800 {
1801 	struct dbri_streaminfo *info;
1802 	int rd = dbri->pipes[pipe].desc;
1803 	s32 status;
1804 
1805 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1806 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1807 		return;
1808 	}
1809 
1810 	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1811 	status = dbri->dma->desc[rd].word1;
1812 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1813 
1814 	info = &dbri->stream_info[DBRI_REC];
1815 	info->offset += DBRI_RD_CNT(status);
1816 
1817 	/* FIXME: Check status */
1818 
1819 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1820 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1821 
1822 	/* Notify ALSA */
1823 	spin_unlock(&dbri->lock);
1824 	snd_pcm_period_elapsed(info->substream);
1825 	spin_lock(&dbri->lock);
1826 }
1827 
1828 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1829 {
1830 	int val = D_INTR_GETVAL(x);
1831 	int channel = D_INTR_GETCHAN(x);
1832 	int command = D_INTR_GETCMD(x);
1833 	int code = D_INTR_GETCODE(x);
1834 #ifdef DBRI_DEBUG
1835 	int rval = D_INTR_GETRVAL(x);
1836 #endif
1837 
1838 	if (channel == D_INTR_CMD) {
1839 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1840 			cmds[command], val);
1841 	} else {
1842 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1843 			channel, code, rval);
1844 	}
1845 
1846 	switch (code) {
1847 	case D_INTR_CMDI:
1848 		if (command != D_WAIT)
1849 			printk(KERN_ERR "DBRI: Command read interrupt\n");
1850 		break;
1851 	case D_INTR_BRDY:
1852 		reception_complete_intr(dbri, channel);
1853 		break;
1854 	case D_INTR_XCMP:
1855 	case D_INTR_MINT:
1856 		transmission_complete_intr(dbri, channel);
1857 		break;
1858 	case D_INTR_UNDR:
1859 		/* UNDR - Transmission underrun
1860 		 * resend SDP command with clear pipe bit (C) set
1861 		 */
1862 		{
1863 	/* FIXME: do something useful in case of underrun */
1864 			printk(KERN_ERR "DBRI: Underrun error\n");
1865 #if 0
1866 			s32 *cmd;
1867 			int pipe = channel;
1868 			int td = dbri->pipes[pipe].desc;
1869 
1870 			dbri->dma->desc[td].word4 = 0;
1871 			cmd = dbri_cmdlock(dbri, NoGetLock);
1872 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1873 					    dbri->pipes[pipe].sdp
1874 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1875 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1876 			dbri_cmdsend(dbri, cmd);
1877 #endif
1878 		}
1879 		break;
1880 	case D_INTR_FXDT:
1881 		/* FXDT - Fixed data change */
1882 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1883 			val = reverse_bytes(val, dbri->pipes[channel].length);
1884 
1885 		if (dbri->pipes[channel].recv_fixed_ptr)
1886 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1887 		break;
1888 	default:
1889 		if (channel != D_INTR_CMD)
1890 			printk(KERN_WARNING
1891 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1892 	}
1893 }
1894 
1895 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1896  * buffer until it finds a zero word (indicating nothing more to do
1897  * right now).  Non-zero words require processing and are handed off
1898  * to dbri_process_one_interrupt AFTER advancing the pointer.
1899  */
1900 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1901 {
1902 	s32 x;
1903 
1904 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1905 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1906 		dbri->dbri_irqp++;
1907 		if (dbri->dbri_irqp == DBRI_INT_BLK)
1908 			dbri->dbri_irqp = 1;
1909 
1910 		dbri_process_one_interrupt(dbri, x);
1911 	}
1912 }
1913 
1914 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1915 {
1916 	struct snd_dbri *dbri = dev_id;
1917 	static int errcnt = 0;
1918 	int x;
1919 
1920 	if (dbri == NULL)
1921 		return IRQ_NONE;
1922 	spin_lock(&dbri->lock);
1923 
1924 	/*
1925 	 * Read it, so the interrupt goes away.
1926 	 */
1927 	x = sbus_readl(dbri->regs + REG1);
1928 
1929 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1930 		u32 tmp;
1931 
1932 		if (x & D_MRR)
1933 			printk(KERN_ERR
1934 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1935 			       x);
1936 		if (x & D_MLE)
1937 			printk(KERN_ERR
1938 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1939 			       x);
1940 		if (x & D_LBG)
1941 			printk(KERN_ERR
1942 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1943 		if (x & D_MBE)
1944 			printk(KERN_ERR
1945 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1946 
1947 		/* Some of these SBus errors cause the chip's SBus circuitry
1948 		 * to be disabled, so just re-enable and try to keep going.
1949 		 *
1950 		 * The only one I've seen is MRR, which will be triggered
1951 		 * if you let a transmit pipe underrun, then try to CDP it.
1952 		 *
1953 		 * If these things persist, we reset the chip.
1954 		 */
1955 		if ((++errcnt) % 10 == 0) {
1956 			dprintk(D_INT, "Interrupt errors exceeded.\n");
1957 			dbri_reset(dbri);
1958 		} else {
1959 			tmp = sbus_readl(dbri->regs + REG0);
1960 			tmp &= ~(D_D);
1961 			sbus_writel(tmp, dbri->regs + REG0);
1962 		}
1963 	}
1964 
1965 	dbri_process_interrupt_buffer(dbri);
1966 
1967 	spin_unlock(&dbri->lock);
1968 
1969 	return IRQ_HANDLED;
1970 }
1971 
1972 /****************************************************************************
1973 		PCM Interface
1974 ****************************************************************************/
1975 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1976 	.info		= SNDRV_PCM_INFO_MMAP |
1977 			  SNDRV_PCM_INFO_INTERLEAVED |
1978 			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1979 			  SNDRV_PCM_INFO_MMAP_VALID |
1980 			  SNDRV_PCM_INFO_BATCH,
1981 	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1982 			  SNDRV_PCM_FMTBIT_A_LAW |
1983 			  SNDRV_PCM_FMTBIT_U8 |
1984 			  SNDRV_PCM_FMTBIT_S16_BE,
1985 	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1986 	.rate_min		= 5512,
1987 	.rate_max		= 48000,
1988 	.channels_min		= 1,
1989 	.channels_max		= 2,
1990 	.buffer_bytes_max	= 64 * 1024,
1991 	.period_bytes_min	= 1,
1992 	.period_bytes_max	= DBRI_TD_MAXCNT,
1993 	.periods_min		= 1,
1994 	.periods_max		= 1024,
1995 };
1996 
1997 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1998 			      struct snd_pcm_hw_rule *rule)
1999 {
2000 	struct snd_interval *c = hw_param_interval(params,
2001 				SNDRV_PCM_HW_PARAM_CHANNELS);
2002 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2003 	struct snd_mask fmt;
2004 
2005 	snd_mask_any(&fmt);
2006 	if (c->min > 1) {
2007 		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2008 		return snd_mask_refine(f, &fmt);
2009 	}
2010 	return 0;
2011 }
2012 
2013 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2014 				struct snd_pcm_hw_rule *rule)
2015 {
2016 	struct snd_interval *c = hw_param_interval(params,
2017 				SNDRV_PCM_HW_PARAM_CHANNELS);
2018 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2019 	struct snd_interval ch;
2020 
2021 	snd_interval_any(&ch);
2022 	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2023 		ch.min = 1;
2024 		ch.max = 1;
2025 		ch.integer = 1;
2026 		return snd_interval_refine(c, &ch);
2027 	}
2028 	return 0;
2029 }
2030 
2031 static int snd_dbri_open(struct snd_pcm_substream *substream)
2032 {
2033 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2034 	struct snd_pcm_runtime *runtime = substream->runtime;
2035 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2036 	unsigned long flags;
2037 
2038 	dprintk(D_USR, "open audio output.\n");
2039 	runtime->hw = snd_dbri_pcm_hw;
2040 
2041 	spin_lock_irqsave(&dbri->lock, flags);
2042 	info->substream = substream;
2043 	info->offset = 0;
2044 	info->dvma_buffer = 0;
2045 	info->pipe = -1;
2046 	spin_unlock_irqrestore(&dbri->lock, flags);
2047 
2048 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2049 			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2050 			    -1);
2051 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2052 			    snd_hw_rule_channels, NULL,
2053 			    SNDRV_PCM_HW_PARAM_CHANNELS,
2054 			    -1);
2055 
2056 	cs4215_open(dbri);
2057 
2058 	return 0;
2059 }
2060 
2061 static int snd_dbri_close(struct snd_pcm_substream *substream)
2062 {
2063 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2064 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2065 
2066 	dprintk(D_USR, "close audio output.\n");
2067 	info->substream = NULL;
2068 	info->offset = 0;
2069 
2070 	return 0;
2071 }
2072 
2073 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2074 			      struct snd_pcm_hw_params *hw_params)
2075 {
2076 	struct snd_pcm_runtime *runtime = substream->runtime;
2077 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2078 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2079 	int direction;
2080 	int ret;
2081 
2082 	/* set sampling rate, audio format and number of channels */
2083 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2084 			     params_format(hw_params),
2085 			     params_channels(hw_params));
2086 	if (ret != 0)
2087 		return ret;
2088 
2089 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2090 				params_buffer_bytes(hw_params))) < 0) {
2091 		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2092 		return ret;
2093 	}
2094 
2095 	/* hw_params can get called multiple times. Only map the DMA once.
2096 	 */
2097 	if (info->dvma_buffer == 0) {
2098 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2099 			direction = DMA_TO_DEVICE;
2100 		else
2101 			direction = DMA_FROM_DEVICE;
2102 
2103 		info->dvma_buffer =
2104 			dma_map_single(&dbri->op->dev,
2105 				       runtime->dma_area,
2106 				       params_buffer_bytes(hw_params),
2107 				       direction);
2108 	}
2109 
2110 	direction = params_buffer_bytes(hw_params);
2111 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2112 		direction, info->dvma_buffer);
2113 	return 0;
2114 }
2115 
2116 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2117 {
2118 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2119 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2120 	int direction;
2121 
2122 	dprintk(D_USR, "hw_free.\n");
2123 
2124 	/* hw_free can get called multiple times. Only unmap the DMA once.
2125 	 */
2126 	if (info->dvma_buffer) {
2127 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2128 			direction = DMA_TO_DEVICE;
2129 		else
2130 			direction = DMA_FROM_DEVICE;
2131 
2132 		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2133 				 substream->runtime->buffer_size, direction);
2134 		info->dvma_buffer = 0;
2135 	}
2136 	if (info->pipe != -1) {
2137 		reset_pipe(dbri, info->pipe);
2138 		info->pipe = -1;
2139 	}
2140 
2141 	return snd_pcm_lib_free_pages(substream);
2142 }
2143 
2144 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2145 {
2146 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2147 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2148 	int ret;
2149 
2150 	info->size = snd_pcm_lib_buffer_bytes(substream);
2151 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2152 		info->pipe = 4;	/* Send pipe */
2153 	else
2154 		info->pipe = 6;	/* Receive pipe */
2155 
2156 	spin_lock_irq(&dbri->lock);
2157 	info->offset = 0;
2158 
2159 	/* Setup the all the transmit/receive descriptors to cover the
2160 	 * whole DMA buffer.
2161 	 */
2162 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2163 			  snd_pcm_lib_period_bytes(substream));
2164 
2165 	spin_unlock_irq(&dbri->lock);
2166 
2167 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2168 	return ret;
2169 }
2170 
2171 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2172 {
2173 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2174 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2175 	int ret = 0;
2176 
2177 	switch (cmd) {
2178 	case SNDRV_PCM_TRIGGER_START:
2179 		dprintk(D_USR, "start audio, period is %d bytes\n",
2180 			(int)snd_pcm_lib_period_bytes(substream));
2181 		/* Re-submit the TDs. */
2182 		xmit_descs(dbri);
2183 		break;
2184 	case SNDRV_PCM_TRIGGER_STOP:
2185 		dprintk(D_USR, "stop audio.\n");
2186 		reset_pipe(dbri, info->pipe);
2187 		break;
2188 	default:
2189 		ret = -EINVAL;
2190 	}
2191 
2192 	return ret;
2193 }
2194 
2195 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2196 {
2197 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2198 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2199 	snd_pcm_uframes_t ret;
2200 
2201 	ret = bytes_to_frames(substream->runtime, info->offset)
2202 		% substream->runtime->buffer_size;
2203 	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2204 		ret, substream->runtime->buffer_size);
2205 	return ret;
2206 }
2207 
2208 static struct snd_pcm_ops snd_dbri_ops = {
2209 	.open = snd_dbri_open,
2210 	.close = snd_dbri_close,
2211 	.ioctl = snd_pcm_lib_ioctl,
2212 	.hw_params = snd_dbri_hw_params,
2213 	.hw_free = snd_dbri_hw_free,
2214 	.prepare = snd_dbri_prepare,
2215 	.trigger = snd_dbri_trigger,
2216 	.pointer = snd_dbri_pointer,
2217 };
2218 
2219 static int __devinit snd_dbri_pcm(struct snd_card *card)
2220 {
2221 	struct snd_pcm *pcm;
2222 	int err;
2223 
2224 	if ((err = snd_pcm_new(card,
2225 			       /* ID */		    "sun_dbri",
2226 			       /* device */	    0,
2227 			       /* playback count */ 1,
2228 			       /* capture count */  1, &pcm)) < 0)
2229 		return err;
2230 
2231 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2232 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2233 
2234 	pcm->private_data = card->private_data;
2235 	pcm->info_flags = 0;
2236 	strcpy(pcm->name, card->shortname);
2237 
2238 	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2239 			SNDRV_DMA_TYPE_CONTINUOUS,
2240 			snd_dma_continuous_data(GFP_KERNEL),
2241 			64 * 1024, 64 * 1024)) < 0)
2242 		return err;
2243 
2244 	return 0;
2245 }
2246 
2247 /*****************************************************************************
2248 			Mixer interface
2249 *****************************************************************************/
2250 
2251 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2252 				  struct snd_ctl_elem_info *uinfo)
2253 {
2254 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2255 	uinfo->count = 2;
2256 	uinfo->value.integer.min = 0;
2257 	if (kcontrol->private_value == DBRI_PLAY)
2258 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2259 	else
2260 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2261 	return 0;
2262 }
2263 
2264 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2265 				 struct snd_ctl_elem_value *ucontrol)
2266 {
2267 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2268 	struct dbri_streaminfo *info;
2269 
2270 	if (snd_BUG_ON(!dbri))
2271 		return -EINVAL;
2272 	info = &dbri->stream_info[kcontrol->private_value];
2273 
2274 	ucontrol->value.integer.value[0] = info->left_gain;
2275 	ucontrol->value.integer.value[1] = info->right_gain;
2276 	return 0;
2277 }
2278 
2279 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2280 				 struct snd_ctl_elem_value *ucontrol)
2281 {
2282 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2283 	struct dbri_streaminfo *info =
2284 				&dbri->stream_info[kcontrol->private_value];
2285 	unsigned int vol[2];
2286 	int changed = 0;
2287 
2288 	vol[0] = ucontrol->value.integer.value[0];
2289 	vol[1] = ucontrol->value.integer.value[1];
2290 	if (kcontrol->private_value == DBRI_PLAY) {
2291 		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2292 			return -EINVAL;
2293 	} else {
2294 		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2295 			return -EINVAL;
2296 	}
2297 
2298 	if (info->left_gain != vol[0]) {
2299 		info->left_gain = vol[0];
2300 		changed = 1;
2301 	}
2302 	if (info->right_gain != vol[1]) {
2303 		info->right_gain = vol[1];
2304 		changed = 1;
2305 	}
2306 	if (changed) {
2307 		/* First mute outputs, and wait 1/8000 sec (125 us)
2308 		 * to make sure this takes.  This avoids clicking noises.
2309 		 */
2310 		cs4215_setdata(dbri, 1);
2311 		udelay(125);
2312 		cs4215_setdata(dbri, 0);
2313 	}
2314 	return changed;
2315 }
2316 
2317 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2318 				  struct snd_ctl_elem_info *uinfo)
2319 {
2320 	int mask = (kcontrol->private_value >> 16) & 0xff;
2321 
2322 	uinfo->type = (mask == 1) ?
2323 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2324 	uinfo->count = 1;
2325 	uinfo->value.integer.min = 0;
2326 	uinfo->value.integer.max = mask;
2327 	return 0;
2328 }
2329 
2330 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2331 				 struct snd_ctl_elem_value *ucontrol)
2332 {
2333 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2334 	int elem = kcontrol->private_value & 0xff;
2335 	int shift = (kcontrol->private_value >> 8) & 0xff;
2336 	int mask = (kcontrol->private_value >> 16) & 0xff;
2337 	int invert = (kcontrol->private_value >> 24) & 1;
2338 
2339 	if (snd_BUG_ON(!dbri))
2340 		return -EINVAL;
2341 
2342 	if (elem < 4)
2343 		ucontrol->value.integer.value[0] =
2344 		    (dbri->mm.data[elem] >> shift) & mask;
2345 	else
2346 		ucontrol->value.integer.value[0] =
2347 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2348 
2349 	if (invert == 1)
2350 		ucontrol->value.integer.value[0] =
2351 		    mask - ucontrol->value.integer.value[0];
2352 	return 0;
2353 }
2354 
2355 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2356 				 struct snd_ctl_elem_value *ucontrol)
2357 {
2358 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2359 	int elem = kcontrol->private_value & 0xff;
2360 	int shift = (kcontrol->private_value >> 8) & 0xff;
2361 	int mask = (kcontrol->private_value >> 16) & 0xff;
2362 	int invert = (kcontrol->private_value >> 24) & 1;
2363 	int changed = 0;
2364 	unsigned short val;
2365 
2366 	if (snd_BUG_ON(!dbri))
2367 		return -EINVAL;
2368 
2369 	val = (ucontrol->value.integer.value[0] & mask);
2370 	if (invert == 1)
2371 		val = mask - val;
2372 	val <<= shift;
2373 
2374 	if (elem < 4) {
2375 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2376 				       ~(mask << shift)) | val;
2377 		changed = (val != dbri->mm.data[elem]);
2378 	} else {
2379 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2380 					   ~(mask << shift)) | val;
2381 		changed = (val != dbri->mm.ctrl[elem - 4]);
2382 	}
2383 
2384 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2385 		"mixer-value=%ld, mm-value=0x%x\n",
2386 		mask, changed, ucontrol->value.integer.value[0],
2387 		dbri->mm.data[elem & 3]);
2388 
2389 	if (changed) {
2390 		/* First mute outputs, and wait 1/8000 sec (125 us)
2391 		 * to make sure this takes.  This avoids clicking noises.
2392 		 */
2393 		cs4215_setdata(dbri, 1);
2394 		udelay(125);
2395 		cs4215_setdata(dbri, 0);
2396 	}
2397 	return changed;
2398 }
2399 
2400 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2401    timeslots. Shift is the bit offset in the timeslot, mask defines the
2402    number of bits. invert is a boolean for use with attenuation.
2403  */
2404 #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2405 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2406   .info = snd_cs4215_info_single,				\
2407   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2408   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2409 			((invert) << 24) },
2410 
2411 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2412 	{
2413 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2414 	 .name  = "Playback Volume",
2415 	 .info  = snd_cs4215_info_volume,
2416 	 .get   = snd_cs4215_get_volume,
2417 	 .put   = snd_cs4215_put_volume,
2418 	 .private_value = DBRI_PLAY,
2419 	 },
2420 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2421 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2422 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2423 	{
2424 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2425 	 .name  = "Capture Volume",
2426 	 .info  = snd_cs4215_info_volume,
2427 	 .get   = snd_cs4215_get_volume,
2428 	 .put   = snd_cs4215_put_volume,
2429 	 .private_value = DBRI_REC,
2430 	 },
2431 	/* FIXME: mic/line switch */
2432 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2433 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2434 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2435 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2436 };
2437 
2438 static int __devinit snd_dbri_mixer(struct snd_card *card)
2439 {
2440 	int idx, err;
2441 	struct snd_dbri *dbri;
2442 
2443 	if (snd_BUG_ON(!card || !card->private_data))
2444 		return -EINVAL;
2445 	dbri = card->private_data;
2446 
2447 	strcpy(card->mixername, card->shortname);
2448 
2449 	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2450 		err = snd_ctl_add(card,
2451 				snd_ctl_new1(&dbri_controls[idx], dbri));
2452 		if (err < 0)
2453 			return err;
2454 	}
2455 
2456 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2457 		dbri->stream_info[idx].left_gain = 0;
2458 		dbri->stream_info[idx].right_gain = 0;
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 /****************************************************************************
2465 			/proc interface
2466 ****************************************************************************/
2467 static void dbri_regs_read(struct snd_info_entry *entry,
2468 			   struct snd_info_buffer *buffer)
2469 {
2470 	struct snd_dbri *dbri = entry->private_data;
2471 
2472 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2473 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2474 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2475 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2476 }
2477 
2478 #ifdef DBRI_DEBUG
2479 static void dbri_debug_read(struct snd_info_entry *entry,
2480 			    struct snd_info_buffer *buffer)
2481 {
2482 	struct snd_dbri *dbri = entry->private_data;
2483 	int pipe;
2484 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2485 
2486 	for (pipe = 0; pipe < 32; pipe++) {
2487 		if (pipe_active(dbri, pipe)) {
2488 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2489 			snd_iprintf(buffer,
2490 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2491 				    "len=%d next %d\n",
2492 				    pipe,
2493 				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2494 								 "input",
2495 				    pptr->sdp, pptr->desc,
2496 				    pptr->length, pptr->nextpipe);
2497 		}
2498 	}
2499 }
2500 #endif
2501 
2502 static void __devinit snd_dbri_proc(struct snd_card *card)
2503 {
2504 	struct snd_dbri *dbri = card->private_data;
2505 	struct snd_info_entry *entry;
2506 
2507 	if (!snd_card_proc_new(card, "regs", &entry))
2508 		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2509 
2510 #ifdef DBRI_DEBUG
2511 	if (!snd_card_proc_new(card, "debug", &entry)) {
2512 		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2513 		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2514 	}
2515 #endif
2516 }
2517 
2518 /*
2519 ****************************************************************************
2520 **************************** Initialization ********************************
2521 ****************************************************************************
2522 */
2523 static void snd_dbri_free(struct snd_dbri *dbri);
2524 
2525 static int __devinit snd_dbri_create(struct snd_card *card,
2526 				     struct of_device *op,
2527 				     int irq, int dev)
2528 {
2529 	struct snd_dbri *dbri = card->private_data;
2530 	int err;
2531 
2532 	spin_lock_init(&dbri->lock);
2533 	dbri->op = op;
2534 	dbri->irq = irq;
2535 
2536 	dbri->dma = dma_alloc_coherent(&op->dev,
2537 				       sizeof(struct dbri_dma),
2538 				       &dbri->dma_dvma, GFP_ATOMIC);
2539 	if (!dbri->dma)
2540 		return -ENOMEM;
2541 	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2542 
2543 	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2544 		dbri->dma, dbri->dma_dvma);
2545 
2546 	/* Map the registers into memory. */
2547 	dbri->regs_size = resource_size(&op->resource[0]);
2548 	dbri->regs = of_ioremap(&op->resource[0], 0,
2549 				dbri->regs_size, "DBRI Registers");
2550 	if (!dbri->regs) {
2551 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2552 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2553 				  (void *)dbri->dma, dbri->dma_dvma);
2554 		return -EIO;
2555 	}
2556 
2557 	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2558 			  "DBRI audio", dbri);
2559 	if (err) {
2560 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2561 		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2562 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2563 				  (void *)dbri->dma, dbri->dma_dvma);
2564 		return err;
2565 	}
2566 
2567 	/* Do low level initialization of the DBRI and CS4215 chips */
2568 	dbri_initialize(dbri);
2569 	err = cs4215_init(dbri);
2570 	if (err) {
2571 		snd_dbri_free(dbri);
2572 		return err;
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 static void snd_dbri_free(struct snd_dbri *dbri)
2579 {
2580 	dprintk(D_GEN, "snd_dbri_free\n");
2581 	dbri_reset(dbri);
2582 
2583 	if (dbri->irq)
2584 		free_irq(dbri->irq, dbri);
2585 
2586 	if (dbri->regs)
2587 		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2588 
2589 	if (dbri->dma)
2590 		dma_free_coherent(&dbri->op->dev,
2591 				  sizeof(struct dbri_dma),
2592 				  (void *)dbri->dma, dbri->dma_dvma);
2593 }
2594 
2595 static int __devinit dbri_probe(struct of_device *op, const struct of_device_id *match)
2596 {
2597 	struct snd_dbri *dbri;
2598 	struct resource *rp;
2599 	struct snd_card *card;
2600 	static int dev = 0;
2601 	int irq;
2602 	int err;
2603 
2604 	if (dev >= SNDRV_CARDS)
2605 		return -ENODEV;
2606 	if (!enable[dev]) {
2607 		dev++;
2608 		return -ENOENT;
2609 	}
2610 
2611 	irq = op->irqs[0];
2612 	if (irq <= 0) {
2613 		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2614 		return -ENODEV;
2615 	}
2616 
2617 	err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2618 			      sizeof(struct snd_dbri), &card);
2619 	if (err < 0)
2620 		return err;
2621 
2622 	strcpy(card->driver, "DBRI");
2623 	strcpy(card->shortname, "Sun DBRI");
2624 	rp = &op->resource[0];
2625 	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2626 		card->shortname,
2627 		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2628 
2629 	err = snd_dbri_create(card, op, irq, dev);
2630 	if (err < 0) {
2631 		snd_card_free(card);
2632 		return err;
2633 	}
2634 
2635 	dbri = card->private_data;
2636 	err = snd_dbri_pcm(card);
2637 	if (err < 0)
2638 		goto _err;
2639 
2640 	err = snd_dbri_mixer(card);
2641 	if (err < 0)
2642 		goto _err;
2643 
2644 	/* /proc file handling */
2645 	snd_dbri_proc(card);
2646 	dev_set_drvdata(&op->dev, card);
2647 
2648 	err = snd_card_register(card);
2649 	if (err < 0)
2650 		goto _err;
2651 
2652 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2653 	       dev, dbri->regs,
2654 	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2655 	dev++;
2656 
2657 	return 0;
2658 
2659 _err:
2660 	snd_dbri_free(dbri);
2661 	snd_card_free(card);
2662 	return err;
2663 }
2664 
2665 static int __devexit dbri_remove(struct of_device *op)
2666 {
2667 	struct snd_card *card = dev_get_drvdata(&op->dev);
2668 
2669 	snd_dbri_free(card->private_data);
2670 	snd_card_free(card);
2671 
2672 	dev_set_drvdata(&op->dev, NULL);
2673 
2674 	return 0;
2675 }
2676 
2677 static const struct of_device_id dbri_match[] = {
2678 	{
2679 		.name = "SUNW,DBRIe",
2680 	},
2681 	{
2682 		.name = "SUNW,DBRIf",
2683 	},
2684 	{},
2685 };
2686 
2687 MODULE_DEVICE_TABLE(of, dbri_match);
2688 
2689 static struct of_platform_driver dbri_sbus_driver = {
2690 	.driver = {
2691 		.name = "dbri",
2692 		.owner = THIS_MODULE,
2693 		.of_match_table = dbri_match,
2694 	},
2695 	.probe		= dbri_probe,
2696 	.remove		= __devexit_p(dbri_remove),
2697 };
2698 
2699 /* Probe for the dbri chip and then attach the driver. */
2700 static int __init dbri_init(void)
2701 {
2702 	return of_register_driver(&dbri_sbus_driver, &of_bus_type);
2703 }
2704 
2705 static void __exit dbri_exit(void)
2706 {
2707 	of_unregister_driver(&dbri_sbus_driver);
2708 }
2709 
2710 module_init(dbri_init);
2711 module_exit(dbri_exit);
2712