xref: /openbmc/linux/sound/sparc/dbri.c (revision b627b4ed)
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6  *
7  * Based entirely upon drivers/sbus/audio/dbri.c which is:
8  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10  *
11  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12  * on Sun SPARCStation 10, 20, LX and Voyager models.
13  *
14  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15  *   data time multiplexer with ISDN support (aka T7259)
16  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18  *   Documentation:
19  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20  *     Sparc Technology Business (courtesy of Sun Support)
21  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22  *     available from the Lucent (formerly AT&T microelectronics) home
23  *     page.
24  *   - http://www.freesoft.org/Linux/DBRI/
25  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27  *   Documentation: from the Crystal Semiconductor home page.
28  *
29  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30  * memory and a serial device (long pipes, no. 0-15) or between two serial
31  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32  * device (short pipes).
33  * A timeslot defines the bit-offset and no. of bits read from a serial device.
34  * The timeslots are linked to 6 circular lists, one for each direction for
35  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36  * (the second one is a monitor/tee pipe, valid only for serial input).
37  *
38  * The mmcodec is connected via the CHI bus and needs the data & some
39  * parameters (volume, output selection) time multiplexed in 8 byte
40  * chunks. It also has a control mode, which serves for audio format setting.
41  *
42  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43  * the same CHI bus, so I thought perhaps it is possible to use the on-board
44  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45  * audio devices. But the SUN HW group decided against it, at least on my
46  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47  * connected.
48  *
49  * I've tried to stick to the following function naming conventions:
50  * snd_*	ALSA stuff
51  * cs4215_*	CS4215 codec specific stuff
52  * dbri_*	DBRI high-level stuff
53  * other	DBRI low-level stuff
54  */
55 
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60 #include <linux/dma-mapping.h>
61 
62 #include <sound/core.h>
63 #include <sound/pcm.h>
64 #include <sound/pcm_params.h>
65 #include <sound/info.h>
66 #include <sound/control.h>
67 #include <sound/initval.h>
68 
69 #include <linux/of.h>
70 #include <linux/of_device.h>
71 #include <asm/atomic.h>
72 
73 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
74 MODULE_DESCRIPTION("Sun DBRI");
75 MODULE_LICENSE("GPL");
76 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
77 
78 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
79 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
80 /* Enable this card */
81 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
82 
83 module_param_array(index, int, NULL, 0444);
84 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
85 module_param_array(id, charp, NULL, 0444);
86 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
87 module_param_array(enable, bool, NULL, 0444);
88 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
89 
90 #undef DBRI_DEBUG
91 
92 #define D_INT	(1<<0)
93 #define D_GEN	(1<<1)
94 #define D_CMD	(1<<2)
95 #define D_MM	(1<<3)
96 #define D_USR	(1<<4)
97 #define D_DESC	(1<<5)
98 
99 static int dbri_debug;
100 module_param(dbri_debug, int, 0644);
101 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
102 
103 #ifdef DBRI_DEBUG
104 static char *cmds[] = {
105 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
106 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
107 };
108 
109 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
110 
111 #else
112 #define dprintk(a, x...) do { } while (0)
113 
114 #endif				/* DBRI_DEBUG */
115 
116 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
117 				    (intr << 27) |	\
118 				    value)
119 
120 /***************************************************************************
121 	CS4215 specific definitions and structures
122 ****************************************************************************/
123 
124 struct cs4215 {
125 	__u8 data[4];		/* Data mode: Time slots 5-8 */
126 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
127 	__u8 onboard;
128 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
129 	volatile __u32 status;
130 	volatile __u32 version;
131 	__u8 precision;		/* In bits, either 8 or 16 */
132 	__u8 channels;		/* 1 or 2 */
133 };
134 
135 /*
136  * Control mode first
137  */
138 
139 /* Time Slot 1, Status register */
140 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
141 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
142 				/* 0: line: 2.8V, speaker 8V */
143 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
144 #define CS4215_RSRVD_1  (1<<5)
145 
146 /* Time Slot 2, Data Format Register */
147 #define CS4215_DFR_LINEAR16	0
148 #define CS4215_DFR_ULAW		1
149 #define CS4215_DFR_ALAW		2
150 #define CS4215_DFR_LINEAR8	3
151 #define CS4215_DFR_STEREO	(1<<2)
152 static struct {
153 	unsigned short freq;
154 	unsigned char xtal;
155 	unsigned char csval;
156 } CS4215_FREQ[] = {
157 	{  8000, (1 << 4), (0 << 3) },
158 	{ 16000, (1 << 4), (1 << 3) },
159 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
160 	{ 32000, (1 << 4), (3 << 3) },
161      /* {    NA, (1 << 4), (4 << 3) }, */
162      /* {    NA, (1 << 4), (5 << 3) }, */
163 	{ 48000, (1 << 4), (6 << 3) },
164 	{  9600, (1 << 4), (7 << 3) },
165 	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
166 	{ 11025, (2 << 4), (1 << 3) },
167 	{ 18900, (2 << 4), (2 << 3) },
168 	{ 22050, (2 << 4), (3 << 3) },
169 	{ 37800, (2 << 4), (4 << 3) },
170 	{ 44100, (2 << 4), (5 << 3) },
171 	{ 33075, (2 << 4), (6 << 3) },
172 	{  6615, (2 << 4), (7 << 3) },
173 	{ 0, 0, 0}
174 };
175 
176 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
177 
178 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
179 
180 /* Time Slot 3, Serial Port Control register */
181 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
182 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
183 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
184 #define CS4215_BSEL_128	(1<<2)
185 #define CS4215_BSEL_256	(2<<2)
186 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
187 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
188 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
189 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
190 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
191 
192 /* Time Slot 4, Test Register */
193 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
194 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
195 
196 /* Time Slot 5, Parallel Port Register */
197 /* Read only here and the same as the in data mode */
198 
199 /* Time Slot 6, Reserved  */
200 
201 /* Time Slot 7, Version Register  */
202 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
203 
204 /* Time Slot 8, Reserved  */
205 
206 /*
207  * Data mode
208  */
209 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
210 
211 /* Time Slot 5, Output Setting  */
212 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
213 #define CS4215_LE	(1<<6)	/* Line Out Enable */
214 #define CS4215_HE	(1<<7)	/* Headphone Enable */
215 
216 /* Time Slot 6, Output Setting  */
217 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
218 #define CS4215_SE	(1<<6)	/* Speaker Enable */
219 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
220 
221 /* Time Slot 7, Input Setting */
222 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
223 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
224 #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
225 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
226 #define CS4215_PIO1	(1<<7)
227 
228 /* Time Slot 8, Input Setting */
229 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
230 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
231 
232 /***************************************************************************
233 		DBRI specific definitions and structures
234 ****************************************************************************/
235 
236 /* DBRI main registers */
237 #define REG0	0x00		/* Status and Control */
238 #define REG1	0x04		/* Mode and Interrupt */
239 #define REG2	0x08		/* Parallel IO */
240 #define REG3	0x0c		/* Test */
241 #define REG8	0x20		/* Command Queue Pointer */
242 #define REG9	0x24		/* Interrupt Queue Pointer */
243 
244 #define DBRI_NO_CMDS	64
245 #define DBRI_INT_BLK	64
246 #define DBRI_NO_DESCS	64
247 #define DBRI_NO_PIPES	32
248 #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
249 
250 #define DBRI_REC	0
251 #define DBRI_PLAY	1
252 #define DBRI_NO_STREAMS	2
253 
254 /* One transmit/receive descriptor */
255 /* When ba != 0 descriptor is used */
256 struct dbri_mem {
257 	volatile __u32 word1;
258 	__u32 ba;	/* Transmit/Receive Buffer Address */
259 	__u32 nda;	/* Next Descriptor Address */
260 	volatile __u32 word4;
261 };
262 
263 /* This structure is in a DMA region where it can accessed by both
264  * the CPU and the DBRI
265  */
266 struct dbri_dma {
267 	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
268 	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
269 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
270 };
271 
272 #define dbri_dma_off(member, elem)	\
273 	((u32)(unsigned long)		\
274 	 (&(((struct dbri_dma *)0)->member[elem])))
275 
276 enum in_or_out { PIPEinput, PIPEoutput };
277 
278 struct dbri_pipe {
279 	u32 sdp;		/* SDP command word */
280 	int nextpipe;		/* Next pipe in linked list */
281 	int length;		/* Length of timeslot (bits) */
282 	int first_desc;		/* Index of first descriptor */
283 	int desc;		/* Index of active descriptor */
284 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
285 };
286 
287 /* Per stream (playback or record) information */
288 struct dbri_streaminfo {
289 	struct snd_pcm_substream *substream;
290 	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
291 	int size;		/* Size of DMA buffer             */
292 	size_t offset;		/* offset in user buffer          */
293 	int pipe;		/* Data pipe used                 */
294 	int left_gain;		/* mixer elements                 */
295 	int right_gain;
296 };
297 
298 /* This structure holds the information for both chips (DBRI & CS4215) */
299 struct snd_dbri {
300 	int regs_size, irq;	/* Needed for unload */
301 	struct of_device *op;	/* OF device info */
302 	spinlock_t lock;
303 
304 	struct dbri_dma *dma;	/* Pointer to our DMA block */
305 	u32 dma_dvma;		/* DBRI visible DMA address */
306 
307 	void __iomem *regs;	/* dbri HW regs */
308 	int dbri_irqp;		/* intr queue pointer */
309 
310 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
311 	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
312 	spinlock_t cmdlock;	/* Protects cmd queue accesses */
313 	s32 *cmdptr;		/* Pointer to the last queued cmd */
314 
315 	int chi_bpf;
316 
317 	struct cs4215 mm;	/* mmcodec special info */
318 				/* per stream (playback/record) info */
319 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
320 };
321 
322 #define DBRI_MAX_VOLUME		63	/* Output volume */
323 #define DBRI_MAX_GAIN		15	/* Input gain */
324 
325 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
326 #define D_P		(1<<15)	/* Program command & queue pointer valid */
327 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
328 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
329 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
330 #define D_X		(1<<7)	/* Sanity Timer Disable */
331 #define D_T		(1<<6)	/* Permit activation of the TE interface */
332 #define D_N		(1<<5)	/* Permit activation of the NT interface */
333 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
334 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
335 #define D_D		(1<<2)	/* Disable Master Mode */
336 #define D_H		(1<<1)	/* Halt for Analysis */
337 #define D_R		(1<<0)	/* Soft Reset */
338 
339 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
340 #define D_LITTLE_END	(1<<8)	/* Byte Order */
341 #define D_BIG_END	(0<<8)	/* Byte Order */
342 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
343 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
344 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
345 #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
346 #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
347 
348 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
349 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
350 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
351 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
352 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
353 #define D_ENPIO		(0xf0)	/* Enable all the pins */
354 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
355 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
356 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
357 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
358 
359 /* DBRI Commands (Page 20) */
360 #define D_WAIT		0x0	/* Stop execution */
361 #define D_PAUSE		0x1	/* Flush long pipes */
362 #define D_JUMP		0x2	/* New command queue */
363 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
364 #define D_REX		0x4	/* Report command execution via interrupt */
365 #define D_SDP		0x5	/* Setup Data Pipe */
366 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
367 #define D_DTS		0x7	/* Define Time Slot */
368 #define D_SSP		0x8	/* Set short Data Pipe */
369 #define D_CHI		0x9	/* Set CHI Global Mode */
370 #define D_NT		0xa	/* NT Command */
371 #define D_TE		0xb	/* TE Command */
372 #define D_CDEC		0xc	/* Codec setup */
373 #define D_TEST		0xd	/* No comment */
374 #define D_CDM		0xe	/* CHI Data mode command */
375 
376 /* Special bits for some commands */
377 #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
378 
379 /* Setup Data Pipe */
380 /* IRM */
381 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
382 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
383 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
384 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
385 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
386 
387 /* Pipe data MODE */
388 #define D_SDP_MEM	(0<<13)	/* To/from memory */
389 #define D_SDP_HDLC	(2<<13)
390 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
391 #define D_SDP_SER	(4<<13)	/* Serial to serial */
392 #define D_SDP_FIXED	(6<<13)	/* Short only */
393 #define D_SDP_MODE(v)	((v)&(7<<13))
394 
395 #define D_SDP_TO_SER	(1<<12)	/* Direction */
396 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
397 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
398 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
399 #define D_SDP_P		(1<<10)	/* Pointer Valid */
400 #define D_SDP_A		(1<<8)	/* Abort */
401 #define D_SDP_C		(1<<7)	/* Clear */
402 
403 /* Define Time Slot */
404 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
405 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
406 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
407 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
408 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
409 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
410 
411 /* Time Slot defines */
412 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
413 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
414 #define D_TS_DI		(1<<13)	/* Data Invert */
415 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
416 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
417 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
418 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
419 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
420 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
421 
422 /* Concentration Highway Interface Modes */
423 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
424 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
425 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
426 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
427 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
428 #define D_CHI_FD	(1<<11)	/* Frame Drive */
429 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
430 
431 /* NT: These are here for completeness */
432 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
433 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
434 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
435 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
436 #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
437 #define D_NT_FT		(1<<12)	/* Fixed Timing */
438 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
439 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
440 #define D_NT_ACT	(1<<9)	/* Activate Interface */
441 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
442 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
443 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
444 #define D_NT_FACT	(1<<1)	/* Force Activation */
445 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
446 
447 /* Codec Setup */
448 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
449 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
450 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
451 
452 /* Test */
453 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
454 #define D_TEST_SIZE(v)	((v)<<11)	/* */
455 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
456 #define D_TEST_PROC	0x6	/* Microprocessor test */
457 #define D_TEST_SER	0x7	/* Serial-Controller test */
458 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
459 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
460 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
461 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
462 #define D_TEST_DUMP	0xe	/* ROM Dump */
463 
464 /* CHI Data Mode */
465 #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
466 #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
467 #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
468 #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
469 #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
470 #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
471 
472 /* The Interrupts */
473 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
474 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
475 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
476 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
477 #define D_INTR_EOL	5	/* End of List */
478 #define D_INTR_CMDI	6	/* Command has bean read */
479 #define D_INTR_XCMP	8	/* Transmission of frame complete */
480 #define D_INTR_SBRI	9	/* BRI status change info */
481 #define D_INTR_FXDT	10	/* Fixed data change */
482 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
483 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
484 #define D_INTR_DBYT	12	/* Dropped by frame slip */
485 #define D_INTR_RBYT	13	/* Repeated by frame slip */
486 #define D_INTR_LINT	14	/* Lost Interrupt */
487 #define D_INTR_UNDR	15	/* DMA underrun */
488 
489 #define D_INTR_TE	32
490 #define D_INTR_NT	34
491 #define D_INTR_CHI	36
492 #define D_INTR_CMD	38
493 
494 #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
495 #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
496 #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
497 #define D_INTR_GETVAL(v)	((v) & 0xffff)
498 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
499 
500 #define D_P_0		0	/* TE receive anchor */
501 #define D_P_1		1	/* TE transmit anchor */
502 #define D_P_2		2	/* NT transmit anchor */
503 #define D_P_3		3	/* NT receive anchor */
504 #define D_P_4		4	/* CHI send data */
505 #define D_P_5		5	/* CHI receive data */
506 #define D_P_6		6	/* */
507 #define D_P_7		7	/* */
508 #define D_P_8		8	/* */
509 #define D_P_9		9	/* */
510 #define D_P_10		10	/* */
511 #define D_P_11		11	/* */
512 #define D_P_12		12	/* */
513 #define D_P_13		13	/* */
514 #define D_P_14		14	/* */
515 #define D_P_15		15	/* */
516 #define D_P_16		16	/* CHI anchor pipe */
517 #define D_P_17		17	/* CHI send */
518 #define D_P_18		18	/* CHI receive */
519 #define D_P_19		19	/* CHI receive */
520 #define D_P_20		20	/* CHI receive */
521 #define D_P_21		21	/* */
522 #define D_P_22		22	/* */
523 #define D_P_23		23	/* */
524 #define D_P_24		24	/* */
525 #define D_P_25		25	/* */
526 #define D_P_26		26	/* */
527 #define D_P_27		27	/* */
528 #define D_P_28		28	/* */
529 #define D_P_29		29	/* */
530 #define D_P_30		30	/* */
531 #define D_P_31		31	/* */
532 
533 /* Transmit descriptor defines */
534 #define DBRI_TD_F	(1 << 31)	/* End of Frame */
535 #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
536 #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
537 #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
538 #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
539 #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
540 #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
541 #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
542 #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
543 #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
544 #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
545 			/* Maximum buffer size per TD: almost 8KB */
546 #define DBRI_TD_MAXCNT	((1 << 13) - 4)
547 
548 /* Receive descriptor defines */
549 #define DBRI_RD_F	(1 << 31)	/* End of Frame */
550 #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
551 #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
552 #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
553 #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
554 #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
555 #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
556 #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
557 #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
558 #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
559 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
560 
561 /* stream_info[] access */
562 /* Translate the ALSA direction into the array index */
563 #define DBRI_STREAMNO(substream)				\
564 		(substream->stream ==				\
565 		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
566 
567 /* Return a pointer to dbri_streaminfo */
568 #define DBRI_STREAM(dbri, substream)	\
569 		&dbri->stream_info[DBRI_STREAMNO(substream)]
570 
571 /*
572  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
573  * So we have to reverse the bits. Note: not all bit lengths are supported
574  */
575 static __u32 reverse_bytes(__u32 b, int len)
576 {
577 	switch (len) {
578 	case 32:
579 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
580 	case 16:
581 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
582 	case 8:
583 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
584 	case 4:
585 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
586 	case 2:
587 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
588 	case 1:
589 	case 0:
590 		break;
591 	default:
592 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
593 	};
594 
595 	return b;
596 }
597 
598 /*
599 ****************************************************************************
600 ************** DBRI initialization and command synchronization *************
601 ****************************************************************************
602 
603 Commands are sent to the DBRI by building a list of them in memory,
604 then writing the address of the first list item to DBRI register 8.
605 The list is terminated with a WAIT command, which generates a
606 CPU interrupt to signal completion.
607 
608 Since the DBRI can run in parallel with the CPU, several means of
609 synchronization present themselves. The method implemented here uses
610 the dbri_cmdwait() to wait for execution of batch of sent commands.
611 
612 A circular command buffer is used here. A new command is being added
613 while another can be executed. The scheme works by adding two WAIT commands
614 after each sent batch of commands. When the next batch is prepared it is
615 added after the WAIT commands then the WAITs are replaced with single JUMP
616 command to the new batch. The the DBRI is forced to reread the last WAIT
617 command (replaced by the JUMP by then). If the DBRI is still executing
618 previous commands the request to reread the WAIT command is ignored.
619 
620 Every time a routine wants to write commands to the DBRI, it must
621 first call dbri_cmdlock() and get pointer to a free space in
622 dbri->dma->cmd buffer. After this, the commands can be written to
623 the buffer, and dbri_cmdsend() is called with the final pointer value
624 to send them to the DBRI.
625 
626 */
627 
628 #define MAXLOOPS 20
629 /*
630  * Wait for the current command string to execute
631  */
632 static void dbri_cmdwait(struct snd_dbri *dbri)
633 {
634 	int maxloops = MAXLOOPS;
635 	unsigned long flags;
636 
637 	/* Delay if previous commands are still being processed */
638 	spin_lock_irqsave(&dbri->lock, flags);
639 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
640 		spin_unlock_irqrestore(&dbri->lock, flags);
641 		msleep_interruptible(1);
642 		spin_lock_irqsave(&dbri->lock, flags);
643 	}
644 	spin_unlock_irqrestore(&dbri->lock, flags);
645 
646 	if (maxloops == 0)
647 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
648 	else
649 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
650 			MAXLOOPS - maxloops - 1);
651 }
652 /*
653  * Lock the command queue and return pointer to space for len cmd words
654  * It locks the cmdlock spinlock.
655  */
656 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
657 {
658 	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
659 	len += 2;
660 	spin_lock(&dbri->cmdlock);
661 	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
662 		return dbri->cmdptr + 2;
663 	else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
664 		return dbri->dma->cmd;
665 	else
666 		printk(KERN_ERR "DBRI: no space for commands.");
667 
668 	return NULL;
669 }
670 
671 /*
672  * Send prepared cmd string. It works by writing a JUMP cmd into
673  * the last WAIT cmd and force DBRI to reread the cmd.
674  * The JUMP cmd points to the new cmd string.
675  * It also releases the cmdlock spinlock.
676  *
677  * Lock must be held before calling this.
678  */
679 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
680 {
681 	s32 tmp, addr;
682 	static int wait_id = 0;
683 
684 	wait_id++;
685 	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
686 	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
687 	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
688 
689 	/* Replace the last command with JUMP */
690 	addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
691 	*(dbri->cmdptr+1) = addr;
692 	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
693 
694 #ifdef DBRI_DEBUG
695 	if (cmd > dbri->cmdptr) {
696 		s32 *ptr;
697 
698 		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
699 			dprintk(D_CMD, "cmd: %lx:%08x\n",
700 				(unsigned long)ptr, *ptr);
701 	} else {
702 		s32 *ptr = dbri->cmdptr;
703 
704 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
705 		ptr++;
706 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
707 		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
708 			dprintk(D_CMD, "cmd: %lx:%08x\n",
709 				(unsigned long)ptr, *ptr);
710 	}
711 #endif
712 
713 	/* Reread the last command */
714 	tmp = sbus_readl(dbri->regs + REG0);
715 	tmp |= D_P;
716 	sbus_writel(tmp, dbri->regs + REG0);
717 
718 	dbri->cmdptr = cmd;
719 	spin_unlock(&dbri->cmdlock);
720 }
721 
722 /* Lock must be held when calling this */
723 static void dbri_reset(struct snd_dbri *dbri)
724 {
725 	int i;
726 	u32 tmp;
727 
728 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
729 		sbus_readl(dbri->regs + REG0),
730 		sbus_readl(dbri->regs + REG2),
731 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
732 
733 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
734 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
735 		udelay(10);
736 
737 	/* A brute approach - DBRI falls back to working burst size by itself
738 	 * On SS20 D_S does not work, so do not try so high. */
739 	tmp = sbus_readl(dbri->regs + REG0);
740 	tmp |= D_G | D_E;
741 	tmp &= ~D_S;
742 	sbus_writel(tmp, dbri->regs + REG0);
743 }
744 
745 /* Lock must not be held before calling this */
746 static void __devinit dbri_initialize(struct snd_dbri *dbri)
747 {
748 	s32 *cmd;
749 	u32 dma_addr;
750 	unsigned long flags;
751 	int n;
752 
753 	spin_lock_irqsave(&dbri->lock, flags);
754 
755 	dbri_reset(dbri);
756 
757 	/* Initialize pipes */
758 	for (n = 0; n < DBRI_NO_PIPES; n++)
759 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
760 
761 	spin_lock_init(&dbri->cmdlock);
762 	/*
763 	 * Initialize the interrupt ring buffer.
764 	 */
765 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
766 	dbri->dma->intr[0] = dma_addr;
767 	dbri->dbri_irqp = 1;
768 	/*
769 	 * Set up the interrupt queue
770 	 */
771 	spin_lock(&dbri->cmdlock);
772 	cmd = dbri->cmdptr = dbri->dma->cmd;
773 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
774 	*(cmd++) = dma_addr;
775 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
776 	dbri->cmdptr = cmd;
777 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
778 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
779 	dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
780 	sbus_writel(dma_addr, dbri->regs + REG8);
781 	spin_unlock(&dbri->cmdlock);
782 
783 	spin_unlock_irqrestore(&dbri->lock, flags);
784 	dbri_cmdwait(dbri);
785 }
786 
787 /*
788 ****************************************************************************
789 ************************** DBRI data pipe management ***********************
790 ****************************************************************************
791 
792 While DBRI control functions use the command and interrupt buffers, the
793 main data path takes the form of data pipes, which can be short (command
794 and interrupt driven), or long (attached to DMA buffers).  These functions
795 provide a rudimentary means of setting up and managing the DBRI's pipes,
796 but the calling functions have to make sure they respect the pipes' linked
797 list ordering, among other things.  The transmit and receive functions
798 here interface closely with the transmit and receive interrupt code.
799 
800 */
801 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
802 {
803 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
804 }
805 
806 /* reset_pipe(dbri, pipe)
807  *
808  * Called on an in-use pipe to clear anything being transmitted or received
809  * Lock must be held before calling this.
810  */
811 static void reset_pipe(struct snd_dbri *dbri, int pipe)
812 {
813 	int sdp;
814 	int desc;
815 	s32 *cmd;
816 
817 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
818 		printk(KERN_ERR "DBRI: reset_pipe called with "
819 			"illegal pipe number\n");
820 		return;
821 	}
822 
823 	sdp = dbri->pipes[pipe].sdp;
824 	if (sdp == 0) {
825 		printk(KERN_ERR "DBRI: reset_pipe called "
826 			"on uninitialized pipe\n");
827 		return;
828 	}
829 
830 	cmd = dbri_cmdlock(dbri, 3);
831 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
832 	*(cmd++) = 0;
833 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
834 	dbri_cmdsend(dbri, cmd, 3);
835 
836 	desc = dbri->pipes[pipe].first_desc;
837 	if (desc >= 0)
838 		do {
839 			dbri->dma->desc[desc].ba = 0;
840 			dbri->dma->desc[desc].nda = 0;
841 			desc = dbri->next_desc[desc];
842 		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
843 
844 	dbri->pipes[pipe].desc = -1;
845 	dbri->pipes[pipe].first_desc = -1;
846 }
847 
848 /*
849  * Lock must be held before calling this.
850  */
851 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
852 {
853 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
854 		printk(KERN_ERR "DBRI: setup_pipe called "
855 			"with illegal pipe number\n");
856 		return;
857 	}
858 
859 	if ((sdp & 0xf800) != sdp) {
860 		printk(KERN_ERR "DBRI: setup_pipe called "
861 			"with strange SDP value\n");
862 		/* sdp &= 0xf800; */
863 	}
864 
865 	/* If this is a fixed receive pipe, arrange for an interrupt
866 	 * every time its data changes
867 	 */
868 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
869 		sdp |= D_SDP_CHANGE;
870 
871 	sdp |= D_PIPE(pipe);
872 	dbri->pipes[pipe].sdp = sdp;
873 	dbri->pipes[pipe].desc = -1;
874 	dbri->pipes[pipe].first_desc = -1;
875 
876 	reset_pipe(dbri, pipe);
877 }
878 
879 /*
880  * Lock must be held before calling this.
881  */
882 static void link_time_slot(struct snd_dbri *dbri, int pipe,
883 			   int prevpipe, int nextpipe,
884 			   int length, int cycle)
885 {
886 	s32 *cmd;
887 	int val;
888 
889 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
890 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
891 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
892 		printk(KERN_ERR
893 		    "DBRI: link_time_slot called with illegal pipe number\n");
894 		return;
895 	}
896 
897 	if (dbri->pipes[pipe].sdp == 0
898 			|| dbri->pipes[prevpipe].sdp == 0
899 			|| dbri->pipes[nextpipe].sdp == 0) {
900 		printk(KERN_ERR "DBRI: link_time_slot called "
901 			"on uninitialized pipe\n");
902 		return;
903 	}
904 
905 	dbri->pipes[prevpipe].nextpipe = pipe;
906 	dbri->pipes[pipe].nextpipe = nextpipe;
907 	dbri->pipes[pipe].length = length;
908 
909 	cmd = dbri_cmdlock(dbri, 4);
910 
911 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
912 		/* Deal with CHI special case:
913 		 * "If transmission on edges 0 or 1 is desired, then cycle n
914 		 *  (where n = # of bit times per frame...) must be used."
915 		 *                  - DBRI data sheet, page 11
916 		 */
917 		if (prevpipe == 16 && cycle == 0)
918 			cycle = dbri->chi_bpf;
919 
920 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
921 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
922 		*(cmd++) = 0;
923 		*(cmd++) =
924 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
925 	} else {
926 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
927 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
928 		*(cmd++) =
929 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
930 		*(cmd++) = 0;
931 	}
932 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
933 
934 	dbri_cmdsend(dbri, cmd, 4);
935 }
936 
937 #if 0
938 /*
939  * Lock must be held before calling this.
940  */
941 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
942 			     enum in_or_out direction, int prevpipe,
943 			     int nextpipe)
944 {
945 	s32 *cmd;
946 	int val;
947 
948 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
949 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
950 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
951 		printk(KERN_ERR
952 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
953 		return;
954 	}
955 
956 	cmd = dbri_cmdlock(dbri, 4);
957 
958 	if (direction == PIPEinput) {
959 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
960 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
961 		*(cmd++) = D_TS_NEXT(nextpipe);
962 		*(cmd++) = 0;
963 	} else {
964 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
965 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
966 		*(cmd++) = 0;
967 		*(cmd++) = D_TS_NEXT(nextpipe);
968 	}
969 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
970 
971 	dbri_cmdsend(dbri, cmd, 4);
972 }
973 #endif
974 
975 /* xmit_fixed() / recv_fixed()
976  *
977  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
978  * expected to change much, and which we don't need to buffer.
979  * The DBRI only interrupts us when the data changes (receive pipes),
980  * or only changes the data when this function is called (transmit pipes).
981  * Only short pipes (numbers 16-31) can be used in fixed data mode.
982  *
983  * These function operate on a 32-bit field, no matter how large
984  * the actual time slot is.  The interrupt handler takes care of bit
985  * ordering and alignment.  An 8-bit time slot will always end up
986  * in the low-order 8 bits, filled either MSB-first or LSB-first,
987  * depending on the settings passed to setup_pipe().
988  *
989  * Lock must not be held before calling it.
990  */
991 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
992 {
993 	s32 *cmd;
994 	unsigned long flags;
995 
996 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
997 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
998 		return;
999 	}
1000 
1001 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1002 		printk(KERN_ERR "DBRI: xmit_fixed: "
1003 			"Uninitialized pipe %d\n", pipe);
1004 		return;
1005 	}
1006 
1007 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1008 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1009 		return;
1010 	}
1011 
1012 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1013 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1014 			pipe);
1015 		return;
1016 	}
1017 
1018 	/* DBRI short pipes always transmit LSB first */
1019 
1020 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1021 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1022 
1023 	cmd = dbri_cmdlock(dbri, 3);
1024 
1025 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1026 	*(cmd++) = data;
1027 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1028 
1029 	spin_lock_irqsave(&dbri->lock, flags);
1030 	dbri_cmdsend(dbri, cmd, 3);
1031 	spin_unlock_irqrestore(&dbri->lock, flags);
1032 	dbri_cmdwait(dbri);
1033 
1034 }
1035 
1036 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1037 {
1038 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1039 		printk(KERN_ERR "DBRI: recv_fixed called with "
1040 			"illegal pipe number\n");
1041 		return;
1042 	}
1043 
1044 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1045 		printk(KERN_ERR "DBRI: recv_fixed called on "
1046 			"non-fixed pipe %d\n", pipe);
1047 		return;
1048 	}
1049 
1050 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1051 		printk(KERN_ERR "DBRI: recv_fixed called on "
1052 			"transmit pipe %d\n", pipe);
1053 		return;
1054 	}
1055 
1056 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1057 }
1058 
1059 /* setup_descs()
1060  *
1061  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1062  * with a DMA buffer.
1063  *
1064  * Only pipe numbers 0-15 can be used in this mode.
1065  *
1066  * This function takes a stream number pointing to a data buffer,
1067  * and work by building chains of descriptors which identify the
1068  * data buffers.  Buffers too large for a single descriptor will
1069  * be spread across multiple descriptors.
1070  *
1071  * All descriptors create a ring buffer.
1072  *
1073  * Lock must be held before calling this.
1074  */
1075 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1076 {
1077 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1078 	__u32 dvma_buffer;
1079 	int desc;
1080 	int len;
1081 	int first_desc = -1;
1082 	int last_desc = -1;
1083 
1084 	if (info->pipe < 0 || info->pipe > 15) {
1085 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1086 		return -2;
1087 	}
1088 
1089 	if (dbri->pipes[info->pipe].sdp == 0) {
1090 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1091 		       info->pipe);
1092 		return -2;
1093 	}
1094 
1095 	dvma_buffer = info->dvma_buffer;
1096 	len = info->size;
1097 
1098 	if (streamno == DBRI_PLAY) {
1099 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1100 			printk(KERN_ERR "DBRI: setup_descs: "
1101 				"Called on receive pipe %d\n", info->pipe);
1102 			return -2;
1103 		}
1104 	} else {
1105 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1106 			printk(KERN_ERR
1107 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1108 			     info->pipe);
1109 			return -2;
1110 		}
1111 		/* Should be able to queue multiple buffers
1112 		 * to receive on a pipe
1113 		 */
1114 		if (pipe_active(dbri, info->pipe)) {
1115 			printk(KERN_ERR "DBRI: recv_on_pipe: "
1116 				"Called on active pipe %d\n", info->pipe);
1117 			return -2;
1118 		}
1119 
1120 		/* Make sure buffer size is multiple of four */
1121 		len &= ~3;
1122 	}
1123 
1124 	/* Free descriptors if pipe has any */
1125 	desc = dbri->pipes[info->pipe].first_desc;
1126 	if (desc >= 0)
1127 		do {
1128 			dbri->dma->desc[desc].ba = 0;
1129 			dbri->dma->desc[desc].nda = 0;
1130 			desc = dbri->next_desc[desc];
1131 		} while (desc != -1 &&
1132 			 desc != dbri->pipes[info->pipe].first_desc);
1133 
1134 	dbri->pipes[info->pipe].desc = -1;
1135 	dbri->pipes[info->pipe].first_desc = -1;
1136 
1137 	desc = 0;
1138 	while (len > 0) {
1139 		int mylen;
1140 
1141 		for (; desc < DBRI_NO_DESCS; desc++) {
1142 			if (!dbri->dma->desc[desc].ba)
1143 				break;
1144 		}
1145 
1146 		if (desc == DBRI_NO_DESCS) {
1147 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1148 			return -1;
1149 		}
1150 
1151 		if (len > DBRI_TD_MAXCNT)
1152 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1153 		else
1154 			mylen = len;
1155 
1156 		if (mylen > period)
1157 			mylen = period;
1158 
1159 		dbri->next_desc[desc] = -1;
1160 		dbri->dma->desc[desc].ba = dvma_buffer;
1161 		dbri->dma->desc[desc].nda = 0;
1162 
1163 		if (streamno == DBRI_PLAY) {
1164 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1165 			dbri->dma->desc[desc].word4 = 0;
1166 			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1167 		} else {
1168 			dbri->dma->desc[desc].word1 = 0;
1169 			dbri->dma->desc[desc].word4 =
1170 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1171 		}
1172 
1173 		if (first_desc == -1)
1174 			first_desc = desc;
1175 		else {
1176 			dbri->next_desc[last_desc] = desc;
1177 			dbri->dma->desc[last_desc].nda =
1178 			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1179 		}
1180 
1181 		last_desc = desc;
1182 		dvma_buffer += mylen;
1183 		len -= mylen;
1184 	}
1185 
1186 	if (first_desc == -1 || last_desc == -1) {
1187 		printk(KERN_ERR "DBRI: setup_descs: "
1188 			" Not enough descriptors available\n");
1189 		return -1;
1190 	}
1191 
1192 	dbri->dma->desc[last_desc].nda =
1193 	    dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1194 	dbri->next_desc[last_desc] = first_desc;
1195 	dbri->pipes[info->pipe].first_desc = first_desc;
1196 	dbri->pipes[info->pipe].desc = first_desc;
1197 
1198 #ifdef DBRI_DEBUG
1199 	for (desc = first_desc; desc != -1;) {
1200 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1201 			desc,
1202 			dbri->dma->desc[desc].word1,
1203 			dbri->dma->desc[desc].ba,
1204 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1205 			desc = dbri->next_desc[desc];
1206 			if (desc == first_desc)
1207 				break;
1208 	}
1209 #endif
1210 	return 0;
1211 }
1212 
1213 /*
1214 ****************************************************************************
1215 ************************** DBRI - CHI interface ****************************
1216 ****************************************************************************
1217 
1218 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1219 multiplexed serial interface which the DBRI can operate in either master
1220 (give clock/frame sync) or slave (take clock/frame sync) mode.
1221 
1222 */
1223 
1224 enum master_or_slave { CHImaster, CHIslave };
1225 
1226 /*
1227  * Lock must not be held before calling it.
1228  */
1229 static void reset_chi(struct snd_dbri *dbri,
1230 		      enum master_or_slave master_or_slave,
1231 		      int bits_per_frame)
1232 {
1233 	s32 *cmd;
1234 	int val;
1235 
1236 	/* Set CHI Anchor: Pipe 16 */
1237 
1238 	cmd = dbri_cmdlock(dbri, 4);
1239 	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1240 		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1241 	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1242 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1243 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1245 	dbri_cmdsend(dbri, cmd, 4);
1246 
1247 	dbri->pipes[16].sdp = 1;
1248 	dbri->pipes[16].nextpipe = 16;
1249 
1250 	cmd = dbri_cmdlock(dbri, 4);
1251 
1252 	if (master_or_slave == CHIslave) {
1253 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1254 		 *
1255 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1256 		 * IR     = give immediate CHI status interrupt
1257 		 * EN     = give CHI status interrupt upon change
1258 		 */
1259 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1260 	} else {
1261 		/* Setup DBRI for CHI Master - generate clock, FS
1262 		 *
1263 		 * BPF				=  bits per 8 kHz frame
1264 		 * 12.288 MHz / CHICM_divisor	= clock rate
1265 		 * FD = 1 - drive CHIFS on rising edge of CHICK
1266 		 */
1267 		int clockrate = bits_per_frame * 8;
1268 		int divisor = 12288 / clockrate;
1269 
1270 		if (divisor > 255 || divisor * clockrate != 12288)
1271 			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1272 				"in setup_chi\n");
1273 
1274 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1275 				    | D_CHI_BPF(bits_per_frame));
1276 	}
1277 
1278 	dbri->chi_bpf = bits_per_frame;
1279 
1280 	/* CHI Data Mode
1281 	 *
1282 	 * RCE   =  0 - receive on falling edge of CHICK
1283 	 * XCE   =  1 - transmit on rising edge of CHICK
1284 	 * XEN   =  1 - enable transmitter
1285 	 * REN   =  1 - enable receiver
1286 	 */
1287 
1288 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1289 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1290 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291 
1292 	dbri_cmdsend(dbri, cmd, 4);
1293 }
1294 
1295 /*
1296 ****************************************************************************
1297 *********************** CS4215 audio codec management **********************
1298 ****************************************************************************
1299 
1300 In the standard SPARC audio configuration, the CS4215 codec is attached
1301 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1302 
1303  * Lock must not be held before calling it.
1304 
1305 */
1306 static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1307 {
1308 	unsigned long flags;
1309 
1310 	spin_lock_irqsave(&dbri->lock, flags);
1311 	/*
1312 	 * Data mode:
1313 	 * Pipe  4: Send timeslots 1-4 (audio data)
1314 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1315 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1316 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1317 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1318 	 *          not relevant for us (only for doublechecking).
1319 	 *
1320 	 * Control mode:
1321 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1322 	 * Pipe 18: Receive timeslot 1 (clb).
1323 	 * Pipe 19: Receive timeslot 7 (version).
1324 	 */
1325 
1326 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1327 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1328 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1329 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1330 
1331 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1332 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1333 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334 	spin_unlock_irqrestore(&dbri->lock, flags);
1335 
1336 	dbri_cmdwait(dbri);
1337 }
1338 
1339 static __devinit int cs4215_init_data(struct cs4215 *mm)
1340 {
1341 	/*
1342 	 * No action, memory resetting only.
1343 	 *
1344 	 * Data Time Slot 5-8
1345 	 * Speaker,Line and Headphone enable. Gain set to the half.
1346 	 * Input is mike.
1347 	 */
1348 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1349 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1350 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1351 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1352 
1353 	/*
1354 	 * Control Time Slot 1-4
1355 	 * 0: Default I/O voltage scale
1356 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1357 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1358 	 * 3: Tests disabled
1359 	 */
1360 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1361 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1362 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1363 	mm->ctrl[3] = 0;
1364 
1365 	mm->status = 0;
1366 	mm->version = 0xff;
1367 	mm->precision = 8;	/* For ULAW */
1368 	mm->channels = 1;
1369 
1370 	return 0;
1371 }
1372 
1373 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1374 {
1375 	if (muted) {
1376 		dbri->mm.data[0] |= 63;
1377 		dbri->mm.data[1] |= 63;
1378 		dbri->mm.data[2] &= ~15;
1379 		dbri->mm.data[3] &= ~15;
1380 	} else {
1381 		/* Start by setting the playback attenuation. */
1382 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1383 		int left_gain = info->left_gain & 0x3f;
1384 		int right_gain = info->right_gain & 0x3f;
1385 
1386 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1387 		dbri->mm.data[1] &= ~0x3f;
1388 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1389 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1390 
1391 		/* Now set the recording gain. */
1392 		info = &dbri->stream_info[DBRI_REC];
1393 		left_gain = info->left_gain & 0xf;
1394 		right_gain = info->right_gain & 0xf;
1395 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1396 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1397 	}
1398 
1399 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1400 }
1401 
1402 /*
1403  * Set the CS4215 to data mode.
1404  */
1405 static void cs4215_open(struct snd_dbri *dbri)
1406 {
1407 	int data_width;
1408 	u32 tmp;
1409 	unsigned long flags;
1410 
1411 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1412 		dbri->mm.channels, dbri->mm.precision);
1413 
1414 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1415 	 * to make sure this takes.  This avoids clicking noises.
1416 	 */
1417 
1418 	cs4215_setdata(dbri, 1);
1419 	udelay(125);
1420 
1421 	/*
1422 	 * Data mode:
1423 	 * Pipe  4: Send timeslots 1-4 (audio data)
1424 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1425 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1426 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1427 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1428 	 *          not relevant for us (only for doublechecking).
1429 	 *
1430 	 * Just like in control mode, the time slots are all offset by eight
1431 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1432 	 * even if it's the CHI master.  Don't ask me...
1433 	 */
1434 	spin_lock_irqsave(&dbri->lock, flags);
1435 	tmp = sbus_readl(dbri->regs + REG0);
1436 	tmp &= ~(D_C);		/* Disable CHI */
1437 	sbus_writel(tmp, dbri->regs + REG0);
1438 
1439 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1440 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1441 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1442 
1443 	reset_chi(dbri, CHIslave, 128);
1444 
1445 	/* Note: this next doesn't work for 8-bit stereo, because the two
1446 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1447 	 * (See CS4215 datasheet Fig 15)
1448 	 *
1449 	 * DBRI non-contiguous mode would be required to make this work.
1450 	 */
1451 	data_width = dbri->mm.channels * dbri->mm.precision;
1452 
1453 	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1454 	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1455 	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1456 	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1457 
1458 	/* FIXME: enable CHI after _setdata? */
1459 	tmp = sbus_readl(dbri->regs + REG0);
1460 	tmp |= D_C;		/* Enable CHI */
1461 	sbus_writel(tmp, dbri->regs + REG0);
1462 	spin_unlock_irqrestore(&dbri->lock, flags);
1463 
1464 	cs4215_setdata(dbri, 0);
1465 }
1466 
1467 /*
1468  * Send the control information (i.e. audio format)
1469  */
1470 static int cs4215_setctrl(struct snd_dbri *dbri)
1471 {
1472 	int i, val;
1473 	u32 tmp;
1474 	unsigned long flags;
1475 
1476 	/* FIXME - let the CPU do something useful during these delays */
1477 
1478 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1479 	 * to make sure this takes.  This avoids clicking noises.
1480 	 */
1481 	cs4215_setdata(dbri, 1);
1482 	udelay(125);
1483 
1484 	/*
1485 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1486 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1487 	 */
1488 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1489 	sbus_writel(val, dbri->regs + REG2);
1490 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1491 	udelay(34);
1492 
1493 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1494 	 * operate as CHI master, supplying clocking and frame synchronization.
1495 	 *
1496 	 * In Data mode, however, the CS4215 must be CHI master to insure
1497 	 * that its data stream is synchronous with its codec.
1498 	 *
1499 	 * The upshot of all this?  We start by putting the DBRI into master
1500 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1501 	 * into Data mode and put the DBRI into slave mode.  Various timing
1502 	 * requirements must be observed along the way.
1503 	 *
1504 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1505 	 * others?), the addressing of the CS4215's time slots is
1506 	 * offset by eight bits, so we add eight to all the "cycle"
1507 	 * values in the Define Time Slot (DTS) commands.  This is
1508 	 * done in hardware by a TI 248 that delays the DBRI->4215
1509 	 * frame sync signal by eight clock cycles.  Anybody know why?
1510 	 */
1511 	spin_lock_irqsave(&dbri->lock, flags);
1512 	tmp = sbus_readl(dbri->regs + REG0);
1513 	tmp &= ~D_C;		/* Disable CHI */
1514 	sbus_writel(tmp, dbri->regs + REG0);
1515 
1516 	reset_chi(dbri, CHImaster, 128);
1517 
1518 	/*
1519 	 * Control mode:
1520 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1521 	 * Pipe 18: Receive timeslot 1 (clb).
1522 	 * Pipe 19: Receive timeslot 7 (version).
1523 	 */
1524 
1525 	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1526 	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1527 	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1528 	spin_unlock_irqrestore(&dbri->lock, flags);
1529 
1530 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1531 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1532 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1533 
1534 	spin_lock_irqsave(&dbri->lock, flags);
1535 	tmp = sbus_readl(dbri->regs + REG0);
1536 	tmp |= D_C;		/* Enable CHI */
1537 	sbus_writel(tmp, dbri->regs + REG0);
1538 	spin_unlock_irqrestore(&dbri->lock, flags);
1539 
1540 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1541 		msleep_interruptible(1);
1542 
1543 	if (i == 0) {
1544 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1545 			dbri->mm.status);
1546 		return -1;
1547 	}
1548 
1549 	/* Disable changes to our copy of the version number, as we are about
1550 	 * to leave control mode.
1551 	 */
1552 	recv_fixed(dbri, 19, NULL);
1553 
1554 	/* Terminate CS4215 control mode - data sheet says
1555 	 * "Set CLB=1 and send two more frames of valid control info"
1556 	 */
1557 	dbri->mm.ctrl[0] |= CS4215_CLB;
1558 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1559 
1560 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1561 	udelay(250);
1562 
1563 	cs4215_setdata(dbri, 0);
1564 
1565 	return 0;
1566 }
1567 
1568 /*
1569  * Setup the codec with the sampling rate, audio format and number of
1570  * channels.
1571  * As part of the process we resend the settings for the data
1572  * timeslots as well.
1573  */
1574 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1575 			  snd_pcm_format_t format, unsigned int channels)
1576 {
1577 	int freq_idx;
1578 	int ret = 0;
1579 
1580 	/* Lookup index for this rate */
1581 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1582 		if (CS4215_FREQ[freq_idx].freq == rate)
1583 			break;
1584 	}
1585 	if (CS4215_FREQ[freq_idx].freq != rate) {
1586 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1587 		return -1;
1588 	}
1589 
1590 	switch (format) {
1591 	case SNDRV_PCM_FORMAT_MU_LAW:
1592 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1593 		dbri->mm.precision = 8;
1594 		break;
1595 	case SNDRV_PCM_FORMAT_A_LAW:
1596 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1597 		dbri->mm.precision = 8;
1598 		break;
1599 	case SNDRV_PCM_FORMAT_U8:
1600 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1601 		dbri->mm.precision = 8;
1602 		break;
1603 	case SNDRV_PCM_FORMAT_S16_BE:
1604 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1605 		dbri->mm.precision = 16;
1606 		break;
1607 	default:
1608 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1609 		return -1;
1610 	}
1611 
1612 	/* Add rate parameters */
1613 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1614 	dbri->mm.ctrl[2] = CS4215_XCLK |
1615 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1616 
1617 	dbri->mm.channels = channels;
1618 	if (channels == 2)
1619 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1620 
1621 	ret = cs4215_setctrl(dbri);
1622 	if (ret == 0)
1623 		cs4215_open(dbri);	/* set codec to data mode */
1624 
1625 	return ret;
1626 }
1627 
1628 /*
1629  *
1630  */
1631 static __devinit int cs4215_init(struct snd_dbri *dbri)
1632 {
1633 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1634 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1635 
1636 	/* Look for the cs4215 chips */
1637 	if (reg2 & D_PIO2) {
1638 		dprintk(D_MM, "Onboard CS4215 detected\n");
1639 		dbri->mm.onboard = 1;
1640 	}
1641 	if (reg2 & D_PIO0) {
1642 		dprintk(D_MM, "Speakerbox detected\n");
1643 		dbri->mm.onboard = 0;
1644 
1645 		if (reg2 & D_PIO2) {
1646 			printk(KERN_INFO "DBRI: Using speakerbox / "
1647 			       "ignoring onboard mmcodec.\n");
1648 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1649 		}
1650 	}
1651 
1652 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1653 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1654 		return -EIO;
1655 	}
1656 
1657 	cs4215_setup_pipes(dbri);
1658 	cs4215_init_data(&dbri->mm);
1659 
1660 	/* Enable capture of the status & version timeslots. */
1661 	recv_fixed(dbri, 18, &dbri->mm.status);
1662 	recv_fixed(dbri, 19, &dbri->mm.version);
1663 
1664 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1665 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1666 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1667 			dbri->mm.offset);
1668 		return -EIO;
1669 	}
1670 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1671 
1672 	return 0;
1673 }
1674 
1675 /*
1676 ****************************************************************************
1677 *************************** DBRI interrupt handler *************************
1678 ****************************************************************************
1679 
1680 The DBRI communicates with the CPU mainly via a circular interrupt
1681 buffer.  When an interrupt is signaled, the CPU walks through the
1682 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1683 Complicated interrupts are handled by dedicated functions (which
1684 appear first in this file).  Any pending interrupts can be serviced by
1685 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1686 interrupts are disabled.
1687 
1688 */
1689 
1690 /* xmit_descs()
1691  *
1692  * Starts transmitting the current TD's for recording/playing.
1693  * For playback, ALSA has filled the DMA memory with new data (we hope).
1694  */
1695 static void xmit_descs(struct snd_dbri *dbri)
1696 {
1697 	struct dbri_streaminfo *info;
1698 	s32 *cmd;
1699 	unsigned long flags;
1700 	int first_td;
1701 
1702 	if (dbri == NULL)
1703 		return;		/* Disabled */
1704 
1705 	info = &dbri->stream_info[DBRI_REC];
1706 	spin_lock_irqsave(&dbri->lock, flags);
1707 
1708 	if (info->pipe >= 0) {
1709 		first_td = dbri->pipes[info->pipe].first_desc;
1710 
1711 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1712 
1713 		/* Stream could be closed by the time we run. */
1714 		if (first_td >= 0) {
1715 			cmd = dbri_cmdlock(dbri, 2);
1716 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1717 					    dbri->pipes[info->pipe].sdp
1718 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1719 			*(cmd++) = dbri->dma_dvma +
1720 				   dbri_dma_off(desc, first_td);
1721 			dbri_cmdsend(dbri, cmd, 2);
1722 
1723 			/* Reset our admin of the pipe. */
1724 			dbri->pipes[info->pipe].desc = first_td;
1725 		}
1726 	}
1727 
1728 	info = &dbri->stream_info[DBRI_PLAY];
1729 
1730 	if (info->pipe >= 0) {
1731 		first_td = dbri->pipes[info->pipe].first_desc;
1732 
1733 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1734 
1735 		/* Stream could be closed by the time we run. */
1736 		if (first_td >= 0) {
1737 			cmd = dbri_cmdlock(dbri, 2);
1738 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1739 					    dbri->pipes[info->pipe].sdp
1740 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1741 			*(cmd++) = dbri->dma_dvma +
1742 				   dbri_dma_off(desc, first_td);
1743 			dbri_cmdsend(dbri, cmd, 2);
1744 
1745 			/* Reset our admin of the pipe. */
1746 			dbri->pipes[info->pipe].desc = first_td;
1747 		}
1748 	}
1749 
1750 	spin_unlock_irqrestore(&dbri->lock, flags);
1751 }
1752 
1753 /* transmission_complete_intr()
1754  *
1755  * Called by main interrupt handler when DBRI signals transmission complete
1756  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1757  *
1758  * Walks through the pipe's list of transmit buffer descriptors and marks
1759  * them as available. Stops when the first descriptor is found without
1760  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1761  *
1762  * The DMA buffers are not released. They form a ring buffer and
1763  * they are filled by ALSA while others are transmitted by DMA.
1764  *
1765  */
1766 
1767 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1768 {
1769 	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1770 	int td = dbri->pipes[pipe].desc;
1771 	int status;
1772 
1773 	while (td >= 0) {
1774 		if (td >= DBRI_NO_DESCS) {
1775 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1776 			return;
1777 		}
1778 
1779 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1780 		if (!(status & DBRI_TD_TBC))
1781 			break;
1782 
1783 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1784 
1785 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1786 		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1787 
1788 		td = dbri->next_desc[td];
1789 		dbri->pipes[pipe].desc = td;
1790 	}
1791 
1792 	/* Notify ALSA */
1793 	spin_unlock(&dbri->lock);
1794 	snd_pcm_period_elapsed(info->substream);
1795 	spin_lock(&dbri->lock);
1796 }
1797 
1798 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1799 {
1800 	struct dbri_streaminfo *info;
1801 	int rd = dbri->pipes[pipe].desc;
1802 	s32 status;
1803 
1804 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1805 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1806 		return;
1807 	}
1808 
1809 	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1810 	status = dbri->dma->desc[rd].word1;
1811 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1812 
1813 	info = &dbri->stream_info[DBRI_REC];
1814 	info->offset += DBRI_RD_CNT(status);
1815 
1816 	/* FIXME: Check status */
1817 
1818 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1819 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1820 
1821 	/* Notify ALSA */
1822 	spin_unlock(&dbri->lock);
1823 	snd_pcm_period_elapsed(info->substream);
1824 	spin_lock(&dbri->lock);
1825 }
1826 
1827 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1828 {
1829 	int val = D_INTR_GETVAL(x);
1830 	int channel = D_INTR_GETCHAN(x);
1831 	int command = D_INTR_GETCMD(x);
1832 	int code = D_INTR_GETCODE(x);
1833 #ifdef DBRI_DEBUG
1834 	int rval = D_INTR_GETRVAL(x);
1835 #endif
1836 
1837 	if (channel == D_INTR_CMD) {
1838 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1839 			cmds[command], val);
1840 	} else {
1841 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1842 			channel, code, rval);
1843 	}
1844 
1845 	switch (code) {
1846 	case D_INTR_CMDI:
1847 		if (command != D_WAIT)
1848 			printk(KERN_ERR "DBRI: Command read interrupt\n");
1849 		break;
1850 	case D_INTR_BRDY:
1851 		reception_complete_intr(dbri, channel);
1852 		break;
1853 	case D_INTR_XCMP:
1854 	case D_INTR_MINT:
1855 		transmission_complete_intr(dbri, channel);
1856 		break;
1857 	case D_INTR_UNDR:
1858 		/* UNDR - Transmission underrun
1859 		 * resend SDP command with clear pipe bit (C) set
1860 		 */
1861 		{
1862 	/* FIXME: do something useful in case of underrun */
1863 			printk(KERN_ERR "DBRI: Underrun error\n");
1864 #if 0
1865 			s32 *cmd;
1866 			int pipe = channel;
1867 			int td = dbri->pipes[pipe].desc;
1868 
1869 			dbri->dma->desc[td].word4 = 0;
1870 			cmd = dbri_cmdlock(dbri, NoGetLock);
1871 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1872 					    dbri->pipes[pipe].sdp
1873 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1874 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1875 			dbri_cmdsend(dbri, cmd);
1876 #endif
1877 		}
1878 		break;
1879 	case D_INTR_FXDT:
1880 		/* FXDT - Fixed data change */
1881 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1882 			val = reverse_bytes(val, dbri->pipes[channel].length);
1883 
1884 		if (dbri->pipes[channel].recv_fixed_ptr)
1885 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1886 		break;
1887 	default:
1888 		if (channel != D_INTR_CMD)
1889 			printk(KERN_WARNING
1890 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1891 	}
1892 }
1893 
1894 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1895  * buffer until it finds a zero word (indicating nothing more to do
1896  * right now).  Non-zero words require processing and are handed off
1897  * to dbri_process_one_interrupt AFTER advancing the pointer.
1898  */
1899 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1900 {
1901 	s32 x;
1902 
1903 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1904 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1905 		dbri->dbri_irqp++;
1906 		if (dbri->dbri_irqp == DBRI_INT_BLK)
1907 			dbri->dbri_irqp = 1;
1908 
1909 		dbri_process_one_interrupt(dbri, x);
1910 	}
1911 }
1912 
1913 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1914 {
1915 	struct snd_dbri *dbri = dev_id;
1916 	static int errcnt = 0;
1917 	int x;
1918 
1919 	if (dbri == NULL)
1920 		return IRQ_NONE;
1921 	spin_lock(&dbri->lock);
1922 
1923 	/*
1924 	 * Read it, so the interrupt goes away.
1925 	 */
1926 	x = sbus_readl(dbri->regs + REG1);
1927 
1928 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1929 		u32 tmp;
1930 
1931 		if (x & D_MRR)
1932 			printk(KERN_ERR
1933 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1934 			       x);
1935 		if (x & D_MLE)
1936 			printk(KERN_ERR
1937 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1938 			       x);
1939 		if (x & D_LBG)
1940 			printk(KERN_ERR
1941 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1942 		if (x & D_MBE)
1943 			printk(KERN_ERR
1944 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1945 
1946 		/* Some of these SBus errors cause the chip's SBus circuitry
1947 		 * to be disabled, so just re-enable and try to keep going.
1948 		 *
1949 		 * The only one I've seen is MRR, which will be triggered
1950 		 * if you let a transmit pipe underrun, then try to CDP it.
1951 		 *
1952 		 * If these things persist, we reset the chip.
1953 		 */
1954 		if ((++errcnt) % 10 == 0) {
1955 			dprintk(D_INT, "Interrupt errors exceeded.\n");
1956 			dbri_reset(dbri);
1957 		} else {
1958 			tmp = sbus_readl(dbri->regs + REG0);
1959 			tmp &= ~(D_D);
1960 			sbus_writel(tmp, dbri->regs + REG0);
1961 		}
1962 	}
1963 
1964 	dbri_process_interrupt_buffer(dbri);
1965 
1966 	spin_unlock(&dbri->lock);
1967 
1968 	return IRQ_HANDLED;
1969 }
1970 
1971 /****************************************************************************
1972 		PCM Interface
1973 ****************************************************************************/
1974 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1975 	.info		= SNDRV_PCM_INFO_MMAP |
1976 			  SNDRV_PCM_INFO_INTERLEAVED |
1977 			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1978 			  SNDRV_PCM_INFO_MMAP_VALID,
1979 	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1980 			  SNDRV_PCM_FMTBIT_A_LAW |
1981 			  SNDRV_PCM_FMTBIT_U8 |
1982 			  SNDRV_PCM_FMTBIT_S16_BE,
1983 	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1984 	.rate_min		= 5512,
1985 	.rate_max		= 48000,
1986 	.channels_min		= 1,
1987 	.channels_max		= 2,
1988 	.buffer_bytes_max	= 64 * 1024,
1989 	.period_bytes_min	= 1,
1990 	.period_bytes_max	= DBRI_TD_MAXCNT,
1991 	.periods_min		= 1,
1992 	.periods_max		= 1024,
1993 };
1994 
1995 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1996 			      struct snd_pcm_hw_rule *rule)
1997 {
1998 	struct snd_interval *c = hw_param_interval(params,
1999 				SNDRV_PCM_HW_PARAM_CHANNELS);
2000 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2001 	struct snd_mask fmt;
2002 
2003 	snd_mask_any(&fmt);
2004 	if (c->min > 1) {
2005 		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2006 		return snd_mask_refine(f, &fmt);
2007 	}
2008 	return 0;
2009 }
2010 
2011 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2012 				struct snd_pcm_hw_rule *rule)
2013 {
2014 	struct snd_interval *c = hw_param_interval(params,
2015 				SNDRV_PCM_HW_PARAM_CHANNELS);
2016 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2017 	struct snd_interval ch;
2018 
2019 	snd_interval_any(&ch);
2020 	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2021 		ch.min = 1;
2022 		ch.max = 1;
2023 		ch.integer = 1;
2024 		return snd_interval_refine(c, &ch);
2025 	}
2026 	return 0;
2027 }
2028 
2029 static int snd_dbri_open(struct snd_pcm_substream *substream)
2030 {
2031 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2032 	struct snd_pcm_runtime *runtime = substream->runtime;
2033 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2034 	unsigned long flags;
2035 
2036 	dprintk(D_USR, "open audio output.\n");
2037 	runtime->hw = snd_dbri_pcm_hw;
2038 
2039 	spin_lock_irqsave(&dbri->lock, flags);
2040 	info->substream = substream;
2041 	info->offset = 0;
2042 	info->dvma_buffer = 0;
2043 	info->pipe = -1;
2044 	spin_unlock_irqrestore(&dbri->lock, flags);
2045 
2046 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2047 			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2048 			    -1);
2049 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2050 			    snd_hw_rule_channels, NULL,
2051 			    SNDRV_PCM_HW_PARAM_CHANNELS,
2052 			    -1);
2053 
2054 	cs4215_open(dbri);
2055 
2056 	return 0;
2057 }
2058 
2059 static int snd_dbri_close(struct snd_pcm_substream *substream)
2060 {
2061 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2062 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2063 
2064 	dprintk(D_USR, "close audio output.\n");
2065 	info->substream = NULL;
2066 	info->offset = 0;
2067 
2068 	return 0;
2069 }
2070 
2071 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2072 			      struct snd_pcm_hw_params *hw_params)
2073 {
2074 	struct snd_pcm_runtime *runtime = substream->runtime;
2075 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077 	int direction;
2078 	int ret;
2079 
2080 	/* set sampling rate, audio format and number of channels */
2081 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2082 			     params_format(hw_params),
2083 			     params_channels(hw_params));
2084 	if (ret != 0)
2085 		return ret;
2086 
2087 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2088 				params_buffer_bytes(hw_params))) < 0) {
2089 		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2090 		return ret;
2091 	}
2092 
2093 	/* hw_params can get called multiple times. Only map the DMA once.
2094 	 */
2095 	if (info->dvma_buffer == 0) {
2096 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2097 			direction = DMA_TO_DEVICE;
2098 		else
2099 			direction = DMA_FROM_DEVICE;
2100 
2101 		info->dvma_buffer =
2102 			dma_map_single(&dbri->op->dev,
2103 				       runtime->dma_area,
2104 				       params_buffer_bytes(hw_params),
2105 				       direction);
2106 	}
2107 
2108 	direction = params_buffer_bytes(hw_params);
2109 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2110 		direction, info->dvma_buffer);
2111 	return 0;
2112 }
2113 
2114 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2115 {
2116 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2117 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2118 	int direction;
2119 
2120 	dprintk(D_USR, "hw_free.\n");
2121 
2122 	/* hw_free can get called multiple times. Only unmap the DMA once.
2123 	 */
2124 	if (info->dvma_buffer) {
2125 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2126 			direction = DMA_TO_DEVICE;
2127 		else
2128 			direction = DMA_FROM_DEVICE;
2129 
2130 		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2131 				 substream->runtime->buffer_size, direction);
2132 		info->dvma_buffer = 0;
2133 	}
2134 	if (info->pipe != -1) {
2135 		reset_pipe(dbri, info->pipe);
2136 		info->pipe = -1;
2137 	}
2138 
2139 	return snd_pcm_lib_free_pages(substream);
2140 }
2141 
2142 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2143 {
2144 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2145 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2146 	int ret;
2147 
2148 	info->size = snd_pcm_lib_buffer_bytes(substream);
2149 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2150 		info->pipe = 4;	/* Send pipe */
2151 	else
2152 		info->pipe = 6;	/* Receive pipe */
2153 
2154 	spin_lock_irq(&dbri->lock);
2155 	info->offset = 0;
2156 
2157 	/* Setup the all the transmit/receive descriptors to cover the
2158 	 * whole DMA buffer.
2159 	 */
2160 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2161 			  snd_pcm_lib_period_bytes(substream));
2162 
2163 	spin_unlock_irq(&dbri->lock);
2164 
2165 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2166 	return ret;
2167 }
2168 
2169 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2170 {
2171 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2172 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2173 	int ret = 0;
2174 
2175 	switch (cmd) {
2176 	case SNDRV_PCM_TRIGGER_START:
2177 		dprintk(D_USR, "start audio, period is %d bytes\n",
2178 			(int)snd_pcm_lib_period_bytes(substream));
2179 		/* Re-submit the TDs. */
2180 		xmit_descs(dbri);
2181 		break;
2182 	case SNDRV_PCM_TRIGGER_STOP:
2183 		dprintk(D_USR, "stop audio.\n");
2184 		reset_pipe(dbri, info->pipe);
2185 		break;
2186 	default:
2187 		ret = -EINVAL;
2188 	}
2189 
2190 	return ret;
2191 }
2192 
2193 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2194 {
2195 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2196 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2197 	snd_pcm_uframes_t ret;
2198 
2199 	ret = bytes_to_frames(substream->runtime, info->offset)
2200 		% substream->runtime->buffer_size;
2201 	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2202 		ret, substream->runtime->buffer_size);
2203 	return ret;
2204 }
2205 
2206 static struct snd_pcm_ops snd_dbri_ops = {
2207 	.open = snd_dbri_open,
2208 	.close = snd_dbri_close,
2209 	.ioctl = snd_pcm_lib_ioctl,
2210 	.hw_params = snd_dbri_hw_params,
2211 	.hw_free = snd_dbri_hw_free,
2212 	.prepare = snd_dbri_prepare,
2213 	.trigger = snd_dbri_trigger,
2214 	.pointer = snd_dbri_pointer,
2215 };
2216 
2217 static int __devinit snd_dbri_pcm(struct snd_card *card)
2218 {
2219 	struct snd_pcm *pcm;
2220 	int err;
2221 
2222 	if ((err = snd_pcm_new(card,
2223 			       /* ID */		    "sun_dbri",
2224 			       /* device */	    0,
2225 			       /* playback count */ 1,
2226 			       /* capture count */  1, &pcm)) < 0)
2227 		return err;
2228 
2229 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2230 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2231 
2232 	pcm->private_data = card->private_data;
2233 	pcm->info_flags = 0;
2234 	strcpy(pcm->name, card->shortname);
2235 
2236 	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2237 			SNDRV_DMA_TYPE_CONTINUOUS,
2238 			snd_dma_continuous_data(GFP_KERNEL),
2239 			64 * 1024, 64 * 1024)) < 0)
2240 		return err;
2241 
2242 	return 0;
2243 }
2244 
2245 /*****************************************************************************
2246 			Mixer interface
2247 *****************************************************************************/
2248 
2249 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2250 				  struct snd_ctl_elem_info *uinfo)
2251 {
2252 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2253 	uinfo->count = 2;
2254 	uinfo->value.integer.min = 0;
2255 	if (kcontrol->private_value == DBRI_PLAY)
2256 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2257 	else
2258 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2259 	return 0;
2260 }
2261 
2262 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2263 				 struct snd_ctl_elem_value *ucontrol)
2264 {
2265 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2266 	struct dbri_streaminfo *info;
2267 
2268 	if (snd_BUG_ON(!dbri))
2269 		return -EINVAL;
2270 	info = &dbri->stream_info[kcontrol->private_value];
2271 
2272 	ucontrol->value.integer.value[0] = info->left_gain;
2273 	ucontrol->value.integer.value[1] = info->right_gain;
2274 	return 0;
2275 }
2276 
2277 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2278 				 struct snd_ctl_elem_value *ucontrol)
2279 {
2280 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2281 	struct dbri_streaminfo *info =
2282 				&dbri->stream_info[kcontrol->private_value];
2283 	unsigned int vol[2];
2284 	int changed = 0;
2285 
2286 	vol[0] = ucontrol->value.integer.value[0];
2287 	vol[1] = ucontrol->value.integer.value[1];
2288 	if (kcontrol->private_value == DBRI_PLAY) {
2289 		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2290 			return -EINVAL;
2291 	} else {
2292 		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2293 			return -EINVAL;
2294 	}
2295 
2296 	if (info->left_gain != vol[0]) {
2297 		info->left_gain = vol[0];
2298 		changed = 1;
2299 	}
2300 	if (info->right_gain != vol[1]) {
2301 		info->right_gain = vol[1];
2302 		changed = 1;
2303 	}
2304 	if (changed) {
2305 		/* First mute outputs, and wait 1/8000 sec (125 us)
2306 		 * to make sure this takes.  This avoids clicking noises.
2307 		 */
2308 		cs4215_setdata(dbri, 1);
2309 		udelay(125);
2310 		cs4215_setdata(dbri, 0);
2311 	}
2312 	return changed;
2313 }
2314 
2315 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2316 				  struct snd_ctl_elem_info *uinfo)
2317 {
2318 	int mask = (kcontrol->private_value >> 16) & 0xff;
2319 
2320 	uinfo->type = (mask == 1) ?
2321 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2322 	uinfo->count = 1;
2323 	uinfo->value.integer.min = 0;
2324 	uinfo->value.integer.max = mask;
2325 	return 0;
2326 }
2327 
2328 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2329 				 struct snd_ctl_elem_value *ucontrol)
2330 {
2331 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2332 	int elem = kcontrol->private_value & 0xff;
2333 	int shift = (kcontrol->private_value >> 8) & 0xff;
2334 	int mask = (kcontrol->private_value >> 16) & 0xff;
2335 	int invert = (kcontrol->private_value >> 24) & 1;
2336 
2337 	if (snd_BUG_ON(!dbri))
2338 		return -EINVAL;
2339 
2340 	if (elem < 4)
2341 		ucontrol->value.integer.value[0] =
2342 		    (dbri->mm.data[elem] >> shift) & mask;
2343 	else
2344 		ucontrol->value.integer.value[0] =
2345 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2346 
2347 	if (invert == 1)
2348 		ucontrol->value.integer.value[0] =
2349 		    mask - ucontrol->value.integer.value[0];
2350 	return 0;
2351 }
2352 
2353 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2354 				 struct snd_ctl_elem_value *ucontrol)
2355 {
2356 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2357 	int elem = kcontrol->private_value & 0xff;
2358 	int shift = (kcontrol->private_value >> 8) & 0xff;
2359 	int mask = (kcontrol->private_value >> 16) & 0xff;
2360 	int invert = (kcontrol->private_value >> 24) & 1;
2361 	int changed = 0;
2362 	unsigned short val;
2363 
2364 	if (snd_BUG_ON(!dbri))
2365 		return -EINVAL;
2366 
2367 	val = (ucontrol->value.integer.value[0] & mask);
2368 	if (invert == 1)
2369 		val = mask - val;
2370 	val <<= shift;
2371 
2372 	if (elem < 4) {
2373 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2374 				       ~(mask << shift)) | val;
2375 		changed = (val != dbri->mm.data[elem]);
2376 	} else {
2377 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2378 					   ~(mask << shift)) | val;
2379 		changed = (val != dbri->mm.ctrl[elem - 4]);
2380 	}
2381 
2382 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2383 		"mixer-value=%ld, mm-value=0x%x\n",
2384 		mask, changed, ucontrol->value.integer.value[0],
2385 		dbri->mm.data[elem & 3]);
2386 
2387 	if (changed) {
2388 		/* First mute outputs, and wait 1/8000 sec (125 us)
2389 		 * to make sure this takes.  This avoids clicking noises.
2390 		 */
2391 		cs4215_setdata(dbri, 1);
2392 		udelay(125);
2393 		cs4215_setdata(dbri, 0);
2394 	}
2395 	return changed;
2396 }
2397 
2398 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2399    timeslots. Shift is the bit offset in the timeslot, mask defines the
2400    number of bits. invert is a boolean for use with attenuation.
2401  */
2402 #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2403 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2404   .info = snd_cs4215_info_single,				\
2405   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2406   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2407 			((invert) << 24) },
2408 
2409 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2410 	{
2411 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2412 	 .name  = "Playback Volume",
2413 	 .info  = snd_cs4215_info_volume,
2414 	 .get   = snd_cs4215_get_volume,
2415 	 .put   = snd_cs4215_put_volume,
2416 	 .private_value = DBRI_PLAY,
2417 	 },
2418 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2419 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2420 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2421 	{
2422 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2423 	 .name  = "Capture Volume",
2424 	 .info  = snd_cs4215_info_volume,
2425 	 .get   = snd_cs4215_get_volume,
2426 	 .put   = snd_cs4215_put_volume,
2427 	 .private_value = DBRI_REC,
2428 	 },
2429 	/* FIXME: mic/line switch */
2430 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2431 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2432 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2433 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2434 };
2435 
2436 static int __devinit snd_dbri_mixer(struct snd_card *card)
2437 {
2438 	int idx, err;
2439 	struct snd_dbri *dbri;
2440 
2441 	if (snd_BUG_ON(!card || !card->private_data))
2442 		return -EINVAL;
2443 	dbri = card->private_data;
2444 
2445 	strcpy(card->mixername, card->shortname);
2446 
2447 	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2448 		err = snd_ctl_add(card,
2449 				snd_ctl_new1(&dbri_controls[idx], dbri));
2450 		if (err < 0)
2451 			return err;
2452 	}
2453 
2454 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2455 		dbri->stream_info[idx].left_gain = 0;
2456 		dbri->stream_info[idx].right_gain = 0;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 /****************************************************************************
2463 			/proc interface
2464 ****************************************************************************/
2465 static void dbri_regs_read(struct snd_info_entry *entry,
2466 			   struct snd_info_buffer *buffer)
2467 {
2468 	struct snd_dbri *dbri = entry->private_data;
2469 
2470 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2471 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2472 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2473 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2474 }
2475 
2476 #ifdef DBRI_DEBUG
2477 static void dbri_debug_read(struct snd_info_entry *entry,
2478 			    struct snd_info_buffer *buffer)
2479 {
2480 	struct snd_dbri *dbri = entry->private_data;
2481 	int pipe;
2482 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2483 
2484 	for (pipe = 0; pipe < 32; pipe++) {
2485 		if (pipe_active(dbri, pipe)) {
2486 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2487 			snd_iprintf(buffer,
2488 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2489 				    "len=%d next %d\n",
2490 				    pipe,
2491 				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2492 								 "input",
2493 				    pptr->sdp, pptr->desc,
2494 				    pptr->length, pptr->nextpipe);
2495 		}
2496 	}
2497 }
2498 #endif
2499 
2500 static void __devinit snd_dbri_proc(struct snd_card *card)
2501 {
2502 	struct snd_dbri *dbri = card->private_data;
2503 	struct snd_info_entry *entry;
2504 
2505 	if (!snd_card_proc_new(card, "regs", &entry))
2506 		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2507 
2508 #ifdef DBRI_DEBUG
2509 	if (!snd_card_proc_new(card, "debug", &entry)) {
2510 		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2511 		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2512 	}
2513 #endif
2514 }
2515 
2516 /*
2517 ****************************************************************************
2518 **************************** Initialization ********************************
2519 ****************************************************************************
2520 */
2521 static void snd_dbri_free(struct snd_dbri *dbri);
2522 
2523 static int __devinit snd_dbri_create(struct snd_card *card,
2524 				     struct of_device *op,
2525 				     int irq, int dev)
2526 {
2527 	struct snd_dbri *dbri = card->private_data;
2528 	int err;
2529 
2530 	spin_lock_init(&dbri->lock);
2531 	dbri->op = op;
2532 	dbri->irq = irq;
2533 
2534 	dbri->dma = dma_alloc_coherent(&op->dev,
2535 				       sizeof(struct dbri_dma),
2536 				       &dbri->dma_dvma, GFP_ATOMIC);
2537 	if (!dbri->dma)
2538 		return -ENOMEM;
2539 	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2540 
2541 	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2542 		dbri->dma, dbri->dma_dvma);
2543 
2544 	/* Map the registers into memory. */
2545 	dbri->regs_size = resource_size(&op->resource[0]);
2546 	dbri->regs = of_ioremap(&op->resource[0], 0,
2547 				dbri->regs_size, "DBRI Registers");
2548 	if (!dbri->regs) {
2549 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2550 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2551 				  (void *)dbri->dma, dbri->dma_dvma);
2552 		return -EIO;
2553 	}
2554 
2555 	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2556 			  "DBRI audio", dbri);
2557 	if (err) {
2558 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2559 		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2560 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2561 				  (void *)dbri->dma, dbri->dma_dvma);
2562 		return err;
2563 	}
2564 
2565 	/* Do low level initialization of the DBRI and CS4215 chips */
2566 	dbri_initialize(dbri);
2567 	err = cs4215_init(dbri);
2568 	if (err) {
2569 		snd_dbri_free(dbri);
2570 		return err;
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 static void snd_dbri_free(struct snd_dbri *dbri)
2577 {
2578 	dprintk(D_GEN, "snd_dbri_free\n");
2579 	dbri_reset(dbri);
2580 
2581 	if (dbri->irq)
2582 		free_irq(dbri->irq, dbri);
2583 
2584 	if (dbri->regs)
2585 		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2586 
2587 	if (dbri->dma)
2588 		dma_free_coherent(&dbri->op->dev,
2589 				  sizeof(struct dbri_dma),
2590 				  (void *)dbri->dma, dbri->dma_dvma);
2591 }
2592 
2593 static int __devinit dbri_probe(struct of_device *op, const struct of_device_id *match)
2594 {
2595 	struct snd_dbri *dbri;
2596 	struct resource *rp;
2597 	struct snd_card *card;
2598 	static int dev = 0;
2599 	int irq;
2600 	int err;
2601 
2602 	if (dev >= SNDRV_CARDS)
2603 		return -ENODEV;
2604 	if (!enable[dev]) {
2605 		dev++;
2606 		return -ENOENT;
2607 	}
2608 
2609 	irq = op->irqs[0];
2610 	if (irq <= 0) {
2611 		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2612 		return -ENODEV;
2613 	}
2614 
2615 	err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2616 			      sizeof(struct snd_dbri), &card);
2617 	if (err < 0)
2618 		return err;
2619 
2620 	strcpy(card->driver, "DBRI");
2621 	strcpy(card->shortname, "Sun DBRI");
2622 	rp = &op->resource[0];
2623 	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2624 		card->shortname,
2625 		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2626 
2627 	err = snd_dbri_create(card, op, irq, dev);
2628 	if (err < 0) {
2629 		snd_card_free(card);
2630 		return err;
2631 	}
2632 
2633 	dbri = card->private_data;
2634 	err = snd_dbri_pcm(card);
2635 	if (err < 0)
2636 		goto _err;
2637 
2638 	err = snd_dbri_mixer(card);
2639 	if (err < 0)
2640 		goto _err;
2641 
2642 	/* /proc file handling */
2643 	snd_dbri_proc(card);
2644 	dev_set_drvdata(&op->dev, card);
2645 
2646 	err = snd_card_register(card);
2647 	if (err < 0)
2648 		goto _err;
2649 
2650 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2651 	       dev, dbri->regs,
2652 	       dbri->irq, op->node->name[9], dbri->mm.version);
2653 	dev++;
2654 
2655 	return 0;
2656 
2657 _err:
2658 	snd_dbri_free(dbri);
2659 	snd_card_free(card);
2660 	return err;
2661 }
2662 
2663 static int __devexit dbri_remove(struct of_device *op)
2664 {
2665 	struct snd_card *card = dev_get_drvdata(&op->dev);
2666 
2667 	snd_dbri_free(card->private_data);
2668 	snd_card_free(card);
2669 
2670 	dev_set_drvdata(&op->dev, NULL);
2671 
2672 	return 0;
2673 }
2674 
2675 static const struct of_device_id dbri_match[] = {
2676 	{
2677 		.name = "SUNW,DBRIe",
2678 	},
2679 	{
2680 		.name = "SUNW,DBRIf",
2681 	},
2682 	{},
2683 };
2684 
2685 MODULE_DEVICE_TABLE(of, dbri_match);
2686 
2687 static struct of_platform_driver dbri_sbus_driver = {
2688 	.name		= "dbri",
2689 	.match_table	= dbri_match,
2690 	.probe		= dbri_probe,
2691 	.remove		= __devexit_p(dbri_remove),
2692 };
2693 
2694 /* Probe for the dbri chip and then attach the driver. */
2695 static int __init dbri_init(void)
2696 {
2697 	return of_register_driver(&dbri_sbus_driver, &of_bus_type);
2698 }
2699 
2700 static void __exit dbri_exit(void)
2701 {
2702 	of_unregister_driver(&dbri_sbus_driver);
2703 }
2704 
2705 module_init(dbri_init);
2706 module_exit(dbri_exit);
2707