xref: /openbmc/linux/sound/sparc/dbri.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6  *
7  * Based entirely upon drivers/sbus/audio/dbri.c which is:
8  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10  *
11  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12  * on Sun SPARCStation 10, 20, LX and Voyager models.
13  *
14  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15  *   data time multiplexer with ISDN support (aka T7259)
16  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18  *   Documentation:
19  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20  *     Sparc Technology Business (courtesy of Sun Support)
21  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22  *     available from the Lucent (formerly AT&T microelectronics) home
23  *     page.
24  *   - http://www.freesoft.org/Linux/DBRI/
25  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27  *   Documentation: from the Crystal Semiconductor home page.
28  *
29  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30  * memory and a serial device (long pipes, no. 0-15) or between two serial
31  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32  * device (short pipes).
33  * A timeslot defines the bit-offset and no. of bits read from a serial device.
34  * The timeslots are linked to 6 circular lists, one for each direction for
35  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36  * (the second one is a monitor/tee pipe, valid only for serial input).
37  *
38  * The mmcodec is connected via the CHI bus and needs the data & some
39  * parameters (volume, output selection) time multiplexed in 8 byte
40  * chunks. It also has a control mode, which serves for audio format setting.
41  *
42  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43  * the same CHI bus, so I thought perhaps it is possible to use the on-board
44  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45  * audio devices. But the SUN HW group decided against it, at least on my
46  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47  * connected.
48  *
49  * I've tried to stick to the following function naming conventions:
50  * snd_*	ALSA stuff
51  * cs4215_*	CS4215 codec specific stuff
52  * dbri_*	DBRI high-level stuff
53  * other	DBRI low-level stuff
54  */
55 
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/gfp.h>
62 
63 #include <sound/core.h>
64 #include <sound/pcm.h>
65 #include <sound/pcm_params.h>
66 #include <sound/info.h>
67 #include <sound/control.h>
68 #include <sound/initval.h>
69 
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <linux/atomic.h>
73 #include <linux/module.h>
74 
75 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
76 MODULE_DESCRIPTION("Sun DBRI");
77 MODULE_LICENSE("GPL");
78 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
79 
80 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
81 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
82 /* Enable this card */
83 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84 
85 module_param_array(index, int, NULL, 0444);
86 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87 module_param_array(id, charp, NULL, 0444);
88 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89 module_param_array(enable, bool, NULL, 0444);
90 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91 
92 #undef DBRI_DEBUG
93 
94 #define D_INT	(1<<0)
95 #define D_GEN	(1<<1)
96 #define D_CMD	(1<<2)
97 #define D_MM	(1<<3)
98 #define D_USR	(1<<4)
99 #define D_DESC	(1<<5)
100 
101 static int dbri_debug;
102 module_param(dbri_debug, int, 0644);
103 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104 
105 #ifdef DBRI_DEBUG
106 static char *cmds[] = {
107 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109 };
110 
111 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112 
113 #else
114 #define dprintk(a, x...) do { } while (0)
115 
116 #endif				/* DBRI_DEBUG */
117 
118 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
119 				    (intr << 27) |	\
120 				    value)
121 
122 /***************************************************************************
123 	CS4215 specific definitions and structures
124 ****************************************************************************/
125 
126 struct cs4215 {
127 	__u8 data[4];		/* Data mode: Time slots 5-8 */
128 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
129 	__u8 onboard;
130 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
131 	volatile __u32 status;
132 	volatile __u32 version;
133 	__u8 precision;		/* In bits, either 8 or 16 */
134 	__u8 channels;		/* 1 or 2 */
135 };
136 
137 /*
138  * Control mode first
139  */
140 
141 /* Time Slot 1, Status register */
142 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
143 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
144 				/* 0: line: 2.8V, speaker 8V */
145 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
146 #define CS4215_RSRVD_1  (1<<5)
147 
148 /* Time Slot 2, Data Format Register */
149 #define CS4215_DFR_LINEAR16	0
150 #define CS4215_DFR_ULAW		1
151 #define CS4215_DFR_ALAW		2
152 #define CS4215_DFR_LINEAR8	3
153 #define CS4215_DFR_STEREO	(1<<2)
154 static struct {
155 	unsigned short freq;
156 	unsigned char xtal;
157 	unsigned char csval;
158 } CS4215_FREQ[] = {
159 	{  8000, (1 << 4), (0 << 3) },
160 	{ 16000, (1 << 4), (1 << 3) },
161 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
162 	{ 32000, (1 << 4), (3 << 3) },
163      /* {    NA, (1 << 4), (4 << 3) }, */
164      /* {    NA, (1 << 4), (5 << 3) }, */
165 	{ 48000, (1 << 4), (6 << 3) },
166 	{  9600, (1 << 4), (7 << 3) },
167 	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
168 	{ 11025, (2 << 4), (1 << 3) },
169 	{ 18900, (2 << 4), (2 << 3) },
170 	{ 22050, (2 << 4), (3 << 3) },
171 	{ 37800, (2 << 4), (4 << 3) },
172 	{ 44100, (2 << 4), (5 << 3) },
173 	{ 33075, (2 << 4), (6 << 3) },
174 	{  6615, (2 << 4), (7 << 3) },
175 	{ 0, 0, 0}
176 };
177 
178 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
179 
180 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
181 
182 /* Time Slot 3, Serial Port Control register */
183 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
184 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
185 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
186 #define CS4215_BSEL_128	(1<<2)
187 #define CS4215_BSEL_256	(2<<2)
188 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
189 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
190 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
191 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
192 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
193 
194 /* Time Slot 4, Test Register */
195 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
197 
198 /* Time Slot 5, Parallel Port Register */
199 /* Read only here and the same as the in data mode */
200 
201 /* Time Slot 6, Reserved  */
202 
203 /* Time Slot 7, Version Register  */
204 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
205 
206 /* Time Slot 8, Reserved  */
207 
208 /*
209  * Data mode
210  */
211 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
212 
213 /* Time Slot 5, Output Setting  */
214 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
215 #define CS4215_LE	(1<<6)	/* Line Out Enable */
216 #define CS4215_HE	(1<<7)	/* Headphone Enable */
217 
218 /* Time Slot 6, Output Setting  */
219 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
220 #define CS4215_SE	(1<<6)	/* Speaker Enable */
221 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
222 
223 /* Time Slot 7, Input Setting */
224 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
225 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
226 #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
227 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
228 #define CS4215_PIO1	(1<<7)
229 
230 /* Time Slot 8, Input Setting */
231 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
232 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
233 
234 /***************************************************************************
235 		DBRI specific definitions and structures
236 ****************************************************************************/
237 
238 /* DBRI main registers */
239 #define REG0	0x00		/* Status and Control */
240 #define REG1	0x04		/* Mode and Interrupt */
241 #define REG2	0x08		/* Parallel IO */
242 #define REG3	0x0c		/* Test */
243 #define REG8	0x20		/* Command Queue Pointer */
244 #define REG9	0x24		/* Interrupt Queue Pointer */
245 
246 #define DBRI_NO_CMDS	64
247 #define DBRI_INT_BLK	64
248 #define DBRI_NO_DESCS	64
249 #define DBRI_NO_PIPES	32
250 #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
251 
252 #define DBRI_REC	0
253 #define DBRI_PLAY	1
254 #define DBRI_NO_STREAMS	2
255 
256 /* One transmit/receive descriptor */
257 /* When ba != 0 descriptor is used */
258 struct dbri_mem {
259 	volatile __u32 word1;
260 	__u32 ba;	/* Transmit/Receive Buffer Address */
261 	__u32 nda;	/* Next Descriptor Address */
262 	volatile __u32 word4;
263 };
264 
265 /* This structure is in a DMA region where it can accessed by both
266  * the CPU and the DBRI
267  */
268 struct dbri_dma {
269 	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
270 	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
271 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
272 };
273 
274 #define dbri_dma_off(member, elem)	\
275 	((u32)(unsigned long)		\
276 	 (&(((struct dbri_dma *)0)->member[elem])))
277 
278 enum in_or_out { PIPEinput, PIPEoutput };
279 
280 struct dbri_pipe {
281 	u32 sdp;		/* SDP command word */
282 	int nextpipe;		/* Next pipe in linked list */
283 	int length;		/* Length of timeslot (bits) */
284 	int first_desc;		/* Index of first descriptor */
285 	int desc;		/* Index of active descriptor */
286 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
287 };
288 
289 /* Per stream (playback or record) information */
290 struct dbri_streaminfo {
291 	struct snd_pcm_substream *substream;
292 	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
293 	int size;		/* Size of DMA buffer             */
294 	size_t offset;		/* offset in user buffer          */
295 	int pipe;		/* Data pipe used                 */
296 	int left_gain;		/* mixer elements                 */
297 	int right_gain;
298 };
299 
300 /* This structure holds the information for both chips (DBRI & CS4215) */
301 struct snd_dbri {
302 	int regs_size, irq;	/* Needed for unload */
303 	struct platform_device *op;	/* OF device info */
304 	spinlock_t lock;
305 
306 	struct dbri_dma *dma;	/* Pointer to our DMA block */
307 	u32 dma_dvma;		/* DBRI visible DMA address */
308 
309 	void __iomem *regs;	/* dbri HW regs */
310 	int dbri_irqp;		/* intr queue pointer */
311 
312 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
313 	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
314 	spinlock_t cmdlock;	/* Protects cmd queue accesses */
315 	s32 *cmdptr;		/* Pointer to the last queued cmd */
316 
317 	int chi_bpf;
318 
319 	struct cs4215 mm;	/* mmcodec special info */
320 				/* per stream (playback/record) info */
321 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322 };
323 
324 #define DBRI_MAX_VOLUME		63	/* Output volume */
325 #define DBRI_MAX_GAIN		15	/* Input gain */
326 
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P		(1<<15)	/* Program command & queue pointer valid */
329 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
330 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
331 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
332 #define D_X		(1<<7)	/* Sanity Timer Disable */
333 #define D_T		(1<<6)	/* Permit activation of the TE interface */
334 #define D_N		(1<<5)	/* Permit activation of the NT interface */
335 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
336 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
337 #define D_D		(1<<2)	/* Disable Master Mode */
338 #define D_H		(1<<1)	/* Halt for Analysis */
339 #define D_R		(1<<0)	/* Soft Reset */
340 
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END	(1<<8)	/* Byte Order */
343 #define D_BIG_END	(0<<8)	/* Byte Order */
344 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
345 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
346 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
347 #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
348 #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
349 
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
352 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
353 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
354 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
355 #define D_ENPIO		(0xf0)	/* Enable all the pins */
356 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
358 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
359 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
360 
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT		0x0	/* Stop execution */
363 #define D_PAUSE		0x1	/* Flush long pipes */
364 #define D_JUMP		0x2	/* New command queue */
365 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
366 #define D_REX		0x4	/* Report command execution via interrupt */
367 #define D_SDP		0x5	/* Setup Data Pipe */
368 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS		0x7	/* Define Time Slot */
370 #define D_SSP		0x8	/* Set short Data Pipe */
371 #define D_CHI		0x9	/* Set CHI Global Mode */
372 #define D_NT		0xa	/* NT Command */
373 #define D_TE		0xb	/* TE Command */
374 #define D_CDEC		0xc	/* Codec setup */
375 #define D_TEST		0xd	/* No comment */
376 #define D_CDM		0xe	/* CHI Data mode command */
377 
378 /* Special bits for some commands */
379 #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
380 
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
384 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
385 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
386 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
387 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
388 
389 /* Pipe data MODE */
390 #define D_SDP_MEM	(0<<13)	/* To/from memory */
391 #define D_SDP_HDLC	(2<<13)
392 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
393 #define D_SDP_SER	(4<<13)	/* Serial to serial */
394 #define D_SDP_FIXED	(6<<13)	/* Short only */
395 #define D_SDP_MODE(v)	((v)&(7<<13))
396 
397 #define D_SDP_TO_SER	(1<<12)	/* Direction */
398 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
399 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
400 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
401 #define D_SDP_P		(1<<10)	/* Pointer Valid */
402 #define D_SDP_A		(1<<8)	/* Abort */
403 #define D_SDP_C		(1<<7)	/* Clear */
404 
405 /* Define Time Slot */
406 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
409 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
411 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
412 
413 /* Time Slot defines */
414 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
415 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
416 #define D_TS_DI		(1<<13)	/* Data Invert */
417 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
418 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
419 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
420 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
421 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
422 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
423 
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
426 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
427 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
428 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
429 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD	(1<<11)	/* Frame Drive */
431 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
432 
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
435 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
439 #define D_NT_FT		(1<<12)	/* Fixed Timing */
440 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
441 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
442 #define D_NT_ACT	(1<<9)	/* Activate Interface */
443 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
444 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
445 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
446 #define D_NT_FACT	(1<<1)	/* Force Activation */
447 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
448 
449 /* Codec Setup */
450 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
451 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
453 
454 /* Test */
455 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
456 #define D_TEST_SIZE(v)	((v)<<11)	/* */
457 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC	0x6	/* Microprocessor test */
459 #define D_TEST_SER	0x7	/* Serial-Controller test */
460 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
463 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP	0xe	/* ROM Dump */
465 
466 /* CHI Data Mode */
467 #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
472 #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
473 
474 /* The Interrupts */
475 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
476 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL	5	/* End of List */
480 #define D_INTR_CMDI	6	/* Command has bean read */
481 #define D_INTR_XCMP	8	/* Transmission of frame complete */
482 #define D_INTR_SBRI	9	/* BRI status change info */
483 #define D_INTR_FXDT	10	/* Fixed data change */
484 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT	12	/* Dropped by frame slip */
487 #define D_INTR_RBYT	13	/* Repeated by frame slip */
488 #define D_INTR_LINT	14	/* Lost Interrupt */
489 #define D_INTR_UNDR	15	/* DMA underrun */
490 
491 #define D_INTR_TE	32
492 #define D_INTR_NT	34
493 #define D_INTR_CHI	36
494 #define D_INTR_CMD	38
495 
496 #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
497 #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
498 #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
499 #define D_INTR_GETVAL(v)	((v) & 0xffff)
500 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
501 
502 #define D_P_0		0	/* TE receive anchor */
503 #define D_P_1		1	/* TE transmit anchor */
504 #define D_P_2		2	/* NT transmit anchor */
505 #define D_P_3		3	/* NT receive anchor */
506 #define D_P_4		4	/* CHI send data */
507 #define D_P_5		5	/* CHI receive data */
508 #define D_P_6		6	/* */
509 #define D_P_7		7	/* */
510 #define D_P_8		8	/* */
511 #define D_P_9		9	/* */
512 #define D_P_10		10	/* */
513 #define D_P_11		11	/* */
514 #define D_P_12		12	/* */
515 #define D_P_13		13	/* */
516 #define D_P_14		14	/* */
517 #define D_P_15		15	/* */
518 #define D_P_16		16	/* CHI anchor pipe */
519 #define D_P_17		17	/* CHI send */
520 #define D_P_18		18	/* CHI receive */
521 #define D_P_19		19	/* CHI receive */
522 #define D_P_20		20	/* CHI receive */
523 #define D_P_21		21	/* */
524 #define D_P_22		22	/* */
525 #define D_P_23		23	/* */
526 #define D_P_24		24	/* */
527 #define D_P_25		25	/* */
528 #define D_P_26		26	/* */
529 #define D_P_27		27	/* */
530 #define D_P_28		28	/* */
531 #define D_P_29		29	/* */
532 #define D_P_30		30	/* */
533 #define D_P_31		31	/* */
534 
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F	(1 << 31)	/* End of Frame */
537 #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
538 #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
540 #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
541 #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
543 #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
545 #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
547 			/* Maximum buffer size per TD: almost 8KB */
548 #define DBRI_TD_MAXCNT	((1 << 13) - 4)
549 
550 /* Receive descriptor defines */
551 #define DBRI_RD_F	(1 << 31)	/* End of Frame */
552 #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
553 #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
554 #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
555 #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
556 #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
557 #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
558 #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
559 #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
560 #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
561 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
562 
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream)				\
566 		(substream->stream ==				\
567 		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568 
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream)	\
571 		&dbri->stream_info[DBRI_STREAMNO(substream)]
572 
573 /*
574  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575  * So we have to reverse the bits. Note: not all bit lengths are supported
576  */
577 static __u32 reverse_bytes(__u32 b, int len)
578 {
579 	switch (len) {
580 	case 32:
581 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582 	case 16:
583 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
584 	case 8:
585 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
586 	case 4:
587 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
588 	case 2:
589 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
590 	case 1:
591 	case 0:
592 		break;
593 	default:
594 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
595 	}
596 
597 	return b;
598 }
599 
600 /*
601 ****************************************************************************
602 ************** DBRI initialization and command synchronization *************
603 ****************************************************************************
604 
605 Commands are sent to the DBRI by building a list of them in memory,
606 then writing the address of the first list item to DBRI register 8.
607 The list is terminated with a WAIT command, which generates a
608 CPU interrupt to signal completion.
609 
610 Since the DBRI can run in parallel with the CPU, several means of
611 synchronization present themselves. The method implemented here uses
612 the dbri_cmdwait() to wait for execution of batch of sent commands.
613 
614 A circular command buffer is used here. A new command is being added
615 while another can be executed. The scheme works by adding two WAIT commands
616 after each sent batch of commands. When the next batch is prepared it is
617 added after the WAIT commands then the WAITs are replaced with single JUMP
618 command to the new batch. The the DBRI is forced to reread the last WAIT
619 command (replaced by the JUMP by then). If the DBRI is still executing
620 previous commands the request to reread the WAIT command is ignored.
621 
622 Every time a routine wants to write commands to the DBRI, it must
623 first call dbri_cmdlock() and get pointer to a free space in
624 dbri->dma->cmd buffer. After this, the commands can be written to
625 the buffer, and dbri_cmdsend() is called with the final pointer value
626 to send them to the DBRI.
627 
628 */
629 
630 #define MAXLOOPS 20
631 /*
632  * Wait for the current command string to execute
633  */
634 static void dbri_cmdwait(struct snd_dbri *dbri)
635 {
636 	int maxloops = MAXLOOPS;
637 	unsigned long flags;
638 
639 	/* Delay if previous commands are still being processed */
640 	spin_lock_irqsave(&dbri->lock, flags);
641 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
642 		spin_unlock_irqrestore(&dbri->lock, flags);
643 		msleep_interruptible(1);
644 		spin_lock_irqsave(&dbri->lock, flags);
645 	}
646 	spin_unlock_irqrestore(&dbri->lock, flags);
647 
648 	if (maxloops == 0)
649 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
650 	else
651 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
652 			MAXLOOPS - maxloops - 1);
653 }
654 /*
655  * Lock the command queue and return pointer to space for len cmd words
656  * It locks the cmdlock spinlock.
657  */
658 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
659 {
660 	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
661 	len += 2;
662 	spin_lock(&dbri->cmdlock);
663 	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
664 		return dbri->cmdptr + 2;
665 	else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
666 		return dbri->dma->cmd;
667 	else
668 		printk(KERN_ERR "DBRI: no space for commands.");
669 
670 	return NULL;
671 }
672 
673 /*
674  * Send prepared cmd string. It works by writing a JUMP cmd into
675  * the last WAIT cmd and force DBRI to reread the cmd.
676  * The JUMP cmd points to the new cmd string.
677  * It also releases the cmdlock spinlock.
678  *
679  * Lock must be held before calling this.
680  */
681 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
682 {
683 	s32 tmp, addr;
684 	static int wait_id = 0;
685 
686 	wait_id++;
687 	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
688 	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
689 	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
690 
691 	/* Replace the last command with JUMP */
692 	addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
693 	*(dbri->cmdptr+1) = addr;
694 	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
695 
696 #ifdef DBRI_DEBUG
697 	if (cmd > dbri->cmdptr) {
698 		s32 *ptr;
699 
700 		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
701 			dprintk(D_CMD, "cmd: %lx:%08x\n",
702 				(unsigned long)ptr, *ptr);
703 	} else {
704 		s32 *ptr = dbri->cmdptr;
705 
706 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
707 		ptr++;
708 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
709 		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
710 			dprintk(D_CMD, "cmd: %lx:%08x\n",
711 				(unsigned long)ptr, *ptr);
712 	}
713 #endif
714 
715 	/* Reread the last command */
716 	tmp = sbus_readl(dbri->regs + REG0);
717 	tmp |= D_P;
718 	sbus_writel(tmp, dbri->regs + REG0);
719 
720 	dbri->cmdptr = cmd;
721 	spin_unlock(&dbri->cmdlock);
722 }
723 
724 /* Lock must be held when calling this */
725 static void dbri_reset(struct snd_dbri *dbri)
726 {
727 	int i;
728 	u32 tmp;
729 
730 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
731 		sbus_readl(dbri->regs + REG0),
732 		sbus_readl(dbri->regs + REG2),
733 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
734 
735 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
736 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
737 		udelay(10);
738 
739 	/* A brute approach - DBRI falls back to working burst size by itself
740 	 * On SS20 D_S does not work, so do not try so high. */
741 	tmp = sbus_readl(dbri->regs + REG0);
742 	tmp |= D_G | D_E;
743 	tmp &= ~D_S;
744 	sbus_writel(tmp, dbri->regs + REG0);
745 }
746 
747 /* Lock must not be held before calling this */
748 static void dbri_initialize(struct snd_dbri *dbri)
749 {
750 	s32 *cmd;
751 	u32 dma_addr;
752 	unsigned long flags;
753 	int n;
754 
755 	spin_lock_irqsave(&dbri->lock, flags);
756 
757 	dbri_reset(dbri);
758 
759 	/* Initialize pipes */
760 	for (n = 0; n < DBRI_NO_PIPES; n++)
761 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
762 
763 	spin_lock_init(&dbri->cmdlock);
764 	/*
765 	 * Initialize the interrupt ring buffer.
766 	 */
767 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
768 	dbri->dma->intr[0] = dma_addr;
769 	dbri->dbri_irqp = 1;
770 	/*
771 	 * Set up the interrupt queue
772 	 */
773 	spin_lock(&dbri->cmdlock);
774 	cmd = dbri->cmdptr = dbri->dma->cmd;
775 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
776 	*(cmd++) = dma_addr;
777 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
778 	dbri->cmdptr = cmd;
779 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
780 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
781 	dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
782 	sbus_writel(dma_addr, dbri->regs + REG8);
783 	spin_unlock(&dbri->cmdlock);
784 
785 	spin_unlock_irqrestore(&dbri->lock, flags);
786 	dbri_cmdwait(dbri);
787 }
788 
789 /*
790 ****************************************************************************
791 ************************** DBRI data pipe management ***********************
792 ****************************************************************************
793 
794 While DBRI control functions use the command and interrupt buffers, the
795 main data path takes the form of data pipes, which can be short (command
796 and interrupt driven), or long (attached to DMA buffers).  These functions
797 provide a rudimentary means of setting up and managing the DBRI's pipes,
798 but the calling functions have to make sure they respect the pipes' linked
799 list ordering, among other things.  The transmit and receive functions
800 here interface closely with the transmit and receive interrupt code.
801 
802 */
803 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
804 {
805 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
806 }
807 
808 /* reset_pipe(dbri, pipe)
809  *
810  * Called on an in-use pipe to clear anything being transmitted or received
811  * Lock must be held before calling this.
812  */
813 static void reset_pipe(struct snd_dbri *dbri, int pipe)
814 {
815 	int sdp;
816 	int desc;
817 	s32 *cmd;
818 
819 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
820 		printk(KERN_ERR "DBRI: reset_pipe called with "
821 			"illegal pipe number\n");
822 		return;
823 	}
824 
825 	sdp = dbri->pipes[pipe].sdp;
826 	if (sdp == 0) {
827 		printk(KERN_ERR "DBRI: reset_pipe called "
828 			"on uninitialized pipe\n");
829 		return;
830 	}
831 
832 	cmd = dbri_cmdlock(dbri, 3);
833 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
834 	*(cmd++) = 0;
835 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
836 	dbri_cmdsend(dbri, cmd, 3);
837 
838 	desc = dbri->pipes[pipe].first_desc;
839 	if (desc >= 0)
840 		do {
841 			dbri->dma->desc[desc].ba = 0;
842 			dbri->dma->desc[desc].nda = 0;
843 			desc = dbri->next_desc[desc];
844 		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
845 
846 	dbri->pipes[pipe].desc = -1;
847 	dbri->pipes[pipe].first_desc = -1;
848 }
849 
850 /*
851  * Lock must be held before calling this.
852  */
853 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
854 {
855 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
856 		printk(KERN_ERR "DBRI: setup_pipe called "
857 			"with illegal pipe number\n");
858 		return;
859 	}
860 
861 	if ((sdp & 0xf800) != sdp) {
862 		printk(KERN_ERR "DBRI: setup_pipe called "
863 			"with strange SDP value\n");
864 		/* sdp &= 0xf800; */
865 	}
866 
867 	/* If this is a fixed receive pipe, arrange for an interrupt
868 	 * every time its data changes
869 	 */
870 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
871 		sdp |= D_SDP_CHANGE;
872 
873 	sdp |= D_PIPE(pipe);
874 	dbri->pipes[pipe].sdp = sdp;
875 	dbri->pipes[pipe].desc = -1;
876 	dbri->pipes[pipe].first_desc = -1;
877 
878 	reset_pipe(dbri, pipe);
879 }
880 
881 /*
882  * Lock must be held before calling this.
883  */
884 static void link_time_slot(struct snd_dbri *dbri, int pipe,
885 			   int prevpipe, int nextpipe,
886 			   int length, int cycle)
887 {
888 	s32 *cmd;
889 	int val;
890 
891 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
892 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
893 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
894 		printk(KERN_ERR
895 		    "DBRI: link_time_slot called with illegal pipe number\n");
896 		return;
897 	}
898 
899 	if (dbri->pipes[pipe].sdp == 0
900 			|| dbri->pipes[prevpipe].sdp == 0
901 			|| dbri->pipes[nextpipe].sdp == 0) {
902 		printk(KERN_ERR "DBRI: link_time_slot called "
903 			"on uninitialized pipe\n");
904 		return;
905 	}
906 
907 	dbri->pipes[prevpipe].nextpipe = pipe;
908 	dbri->pipes[pipe].nextpipe = nextpipe;
909 	dbri->pipes[pipe].length = length;
910 
911 	cmd = dbri_cmdlock(dbri, 4);
912 
913 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
914 		/* Deal with CHI special case:
915 		 * "If transmission on edges 0 or 1 is desired, then cycle n
916 		 *  (where n = # of bit times per frame...) must be used."
917 		 *                  - DBRI data sheet, page 11
918 		 */
919 		if (prevpipe == 16 && cycle == 0)
920 			cycle = dbri->chi_bpf;
921 
922 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
923 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
924 		*(cmd++) = 0;
925 		*(cmd++) =
926 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
927 	} else {
928 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
929 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
930 		*(cmd++) =
931 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
932 		*(cmd++) = 0;
933 	}
934 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
935 
936 	dbri_cmdsend(dbri, cmd, 4);
937 }
938 
939 #if 0
940 /*
941  * Lock must be held before calling this.
942  */
943 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
944 			     enum in_or_out direction, int prevpipe,
945 			     int nextpipe)
946 {
947 	s32 *cmd;
948 	int val;
949 
950 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
951 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
952 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
953 		printk(KERN_ERR
954 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
955 		return;
956 	}
957 
958 	cmd = dbri_cmdlock(dbri, 4);
959 
960 	if (direction == PIPEinput) {
961 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
962 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
963 		*(cmd++) = D_TS_NEXT(nextpipe);
964 		*(cmd++) = 0;
965 	} else {
966 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
967 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
968 		*(cmd++) = 0;
969 		*(cmd++) = D_TS_NEXT(nextpipe);
970 	}
971 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
972 
973 	dbri_cmdsend(dbri, cmd, 4);
974 }
975 #endif
976 
977 /* xmit_fixed() / recv_fixed()
978  *
979  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
980  * expected to change much, and which we don't need to buffer.
981  * The DBRI only interrupts us when the data changes (receive pipes),
982  * or only changes the data when this function is called (transmit pipes).
983  * Only short pipes (numbers 16-31) can be used in fixed data mode.
984  *
985  * These function operate on a 32-bit field, no matter how large
986  * the actual time slot is.  The interrupt handler takes care of bit
987  * ordering and alignment.  An 8-bit time slot will always end up
988  * in the low-order 8 bits, filled either MSB-first or LSB-first,
989  * depending on the settings passed to setup_pipe().
990  *
991  * Lock must not be held before calling it.
992  */
993 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
994 {
995 	s32 *cmd;
996 	unsigned long flags;
997 
998 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
999 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1000 		return;
1001 	}
1002 
1003 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1004 		printk(KERN_ERR "DBRI: xmit_fixed: "
1005 			"Uninitialized pipe %d\n", pipe);
1006 		return;
1007 	}
1008 
1009 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1010 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1011 		return;
1012 	}
1013 
1014 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1015 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1016 			pipe);
1017 		return;
1018 	}
1019 
1020 	/* DBRI short pipes always transmit LSB first */
1021 
1022 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1023 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1024 
1025 	cmd = dbri_cmdlock(dbri, 3);
1026 
1027 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1028 	*(cmd++) = data;
1029 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1030 
1031 	spin_lock_irqsave(&dbri->lock, flags);
1032 	dbri_cmdsend(dbri, cmd, 3);
1033 	spin_unlock_irqrestore(&dbri->lock, flags);
1034 	dbri_cmdwait(dbri);
1035 
1036 }
1037 
1038 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1039 {
1040 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1041 		printk(KERN_ERR "DBRI: recv_fixed called with "
1042 			"illegal pipe number\n");
1043 		return;
1044 	}
1045 
1046 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1047 		printk(KERN_ERR "DBRI: recv_fixed called on "
1048 			"non-fixed pipe %d\n", pipe);
1049 		return;
1050 	}
1051 
1052 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1053 		printk(KERN_ERR "DBRI: recv_fixed called on "
1054 			"transmit pipe %d\n", pipe);
1055 		return;
1056 	}
1057 
1058 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1059 }
1060 
1061 /* setup_descs()
1062  *
1063  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1064  * with a DMA buffer.
1065  *
1066  * Only pipe numbers 0-15 can be used in this mode.
1067  *
1068  * This function takes a stream number pointing to a data buffer,
1069  * and work by building chains of descriptors which identify the
1070  * data buffers.  Buffers too large for a single descriptor will
1071  * be spread across multiple descriptors.
1072  *
1073  * All descriptors create a ring buffer.
1074  *
1075  * Lock must be held before calling this.
1076  */
1077 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1078 {
1079 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1080 	__u32 dvma_buffer;
1081 	int desc;
1082 	int len;
1083 	int first_desc = -1;
1084 	int last_desc = -1;
1085 
1086 	if (info->pipe < 0 || info->pipe > 15) {
1087 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1088 		return -2;
1089 	}
1090 
1091 	if (dbri->pipes[info->pipe].sdp == 0) {
1092 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1093 		       info->pipe);
1094 		return -2;
1095 	}
1096 
1097 	dvma_buffer = info->dvma_buffer;
1098 	len = info->size;
1099 
1100 	if (streamno == DBRI_PLAY) {
1101 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1102 			printk(KERN_ERR "DBRI: setup_descs: "
1103 				"Called on receive pipe %d\n", info->pipe);
1104 			return -2;
1105 		}
1106 	} else {
1107 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1108 			printk(KERN_ERR
1109 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1110 			     info->pipe);
1111 			return -2;
1112 		}
1113 		/* Should be able to queue multiple buffers
1114 		 * to receive on a pipe
1115 		 */
1116 		if (pipe_active(dbri, info->pipe)) {
1117 			printk(KERN_ERR "DBRI: recv_on_pipe: "
1118 				"Called on active pipe %d\n", info->pipe);
1119 			return -2;
1120 		}
1121 
1122 		/* Make sure buffer size is multiple of four */
1123 		len &= ~3;
1124 	}
1125 
1126 	/* Free descriptors if pipe has any */
1127 	desc = dbri->pipes[info->pipe].first_desc;
1128 	if (desc >= 0)
1129 		do {
1130 			dbri->dma->desc[desc].ba = 0;
1131 			dbri->dma->desc[desc].nda = 0;
1132 			desc = dbri->next_desc[desc];
1133 		} while (desc != -1 &&
1134 			 desc != dbri->pipes[info->pipe].first_desc);
1135 
1136 	dbri->pipes[info->pipe].desc = -1;
1137 	dbri->pipes[info->pipe].first_desc = -1;
1138 
1139 	desc = 0;
1140 	while (len > 0) {
1141 		int mylen;
1142 
1143 		for (; desc < DBRI_NO_DESCS; desc++) {
1144 			if (!dbri->dma->desc[desc].ba)
1145 				break;
1146 		}
1147 
1148 		if (desc == DBRI_NO_DESCS) {
1149 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1150 			return -1;
1151 		}
1152 
1153 		if (len > DBRI_TD_MAXCNT)
1154 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1155 		else
1156 			mylen = len;
1157 
1158 		if (mylen > period)
1159 			mylen = period;
1160 
1161 		dbri->next_desc[desc] = -1;
1162 		dbri->dma->desc[desc].ba = dvma_buffer;
1163 		dbri->dma->desc[desc].nda = 0;
1164 
1165 		if (streamno == DBRI_PLAY) {
1166 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1167 			dbri->dma->desc[desc].word4 = 0;
1168 			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1169 		} else {
1170 			dbri->dma->desc[desc].word1 = 0;
1171 			dbri->dma->desc[desc].word4 =
1172 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1173 		}
1174 
1175 		if (first_desc == -1)
1176 			first_desc = desc;
1177 		else {
1178 			dbri->next_desc[last_desc] = desc;
1179 			dbri->dma->desc[last_desc].nda =
1180 			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1181 		}
1182 
1183 		last_desc = desc;
1184 		dvma_buffer += mylen;
1185 		len -= mylen;
1186 	}
1187 
1188 	if (first_desc == -1 || last_desc == -1) {
1189 		printk(KERN_ERR "DBRI: setup_descs: "
1190 			" Not enough descriptors available\n");
1191 		return -1;
1192 	}
1193 
1194 	dbri->dma->desc[last_desc].nda =
1195 	    dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1196 	dbri->next_desc[last_desc] = first_desc;
1197 	dbri->pipes[info->pipe].first_desc = first_desc;
1198 	dbri->pipes[info->pipe].desc = first_desc;
1199 
1200 #ifdef DBRI_DEBUG
1201 	for (desc = first_desc; desc != -1;) {
1202 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1203 			desc,
1204 			dbri->dma->desc[desc].word1,
1205 			dbri->dma->desc[desc].ba,
1206 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1207 			desc = dbri->next_desc[desc];
1208 			if (desc == first_desc)
1209 				break;
1210 	}
1211 #endif
1212 	return 0;
1213 }
1214 
1215 /*
1216 ****************************************************************************
1217 ************************** DBRI - CHI interface ****************************
1218 ****************************************************************************
1219 
1220 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1221 multiplexed serial interface which the DBRI can operate in either master
1222 (give clock/frame sync) or slave (take clock/frame sync) mode.
1223 
1224 */
1225 
1226 enum master_or_slave { CHImaster, CHIslave };
1227 
1228 /*
1229  * Lock must not be held before calling it.
1230  */
1231 static void reset_chi(struct snd_dbri *dbri,
1232 		      enum master_or_slave master_or_slave,
1233 		      int bits_per_frame)
1234 {
1235 	s32 *cmd;
1236 	int val;
1237 
1238 	/* Set CHI Anchor: Pipe 16 */
1239 
1240 	cmd = dbri_cmdlock(dbri, 4);
1241 	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1242 		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1243 	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1244 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1246 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1247 	dbri_cmdsend(dbri, cmd, 4);
1248 
1249 	dbri->pipes[16].sdp = 1;
1250 	dbri->pipes[16].nextpipe = 16;
1251 
1252 	cmd = dbri_cmdlock(dbri, 4);
1253 
1254 	if (master_or_slave == CHIslave) {
1255 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1256 		 *
1257 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1258 		 * IR     = give immediate CHI status interrupt
1259 		 * EN     = give CHI status interrupt upon change
1260 		 */
1261 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1262 	} else {
1263 		/* Setup DBRI for CHI Master - generate clock, FS
1264 		 *
1265 		 * BPF				=  bits per 8 kHz frame
1266 		 * 12.288 MHz / CHICM_divisor	= clock rate
1267 		 * FD = 1 - drive CHIFS on rising edge of CHICK
1268 		 */
1269 		int clockrate = bits_per_frame * 8;
1270 		int divisor = 12288 / clockrate;
1271 
1272 		if (divisor > 255 || divisor * clockrate != 12288)
1273 			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1274 				"in setup_chi\n");
1275 
1276 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1277 				    | D_CHI_BPF(bits_per_frame));
1278 	}
1279 
1280 	dbri->chi_bpf = bits_per_frame;
1281 
1282 	/* CHI Data Mode
1283 	 *
1284 	 * RCE   =  0 - receive on falling edge of CHICK
1285 	 * XCE   =  1 - transmit on rising edge of CHICK
1286 	 * XEN   =  1 - enable transmitter
1287 	 * REN   =  1 - enable receiver
1288 	 */
1289 
1290 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1292 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1293 
1294 	dbri_cmdsend(dbri, cmd, 4);
1295 }
1296 
1297 /*
1298 ****************************************************************************
1299 *********************** CS4215 audio codec management **********************
1300 ****************************************************************************
1301 
1302 In the standard SPARC audio configuration, the CS4215 codec is attached
1303 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1304 
1305  * Lock must not be held before calling it.
1306 
1307 */
1308 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1309 {
1310 	unsigned long flags;
1311 
1312 	spin_lock_irqsave(&dbri->lock, flags);
1313 	/*
1314 	 * Data mode:
1315 	 * Pipe  4: Send timeslots 1-4 (audio data)
1316 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1317 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1318 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1319 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1320 	 *          not relevant for us (only for doublechecking).
1321 	 *
1322 	 * Control mode:
1323 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1324 	 * Pipe 18: Receive timeslot 1 (clb).
1325 	 * Pipe 19: Receive timeslot 7 (version).
1326 	 */
1327 
1328 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1329 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1330 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1331 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1332 
1333 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1334 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1336 	spin_unlock_irqrestore(&dbri->lock, flags);
1337 
1338 	dbri_cmdwait(dbri);
1339 }
1340 
1341 static int cs4215_init_data(struct cs4215 *mm)
1342 {
1343 	/*
1344 	 * No action, memory resetting only.
1345 	 *
1346 	 * Data Time Slot 5-8
1347 	 * Speaker,Line and Headphone enable. Gain set to the half.
1348 	 * Input is mike.
1349 	 */
1350 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1351 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1352 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1353 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1354 
1355 	/*
1356 	 * Control Time Slot 1-4
1357 	 * 0: Default I/O voltage scale
1358 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1359 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1360 	 * 3: Tests disabled
1361 	 */
1362 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1363 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1364 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1365 	mm->ctrl[3] = 0;
1366 
1367 	mm->status = 0;
1368 	mm->version = 0xff;
1369 	mm->precision = 8;	/* For ULAW */
1370 	mm->channels = 1;
1371 
1372 	return 0;
1373 }
1374 
1375 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1376 {
1377 	if (muted) {
1378 		dbri->mm.data[0] |= 63;
1379 		dbri->mm.data[1] |= 63;
1380 		dbri->mm.data[2] &= ~15;
1381 		dbri->mm.data[3] &= ~15;
1382 	} else {
1383 		/* Start by setting the playback attenuation. */
1384 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1385 		int left_gain = info->left_gain & 0x3f;
1386 		int right_gain = info->right_gain & 0x3f;
1387 
1388 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1389 		dbri->mm.data[1] &= ~0x3f;
1390 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1391 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1392 
1393 		/* Now set the recording gain. */
1394 		info = &dbri->stream_info[DBRI_REC];
1395 		left_gain = info->left_gain & 0xf;
1396 		right_gain = info->right_gain & 0xf;
1397 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1398 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1399 	}
1400 
1401 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1402 }
1403 
1404 /*
1405  * Set the CS4215 to data mode.
1406  */
1407 static void cs4215_open(struct snd_dbri *dbri)
1408 {
1409 	int data_width;
1410 	u32 tmp;
1411 	unsigned long flags;
1412 
1413 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1414 		dbri->mm.channels, dbri->mm.precision);
1415 
1416 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1417 	 * to make sure this takes.  This avoids clicking noises.
1418 	 */
1419 
1420 	cs4215_setdata(dbri, 1);
1421 	udelay(125);
1422 
1423 	/*
1424 	 * Data mode:
1425 	 * Pipe  4: Send timeslots 1-4 (audio data)
1426 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1427 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1428 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1429 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1430 	 *          not relevant for us (only for doublechecking).
1431 	 *
1432 	 * Just like in control mode, the time slots are all offset by eight
1433 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1434 	 * even if it's the CHI master.  Don't ask me...
1435 	 */
1436 	spin_lock_irqsave(&dbri->lock, flags);
1437 	tmp = sbus_readl(dbri->regs + REG0);
1438 	tmp &= ~(D_C);		/* Disable CHI */
1439 	sbus_writel(tmp, dbri->regs + REG0);
1440 
1441 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1442 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1443 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1444 
1445 	reset_chi(dbri, CHIslave, 128);
1446 
1447 	/* Note: this next doesn't work for 8-bit stereo, because the two
1448 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1449 	 * (See CS4215 datasheet Fig 15)
1450 	 *
1451 	 * DBRI non-contiguous mode would be required to make this work.
1452 	 */
1453 	data_width = dbri->mm.channels * dbri->mm.precision;
1454 
1455 	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1456 	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1457 	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1458 	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1459 
1460 	/* FIXME: enable CHI after _setdata? */
1461 	tmp = sbus_readl(dbri->regs + REG0);
1462 	tmp |= D_C;		/* Enable CHI */
1463 	sbus_writel(tmp, dbri->regs + REG0);
1464 	spin_unlock_irqrestore(&dbri->lock, flags);
1465 
1466 	cs4215_setdata(dbri, 0);
1467 }
1468 
1469 /*
1470  * Send the control information (i.e. audio format)
1471  */
1472 static int cs4215_setctrl(struct snd_dbri *dbri)
1473 {
1474 	int i, val;
1475 	u32 tmp;
1476 	unsigned long flags;
1477 
1478 	/* FIXME - let the CPU do something useful during these delays */
1479 
1480 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1481 	 * to make sure this takes.  This avoids clicking noises.
1482 	 */
1483 	cs4215_setdata(dbri, 1);
1484 	udelay(125);
1485 
1486 	/*
1487 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1488 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1489 	 */
1490 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1491 	sbus_writel(val, dbri->regs + REG2);
1492 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1493 	udelay(34);
1494 
1495 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1496 	 * operate as CHI master, supplying clocking and frame synchronization.
1497 	 *
1498 	 * In Data mode, however, the CS4215 must be CHI master to insure
1499 	 * that its data stream is synchronous with its codec.
1500 	 *
1501 	 * The upshot of all this?  We start by putting the DBRI into master
1502 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1503 	 * into Data mode and put the DBRI into slave mode.  Various timing
1504 	 * requirements must be observed along the way.
1505 	 *
1506 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1507 	 * others?), the addressing of the CS4215's time slots is
1508 	 * offset by eight bits, so we add eight to all the "cycle"
1509 	 * values in the Define Time Slot (DTS) commands.  This is
1510 	 * done in hardware by a TI 248 that delays the DBRI->4215
1511 	 * frame sync signal by eight clock cycles.  Anybody know why?
1512 	 */
1513 	spin_lock_irqsave(&dbri->lock, flags);
1514 	tmp = sbus_readl(dbri->regs + REG0);
1515 	tmp &= ~D_C;		/* Disable CHI */
1516 	sbus_writel(tmp, dbri->regs + REG0);
1517 
1518 	reset_chi(dbri, CHImaster, 128);
1519 
1520 	/*
1521 	 * Control mode:
1522 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1523 	 * Pipe 18: Receive timeslot 1 (clb).
1524 	 * Pipe 19: Receive timeslot 7 (version).
1525 	 */
1526 
1527 	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1528 	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1529 	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1530 	spin_unlock_irqrestore(&dbri->lock, flags);
1531 
1532 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1533 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1534 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1535 
1536 	spin_lock_irqsave(&dbri->lock, flags);
1537 	tmp = sbus_readl(dbri->regs + REG0);
1538 	tmp |= D_C;		/* Enable CHI */
1539 	sbus_writel(tmp, dbri->regs + REG0);
1540 	spin_unlock_irqrestore(&dbri->lock, flags);
1541 
1542 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1543 		msleep_interruptible(1);
1544 
1545 	if (i == 0) {
1546 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1547 			dbri->mm.status);
1548 		return -1;
1549 	}
1550 
1551 	/* Disable changes to our copy of the version number, as we are about
1552 	 * to leave control mode.
1553 	 */
1554 	recv_fixed(dbri, 19, NULL);
1555 
1556 	/* Terminate CS4215 control mode - data sheet says
1557 	 * "Set CLB=1 and send two more frames of valid control info"
1558 	 */
1559 	dbri->mm.ctrl[0] |= CS4215_CLB;
1560 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1561 
1562 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1563 	udelay(250);
1564 
1565 	cs4215_setdata(dbri, 0);
1566 
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Setup the codec with the sampling rate, audio format and number of
1572  * channels.
1573  * As part of the process we resend the settings for the data
1574  * timeslots as well.
1575  */
1576 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1577 			  snd_pcm_format_t format, unsigned int channels)
1578 {
1579 	int freq_idx;
1580 	int ret = 0;
1581 
1582 	/* Lookup index for this rate */
1583 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1584 		if (CS4215_FREQ[freq_idx].freq == rate)
1585 			break;
1586 	}
1587 	if (CS4215_FREQ[freq_idx].freq != rate) {
1588 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1589 		return -1;
1590 	}
1591 
1592 	switch (format) {
1593 	case SNDRV_PCM_FORMAT_MU_LAW:
1594 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1595 		dbri->mm.precision = 8;
1596 		break;
1597 	case SNDRV_PCM_FORMAT_A_LAW:
1598 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1599 		dbri->mm.precision = 8;
1600 		break;
1601 	case SNDRV_PCM_FORMAT_U8:
1602 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1603 		dbri->mm.precision = 8;
1604 		break;
1605 	case SNDRV_PCM_FORMAT_S16_BE:
1606 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1607 		dbri->mm.precision = 16;
1608 		break;
1609 	default:
1610 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1611 		return -1;
1612 	}
1613 
1614 	/* Add rate parameters */
1615 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1616 	dbri->mm.ctrl[2] = CS4215_XCLK |
1617 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1618 
1619 	dbri->mm.channels = channels;
1620 	if (channels == 2)
1621 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1622 
1623 	ret = cs4215_setctrl(dbri);
1624 	if (ret == 0)
1625 		cs4215_open(dbri);	/* set codec to data mode */
1626 
1627 	return ret;
1628 }
1629 
1630 /*
1631  *
1632  */
1633 static int cs4215_init(struct snd_dbri *dbri)
1634 {
1635 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1636 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1637 
1638 	/* Look for the cs4215 chips */
1639 	if (reg2 & D_PIO2) {
1640 		dprintk(D_MM, "Onboard CS4215 detected\n");
1641 		dbri->mm.onboard = 1;
1642 	}
1643 	if (reg2 & D_PIO0) {
1644 		dprintk(D_MM, "Speakerbox detected\n");
1645 		dbri->mm.onboard = 0;
1646 
1647 		if (reg2 & D_PIO2) {
1648 			printk(KERN_INFO "DBRI: Using speakerbox / "
1649 			       "ignoring onboard mmcodec.\n");
1650 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1651 		}
1652 	}
1653 
1654 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1655 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1656 		return -EIO;
1657 	}
1658 
1659 	cs4215_setup_pipes(dbri);
1660 	cs4215_init_data(&dbri->mm);
1661 
1662 	/* Enable capture of the status & version timeslots. */
1663 	recv_fixed(dbri, 18, &dbri->mm.status);
1664 	recv_fixed(dbri, 19, &dbri->mm.version);
1665 
1666 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1667 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1668 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1669 			dbri->mm.offset);
1670 		return -EIO;
1671 	}
1672 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678 ****************************************************************************
1679 *************************** DBRI interrupt handler *************************
1680 ****************************************************************************
1681 
1682 The DBRI communicates with the CPU mainly via a circular interrupt
1683 buffer.  When an interrupt is signaled, the CPU walks through the
1684 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1685 Complicated interrupts are handled by dedicated functions (which
1686 appear first in this file).  Any pending interrupts can be serviced by
1687 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1688 interrupts are disabled.
1689 
1690 */
1691 
1692 /* xmit_descs()
1693  *
1694  * Starts transmitting the current TD's for recording/playing.
1695  * For playback, ALSA has filled the DMA memory with new data (we hope).
1696  */
1697 static void xmit_descs(struct snd_dbri *dbri)
1698 {
1699 	struct dbri_streaminfo *info;
1700 	s32 *cmd;
1701 	unsigned long flags;
1702 	int first_td;
1703 
1704 	if (dbri == NULL)
1705 		return;		/* Disabled */
1706 
1707 	info = &dbri->stream_info[DBRI_REC];
1708 	spin_lock_irqsave(&dbri->lock, flags);
1709 
1710 	if (info->pipe >= 0) {
1711 		first_td = dbri->pipes[info->pipe].first_desc;
1712 
1713 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1714 
1715 		/* Stream could be closed by the time we run. */
1716 		if (first_td >= 0) {
1717 			cmd = dbri_cmdlock(dbri, 2);
1718 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1719 					    dbri->pipes[info->pipe].sdp
1720 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721 			*(cmd++) = dbri->dma_dvma +
1722 				   dbri_dma_off(desc, first_td);
1723 			dbri_cmdsend(dbri, cmd, 2);
1724 
1725 			/* Reset our admin of the pipe. */
1726 			dbri->pipes[info->pipe].desc = first_td;
1727 		}
1728 	}
1729 
1730 	info = &dbri->stream_info[DBRI_PLAY];
1731 
1732 	if (info->pipe >= 0) {
1733 		first_td = dbri->pipes[info->pipe].first_desc;
1734 
1735 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1736 
1737 		/* Stream could be closed by the time we run. */
1738 		if (first_td >= 0) {
1739 			cmd = dbri_cmdlock(dbri, 2);
1740 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1741 					    dbri->pipes[info->pipe].sdp
1742 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1743 			*(cmd++) = dbri->dma_dvma +
1744 				   dbri_dma_off(desc, first_td);
1745 			dbri_cmdsend(dbri, cmd, 2);
1746 
1747 			/* Reset our admin of the pipe. */
1748 			dbri->pipes[info->pipe].desc = first_td;
1749 		}
1750 	}
1751 
1752 	spin_unlock_irqrestore(&dbri->lock, flags);
1753 }
1754 
1755 /* transmission_complete_intr()
1756  *
1757  * Called by main interrupt handler when DBRI signals transmission complete
1758  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1759  *
1760  * Walks through the pipe's list of transmit buffer descriptors and marks
1761  * them as available. Stops when the first descriptor is found without
1762  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1763  *
1764  * The DMA buffers are not released. They form a ring buffer and
1765  * they are filled by ALSA while others are transmitted by DMA.
1766  *
1767  */
1768 
1769 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1770 {
1771 	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1772 	int td = dbri->pipes[pipe].desc;
1773 	int status;
1774 
1775 	while (td >= 0) {
1776 		if (td >= DBRI_NO_DESCS) {
1777 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1778 			return;
1779 		}
1780 
1781 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1782 		if (!(status & DBRI_TD_TBC))
1783 			break;
1784 
1785 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1786 
1787 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1788 		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1789 
1790 		td = dbri->next_desc[td];
1791 		dbri->pipes[pipe].desc = td;
1792 	}
1793 
1794 	/* Notify ALSA */
1795 	spin_unlock(&dbri->lock);
1796 	snd_pcm_period_elapsed(info->substream);
1797 	spin_lock(&dbri->lock);
1798 }
1799 
1800 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1801 {
1802 	struct dbri_streaminfo *info;
1803 	int rd = dbri->pipes[pipe].desc;
1804 	s32 status;
1805 
1806 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1807 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1808 		return;
1809 	}
1810 
1811 	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1812 	status = dbri->dma->desc[rd].word1;
1813 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1814 
1815 	info = &dbri->stream_info[DBRI_REC];
1816 	info->offset += DBRI_RD_CNT(status);
1817 
1818 	/* FIXME: Check status */
1819 
1820 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1821 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1822 
1823 	/* Notify ALSA */
1824 	spin_unlock(&dbri->lock);
1825 	snd_pcm_period_elapsed(info->substream);
1826 	spin_lock(&dbri->lock);
1827 }
1828 
1829 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1830 {
1831 	int val = D_INTR_GETVAL(x);
1832 	int channel = D_INTR_GETCHAN(x);
1833 	int command = D_INTR_GETCMD(x);
1834 	int code = D_INTR_GETCODE(x);
1835 #ifdef DBRI_DEBUG
1836 	int rval = D_INTR_GETRVAL(x);
1837 #endif
1838 
1839 	if (channel == D_INTR_CMD) {
1840 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1841 			cmds[command], val);
1842 	} else {
1843 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1844 			channel, code, rval);
1845 	}
1846 
1847 	switch (code) {
1848 	case D_INTR_CMDI:
1849 		if (command != D_WAIT)
1850 			printk(KERN_ERR "DBRI: Command read interrupt\n");
1851 		break;
1852 	case D_INTR_BRDY:
1853 		reception_complete_intr(dbri, channel);
1854 		break;
1855 	case D_INTR_XCMP:
1856 	case D_INTR_MINT:
1857 		transmission_complete_intr(dbri, channel);
1858 		break;
1859 	case D_INTR_UNDR:
1860 		/* UNDR - Transmission underrun
1861 		 * resend SDP command with clear pipe bit (C) set
1862 		 */
1863 		{
1864 	/* FIXME: do something useful in case of underrun */
1865 			printk(KERN_ERR "DBRI: Underrun error\n");
1866 #if 0
1867 			s32 *cmd;
1868 			int pipe = channel;
1869 			int td = dbri->pipes[pipe].desc;
1870 
1871 			dbri->dma->desc[td].word4 = 0;
1872 			cmd = dbri_cmdlock(dbri, NoGetLock);
1873 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1874 					    dbri->pipes[pipe].sdp
1875 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1876 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1877 			dbri_cmdsend(dbri, cmd);
1878 #endif
1879 		}
1880 		break;
1881 	case D_INTR_FXDT:
1882 		/* FXDT - Fixed data change */
1883 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1884 			val = reverse_bytes(val, dbri->pipes[channel].length);
1885 
1886 		if (dbri->pipes[channel].recv_fixed_ptr)
1887 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1888 		break;
1889 	default:
1890 		if (channel != D_INTR_CMD)
1891 			printk(KERN_WARNING
1892 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1893 	}
1894 }
1895 
1896 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1897  * buffer until it finds a zero word (indicating nothing more to do
1898  * right now).  Non-zero words require processing and are handed off
1899  * to dbri_process_one_interrupt AFTER advancing the pointer.
1900  */
1901 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1902 {
1903 	s32 x;
1904 
1905 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1906 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1907 		dbri->dbri_irqp++;
1908 		if (dbri->dbri_irqp == DBRI_INT_BLK)
1909 			dbri->dbri_irqp = 1;
1910 
1911 		dbri_process_one_interrupt(dbri, x);
1912 	}
1913 }
1914 
1915 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1916 {
1917 	struct snd_dbri *dbri = dev_id;
1918 	static int errcnt = 0;
1919 	int x;
1920 
1921 	if (dbri == NULL)
1922 		return IRQ_NONE;
1923 	spin_lock(&dbri->lock);
1924 
1925 	/*
1926 	 * Read it, so the interrupt goes away.
1927 	 */
1928 	x = sbus_readl(dbri->regs + REG1);
1929 
1930 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1931 		u32 tmp;
1932 
1933 		if (x & D_MRR)
1934 			printk(KERN_ERR
1935 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1936 			       x);
1937 		if (x & D_MLE)
1938 			printk(KERN_ERR
1939 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1940 			       x);
1941 		if (x & D_LBG)
1942 			printk(KERN_ERR
1943 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1944 		if (x & D_MBE)
1945 			printk(KERN_ERR
1946 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1947 
1948 		/* Some of these SBus errors cause the chip's SBus circuitry
1949 		 * to be disabled, so just re-enable and try to keep going.
1950 		 *
1951 		 * The only one I've seen is MRR, which will be triggered
1952 		 * if you let a transmit pipe underrun, then try to CDP it.
1953 		 *
1954 		 * If these things persist, we reset the chip.
1955 		 */
1956 		if ((++errcnt) % 10 == 0) {
1957 			dprintk(D_INT, "Interrupt errors exceeded.\n");
1958 			dbri_reset(dbri);
1959 		} else {
1960 			tmp = sbus_readl(dbri->regs + REG0);
1961 			tmp &= ~(D_D);
1962 			sbus_writel(tmp, dbri->regs + REG0);
1963 		}
1964 	}
1965 
1966 	dbri_process_interrupt_buffer(dbri);
1967 
1968 	spin_unlock(&dbri->lock);
1969 
1970 	return IRQ_HANDLED;
1971 }
1972 
1973 /****************************************************************************
1974 		PCM Interface
1975 ****************************************************************************/
1976 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1977 	.info		= SNDRV_PCM_INFO_MMAP |
1978 			  SNDRV_PCM_INFO_INTERLEAVED |
1979 			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1980 			  SNDRV_PCM_INFO_MMAP_VALID |
1981 			  SNDRV_PCM_INFO_BATCH,
1982 	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1983 			  SNDRV_PCM_FMTBIT_A_LAW |
1984 			  SNDRV_PCM_FMTBIT_U8 |
1985 			  SNDRV_PCM_FMTBIT_S16_BE,
1986 	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1987 	.rate_min		= 5512,
1988 	.rate_max		= 48000,
1989 	.channels_min		= 1,
1990 	.channels_max		= 2,
1991 	.buffer_bytes_max	= 64 * 1024,
1992 	.period_bytes_min	= 1,
1993 	.period_bytes_max	= DBRI_TD_MAXCNT,
1994 	.periods_min		= 1,
1995 	.periods_max		= 1024,
1996 };
1997 
1998 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1999 			      struct snd_pcm_hw_rule *rule)
2000 {
2001 	struct snd_interval *c = hw_param_interval(params,
2002 				SNDRV_PCM_HW_PARAM_CHANNELS);
2003 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2004 	struct snd_mask fmt;
2005 
2006 	snd_mask_any(&fmt);
2007 	if (c->min > 1) {
2008 		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2009 		return snd_mask_refine(f, &fmt);
2010 	}
2011 	return 0;
2012 }
2013 
2014 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2015 				struct snd_pcm_hw_rule *rule)
2016 {
2017 	struct snd_interval *c = hw_param_interval(params,
2018 				SNDRV_PCM_HW_PARAM_CHANNELS);
2019 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2020 	struct snd_interval ch;
2021 
2022 	snd_interval_any(&ch);
2023 	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2024 		ch.min = 1;
2025 		ch.max = 1;
2026 		ch.integer = 1;
2027 		return snd_interval_refine(c, &ch);
2028 	}
2029 	return 0;
2030 }
2031 
2032 static int snd_dbri_open(struct snd_pcm_substream *substream)
2033 {
2034 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2035 	struct snd_pcm_runtime *runtime = substream->runtime;
2036 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2037 	unsigned long flags;
2038 
2039 	dprintk(D_USR, "open audio output.\n");
2040 	runtime->hw = snd_dbri_pcm_hw;
2041 
2042 	spin_lock_irqsave(&dbri->lock, flags);
2043 	info->substream = substream;
2044 	info->offset = 0;
2045 	info->dvma_buffer = 0;
2046 	info->pipe = -1;
2047 	spin_unlock_irqrestore(&dbri->lock, flags);
2048 
2049 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2050 			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2051 			    -1);
2052 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2053 			    snd_hw_rule_channels, NULL,
2054 			    SNDRV_PCM_HW_PARAM_CHANNELS,
2055 			    -1);
2056 
2057 	cs4215_open(dbri);
2058 
2059 	return 0;
2060 }
2061 
2062 static int snd_dbri_close(struct snd_pcm_substream *substream)
2063 {
2064 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2065 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2066 
2067 	dprintk(D_USR, "close audio output.\n");
2068 	info->substream = NULL;
2069 	info->offset = 0;
2070 
2071 	return 0;
2072 }
2073 
2074 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2075 			      struct snd_pcm_hw_params *hw_params)
2076 {
2077 	struct snd_pcm_runtime *runtime = substream->runtime;
2078 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2079 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2080 	int direction;
2081 	int ret;
2082 
2083 	/* set sampling rate, audio format and number of channels */
2084 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2085 			     params_format(hw_params),
2086 			     params_channels(hw_params));
2087 	if (ret != 0)
2088 		return ret;
2089 
2090 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2091 				params_buffer_bytes(hw_params))) < 0) {
2092 		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2093 		return ret;
2094 	}
2095 
2096 	/* hw_params can get called multiple times. Only map the DMA once.
2097 	 */
2098 	if (info->dvma_buffer == 0) {
2099 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2100 			direction = DMA_TO_DEVICE;
2101 		else
2102 			direction = DMA_FROM_DEVICE;
2103 
2104 		info->dvma_buffer =
2105 			dma_map_single(&dbri->op->dev,
2106 				       runtime->dma_area,
2107 				       params_buffer_bytes(hw_params),
2108 				       direction);
2109 	}
2110 
2111 	direction = params_buffer_bytes(hw_params);
2112 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2113 		direction, info->dvma_buffer);
2114 	return 0;
2115 }
2116 
2117 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2118 {
2119 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2120 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2121 	int direction;
2122 
2123 	dprintk(D_USR, "hw_free.\n");
2124 
2125 	/* hw_free can get called multiple times. Only unmap the DMA once.
2126 	 */
2127 	if (info->dvma_buffer) {
2128 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2129 			direction = DMA_TO_DEVICE;
2130 		else
2131 			direction = DMA_FROM_DEVICE;
2132 
2133 		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2134 				 substream->runtime->buffer_size, direction);
2135 		info->dvma_buffer = 0;
2136 	}
2137 	if (info->pipe != -1) {
2138 		reset_pipe(dbri, info->pipe);
2139 		info->pipe = -1;
2140 	}
2141 
2142 	return snd_pcm_lib_free_pages(substream);
2143 }
2144 
2145 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2146 {
2147 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2148 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2149 	int ret;
2150 
2151 	info->size = snd_pcm_lib_buffer_bytes(substream);
2152 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2153 		info->pipe = 4;	/* Send pipe */
2154 	else
2155 		info->pipe = 6;	/* Receive pipe */
2156 
2157 	spin_lock_irq(&dbri->lock);
2158 	info->offset = 0;
2159 
2160 	/* Setup the all the transmit/receive descriptors to cover the
2161 	 * whole DMA buffer.
2162 	 */
2163 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2164 			  snd_pcm_lib_period_bytes(substream));
2165 
2166 	spin_unlock_irq(&dbri->lock);
2167 
2168 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2169 	return ret;
2170 }
2171 
2172 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2173 {
2174 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2175 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2176 	int ret = 0;
2177 
2178 	switch (cmd) {
2179 	case SNDRV_PCM_TRIGGER_START:
2180 		dprintk(D_USR, "start audio, period is %d bytes\n",
2181 			(int)snd_pcm_lib_period_bytes(substream));
2182 		/* Re-submit the TDs. */
2183 		xmit_descs(dbri);
2184 		break;
2185 	case SNDRV_PCM_TRIGGER_STOP:
2186 		dprintk(D_USR, "stop audio.\n");
2187 		reset_pipe(dbri, info->pipe);
2188 		break;
2189 	default:
2190 		ret = -EINVAL;
2191 	}
2192 
2193 	return ret;
2194 }
2195 
2196 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2197 {
2198 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2199 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2200 	snd_pcm_uframes_t ret;
2201 
2202 	ret = bytes_to_frames(substream->runtime, info->offset)
2203 		% substream->runtime->buffer_size;
2204 	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2205 		ret, substream->runtime->buffer_size);
2206 	return ret;
2207 }
2208 
2209 static struct snd_pcm_ops snd_dbri_ops = {
2210 	.open = snd_dbri_open,
2211 	.close = snd_dbri_close,
2212 	.ioctl = snd_pcm_lib_ioctl,
2213 	.hw_params = snd_dbri_hw_params,
2214 	.hw_free = snd_dbri_hw_free,
2215 	.prepare = snd_dbri_prepare,
2216 	.trigger = snd_dbri_trigger,
2217 	.pointer = snd_dbri_pointer,
2218 };
2219 
2220 static int snd_dbri_pcm(struct snd_card *card)
2221 {
2222 	struct snd_pcm *pcm;
2223 	int err;
2224 
2225 	if ((err = snd_pcm_new(card,
2226 			       /* ID */		    "sun_dbri",
2227 			       /* device */	    0,
2228 			       /* playback count */ 1,
2229 			       /* capture count */  1, &pcm)) < 0)
2230 		return err;
2231 
2232 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2233 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2234 
2235 	pcm->private_data = card->private_data;
2236 	pcm->info_flags = 0;
2237 	strcpy(pcm->name, card->shortname);
2238 
2239 	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2240 			SNDRV_DMA_TYPE_CONTINUOUS,
2241 			snd_dma_continuous_data(GFP_KERNEL),
2242 			64 * 1024, 64 * 1024)) < 0)
2243 		return err;
2244 
2245 	return 0;
2246 }
2247 
2248 /*****************************************************************************
2249 			Mixer interface
2250 *****************************************************************************/
2251 
2252 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2253 				  struct snd_ctl_elem_info *uinfo)
2254 {
2255 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2256 	uinfo->count = 2;
2257 	uinfo->value.integer.min = 0;
2258 	if (kcontrol->private_value == DBRI_PLAY)
2259 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2260 	else
2261 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2262 	return 0;
2263 }
2264 
2265 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2266 				 struct snd_ctl_elem_value *ucontrol)
2267 {
2268 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2269 	struct dbri_streaminfo *info;
2270 
2271 	if (snd_BUG_ON(!dbri))
2272 		return -EINVAL;
2273 	info = &dbri->stream_info[kcontrol->private_value];
2274 
2275 	ucontrol->value.integer.value[0] = info->left_gain;
2276 	ucontrol->value.integer.value[1] = info->right_gain;
2277 	return 0;
2278 }
2279 
2280 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2281 				 struct snd_ctl_elem_value *ucontrol)
2282 {
2283 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2284 	struct dbri_streaminfo *info =
2285 				&dbri->stream_info[kcontrol->private_value];
2286 	unsigned int vol[2];
2287 	int changed = 0;
2288 
2289 	vol[0] = ucontrol->value.integer.value[0];
2290 	vol[1] = ucontrol->value.integer.value[1];
2291 	if (kcontrol->private_value == DBRI_PLAY) {
2292 		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2293 			return -EINVAL;
2294 	} else {
2295 		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2296 			return -EINVAL;
2297 	}
2298 
2299 	if (info->left_gain != vol[0]) {
2300 		info->left_gain = vol[0];
2301 		changed = 1;
2302 	}
2303 	if (info->right_gain != vol[1]) {
2304 		info->right_gain = vol[1];
2305 		changed = 1;
2306 	}
2307 	if (changed) {
2308 		/* First mute outputs, and wait 1/8000 sec (125 us)
2309 		 * to make sure this takes.  This avoids clicking noises.
2310 		 */
2311 		cs4215_setdata(dbri, 1);
2312 		udelay(125);
2313 		cs4215_setdata(dbri, 0);
2314 	}
2315 	return changed;
2316 }
2317 
2318 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2319 				  struct snd_ctl_elem_info *uinfo)
2320 {
2321 	int mask = (kcontrol->private_value >> 16) & 0xff;
2322 
2323 	uinfo->type = (mask == 1) ?
2324 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2325 	uinfo->count = 1;
2326 	uinfo->value.integer.min = 0;
2327 	uinfo->value.integer.max = mask;
2328 	return 0;
2329 }
2330 
2331 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2332 				 struct snd_ctl_elem_value *ucontrol)
2333 {
2334 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2335 	int elem = kcontrol->private_value & 0xff;
2336 	int shift = (kcontrol->private_value >> 8) & 0xff;
2337 	int mask = (kcontrol->private_value >> 16) & 0xff;
2338 	int invert = (kcontrol->private_value >> 24) & 1;
2339 
2340 	if (snd_BUG_ON(!dbri))
2341 		return -EINVAL;
2342 
2343 	if (elem < 4)
2344 		ucontrol->value.integer.value[0] =
2345 		    (dbri->mm.data[elem] >> shift) & mask;
2346 	else
2347 		ucontrol->value.integer.value[0] =
2348 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2349 
2350 	if (invert == 1)
2351 		ucontrol->value.integer.value[0] =
2352 		    mask - ucontrol->value.integer.value[0];
2353 	return 0;
2354 }
2355 
2356 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2357 				 struct snd_ctl_elem_value *ucontrol)
2358 {
2359 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2360 	int elem = kcontrol->private_value & 0xff;
2361 	int shift = (kcontrol->private_value >> 8) & 0xff;
2362 	int mask = (kcontrol->private_value >> 16) & 0xff;
2363 	int invert = (kcontrol->private_value >> 24) & 1;
2364 	int changed = 0;
2365 	unsigned short val;
2366 
2367 	if (snd_BUG_ON(!dbri))
2368 		return -EINVAL;
2369 
2370 	val = (ucontrol->value.integer.value[0] & mask);
2371 	if (invert == 1)
2372 		val = mask - val;
2373 	val <<= shift;
2374 
2375 	if (elem < 4) {
2376 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2377 				       ~(mask << shift)) | val;
2378 		changed = (val != dbri->mm.data[elem]);
2379 	} else {
2380 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2381 					   ~(mask << shift)) | val;
2382 		changed = (val != dbri->mm.ctrl[elem - 4]);
2383 	}
2384 
2385 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2386 		"mixer-value=%ld, mm-value=0x%x\n",
2387 		mask, changed, ucontrol->value.integer.value[0],
2388 		dbri->mm.data[elem & 3]);
2389 
2390 	if (changed) {
2391 		/* First mute outputs, and wait 1/8000 sec (125 us)
2392 		 * to make sure this takes.  This avoids clicking noises.
2393 		 */
2394 		cs4215_setdata(dbri, 1);
2395 		udelay(125);
2396 		cs4215_setdata(dbri, 0);
2397 	}
2398 	return changed;
2399 }
2400 
2401 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2402    timeslots. Shift is the bit offset in the timeslot, mask defines the
2403    number of bits. invert is a boolean for use with attenuation.
2404  */
2405 #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2406 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2407   .info = snd_cs4215_info_single,				\
2408   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2409   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2410 			((invert) << 24) },
2411 
2412 static struct snd_kcontrol_new dbri_controls[] = {
2413 	{
2414 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2415 	 .name  = "Playback Volume",
2416 	 .info  = snd_cs4215_info_volume,
2417 	 .get   = snd_cs4215_get_volume,
2418 	 .put   = snd_cs4215_put_volume,
2419 	 .private_value = DBRI_PLAY,
2420 	 },
2421 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2422 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2423 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2424 	{
2425 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2426 	 .name  = "Capture Volume",
2427 	 .info  = snd_cs4215_info_volume,
2428 	 .get   = snd_cs4215_get_volume,
2429 	 .put   = snd_cs4215_put_volume,
2430 	 .private_value = DBRI_REC,
2431 	 },
2432 	/* FIXME: mic/line switch */
2433 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2434 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2435 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2436 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2437 };
2438 
2439 static int snd_dbri_mixer(struct snd_card *card)
2440 {
2441 	int idx, err;
2442 	struct snd_dbri *dbri;
2443 
2444 	if (snd_BUG_ON(!card || !card->private_data))
2445 		return -EINVAL;
2446 	dbri = card->private_data;
2447 
2448 	strcpy(card->mixername, card->shortname);
2449 
2450 	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2451 		err = snd_ctl_add(card,
2452 				snd_ctl_new1(&dbri_controls[idx], dbri));
2453 		if (err < 0)
2454 			return err;
2455 	}
2456 
2457 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2458 		dbri->stream_info[idx].left_gain = 0;
2459 		dbri->stream_info[idx].right_gain = 0;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 /****************************************************************************
2466 			/proc interface
2467 ****************************************************************************/
2468 static void dbri_regs_read(struct snd_info_entry *entry,
2469 			   struct snd_info_buffer *buffer)
2470 {
2471 	struct snd_dbri *dbri = entry->private_data;
2472 
2473 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2474 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2475 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2476 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2477 }
2478 
2479 #ifdef DBRI_DEBUG
2480 static void dbri_debug_read(struct snd_info_entry *entry,
2481 			    struct snd_info_buffer *buffer)
2482 {
2483 	struct snd_dbri *dbri = entry->private_data;
2484 	int pipe;
2485 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2486 
2487 	for (pipe = 0; pipe < 32; pipe++) {
2488 		if (pipe_active(dbri, pipe)) {
2489 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2490 			snd_iprintf(buffer,
2491 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2492 				    "len=%d next %d\n",
2493 				    pipe,
2494 				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2495 								 "input",
2496 				    pptr->sdp, pptr->desc,
2497 				    pptr->length, pptr->nextpipe);
2498 		}
2499 	}
2500 }
2501 #endif
2502 
2503 static void snd_dbri_proc(struct snd_card *card)
2504 {
2505 	struct snd_dbri *dbri = card->private_data;
2506 	struct snd_info_entry *entry;
2507 
2508 	if (!snd_card_proc_new(card, "regs", &entry))
2509 		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2510 
2511 #ifdef DBRI_DEBUG
2512 	if (!snd_card_proc_new(card, "debug", &entry)) {
2513 		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2514 		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2515 	}
2516 #endif
2517 }
2518 
2519 /*
2520 ****************************************************************************
2521 **************************** Initialization ********************************
2522 ****************************************************************************
2523 */
2524 static void snd_dbri_free(struct snd_dbri *dbri);
2525 
2526 static int snd_dbri_create(struct snd_card *card,
2527 			   struct platform_device *op,
2528 			   int irq, int dev)
2529 {
2530 	struct snd_dbri *dbri = card->private_data;
2531 	int err;
2532 
2533 	spin_lock_init(&dbri->lock);
2534 	dbri->op = op;
2535 	dbri->irq = irq;
2536 
2537 	dbri->dma = dma_zalloc_coherent(&op->dev, sizeof(struct dbri_dma),
2538 					&dbri->dma_dvma, GFP_ATOMIC);
2539 	if (!dbri->dma)
2540 		return -ENOMEM;
2541 
2542 	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2543 		dbri->dma, dbri->dma_dvma);
2544 
2545 	/* Map the registers into memory. */
2546 	dbri->regs_size = resource_size(&op->resource[0]);
2547 	dbri->regs = of_ioremap(&op->resource[0], 0,
2548 				dbri->regs_size, "DBRI Registers");
2549 	if (!dbri->regs) {
2550 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2551 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2552 				  (void *)dbri->dma, dbri->dma_dvma);
2553 		return -EIO;
2554 	}
2555 
2556 	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2557 			  "DBRI audio", dbri);
2558 	if (err) {
2559 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2560 		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2561 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2562 				  (void *)dbri->dma, dbri->dma_dvma);
2563 		return err;
2564 	}
2565 
2566 	/* Do low level initialization of the DBRI and CS4215 chips */
2567 	dbri_initialize(dbri);
2568 	err = cs4215_init(dbri);
2569 	if (err) {
2570 		snd_dbri_free(dbri);
2571 		return err;
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 static void snd_dbri_free(struct snd_dbri *dbri)
2578 {
2579 	dprintk(D_GEN, "snd_dbri_free\n");
2580 	dbri_reset(dbri);
2581 
2582 	if (dbri->irq)
2583 		free_irq(dbri->irq, dbri);
2584 
2585 	if (dbri->regs)
2586 		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2587 
2588 	if (dbri->dma)
2589 		dma_free_coherent(&dbri->op->dev,
2590 				  sizeof(struct dbri_dma),
2591 				  (void *)dbri->dma, dbri->dma_dvma);
2592 }
2593 
2594 static int dbri_probe(struct platform_device *op)
2595 {
2596 	struct snd_dbri *dbri;
2597 	struct resource *rp;
2598 	struct snd_card *card;
2599 	static int dev = 0;
2600 	int irq;
2601 	int err;
2602 
2603 	if (dev >= SNDRV_CARDS)
2604 		return -ENODEV;
2605 	if (!enable[dev]) {
2606 		dev++;
2607 		return -ENOENT;
2608 	}
2609 
2610 	irq = op->archdata.irqs[0];
2611 	if (irq <= 0) {
2612 		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2613 		return -ENODEV;
2614 	}
2615 
2616 	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2617 			   sizeof(struct snd_dbri), &card);
2618 	if (err < 0)
2619 		return err;
2620 
2621 	strcpy(card->driver, "DBRI");
2622 	strcpy(card->shortname, "Sun DBRI");
2623 	rp = &op->resource[0];
2624 	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2625 		card->shortname,
2626 		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2627 
2628 	err = snd_dbri_create(card, op, irq, dev);
2629 	if (err < 0) {
2630 		snd_card_free(card);
2631 		return err;
2632 	}
2633 
2634 	dbri = card->private_data;
2635 	err = snd_dbri_pcm(card);
2636 	if (err < 0)
2637 		goto _err;
2638 
2639 	err = snd_dbri_mixer(card);
2640 	if (err < 0)
2641 		goto _err;
2642 
2643 	/* /proc file handling */
2644 	snd_dbri_proc(card);
2645 	dev_set_drvdata(&op->dev, card);
2646 
2647 	err = snd_card_register(card);
2648 	if (err < 0)
2649 		goto _err;
2650 
2651 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2652 	       dev, dbri->regs,
2653 	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2654 	dev++;
2655 
2656 	return 0;
2657 
2658 _err:
2659 	snd_dbri_free(dbri);
2660 	snd_card_free(card);
2661 	return err;
2662 }
2663 
2664 static int dbri_remove(struct platform_device *op)
2665 {
2666 	struct snd_card *card = dev_get_drvdata(&op->dev);
2667 
2668 	snd_dbri_free(card->private_data);
2669 	snd_card_free(card);
2670 
2671 	return 0;
2672 }
2673 
2674 static const struct of_device_id dbri_match[] = {
2675 	{
2676 		.name = "SUNW,DBRIe",
2677 	},
2678 	{
2679 		.name = "SUNW,DBRIf",
2680 	},
2681 	{},
2682 };
2683 
2684 MODULE_DEVICE_TABLE(of, dbri_match);
2685 
2686 static struct platform_driver dbri_sbus_driver = {
2687 	.driver = {
2688 		.name = "dbri",
2689 		.of_match_table = dbri_match,
2690 	},
2691 	.probe		= dbri_probe,
2692 	.remove		= dbri_remove,
2693 };
2694 
2695 module_platform_driver(dbri_sbus_driver);
2696