xref: /openbmc/linux/sound/sparc/dbri.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6  *
7  * Based entirely upon drivers/sbus/audio/dbri.c which is:
8  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10  *
11  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12  * on Sun SPARCStation 10, 20, LX and Voyager models.
13  *
14  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15  *   data time multiplexer with ISDN support (aka T7259)
16  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18  *   Documentation:
19  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20  *     Sparc Technology Business (courtesy of Sun Support)
21  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22  *     available from the Lucent (formerly AT&T microelectronics) home
23  *     page.
24  *   - http://www.freesoft.org/Linux/DBRI/
25  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27  *   Documentation: from the Crystal Semiconductor home page.
28  *
29  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30  * memory and a serial device (long pipes, no. 0-15) or between two serial
31  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32  * device (short pipes).
33  * A timeslot defines the bit-offset and no. of bits read from a serial device.
34  * The timeslots are linked to 6 circular lists, one for each direction for
35  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36  * (the second one is a monitor/tee pipe, valid only for serial input).
37  *
38  * The mmcodec is connected via the CHI bus and needs the data & some
39  * parameters (volume, output selection) time multiplexed in 8 byte
40  * chunks. It also has a control mode, which serves for audio format setting.
41  *
42  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43  * the same CHI bus, so I thought perhaps it is possible to use the on-board
44  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45  * audio devices. But the SUN HW group decided against it, at least on my
46  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47  * connected.
48  *
49  * I've tried to stick to the following function naming conventions:
50  * snd_*	ALSA stuff
51  * cs4215_*	CS4215 codec specific stuff
52  * dbri_*	DBRI high-level stuff
53  * other	DBRI low-level stuff
54  */
55 
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/gfp.h>
62 
63 #include <sound/core.h>
64 #include <sound/pcm.h>
65 #include <sound/pcm_params.h>
66 #include <sound/info.h>
67 #include <sound/control.h>
68 #include <sound/initval.h>
69 
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <linux/atomic.h>
73 #include <linux/module.h>
74 
75 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
76 MODULE_DESCRIPTION("Sun DBRI");
77 MODULE_LICENSE("GPL");
78 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
79 
80 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
81 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
82 /* Enable this card */
83 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84 
85 module_param_array(index, int, NULL, 0444);
86 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87 module_param_array(id, charp, NULL, 0444);
88 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89 module_param_array(enable, bool, NULL, 0444);
90 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91 
92 #undef DBRI_DEBUG
93 
94 #define D_INT	(1<<0)
95 #define D_GEN	(1<<1)
96 #define D_CMD	(1<<2)
97 #define D_MM	(1<<3)
98 #define D_USR	(1<<4)
99 #define D_DESC	(1<<5)
100 
101 static int dbri_debug;
102 module_param(dbri_debug, int, 0644);
103 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104 
105 #ifdef DBRI_DEBUG
106 static char *cmds[] = {
107 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109 };
110 
111 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112 
113 #else
114 #define dprintk(a, x...) do { } while (0)
115 
116 #endif				/* DBRI_DEBUG */
117 
118 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
119 				    (intr << 27) |	\
120 				    value)
121 
122 /***************************************************************************
123 	CS4215 specific definitions and structures
124 ****************************************************************************/
125 
126 struct cs4215 {
127 	__u8 data[4];		/* Data mode: Time slots 5-8 */
128 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
129 	__u8 onboard;
130 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
131 	volatile __u32 status;
132 	volatile __u32 version;
133 	__u8 precision;		/* In bits, either 8 or 16 */
134 	__u8 channels;		/* 1 or 2 */
135 };
136 
137 /*
138  * Control mode first
139  */
140 
141 /* Time Slot 1, Status register */
142 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
143 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
144 				/* 0: line: 2.8V, speaker 8V */
145 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
146 #define CS4215_RSRVD_1  (1<<5)
147 
148 /* Time Slot 2, Data Format Register */
149 #define CS4215_DFR_LINEAR16	0
150 #define CS4215_DFR_ULAW		1
151 #define CS4215_DFR_ALAW		2
152 #define CS4215_DFR_LINEAR8	3
153 #define CS4215_DFR_STEREO	(1<<2)
154 static struct {
155 	unsigned short freq;
156 	unsigned char xtal;
157 	unsigned char csval;
158 } CS4215_FREQ[] = {
159 	{  8000, (1 << 4), (0 << 3) },
160 	{ 16000, (1 << 4), (1 << 3) },
161 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
162 	{ 32000, (1 << 4), (3 << 3) },
163      /* {    NA, (1 << 4), (4 << 3) }, */
164      /* {    NA, (1 << 4), (5 << 3) }, */
165 	{ 48000, (1 << 4), (6 << 3) },
166 	{  9600, (1 << 4), (7 << 3) },
167 	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
168 	{ 11025, (2 << 4), (1 << 3) },
169 	{ 18900, (2 << 4), (2 << 3) },
170 	{ 22050, (2 << 4), (3 << 3) },
171 	{ 37800, (2 << 4), (4 << 3) },
172 	{ 44100, (2 << 4), (5 << 3) },
173 	{ 33075, (2 << 4), (6 << 3) },
174 	{  6615, (2 << 4), (7 << 3) },
175 	{ 0, 0, 0}
176 };
177 
178 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
179 
180 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
181 
182 /* Time Slot 3, Serial Port Control register */
183 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
184 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
185 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
186 #define CS4215_BSEL_128	(1<<2)
187 #define CS4215_BSEL_256	(2<<2)
188 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
189 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
190 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
191 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
192 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
193 
194 /* Time Slot 4, Test Register */
195 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
197 
198 /* Time Slot 5, Parallel Port Register */
199 /* Read only here and the same as the in data mode */
200 
201 /* Time Slot 6, Reserved  */
202 
203 /* Time Slot 7, Version Register  */
204 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
205 
206 /* Time Slot 8, Reserved  */
207 
208 /*
209  * Data mode
210  */
211 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
212 
213 /* Time Slot 5, Output Setting  */
214 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
215 #define CS4215_LE	(1<<6)	/* Line Out Enable */
216 #define CS4215_HE	(1<<7)	/* Headphone Enable */
217 
218 /* Time Slot 6, Output Setting  */
219 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
220 #define CS4215_SE	(1<<6)	/* Speaker Enable */
221 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
222 
223 /* Time Slot 7, Input Setting */
224 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
225 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
226 #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
227 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
228 #define CS4215_PIO1	(1<<7)
229 
230 /* Time Slot 8, Input Setting */
231 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
232 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
233 
234 /***************************************************************************
235 		DBRI specific definitions and structures
236 ****************************************************************************/
237 
238 /* DBRI main registers */
239 #define REG0	0x00		/* Status and Control */
240 #define REG1	0x04		/* Mode and Interrupt */
241 #define REG2	0x08		/* Parallel IO */
242 #define REG3	0x0c		/* Test */
243 #define REG8	0x20		/* Command Queue Pointer */
244 #define REG9	0x24		/* Interrupt Queue Pointer */
245 
246 #define DBRI_NO_CMDS	64
247 #define DBRI_INT_BLK	64
248 #define DBRI_NO_DESCS	64
249 #define DBRI_NO_PIPES	32
250 #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
251 
252 #define DBRI_REC	0
253 #define DBRI_PLAY	1
254 #define DBRI_NO_STREAMS	2
255 
256 /* One transmit/receive descriptor */
257 /* When ba != 0 descriptor is used */
258 struct dbri_mem {
259 	volatile __u32 word1;
260 	__u32 ba;	/* Transmit/Receive Buffer Address */
261 	__u32 nda;	/* Next Descriptor Address */
262 	volatile __u32 word4;
263 };
264 
265 /* This structure is in a DMA region where it can accessed by both
266  * the CPU and the DBRI
267  */
268 struct dbri_dma {
269 	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
270 	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
271 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
272 };
273 
274 #define dbri_dma_off(member, elem)	\
275 	((u32)(unsigned long)		\
276 	 (&(((struct dbri_dma *)0)->member[elem])))
277 
278 enum in_or_out { PIPEinput, PIPEoutput };
279 
280 struct dbri_pipe {
281 	u32 sdp;		/* SDP command word */
282 	int nextpipe;		/* Next pipe in linked list */
283 	int length;		/* Length of timeslot (bits) */
284 	int first_desc;		/* Index of first descriptor */
285 	int desc;		/* Index of active descriptor */
286 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
287 };
288 
289 /* Per stream (playback or record) information */
290 struct dbri_streaminfo {
291 	struct snd_pcm_substream *substream;
292 	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
293 	int size;		/* Size of DMA buffer             */
294 	size_t offset;		/* offset in user buffer          */
295 	int pipe;		/* Data pipe used                 */
296 	int left_gain;		/* mixer elements                 */
297 	int right_gain;
298 };
299 
300 /* This structure holds the information for both chips (DBRI & CS4215) */
301 struct snd_dbri {
302 	int regs_size, irq;	/* Needed for unload */
303 	struct platform_device *op;	/* OF device info */
304 	spinlock_t lock;
305 
306 	struct dbri_dma *dma;	/* Pointer to our DMA block */
307 	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
308 
309 	void __iomem *regs;	/* dbri HW regs */
310 	int dbri_irqp;		/* intr queue pointer */
311 
312 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
313 	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
314 	spinlock_t cmdlock;	/* Protects cmd queue accesses */
315 	s32 *cmdptr;		/* Pointer to the last queued cmd */
316 
317 	int chi_bpf;
318 
319 	struct cs4215 mm;	/* mmcodec special info */
320 				/* per stream (playback/record) info */
321 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322 };
323 
324 #define DBRI_MAX_VOLUME		63	/* Output volume */
325 #define DBRI_MAX_GAIN		15	/* Input gain */
326 
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P		(1<<15)	/* Program command & queue pointer valid */
329 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
330 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
331 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
332 #define D_X		(1<<7)	/* Sanity Timer Disable */
333 #define D_T		(1<<6)	/* Permit activation of the TE interface */
334 #define D_N		(1<<5)	/* Permit activation of the NT interface */
335 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
336 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
337 #define D_D		(1<<2)	/* Disable Master Mode */
338 #define D_H		(1<<1)	/* Halt for Analysis */
339 #define D_R		(1<<0)	/* Soft Reset */
340 
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END	(1<<8)	/* Byte Order */
343 #define D_BIG_END	(0<<8)	/* Byte Order */
344 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
345 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
346 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
347 #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
348 #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
349 
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
352 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
353 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
354 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
355 #define D_ENPIO		(0xf0)	/* Enable all the pins */
356 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
358 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
359 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
360 
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT		0x0	/* Stop execution */
363 #define D_PAUSE		0x1	/* Flush long pipes */
364 #define D_JUMP		0x2	/* New command queue */
365 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
366 #define D_REX		0x4	/* Report command execution via interrupt */
367 #define D_SDP		0x5	/* Setup Data Pipe */
368 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS		0x7	/* Define Time Slot */
370 #define D_SSP		0x8	/* Set short Data Pipe */
371 #define D_CHI		0x9	/* Set CHI Global Mode */
372 #define D_NT		0xa	/* NT Command */
373 #define D_TE		0xb	/* TE Command */
374 #define D_CDEC		0xc	/* Codec setup */
375 #define D_TEST		0xd	/* No comment */
376 #define D_CDM		0xe	/* CHI Data mode command */
377 
378 /* Special bits for some commands */
379 #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
380 
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
384 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
385 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
386 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
387 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
388 
389 /* Pipe data MODE */
390 #define D_SDP_MEM	(0<<13)	/* To/from memory */
391 #define D_SDP_HDLC	(2<<13)
392 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
393 #define D_SDP_SER	(4<<13)	/* Serial to serial */
394 #define D_SDP_FIXED	(6<<13)	/* Short only */
395 #define D_SDP_MODE(v)	((v)&(7<<13))
396 
397 #define D_SDP_TO_SER	(1<<12)	/* Direction */
398 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
399 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
400 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
401 #define D_SDP_P		(1<<10)	/* Pointer Valid */
402 #define D_SDP_A		(1<<8)	/* Abort */
403 #define D_SDP_C		(1<<7)	/* Clear */
404 
405 /* Define Time Slot */
406 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
409 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
411 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
412 
413 /* Time Slot defines */
414 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
415 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
416 #define D_TS_DI		(1<<13)	/* Data Invert */
417 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
418 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
419 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
420 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
421 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
422 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
423 
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
426 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
427 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
428 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
429 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD	(1<<11)	/* Frame Drive */
431 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
432 
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
435 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
439 #define D_NT_FT		(1<<12)	/* Fixed Timing */
440 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
441 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
442 #define D_NT_ACT	(1<<9)	/* Activate Interface */
443 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
444 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
445 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
446 #define D_NT_FACT	(1<<1)	/* Force Activation */
447 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
448 
449 /* Codec Setup */
450 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
451 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
453 
454 /* Test */
455 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
456 #define D_TEST_SIZE(v)	((v)<<11)	/* */
457 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC	0x6	/* Microprocessor test */
459 #define D_TEST_SER	0x7	/* Serial-Controller test */
460 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
463 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP	0xe	/* ROM Dump */
465 
466 /* CHI Data Mode */
467 #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
472 #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
473 
474 /* The Interrupts */
475 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
476 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL	5	/* End of List */
480 #define D_INTR_CMDI	6	/* Command has bean read */
481 #define D_INTR_XCMP	8	/* Transmission of frame complete */
482 #define D_INTR_SBRI	9	/* BRI status change info */
483 #define D_INTR_FXDT	10	/* Fixed data change */
484 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT	12	/* Dropped by frame slip */
487 #define D_INTR_RBYT	13	/* Repeated by frame slip */
488 #define D_INTR_LINT	14	/* Lost Interrupt */
489 #define D_INTR_UNDR	15	/* DMA underrun */
490 
491 #define D_INTR_TE	32
492 #define D_INTR_NT	34
493 #define D_INTR_CHI	36
494 #define D_INTR_CMD	38
495 
496 #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
497 #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
498 #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
499 #define D_INTR_GETVAL(v)	((v) & 0xffff)
500 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
501 
502 #define D_P_0		0	/* TE receive anchor */
503 #define D_P_1		1	/* TE transmit anchor */
504 #define D_P_2		2	/* NT transmit anchor */
505 #define D_P_3		3	/* NT receive anchor */
506 #define D_P_4		4	/* CHI send data */
507 #define D_P_5		5	/* CHI receive data */
508 #define D_P_6		6	/* */
509 #define D_P_7		7	/* */
510 #define D_P_8		8	/* */
511 #define D_P_9		9	/* */
512 #define D_P_10		10	/* */
513 #define D_P_11		11	/* */
514 #define D_P_12		12	/* */
515 #define D_P_13		13	/* */
516 #define D_P_14		14	/* */
517 #define D_P_15		15	/* */
518 #define D_P_16		16	/* CHI anchor pipe */
519 #define D_P_17		17	/* CHI send */
520 #define D_P_18		18	/* CHI receive */
521 #define D_P_19		19	/* CHI receive */
522 #define D_P_20		20	/* CHI receive */
523 #define D_P_21		21	/* */
524 #define D_P_22		22	/* */
525 #define D_P_23		23	/* */
526 #define D_P_24		24	/* */
527 #define D_P_25		25	/* */
528 #define D_P_26		26	/* */
529 #define D_P_27		27	/* */
530 #define D_P_28		28	/* */
531 #define D_P_29		29	/* */
532 #define D_P_30		30	/* */
533 #define D_P_31		31	/* */
534 
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F	(1 << 31)	/* End of Frame */
537 #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
538 #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
540 #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
541 #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
543 #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
545 #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
547 			/* Maximum buffer size per TD: almost 8KB */
548 #define DBRI_TD_MAXCNT	((1 << 13) - 4)
549 
550 /* Receive descriptor defines */
551 #define DBRI_RD_F	(1 << 31)	/* End of Frame */
552 #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
553 #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
554 #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
555 #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
556 #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
557 #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
558 #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
559 #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
560 #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
561 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
562 
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream)				\
566 		(substream->stream ==				\
567 		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568 
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream)	\
571 		&dbri->stream_info[DBRI_STREAMNO(substream)]
572 
573 /*
574  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575  * So we have to reverse the bits. Note: not all bit lengths are supported
576  */
577 static __u32 reverse_bytes(__u32 b, int len)
578 {
579 	switch (len) {
580 	case 32:
581 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582 	case 16:
583 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
584 	case 8:
585 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
586 	case 4:
587 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
588 	case 2:
589 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
590 	case 1:
591 	case 0:
592 		break;
593 	default:
594 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
595 	}
596 
597 	return b;
598 }
599 
600 /*
601 ****************************************************************************
602 ************** DBRI initialization and command synchronization *************
603 ****************************************************************************
604 
605 Commands are sent to the DBRI by building a list of them in memory,
606 then writing the address of the first list item to DBRI register 8.
607 The list is terminated with a WAIT command, which generates a
608 CPU interrupt to signal completion.
609 
610 Since the DBRI can run in parallel with the CPU, several means of
611 synchronization present themselves. The method implemented here uses
612 the dbri_cmdwait() to wait for execution of batch of sent commands.
613 
614 A circular command buffer is used here. A new command is being added
615 while another can be executed. The scheme works by adding two WAIT commands
616 after each sent batch of commands. When the next batch is prepared it is
617 added after the WAIT commands then the WAITs are replaced with single JUMP
618 command to the new batch. The the DBRI is forced to reread the last WAIT
619 command (replaced by the JUMP by then). If the DBRI is still executing
620 previous commands the request to reread the WAIT command is ignored.
621 
622 Every time a routine wants to write commands to the DBRI, it must
623 first call dbri_cmdlock() and get pointer to a free space in
624 dbri->dma->cmd buffer. After this, the commands can be written to
625 the buffer, and dbri_cmdsend() is called with the final pointer value
626 to send them to the DBRI.
627 
628 */
629 
630 #define MAXLOOPS 20
631 /*
632  * Wait for the current command string to execute
633  */
634 static void dbri_cmdwait(struct snd_dbri *dbri)
635 {
636 	int maxloops = MAXLOOPS;
637 	unsigned long flags;
638 
639 	/* Delay if previous commands are still being processed */
640 	spin_lock_irqsave(&dbri->lock, flags);
641 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
642 		spin_unlock_irqrestore(&dbri->lock, flags);
643 		msleep_interruptible(1);
644 		spin_lock_irqsave(&dbri->lock, flags);
645 	}
646 	spin_unlock_irqrestore(&dbri->lock, flags);
647 
648 	if (maxloops == 0)
649 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
650 	else
651 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
652 			MAXLOOPS - maxloops - 1);
653 }
654 /*
655  * Lock the command queue and return pointer to space for len cmd words
656  * It locks the cmdlock spinlock.
657  */
658 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
659 {
660 	u32 dvma_addr = (u32)dbri->dma_dvma;
661 
662 	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
663 	len += 2;
664 	spin_lock(&dbri->cmdlock);
665 	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
666 		return dbri->cmdptr + 2;
667 	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
668 		return dbri->dma->cmd;
669 	else
670 		printk(KERN_ERR "DBRI: no space for commands.");
671 
672 	return NULL;
673 }
674 
675 /*
676  * Send prepared cmd string. It works by writing a JUMP cmd into
677  * the last WAIT cmd and force DBRI to reread the cmd.
678  * The JUMP cmd points to the new cmd string.
679  * It also releases the cmdlock spinlock.
680  *
681  * Lock must be held before calling this.
682  */
683 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
684 {
685 	u32 dvma_addr = (u32)dbri->dma_dvma;
686 	s32 tmp, addr;
687 	static int wait_id = 0;
688 
689 	wait_id++;
690 	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
691 	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
692 	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
693 
694 	/* Replace the last command with JUMP */
695 	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
696 	*(dbri->cmdptr+1) = addr;
697 	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
698 
699 #ifdef DBRI_DEBUG
700 	if (cmd > dbri->cmdptr) {
701 		s32 *ptr;
702 
703 		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
704 			dprintk(D_CMD, "cmd: %lx:%08x\n",
705 				(unsigned long)ptr, *ptr);
706 	} else {
707 		s32 *ptr = dbri->cmdptr;
708 
709 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
710 		ptr++;
711 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
712 		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
713 			dprintk(D_CMD, "cmd: %lx:%08x\n",
714 				(unsigned long)ptr, *ptr);
715 	}
716 #endif
717 
718 	/* Reread the last command */
719 	tmp = sbus_readl(dbri->regs + REG0);
720 	tmp |= D_P;
721 	sbus_writel(tmp, dbri->regs + REG0);
722 
723 	dbri->cmdptr = cmd;
724 	spin_unlock(&dbri->cmdlock);
725 }
726 
727 /* Lock must be held when calling this */
728 static void dbri_reset(struct snd_dbri *dbri)
729 {
730 	int i;
731 	u32 tmp;
732 
733 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
734 		sbus_readl(dbri->regs + REG0),
735 		sbus_readl(dbri->regs + REG2),
736 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
737 
738 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
739 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
740 		udelay(10);
741 
742 	/* A brute approach - DBRI falls back to working burst size by itself
743 	 * On SS20 D_S does not work, so do not try so high. */
744 	tmp = sbus_readl(dbri->regs + REG0);
745 	tmp |= D_G | D_E;
746 	tmp &= ~D_S;
747 	sbus_writel(tmp, dbri->regs + REG0);
748 }
749 
750 /* Lock must not be held before calling this */
751 static void dbri_initialize(struct snd_dbri *dbri)
752 {
753 	u32 dvma_addr = (u32)dbri->dma_dvma;
754 	s32 *cmd;
755 	u32 dma_addr;
756 	unsigned long flags;
757 	int n;
758 
759 	spin_lock_irqsave(&dbri->lock, flags);
760 
761 	dbri_reset(dbri);
762 
763 	/* Initialize pipes */
764 	for (n = 0; n < DBRI_NO_PIPES; n++)
765 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
766 
767 	spin_lock_init(&dbri->cmdlock);
768 	/*
769 	 * Initialize the interrupt ring buffer.
770 	 */
771 	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
772 	dbri->dma->intr[0] = dma_addr;
773 	dbri->dbri_irqp = 1;
774 	/*
775 	 * Set up the interrupt queue
776 	 */
777 	spin_lock(&dbri->cmdlock);
778 	cmd = dbri->cmdptr = dbri->dma->cmd;
779 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
780 	*(cmd++) = dma_addr;
781 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
782 	dbri->cmdptr = cmd;
783 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
784 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
785 	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
786 	sbus_writel(dma_addr, dbri->regs + REG8);
787 	spin_unlock(&dbri->cmdlock);
788 
789 	spin_unlock_irqrestore(&dbri->lock, flags);
790 	dbri_cmdwait(dbri);
791 }
792 
793 /*
794 ****************************************************************************
795 ************************** DBRI data pipe management ***********************
796 ****************************************************************************
797 
798 While DBRI control functions use the command and interrupt buffers, the
799 main data path takes the form of data pipes, which can be short (command
800 and interrupt driven), or long (attached to DMA buffers).  These functions
801 provide a rudimentary means of setting up and managing the DBRI's pipes,
802 but the calling functions have to make sure they respect the pipes' linked
803 list ordering, among other things.  The transmit and receive functions
804 here interface closely with the transmit and receive interrupt code.
805 
806 */
807 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
808 {
809 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
810 }
811 
812 /* reset_pipe(dbri, pipe)
813  *
814  * Called on an in-use pipe to clear anything being transmitted or received
815  * Lock must be held before calling this.
816  */
817 static void reset_pipe(struct snd_dbri *dbri, int pipe)
818 {
819 	int sdp;
820 	int desc;
821 	s32 *cmd;
822 
823 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
824 		printk(KERN_ERR "DBRI: reset_pipe called with "
825 			"illegal pipe number\n");
826 		return;
827 	}
828 
829 	sdp = dbri->pipes[pipe].sdp;
830 	if (sdp == 0) {
831 		printk(KERN_ERR "DBRI: reset_pipe called "
832 			"on uninitialized pipe\n");
833 		return;
834 	}
835 
836 	cmd = dbri_cmdlock(dbri, 3);
837 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
838 	*(cmd++) = 0;
839 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
840 	dbri_cmdsend(dbri, cmd, 3);
841 
842 	desc = dbri->pipes[pipe].first_desc;
843 	if (desc >= 0)
844 		do {
845 			dbri->dma->desc[desc].ba = 0;
846 			dbri->dma->desc[desc].nda = 0;
847 			desc = dbri->next_desc[desc];
848 		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
849 
850 	dbri->pipes[pipe].desc = -1;
851 	dbri->pipes[pipe].first_desc = -1;
852 }
853 
854 /*
855  * Lock must be held before calling this.
856  */
857 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
858 {
859 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
860 		printk(KERN_ERR "DBRI: setup_pipe called "
861 			"with illegal pipe number\n");
862 		return;
863 	}
864 
865 	if ((sdp & 0xf800) != sdp) {
866 		printk(KERN_ERR "DBRI: setup_pipe called "
867 			"with strange SDP value\n");
868 		/* sdp &= 0xf800; */
869 	}
870 
871 	/* If this is a fixed receive pipe, arrange for an interrupt
872 	 * every time its data changes
873 	 */
874 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
875 		sdp |= D_SDP_CHANGE;
876 
877 	sdp |= D_PIPE(pipe);
878 	dbri->pipes[pipe].sdp = sdp;
879 	dbri->pipes[pipe].desc = -1;
880 	dbri->pipes[pipe].first_desc = -1;
881 
882 	reset_pipe(dbri, pipe);
883 }
884 
885 /*
886  * Lock must be held before calling this.
887  */
888 static void link_time_slot(struct snd_dbri *dbri, int pipe,
889 			   int prevpipe, int nextpipe,
890 			   int length, int cycle)
891 {
892 	s32 *cmd;
893 	int val;
894 
895 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
896 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
897 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
898 		printk(KERN_ERR
899 		    "DBRI: link_time_slot called with illegal pipe number\n");
900 		return;
901 	}
902 
903 	if (dbri->pipes[pipe].sdp == 0
904 			|| dbri->pipes[prevpipe].sdp == 0
905 			|| dbri->pipes[nextpipe].sdp == 0) {
906 		printk(KERN_ERR "DBRI: link_time_slot called "
907 			"on uninitialized pipe\n");
908 		return;
909 	}
910 
911 	dbri->pipes[prevpipe].nextpipe = pipe;
912 	dbri->pipes[pipe].nextpipe = nextpipe;
913 	dbri->pipes[pipe].length = length;
914 
915 	cmd = dbri_cmdlock(dbri, 4);
916 
917 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
918 		/* Deal with CHI special case:
919 		 * "If transmission on edges 0 or 1 is desired, then cycle n
920 		 *  (where n = # of bit times per frame...) must be used."
921 		 *                  - DBRI data sheet, page 11
922 		 */
923 		if (prevpipe == 16 && cycle == 0)
924 			cycle = dbri->chi_bpf;
925 
926 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
927 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
928 		*(cmd++) = 0;
929 		*(cmd++) =
930 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
931 	} else {
932 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
933 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
934 		*(cmd++) =
935 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
936 		*(cmd++) = 0;
937 	}
938 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
939 
940 	dbri_cmdsend(dbri, cmd, 4);
941 }
942 
943 #if 0
944 /*
945  * Lock must be held before calling this.
946  */
947 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
948 			     enum in_or_out direction, int prevpipe,
949 			     int nextpipe)
950 {
951 	s32 *cmd;
952 	int val;
953 
954 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
955 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
956 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
957 		printk(KERN_ERR
958 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
959 		return;
960 	}
961 
962 	cmd = dbri_cmdlock(dbri, 4);
963 
964 	if (direction == PIPEinput) {
965 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
966 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
967 		*(cmd++) = D_TS_NEXT(nextpipe);
968 		*(cmd++) = 0;
969 	} else {
970 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
971 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
972 		*(cmd++) = 0;
973 		*(cmd++) = D_TS_NEXT(nextpipe);
974 	}
975 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
976 
977 	dbri_cmdsend(dbri, cmd, 4);
978 }
979 #endif
980 
981 /* xmit_fixed() / recv_fixed()
982  *
983  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
984  * expected to change much, and which we don't need to buffer.
985  * The DBRI only interrupts us when the data changes (receive pipes),
986  * or only changes the data when this function is called (transmit pipes).
987  * Only short pipes (numbers 16-31) can be used in fixed data mode.
988  *
989  * These function operate on a 32-bit field, no matter how large
990  * the actual time slot is.  The interrupt handler takes care of bit
991  * ordering and alignment.  An 8-bit time slot will always end up
992  * in the low-order 8 bits, filled either MSB-first or LSB-first,
993  * depending on the settings passed to setup_pipe().
994  *
995  * Lock must not be held before calling it.
996  */
997 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
998 {
999 	s32 *cmd;
1000 	unsigned long flags;
1001 
1002 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1003 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1004 		return;
1005 	}
1006 
1007 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1008 		printk(KERN_ERR "DBRI: xmit_fixed: "
1009 			"Uninitialized pipe %d\n", pipe);
1010 		return;
1011 	}
1012 
1013 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1014 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1015 		return;
1016 	}
1017 
1018 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1019 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1020 			pipe);
1021 		return;
1022 	}
1023 
1024 	/* DBRI short pipes always transmit LSB first */
1025 
1026 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1027 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1028 
1029 	cmd = dbri_cmdlock(dbri, 3);
1030 
1031 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1032 	*(cmd++) = data;
1033 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1034 
1035 	spin_lock_irqsave(&dbri->lock, flags);
1036 	dbri_cmdsend(dbri, cmd, 3);
1037 	spin_unlock_irqrestore(&dbri->lock, flags);
1038 	dbri_cmdwait(dbri);
1039 
1040 }
1041 
1042 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1043 {
1044 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1045 		printk(KERN_ERR "DBRI: recv_fixed called with "
1046 			"illegal pipe number\n");
1047 		return;
1048 	}
1049 
1050 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1051 		printk(KERN_ERR "DBRI: recv_fixed called on "
1052 			"non-fixed pipe %d\n", pipe);
1053 		return;
1054 	}
1055 
1056 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1057 		printk(KERN_ERR "DBRI: recv_fixed called on "
1058 			"transmit pipe %d\n", pipe);
1059 		return;
1060 	}
1061 
1062 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1063 }
1064 
1065 /* setup_descs()
1066  *
1067  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1068  * with a DMA buffer.
1069  *
1070  * Only pipe numbers 0-15 can be used in this mode.
1071  *
1072  * This function takes a stream number pointing to a data buffer,
1073  * and work by building chains of descriptors which identify the
1074  * data buffers.  Buffers too large for a single descriptor will
1075  * be spread across multiple descriptors.
1076  *
1077  * All descriptors create a ring buffer.
1078  *
1079  * Lock must be held before calling this.
1080  */
1081 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1082 {
1083 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1084 	u32 dvma_addr = (u32)dbri->dma_dvma;
1085 	__u32 dvma_buffer;
1086 	int desc;
1087 	int len;
1088 	int first_desc = -1;
1089 	int last_desc = -1;
1090 
1091 	if (info->pipe < 0 || info->pipe > 15) {
1092 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1093 		return -2;
1094 	}
1095 
1096 	if (dbri->pipes[info->pipe].sdp == 0) {
1097 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1098 		       info->pipe);
1099 		return -2;
1100 	}
1101 
1102 	dvma_buffer = info->dvma_buffer;
1103 	len = info->size;
1104 
1105 	if (streamno == DBRI_PLAY) {
1106 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1107 			printk(KERN_ERR "DBRI: setup_descs: "
1108 				"Called on receive pipe %d\n", info->pipe);
1109 			return -2;
1110 		}
1111 	} else {
1112 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1113 			printk(KERN_ERR
1114 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1115 			     info->pipe);
1116 			return -2;
1117 		}
1118 		/* Should be able to queue multiple buffers
1119 		 * to receive on a pipe
1120 		 */
1121 		if (pipe_active(dbri, info->pipe)) {
1122 			printk(KERN_ERR "DBRI: recv_on_pipe: "
1123 				"Called on active pipe %d\n", info->pipe);
1124 			return -2;
1125 		}
1126 
1127 		/* Make sure buffer size is multiple of four */
1128 		len &= ~3;
1129 	}
1130 
1131 	/* Free descriptors if pipe has any */
1132 	desc = dbri->pipes[info->pipe].first_desc;
1133 	if (desc >= 0)
1134 		do {
1135 			dbri->dma->desc[desc].ba = 0;
1136 			dbri->dma->desc[desc].nda = 0;
1137 			desc = dbri->next_desc[desc];
1138 		} while (desc != -1 &&
1139 			 desc != dbri->pipes[info->pipe].first_desc);
1140 
1141 	dbri->pipes[info->pipe].desc = -1;
1142 	dbri->pipes[info->pipe].first_desc = -1;
1143 
1144 	desc = 0;
1145 	while (len > 0) {
1146 		int mylen;
1147 
1148 		for (; desc < DBRI_NO_DESCS; desc++) {
1149 			if (!dbri->dma->desc[desc].ba)
1150 				break;
1151 		}
1152 
1153 		if (desc == DBRI_NO_DESCS) {
1154 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1155 			return -1;
1156 		}
1157 
1158 		if (len > DBRI_TD_MAXCNT)
1159 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1160 		else
1161 			mylen = len;
1162 
1163 		if (mylen > period)
1164 			mylen = period;
1165 
1166 		dbri->next_desc[desc] = -1;
1167 		dbri->dma->desc[desc].ba = dvma_buffer;
1168 		dbri->dma->desc[desc].nda = 0;
1169 
1170 		if (streamno == DBRI_PLAY) {
1171 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1172 			dbri->dma->desc[desc].word4 = 0;
1173 			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1174 		} else {
1175 			dbri->dma->desc[desc].word1 = 0;
1176 			dbri->dma->desc[desc].word4 =
1177 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1178 		}
1179 
1180 		if (first_desc == -1)
1181 			first_desc = desc;
1182 		else {
1183 			dbri->next_desc[last_desc] = desc;
1184 			dbri->dma->desc[last_desc].nda =
1185 			    dvma_addr + dbri_dma_off(desc, desc);
1186 		}
1187 
1188 		last_desc = desc;
1189 		dvma_buffer += mylen;
1190 		len -= mylen;
1191 	}
1192 
1193 	if (first_desc == -1 || last_desc == -1) {
1194 		printk(KERN_ERR "DBRI: setup_descs: "
1195 			" Not enough descriptors available\n");
1196 		return -1;
1197 	}
1198 
1199 	dbri->dma->desc[last_desc].nda =
1200 	    dvma_addr + dbri_dma_off(desc, first_desc);
1201 	dbri->next_desc[last_desc] = first_desc;
1202 	dbri->pipes[info->pipe].first_desc = first_desc;
1203 	dbri->pipes[info->pipe].desc = first_desc;
1204 
1205 #ifdef DBRI_DEBUG
1206 	for (desc = first_desc; desc != -1;) {
1207 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1208 			desc,
1209 			dbri->dma->desc[desc].word1,
1210 			dbri->dma->desc[desc].ba,
1211 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1212 			desc = dbri->next_desc[desc];
1213 			if (desc == first_desc)
1214 				break;
1215 	}
1216 #endif
1217 	return 0;
1218 }
1219 
1220 /*
1221 ****************************************************************************
1222 ************************** DBRI - CHI interface ****************************
1223 ****************************************************************************
1224 
1225 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1226 multiplexed serial interface which the DBRI can operate in either master
1227 (give clock/frame sync) or slave (take clock/frame sync) mode.
1228 
1229 */
1230 
1231 enum master_or_slave { CHImaster, CHIslave };
1232 
1233 /*
1234  * Lock must not be held before calling it.
1235  */
1236 static void reset_chi(struct snd_dbri *dbri,
1237 		      enum master_or_slave master_or_slave,
1238 		      int bits_per_frame)
1239 {
1240 	s32 *cmd;
1241 	int val;
1242 
1243 	/* Set CHI Anchor: Pipe 16 */
1244 
1245 	cmd = dbri_cmdlock(dbri, 4);
1246 	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1247 		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1248 	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1249 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1250 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1251 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1252 	dbri_cmdsend(dbri, cmd, 4);
1253 
1254 	dbri->pipes[16].sdp = 1;
1255 	dbri->pipes[16].nextpipe = 16;
1256 
1257 	cmd = dbri_cmdlock(dbri, 4);
1258 
1259 	if (master_or_slave == CHIslave) {
1260 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1261 		 *
1262 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1263 		 * IR     = give immediate CHI status interrupt
1264 		 * EN     = give CHI status interrupt upon change
1265 		 */
1266 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1267 	} else {
1268 		/* Setup DBRI for CHI Master - generate clock, FS
1269 		 *
1270 		 * BPF				=  bits per 8 kHz frame
1271 		 * 12.288 MHz / CHICM_divisor	= clock rate
1272 		 * FD = 1 - drive CHIFS on rising edge of CHICK
1273 		 */
1274 		int clockrate = bits_per_frame * 8;
1275 		int divisor = 12288 / clockrate;
1276 
1277 		if (divisor > 255 || divisor * clockrate != 12288)
1278 			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1279 				"in setup_chi\n");
1280 
1281 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1282 				    | D_CHI_BPF(bits_per_frame));
1283 	}
1284 
1285 	dbri->chi_bpf = bits_per_frame;
1286 
1287 	/* CHI Data Mode
1288 	 *
1289 	 * RCE   =  0 - receive on falling edge of CHICK
1290 	 * XCE   =  1 - transmit on rising edge of CHICK
1291 	 * XEN   =  1 - enable transmitter
1292 	 * REN   =  1 - enable receiver
1293 	 */
1294 
1295 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1296 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1297 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1298 
1299 	dbri_cmdsend(dbri, cmd, 4);
1300 }
1301 
1302 /*
1303 ****************************************************************************
1304 *********************** CS4215 audio codec management **********************
1305 ****************************************************************************
1306 
1307 In the standard SPARC audio configuration, the CS4215 codec is attached
1308 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1309 
1310  * Lock must not be held before calling it.
1311 
1312 */
1313 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1314 {
1315 	unsigned long flags;
1316 
1317 	spin_lock_irqsave(&dbri->lock, flags);
1318 	/*
1319 	 * Data mode:
1320 	 * Pipe  4: Send timeslots 1-4 (audio data)
1321 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1322 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1323 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1324 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1325 	 *          not relevant for us (only for doublechecking).
1326 	 *
1327 	 * Control mode:
1328 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1329 	 * Pipe 18: Receive timeslot 1 (clb).
1330 	 * Pipe 19: Receive timeslot 7 (version).
1331 	 */
1332 
1333 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1334 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1335 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1336 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1337 
1338 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1340 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341 	spin_unlock_irqrestore(&dbri->lock, flags);
1342 
1343 	dbri_cmdwait(dbri);
1344 }
1345 
1346 static int cs4215_init_data(struct cs4215 *mm)
1347 {
1348 	/*
1349 	 * No action, memory resetting only.
1350 	 *
1351 	 * Data Time Slot 5-8
1352 	 * Speaker,Line and Headphone enable. Gain set to the half.
1353 	 * Input is mike.
1354 	 */
1355 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1356 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1357 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1358 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1359 
1360 	/*
1361 	 * Control Time Slot 1-4
1362 	 * 0: Default I/O voltage scale
1363 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1364 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1365 	 * 3: Tests disabled
1366 	 */
1367 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1368 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1369 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1370 	mm->ctrl[3] = 0;
1371 
1372 	mm->status = 0;
1373 	mm->version = 0xff;
1374 	mm->precision = 8;	/* For ULAW */
1375 	mm->channels = 1;
1376 
1377 	return 0;
1378 }
1379 
1380 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1381 {
1382 	if (muted) {
1383 		dbri->mm.data[0] |= 63;
1384 		dbri->mm.data[1] |= 63;
1385 		dbri->mm.data[2] &= ~15;
1386 		dbri->mm.data[3] &= ~15;
1387 	} else {
1388 		/* Start by setting the playback attenuation. */
1389 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1390 		int left_gain = info->left_gain & 0x3f;
1391 		int right_gain = info->right_gain & 0x3f;
1392 
1393 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1394 		dbri->mm.data[1] &= ~0x3f;
1395 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1396 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1397 
1398 		/* Now set the recording gain. */
1399 		info = &dbri->stream_info[DBRI_REC];
1400 		left_gain = info->left_gain & 0xf;
1401 		right_gain = info->right_gain & 0xf;
1402 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1403 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1404 	}
1405 
1406 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1407 }
1408 
1409 /*
1410  * Set the CS4215 to data mode.
1411  */
1412 static void cs4215_open(struct snd_dbri *dbri)
1413 {
1414 	int data_width;
1415 	u32 tmp;
1416 	unsigned long flags;
1417 
1418 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1419 		dbri->mm.channels, dbri->mm.precision);
1420 
1421 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1422 	 * to make sure this takes.  This avoids clicking noises.
1423 	 */
1424 
1425 	cs4215_setdata(dbri, 1);
1426 	udelay(125);
1427 
1428 	/*
1429 	 * Data mode:
1430 	 * Pipe  4: Send timeslots 1-4 (audio data)
1431 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1432 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1433 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1434 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1435 	 *          not relevant for us (only for doublechecking).
1436 	 *
1437 	 * Just like in control mode, the time slots are all offset by eight
1438 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1439 	 * even if it's the CHI master.  Don't ask me...
1440 	 */
1441 	spin_lock_irqsave(&dbri->lock, flags);
1442 	tmp = sbus_readl(dbri->regs + REG0);
1443 	tmp &= ~(D_C);		/* Disable CHI */
1444 	sbus_writel(tmp, dbri->regs + REG0);
1445 
1446 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1447 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1448 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1449 
1450 	reset_chi(dbri, CHIslave, 128);
1451 
1452 	/* Note: this next doesn't work for 8-bit stereo, because the two
1453 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1454 	 * (See CS4215 datasheet Fig 15)
1455 	 *
1456 	 * DBRI non-contiguous mode would be required to make this work.
1457 	 */
1458 	data_width = dbri->mm.channels * dbri->mm.precision;
1459 
1460 	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1461 	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1462 	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1463 	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1464 
1465 	/* FIXME: enable CHI after _setdata? */
1466 	tmp = sbus_readl(dbri->regs + REG0);
1467 	tmp |= D_C;		/* Enable CHI */
1468 	sbus_writel(tmp, dbri->regs + REG0);
1469 	spin_unlock_irqrestore(&dbri->lock, flags);
1470 
1471 	cs4215_setdata(dbri, 0);
1472 }
1473 
1474 /*
1475  * Send the control information (i.e. audio format)
1476  */
1477 static int cs4215_setctrl(struct snd_dbri *dbri)
1478 {
1479 	int i, val;
1480 	u32 tmp;
1481 	unsigned long flags;
1482 
1483 	/* FIXME - let the CPU do something useful during these delays */
1484 
1485 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1486 	 * to make sure this takes.  This avoids clicking noises.
1487 	 */
1488 	cs4215_setdata(dbri, 1);
1489 	udelay(125);
1490 
1491 	/*
1492 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1493 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1494 	 */
1495 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1496 	sbus_writel(val, dbri->regs + REG2);
1497 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1498 	udelay(34);
1499 
1500 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1501 	 * operate as CHI master, supplying clocking and frame synchronization.
1502 	 *
1503 	 * In Data mode, however, the CS4215 must be CHI master to insure
1504 	 * that its data stream is synchronous with its codec.
1505 	 *
1506 	 * The upshot of all this?  We start by putting the DBRI into master
1507 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1508 	 * into Data mode and put the DBRI into slave mode.  Various timing
1509 	 * requirements must be observed along the way.
1510 	 *
1511 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1512 	 * others?), the addressing of the CS4215's time slots is
1513 	 * offset by eight bits, so we add eight to all the "cycle"
1514 	 * values in the Define Time Slot (DTS) commands.  This is
1515 	 * done in hardware by a TI 248 that delays the DBRI->4215
1516 	 * frame sync signal by eight clock cycles.  Anybody know why?
1517 	 */
1518 	spin_lock_irqsave(&dbri->lock, flags);
1519 	tmp = sbus_readl(dbri->regs + REG0);
1520 	tmp &= ~D_C;		/* Disable CHI */
1521 	sbus_writel(tmp, dbri->regs + REG0);
1522 
1523 	reset_chi(dbri, CHImaster, 128);
1524 
1525 	/*
1526 	 * Control mode:
1527 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1528 	 * Pipe 18: Receive timeslot 1 (clb).
1529 	 * Pipe 19: Receive timeslot 7 (version).
1530 	 */
1531 
1532 	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1533 	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1534 	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1535 	spin_unlock_irqrestore(&dbri->lock, flags);
1536 
1537 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1538 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1539 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1540 
1541 	spin_lock_irqsave(&dbri->lock, flags);
1542 	tmp = sbus_readl(dbri->regs + REG0);
1543 	tmp |= D_C;		/* Enable CHI */
1544 	sbus_writel(tmp, dbri->regs + REG0);
1545 	spin_unlock_irqrestore(&dbri->lock, flags);
1546 
1547 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1548 		msleep_interruptible(1);
1549 
1550 	if (i == 0) {
1551 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1552 			dbri->mm.status);
1553 		return -1;
1554 	}
1555 
1556 	/* Disable changes to our copy of the version number, as we are about
1557 	 * to leave control mode.
1558 	 */
1559 	recv_fixed(dbri, 19, NULL);
1560 
1561 	/* Terminate CS4215 control mode - data sheet says
1562 	 * "Set CLB=1 and send two more frames of valid control info"
1563 	 */
1564 	dbri->mm.ctrl[0] |= CS4215_CLB;
1565 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1566 
1567 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1568 	udelay(250);
1569 
1570 	cs4215_setdata(dbri, 0);
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Setup the codec with the sampling rate, audio format and number of
1577  * channels.
1578  * As part of the process we resend the settings for the data
1579  * timeslots as well.
1580  */
1581 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1582 			  snd_pcm_format_t format, unsigned int channels)
1583 {
1584 	int freq_idx;
1585 	int ret = 0;
1586 
1587 	/* Lookup index for this rate */
1588 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1589 		if (CS4215_FREQ[freq_idx].freq == rate)
1590 			break;
1591 	}
1592 	if (CS4215_FREQ[freq_idx].freq != rate) {
1593 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1594 		return -1;
1595 	}
1596 
1597 	switch (format) {
1598 	case SNDRV_PCM_FORMAT_MU_LAW:
1599 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1600 		dbri->mm.precision = 8;
1601 		break;
1602 	case SNDRV_PCM_FORMAT_A_LAW:
1603 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1604 		dbri->mm.precision = 8;
1605 		break;
1606 	case SNDRV_PCM_FORMAT_U8:
1607 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1608 		dbri->mm.precision = 8;
1609 		break;
1610 	case SNDRV_PCM_FORMAT_S16_BE:
1611 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1612 		dbri->mm.precision = 16;
1613 		break;
1614 	default:
1615 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1616 		return -1;
1617 	}
1618 
1619 	/* Add rate parameters */
1620 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1621 	dbri->mm.ctrl[2] = CS4215_XCLK |
1622 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1623 
1624 	dbri->mm.channels = channels;
1625 	if (channels == 2)
1626 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1627 
1628 	ret = cs4215_setctrl(dbri);
1629 	if (ret == 0)
1630 		cs4215_open(dbri);	/* set codec to data mode */
1631 
1632 	return ret;
1633 }
1634 
1635 /*
1636  *
1637  */
1638 static int cs4215_init(struct snd_dbri *dbri)
1639 {
1640 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1641 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1642 
1643 	/* Look for the cs4215 chips */
1644 	if (reg2 & D_PIO2) {
1645 		dprintk(D_MM, "Onboard CS4215 detected\n");
1646 		dbri->mm.onboard = 1;
1647 	}
1648 	if (reg2 & D_PIO0) {
1649 		dprintk(D_MM, "Speakerbox detected\n");
1650 		dbri->mm.onboard = 0;
1651 
1652 		if (reg2 & D_PIO2) {
1653 			printk(KERN_INFO "DBRI: Using speakerbox / "
1654 			       "ignoring onboard mmcodec.\n");
1655 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1656 		}
1657 	}
1658 
1659 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1660 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1661 		return -EIO;
1662 	}
1663 
1664 	cs4215_setup_pipes(dbri);
1665 	cs4215_init_data(&dbri->mm);
1666 
1667 	/* Enable capture of the status & version timeslots. */
1668 	recv_fixed(dbri, 18, &dbri->mm.status);
1669 	recv_fixed(dbri, 19, &dbri->mm.version);
1670 
1671 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1672 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1673 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1674 			dbri->mm.offset);
1675 		return -EIO;
1676 	}
1677 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1678 
1679 	return 0;
1680 }
1681 
1682 /*
1683 ****************************************************************************
1684 *************************** DBRI interrupt handler *************************
1685 ****************************************************************************
1686 
1687 The DBRI communicates with the CPU mainly via a circular interrupt
1688 buffer.  When an interrupt is signaled, the CPU walks through the
1689 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1690 Complicated interrupts are handled by dedicated functions (which
1691 appear first in this file).  Any pending interrupts can be serviced by
1692 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1693 interrupts are disabled.
1694 
1695 */
1696 
1697 /* xmit_descs()
1698  *
1699  * Starts transmitting the current TD's for recording/playing.
1700  * For playback, ALSA has filled the DMA memory with new data (we hope).
1701  */
1702 static void xmit_descs(struct snd_dbri *dbri)
1703 {
1704 	struct dbri_streaminfo *info;
1705 	u32 dvma_addr = (u32)dbri->dma_dvma;
1706 	s32 *cmd;
1707 	unsigned long flags;
1708 	int first_td;
1709 
1710 	if (dbri == NULL)
1711 		return;		/* Disabled */
1712 
1713 	info = &dbri->stream_info[DBRI_REC];
1714 	spin_lock_irqsave(&dbri->lock, flags);
1715 
1716 	if (info->pipe >= 0) {
1717 		first_td = dbri->pipes[info->pipe].first_desc;
1718 
1719 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1720 
1721 		/* Stream could be closed by the time we run. */
1722 		if (first_td >= 0) {
1723 			cmd = dbri_cmdlock(dbri, 2);
1724 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1725 					    dbri->pipes[info->pipe].sdp
1726 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1727 			*(cmd++) = dvma_addr +
1728 				   dbri_dma_off(desc, first_td);
1729 			dbri_cmdsend(dbri, cmd, 2);
1730 
1731 			/* Reset our admin of the pipe. */
1732 			dbri->pipes[info->pipe].desc = first_td;
1733 		}
1734 	}
1735 
1736 	info = &dbri->stream_info[DBRI_PLAY];
1737 
1738 	if (info->pipe >= 0) {
1739 		first_td = dbri->pipes[info->pipe].first_desc;
1740 
1741 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1742 
1743 		/* Stream could be closed by the time we run. */
1744 		if (first_td >= 0) {
1745 			cmd = dbri_cmdlock(dbri, 2);
1746 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1747 					    dbri->pipes[info->pipe].sdp
1748 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1749 			*(cmd++) = dvma_addr +
1750 				   dbri_dma_off(desc, first_td);
1751 			dbri_cmdsend(dbri, cmd, 2);
1752 
1753 			/* Reset our admin of the pipe. */
1754 			dbri->pipes[info->pipe].desc = first_td;
1755 		}
1756 	}
1757 
1758 	spin_unlock_irqrestore(&dbri->lock, flags);
1759 }
1760 
1761 /* transmission_complete_intr()
1762  *
1763  * Called by main interrupt handler when DBRI signals transmission complete
1764  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1765  *
1766  * Walks through the pipe's list of transmit buffer descriptors and marks
1767  * them as available. Stops when the first descriptor is found without
1768  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1769  *
1770  * The DMA buffers are not released. They form a ring buffer and
1771  * they are filled by ALSA while others are transmitted by DMA.
1772  *
1773  */
1774 
1775 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1776 {
1777 	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1778 	int td = dbri->pipes[pipe].desc;
1779 	int status;
1780 
1781 	while (td >= 0) {
1782 		if (td >= DBRI_NO_DESCS) {
1783 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1784 			return;
1785 		}
1786 
1787 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1788 		if (!(status & DBRI_TD_TBC))
1789 			break;
1790 
1791 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1792 
1793 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1794 		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1795 
1796 		td = dbri->next_desc[td];
1797 		dbri->pipes[pipe].desc = td;
1798 	}
1799 
1800 	/* Notify ALSA */
1801 	spin_unlock(&dbri->lock);
1802 	snd_pcm_period_elapsed(info->substream);
1803 	spin_lock(&dbri->lock);
1804 }
1805 
1806 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1807 {
1808 	struct dbri_streaminfo *info;
1809 	int rd = dbri->pipes[pipe].desc;
1810 	s32 status;
1811 
1812 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1813 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1814 		return;
1815 	}
1816 
1817 	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1818 	status = dbri->dma->desc[rd].word1;
1819 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1820 
1821 	info = &dbri->stream_info[DBRI_REC];
1822 	info->offset += DBRI_RD_CNT(status);
1823 
1824 	/* FIXME: Check status */
1825 
1826 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1827 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1828 
1829 	/* Notify ALSA */
1830 	spin_unlock(&dbri->lock);
1831 	snd_pcm_period_elapsed(info->substream);
1832 	spin_lock(&dbri->lock);
1833 }
1834 
1835 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1836 {
1837 	int val = D_INTR_GETVAL(x);
1838 	int channel = D_INTR_GETCHAN(x);
1839 	int command = D_INTR_GETCMD(x);
1840 	int code = D_INTR_GETCODE(x);
1841 #ifdef DBRI_DEBUG
1842 	int rval = D_INTR_GETRVAL(x);
1843 #endif
1844 
1845 	if (channel == D_INTR_CMD) {
1846 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1847 			cmds[command], val);
1848 	} else {
1849 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1850 			channel, code, rval);
1851 	}
1852 
1853 	switch (code) {
1854 	case D_INTR_CMDI:
1855 		if (command != D_WAIT)
1856 			printk(KERN_ERR "DBRI: Command read interrupt\n");
1857 		break;
1858 	case D_INTR_BRDY:
1859 		reception_complete_intr(dbri, channel);
1860 		break;
1861 	case D_INTR_XCMP:
1862 	case D_INTR_MINT:
1863 		transmission_complete_intr(dbri, channel);
1864 		break;
1865 	case D_INTR_UNDR:
1866 		/* UNDR - Transmission underrun
1867 		 * resend SDP command with clear pipe bit (C) set
1868 		 */
1869 		{
1870 	/* FIXME: do something useful in case of underrun */
1871 			printk(KERN_ERR "DBRI: Underrun error\n");
1872 #if 0
1873 			s32 *cmd;
1874 			int pipe = channel;
1875 			int td = dbri->pipes[pipe].desc;
1876 
1877 			dbri->dma->desc[td].word4 = 0;
1878 			cmd = dbri_cmdlock(dbri, NoGetLock);
1879 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1880 					    dbri->pipes[pipe].sdp
1881 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1882 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1883 			dbri_cmdsend(dbri, cmd);
1884 #endif
1885 		}
1886 		break;
1887 	case D_INTR_FXDT:
1888 		/* FXDT - Fixed data change */
1889 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1890 			val = reverse_bytes(val, dbri->pipes[channel].length);
1891 
1892 		if (dbri->pipes[channel].recv_fixed_ptr)
1893 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1894 		break;
1895 	default:
1896 		if (channel != D_INTR_CMD)
1897 			printk(KERN_WARNING
1898 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1899 	}
1900 }
1901 
1902 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1903  * buffer until it finds a zero word (indicating nothing more to do
1904  * right now).  Non-zero words require processing and are handed off
1905  * to dbri_process_one_interrupt AFTER advancing the pointer.
1906  */
1907 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1908 {
1909 	s32 x;
1910 
1911 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1912 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1913 		dbri->dbri_irqp++;
1914 		if (dbri->dbri_irqp == DBRI_INT_BLK)
1915 			dbri->dbri_irqp = 1;
1916 
1917 		dbri_process_one_interrupt(dbri, x);
1918 	}
1919 }
1920 
1921 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1922 {
1923 	struct snd_dbri *dbri = dev_id;
1924 	static int errcnt = 0;
1925 	int x;
1926 
1927 	if (dbri == NULL)
1928 		return IRQ_NONE;
1929 	spin_lock(&dbri->lock);
1930 
1931 	/*
1932 	 * Read it, so the interrupt goes away.
1933 	 */
1934 	x = sbus_readl(dbri->regs + REG1);
1935 
1936 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1937 		u32 tmp;
1938 
1939 		if (x & D_MRR)
1940 			printk(KERN_ERR
1941 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1942 			       x);
1943 		if (x & D_MLE)
1944 			printk(KERN_ERR
1945 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1946 			       x);
1947 		if (x & D_LBG)
1948 			printk(KERN_ERR
1949 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1950 		if (x & D_MBE)
1951 			printk(KERN_ERR
1952 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1953 
1954 		/* Some of these SBus errors cause the chip's SBus circuitry
1955 		 * to be disabled, so just re-enable and try to keep going.
1956 		 *
1957 		 * The only one I've seen is MRR, which will be triggered
1958 		 * if you let a transmit pipe underrun, then try to CDP it.
1959 		 *
1960 		 * If these things persist, we reset the chip.
1961 		 */
1962 		if ((++errcnt) % 10 == 0) {
1963 			dprintk(D_INT, "Interrupt errors exceeded.\n");
1964 			dbri_reset(dbri);
1965 		} else {
1966 			tmp = sbus_readl(dbri->regs + REG0);
1967 			tmp &= ~(D_D);
1968 			sbus_writel(tmp, dbri->regs + REG0);
1969 		}
1970 	}
1971 
1972 	dbri_process_interrupt_buffer(dbri);
1973 
1974 	spin_unlock(&dbri->lock);
1975 
1976 	return IRQ_HANDLED;
1977 }
1978 
1979 /****************************************************************************
1980 		PCM Interface
1981 ****************************************************************************/
1982 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1983 	.info		= SNDRV_PCM_INFO_MMAP |
1984 			  SNDRV_PCM_INFO_INTERLEAVED |
1985 			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1986 			  SNDRV_PCM_INFO_MMAP_VALID |
1987 			  SNDRV_PCM_INFO_BATCH,
1988 	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1989 			  SNDRV_PCM_FMTBIT_A_LAW |
1990 			  SNDRV_PCM_FMTBIT_U8 |
1991 			  SNDRV_PCM_FMTBIT_S16_BE,
1992 	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1993 	.rate_min		= 5512,
1994 	.rate_max		= 48000,
1995 	.channels_min		= 1,
1996 	.channels_max		= 2,
1997 	.buffer_bytes_max	= 64 * 1024,
1998 	.period_bytes_min	= 1,
1999 	.period_bytes_max	= DBRI_TD_MAXCNT,
2000 	.periods_min		= 1,
2001 	.periods_max		= 1024,
2002 };
2003 
2004 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2005 			      struct snd_pcm_hw_rule *rule)
2006 {
2007 	struct snd_interval *c = hw_param_interval(params,
2008 				SNDRV_PCM_HW_PARAM_CHANNELS);
2009 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2010 	struct snd_mask fmt;
2011 
2012 	snd_mask_any(&fmt);
2013 	if (c->min > 1) {
2014 		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2015 		return snd_mask_refine(f, &fmt);
2016 	}
2017 	return 0;
2018 }
2019 
2020 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2021 				struct snd_pcm_hw_rule *rule)
2022 {
2023 	struct snd_interval *c = hw_param_interval(params,
2024 				SNDRV_PCM_HW_PARAM_CHANNELS);
2025 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2026 	struct snd_interval ch;
2027 
2028 	snd_interval_any(&ch);
2029 	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2030 		ch.min = 1;
2031 		ch.max = 1;
2032 		ch.integer = 1;
2033 		return snd_interval_refine(c, &ch);
2034 	}
2035 	return 0;
2036 }
2037 
2038 static int snd_dbri_open(struct snd_pcm_substream *substream)
2039 {
2040 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2041 	struct snd_pcm_runtime *runtime = substream->runtime;
2042 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2043 	unsigned long flags;
2044 
2045 	dprintk(D_USR, "open audio output.\n");
2046 	runtime->hw = snd_dbri_pcm_hw;
2047 
2048 	spin_lock_irqsave(&dbri->lock, flags);
2049 	info->substream = substream;
2050 	info->offset = 0;
2051 	info->dvma_buffer = 0;
2052 	info->pipe = -1;
2053 	spin_unlock_irqrestore(&dbri->lock, flags);
2054 
2055 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2056 			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2057 			    -1);
2058 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2059 			    snd_hw_rule_channels, NULL,
2060 			    SNDRV_PCM_HW_PARAM_CHANNELS,
2061 			    -1);
2062 
2063 	cs4215_open(dbri);
2064 
2065 	return 0;
2066 }
2067 
2068 static int snd_dbri_close(struct snd_pcm_substream *substream)
2069 {
2070 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2071 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2072 
2073 	dprintk(D_USR, "close audio output.\n");
2074 	info->substream = NULL;
2075 	info->offset = 0;
2076 
2077 	return 0;
2078 }
2079 
2080 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2081 			      struct snd_pcm_hw_params *hw_params)
2082 {
2083 	struct snd_pcm_runtime *runtime = substream->runtime;
2084 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2085 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2086 	int direction;
2087 	int ret;
2088 
2089 	/* set sampling rate, audio format and number of channels */
2090 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2091 			     params_format(hw_params),
2092 			     params_channels(hw_params));
2093 	if (ret != 0)
2094 		return ret;
2095 
2096 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2097 				params_buffer_bytes(hw_params))) < 0) {
2098 		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2099 		return ret;
2100 	}
2101 
2102 	/* hw_params can get called multiple times. Only map the DMA once.
2103 	 */
2104 	if (info->dvma_buffer == 0) {
2105 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2106 			direction = DMA_TO_DEVICE;
2107 		else
2108 			direction = DMA_FROM_DEVICE;
2109 
2110 		info->dvma_buffer =
2111 			dma_map_single(&dbri->op->dev,
2112 				       runtime->dma_area,
2113 				       params_buffer_bytes(hw_params),
2114 				       direction);
2115 	}
2116 
2117 	direction = params_buffer_bytes(hw_params);
2118 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2119 		direction, info->dvma_buffer);
2120 	return 0;
2121 }
2122 
2123 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2124 {
2125 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2126 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2127 	int direction;
2128 
2129 	dprintk(D_USR, "hw_free.\n");
2130 
2131 	/* hw_free can get called multiple times. Only unmap the DMA once.
2132 	 */
2133 	if (info->dvma_buffer) {
2134 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2135 			direction = DMA_TO_DEVICE;
2136 		else
2137 			direction = DMA_FROM_DEVICE;
2138 
2139 		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2140 				 substream->runtime->buffer_size, direction);
2141 		info->dvma_buffer = 0;
2142 	}
2143 	if (info->pipe != -1) {
2144 		reset_pipe(dbri, info->pipe);
2145 		info->pipe = -1;
2146 	}
2147 
2148 	return snd_pcm_lib_free_pages(substream);
2149 }
2150 
2151 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2152 {
2153 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2154 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2155 	int ret;
2156 
2157 	info->size = snd_pcm_lib_buffer_bytes(substream);
2158 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2159 		info->pipe = 4;	/* Send pipe */
2160 	else
2161 		info->pipe = 6;	/* Receive pipe */
2162 
2163 	spin_lock_irq(&dbri->lock);
2164 	info->offset = 0;
2165 
2166 	/* Setup the all the transmit/receive descriptors to cover the
2167 	 * whole DMA buffer.
2168 	 */
2169 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2170 			  snd_pcm_lib_period_bytes(substream));
2171 
2172 	spin_unlock_irq(&dbri->lock);
2173 
2174 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2175 	return ret;
2176 }
2177 
2178 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2179 {
2180 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2181 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2182 	int ret = 0;
2183 
2184 	switch (cmd) {
2185 	case SNDRV_PCM_TRIGGER_START:
2186 		dprintk(D_USR, "start audio, period is %d bytes\n",
2187 			(int)snd_pcm_lib_period_bytes(substream));
2188 		/* Re-submit the TDs. */
2189 		xmit_descs(dbri);
2190 		break;
2191 	case SNDRV_PCM_TRIGGER_STOP:
2192 		dprintk(D_USR, "stop audio.\n");
2193 		reset_pipe(dbri, info->pipe);
2194 		break;
2195 	default:
2196 		ret = -EINVAL;
2197 	}
2198 
2199 	return ret;
2200 }
2201 
2202 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2203 {
2204 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2205 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2206 	snd_pcm_uframes_t ret;
2207 
2208 	ret = bytes_to_frames(substream->runtime, info->offset)
2209 		% substream->runtime->buffer_size;
2210 	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2211 		ret, substream->runtime->buffer_size);
2212 	return ret;
2213 }
2214 
2215 static struct snd_pcm_ops snd_dbri_ops = {
2216 	.open = snd_dbri_open,
2217 	.close = snd_dbri_close,
2218 	.ioctl = snd_pcm_lib_ioctl,
2219 	.hw_params = snd_dbri_hw_params,
2220 	.hw_free = snd_dbri_hw_free,
2221 	.prepare = snd_dbri_prepare,
2222 	.trigger = snd_dbri_trigger,
2223 	.pointer = snd_dbri_pointer,
2224 };
2225 
2226 static int snd_dbri_pcm(struct snd_card *card)
2227 {
2228 	struct snd_pcm *pcm;
2229 	int err;
2230 
2231 	if ((err = snd_pcm_new(card,
2232 			       /* ID */		    "sun_dbri",
2233 			       /* device */	    0,
2234 			       /* playback count */ 1,
2235 			       /* capture count */  1, &pcm)) < 0)
2236 		return err;
2237 
2238 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2239 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2240 
2241 	pcm->private_data = card->private_data;
2242 	pcm->info_flags = 0;
2243 	strcpy(pcm->name, card->shortname);
2244 
2245 	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2246 			SNDRV_DMA_TYPE_CONTINUOUS,
2247 			snd_dma_continuous_data(GFP_KERNEL),
2248 			64 * 1024, 64 * 1024)) < 0)
2249 		return err;
2250 
2251 	return 0;
2252 }
2253 
2254 /*****************************************************************************
2255 			Mixer interface
2256 *****************************************************************************/
2257 
2258 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2259 				  struct snd_ctl_elem_info *uinfo)
2260 {
2261 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2262 	uinfo->count = 2;
2263 	uinfo->value.integer.min = 0;
2264 	if (kcontrol->private_value == DBRI_PLAY)
2265 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2266 	else
2267 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2268 	return 0;
2269 }
2270 
2271 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2272 				 struct snd_ctl_elem_value *ucontrol)
2273 {
2274 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2275 	struct dbri_streaminfo *info;
2276 
2277 	if (snd_BUG_ON(!dbri))
2278 		return -EINVAL;
2279 	info = &dbri->stream_info[kcontrol->private_value];
2280 
2281 	ucontrol->value.integer.value[0] = info->left_gain;
2282 	ucontrol->value.integer.value[1] = info->right_gain;
2283 	return 0;
2284 }
2285 
2286 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2287 				 struct snd_ctl_elem_value *ucontrol)
2288 {
2289 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2290 	struct dbri_streaminfo *info =
2291 				&dbri->stream_info[kcontrol->private_value];
2292 	unsigned int vol[2];
2293 	int changed = 0;
2294 
2295 	vol[0] = ucontrol->value.integer.value[0];
2296 	vol[1] = ucontrol->value.integer.value[1];
2297 	if (kcontrol->private_value == DBRI_PLAY) {
2298 		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2299 			return -EINVAL;
2300 	} else {
2301 		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2302 			return -EINVAL;
2303 	}
2304 
2305 	if (info->left_gain != vol[0]) {
2306 		info->left_gain = vol[0];
2307 		changed = 1;
2308 	}
2309 	if (info->right_gain != vol[1]) {
2310 		info->right_gain = vol[1];
2311 		changed = 1;
2312 	}
2313 	if (changed) {
2314 		/* First mute outputs, and wait 1/8000 sec (125 us)
2315 		 * to make sure this takes.  This avoids clicking noises.
2316 		 */
2317 		cs4215_setdata(dbri, 1);
2318 		udelay(125);
2319 		cs4215_setdata(dbri, 0);
2320 	}
2321 	return changed;
2322 }
2323 
2324 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2325 				  struct snd_ctl_elem_info *uinfo)
2326 {
2327 	int mask = (kcontrol->private_value >> 16) & 0xff;
2328 
2329 	uinfo->type = (mask == 1) ?
2330 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2331 	uinfo->count = 1;
2332 	uinfo->value.integer.min = 0;
2333 	uinfo->value.integer.max = mask;
2334 	return 0;
2335 }
2336 
2337 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2338 				 struct snd_ctl_elem_value *ucontrol)
2339 {
2340 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2341 	int elem = kcontrol->private_value & 0xff;
2342 	int shift = (kcontrol->private_value >> 8) & 0xff;
2343 	int mask = (kcontrol->private_value >> 16) & 0xff;
2344 	int invert = (kcontrol->private_value >> 24) & 1;
2345 
2346 	if (snd_BUG_ON(!dbri))
2347 		return -EINVAL;
2348 
2349 	if (elem < 4)
2350 		ucontrol->value.integer.value[0] =
2351 		    (dbri->mm.data[elem] >> shift) & mask;
2352 	else
2353 		ucontrol->value.integer.value[0] =
2354 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2355 
2356 	if (invert == 1)
2357 		ucontrol->value.integer.value[0] =
2358 		    mask - ucontrol->value.integer.value[0];
2359 	return 0;
2360 }
2361 
2362 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2363 				 struct snd_ctl_elem_value *ucontrol)
2364 {
2365 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2366 	int elem = kcontrol->private_value & 0xff;
2367 	int shift = (kcontrol->private_value >> 8) & 0xff;
2368 	int mask = (kcontrol->private_value >> 16) & 0xff;
2369 	int invert = (kcontrol->private_value >> 24) & 1;
2370 	int changed = 0;
2371 	unsigned short val;
2372 
2373 	if (snd_BUG_ON(!dbri))
2374 		return -EINVAL;
2375 
2376 	val = (ucontrol->value.integer.value[0] & mask);
2377 	if (invert == 1)
2378 		val = mask - val;
2379 	val <<= shift;
2380 
2381 	if (elem < 4) {
2382 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2383 				       ~(mask << shift)) | val;
2384 		changed = (val != dbri->mm.data[elem]);
2385 	} else {
2386 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2387 					   ~(mask << shift)) | val;
2388 		changed = (val != dbri->mm.ctrl[elem - 4]);
2389 	}
2390 
2391 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2392 		"mixer-value=%ld, mm-value=0x%x\n",
2393 		mask, changed, ucontrol->value.integer.value[0],
2394 		dbri->mm.data[elem & 3]);
2395 
2396 	if (changed) {
2397 		/* First mute outputs, and wait 1/8000 sec (125 us)
2398 		 * to make sure this takes.  This avoids clicking noises.
2399 		 */
2400 		cs4215_setdata(dbri, 1);
2401 		udelay(125);
2402 		cs4215_setdata(dbri, 0);
2403 	}
2404 	return changed;
2405 }
2406 
2407 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2408    timeslots. Shift is the bit offset in the timeslot, mask defines the
2409    number of bits. invert is a boolean for use with attenuation.
2410  */
2411 #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2412 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2413   .info = snd_cs4215_info_single,				\
2414   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2415   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2416 			((invert) << 24) },
2417 
2418 static struct snd_kcontrol_new dbri_controls[] = {
2419 	{
2420 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2421 	 .name  = "Playback Volume",
2422 	 .info  = snd_cs4215_info_volume,
2423 	 .get   = snd_cs4215_get_volume,
2424 	 .put   = snd_cs4215_put_volume,
2425 	 .private_value = DBRI_PLAY,
2426 	 },
2427 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2428 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2429 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2430 	{
2431 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2432 	 .name  = "Capture Volume",
2433 	 .info  = snd_cs4215_info_volume,
2434 	 .get   = snd_cs4215_get_volume,
2435 	 .put   = snd_cs4215_put_volume,
2436 	 .private_value = DBRI_REC,
2437 	 },
2438 	/* FIXME: mic/line switch */
2439 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2440 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2441 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2442 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2443 };
2444 
2445 static int snd_dbri_mixer(struct snd_card *card)
2446 {
2447 	int idx, err;
2448 	struct snd_dbri *dbri;
2449 
2450 	if (snd_BUG_ON(!card || !card->private_data))
2451 		return -EINVAL;
2452 	dbri = card->private_data;
2453 
2454 	strcpy(card->mixername, card->shortname);
2455 
2456 	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2457 		err = snd_ctl_add(card,
2458 				snd_ctl_new1(&dbri_controls[idx], dbri));
2459 		if (err < 0)
2460 			return err;
2461 	}
2462 
2463 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2464 		dbri->stream_info[idx].left_gain = 0;
2465 		dbri->stream_info[idx].right_gain = 0;
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 /****************************************************************************
2472 			/proc interface
2473 ****************************************************************************/
2474 static void dbri_regs_read(struct snd_info_entry *entry,
2475 			   struct snd_info_buffer *buffer)
2476 {
2477 	struct snd_dbri *dbri = entry->private_data;
2478 
2479 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2480 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2481 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2482 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2483 }
2484 
2485 #ifdef DBRI_DEBUG
2486 static void dbri_debug_read(struct snd_info_entry *entry,
2487 			    struct snd_info_buffer *buffer)
2488 {
2489 	struct snd_dbri *dbri = entry->private_data;
2490 	int pipe;
2491 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2492 
2493 	for (pipe = 0; pipe < 32; pipe++) {
2494 		if (pipe_active(dbri, pipe)) {
2495 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2496 			snd_iprintf(buffer,
2497 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2498 				    "len=%d next %d\n",
2499 				    pipe,
2500 				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2501 								 "input",
2502 				    pptr->sdp, pptr->desc,
2503 				    pptr->length, pptr->nextpipe);
2504 		}
2505 	}
2506 }
2507 #endif
2508 
2509 static void snd_dbri_proc(struct snd_card *card)
2510 {
2511 	struct snd_dbri *dbri = card->private_data;
2512 	struct snd_info_entry *entry;
2513 
2514 	if (!snd_card_proc_new(card, "regs", &entry))
2515 		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2516 
2517 #ifdef DBRI_DEBUG
2518 	if (!snd_card_proc_new(card, "debug", &entry)) {
2519 		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2520 		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2521 	}
2522 #endif
2523 }
2524 
2525 /*
2526 ****************************************************************************
2527 **************************** Initialization ********************************
2528 ****************************************************************************
2529 */
2530 static void snd_dbri_free(struct snd_dbri *dbri);
2531 
2532 static int snd_dbri_create(struct snd_card *card,
2533 			   struct platform_device *op,
2534 			   int irq, int dev)
2535 {
2536 	struct snd_dbri *dbri = card->private_data;
2537 	int err;
2538 
2539 	spin_lock_init(&dbri->lock);
2540 	dbri->op = op;
2541 	dbri->irq = irq;
2542 
2543 	dbri->dma = dma_zalloc_coherent(&op->dev, sizeof(struct dbri_dma),
2544 					&dbri->dma_dvma, GFP_ATOMIC);
2545 	if (!dbri->dma)
2546 		return -ENOMEM;
2547 
2548 	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2549 		dbri->dma, dbri->dma_dvma);
2550 
2551 	/* Map the registers into memory. */
2552 	dbri->regs_size = resource_size(&op->resource[0]);
2553 	dbri->regs = of_ioremap(&op->resource[0], 0,
2554 				dbri->regs_size, "DBRI Registers");
2555 	if (!dbri->regs) {
2556 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2557 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2558 				  (void *)dbri->dma, dbri->dma_dvma);
2559 		return -EIO;
2560 	}
2561 
2562 	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2563 			  "DBRI audio", dbri);
2564 	if (err) {
2565 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2566 		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2567 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2568 				  (void *)dbri->dma, dbri->dma_dvma);
2569 		return err;
2570 	}
2571 
2572 	/* Do low level initialization of the DBRI and CS4215 chips */
2573 	dbri_initialize(dbri);
2574 	err = cs4215_init(dbri);
2575 	if (err) {
2576 		snd_dbri_free(dbri);
2577 		return err;
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static void snd_dbri_free(struct snd_dbri *dbri)
2584 {
2585 	dprintk(D_GEN, "snd_dbri_free\n");
2586 	dbri_reset(dbri);
2587 
2588 	if (dbri->irq)
2589 		free_irq(dbri->irq, dbri);
2590 
2591 	if (dbri->regs)
2592 		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2593 
2594 	if (dbri->dma)
2595 		dma_free_coherent(&dbri->op->dev,
2596 				  sizeof(struct dbri_dma),
2597 				  (void *)dbri->dma, dbri->dma_dvma);
2598 }
2599 
2600 static int dbri_probe(struct platform_device *op)
2601 {
2602 	struct snd_dbri *dbri;
2603 	struct resource *rp;
2604 	struct snd_card *card;
2605 	static int dev = 0;
2606 	int irq;
2607 	int err;
2608 
2609 	if (dev >= SNDRV_CARDS)
2610 		return -ENODEV;
2611 	if (!enable[dev]) {
2612 		dev++;
2613 		return -ENOENT;
2614 	}
2615 
2616 	irq = op->archdata.irqs[0];
2617 	if (irq <= 0) {
2618 		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2619 		return -ENODEV;
2620 	}
2621 
2622 	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2623 			   sizeof(struct snd_dbri), &card);
2624 	if (err < 0)
2625 		return err;
2626 
2627 	strcpy(card->driver, "DBRI");
2628 	strcpy(card->shortname, "Sun DBRI");
2629 	rp = &op->resource[0];
2630 	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2631 		card->shortname,
2632 		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2633 
2634 	err = snd_dbri_create(card, op, irq, dev);
2635 	if (err < 0) {
2636 		snd_card_free(card);
2637 		return err;
2638 	}
2639 
2640 	dbri = card->private_data;
2641 	err = snd_dbri_pcm(card);
2642 	if (err < 0)
2643 		goto _err;
2644 
2645 	err = snd_dbri_mixer(card);
2646 	if (err < 0)
2647 		goto _err;
2648 
2649 	/* /proc file handling */
2650 	snd_dbri_proc(card);
2651 	dev_set_drvdata(&op->dev, card);
2652 
2653 	err = snd_card_register(card);
2654 	if (err < 0)
2655 		goto _err;
2656 
2657 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2658 	       dev, dbri->regs,
2659 	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2660 	dev++;
2661 
2662 	return 0;
2663 
2664 _err:
2665 	snd_dbri_free(dbri);
2666 	snd_card_free(card);
2667 	return err;
2668 }
2669 
2670 static int dbri_remove(struct platform_device *op)
2671 {
2672 	struct snd_card *card = dev_get_drvdata(&op->dev);
2673 
2674 	snd_dbri_free(card->private_data);
2675 	snd_card_free(card);
2676 
2677 	return 0;
2678 }
2679 
2680 static const struct of_device_id dbri_match[] = {
2681 	{
2682 		.name = "SUNW,DBRIe",
2683 	},
2684 	{
2685 		.name = "SUNW,DBRIf",
2686 	},
2687 	{},
2688 };
2689 
2690 MODULE_DEVICE_TABLE(of, dbri_match);
2691 
2692 static struct platform_driver dbri_sbus_driver = {
2693 	.driver = {
2694 		.name = "dbri",
2695 		.of_match_table = dbri_match,
2696 	},
2697 	.probe		= dbri_probe,
2698 	.remove		= dbri_remove,
2699 };
2700 
2701 module_platform_driver(dbri_sbus_driver);
2702