xref: /openbmc/linux/sound/sparc/dbri.c (revision 86db9f28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for DBRI sound chip found on Sparcs.
4  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5  *
6  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7  *
8  * Based entirely upon drivers/sbus/audio/dbri.c which is:
9  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
10  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11  *
12  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13  * on Sun SPARCStation 10, 20, LX and Voyager models.
14  *
15  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16  *   data time multiplexer with ISDN support (aka T7259)
17  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19  *   Documentation:
20  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21  *     Sparc Technology Business (courtesy of Sun Support)
22  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23  *     available from the Lucent (formerly AT&T microelectronics) home
24  *     page.
25  *   - http://www.freesoft.org/Linux/DBRI/
26  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
28  *   Documentation: from the Crystal Semiconductor home page.
29  *
30  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31  * memory and a serial device (long pipes, no. 0-15) or between two serial
32  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33  * device (short pipes).
34  * A timeslot defines the bit-offset and no. of bits read from a serial device.
35  * The timeslots are linked to 6 circular lists, one for each direction for
36  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37  * (the second one is a monitor/tee pipe, valid only for serial input).
38  *
39  * The mmcodec is connected via the CHI bus and needs the data & some
40  * parameters (volume, output selection) time multiplexed in 8 byte
41  * chunks. It also has a control mode, which serves for audio format setting.
42  *
43  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44  * the same CHI bus, so I thought perhaps it is possible to use the on-board
45  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46  * audio devices. But the SUN HW group decided against it, at least on my
47  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
48  * connected.
49  *
50  * I've tried to stick to the following function naming conventions:
51  * snd_*	ALSA stuff
52  * cs4215_*	CS4215 codec specific stuff
53  * dbri_*	DBRI high-level stuff
54  * other	DBRI low-level stuff
55  */
56 
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
59 #include <linux/irq.h>
60 #include <linux/io.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/gfp.h>
63 
64 #include <sound/core.h>
65 #include <sound/pcm.h>
66 #include <sound/pcm_params.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/initval.h>
70 
71 #include <linux/of.h>
72 #include <linux/of_device.h>
73 #include <linux/atomic.h>
74 #include <linux/module.h>
75 
76 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
77 MODULE_DESCRIPTION("Sun DBRI");
78 MODULE_LICENSE("GPL");
79 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
80 
81 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
82 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
83 /* Enable this card */
84 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
85 
86 module_param_array(index, int, NULL, 0444);
87 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
88 module_param_array(id, charp, NULL, 0444);
89 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
90 module_param_array(enable, bool, NULL, 0444);
91 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
92 
93 #undef DBRI_DEBUG
94 
95 #define D_INT	(1<<0)
96 #define D_GEN	(1<<1)
97 #define D_CMD	(1<<2)
98 #define D_MM	(1<<3)
99 #define D_USR	(1<<4)
100 #define D_DESC	(1<<5)
101 
102 static int dbri_debug;
103 module_param(dbri_debug, int, 0644);
104 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
105 
106 #ifdef DBRI_DEBUG
107 static char *cmds[] = {
108 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
109 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
110 };
111 
112 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
113 
114 #else
115 #define dprintk(a, x...) do { } while (0)
116 
117 #endif				/* DBRI_DEBUG */
118 
119 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
120 				    (intr << 27) |	\
121 				    value)
122 
123 /***************************************************************************
124 	CS4215 specific definitions and structures
125 ****************************************************************************/
126 
127 struct cs4215 {
128 	__u8 data[4];		/* Data mode: Time slots 5-8 */
129 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
130 	__u8 onboard;
131 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
132 	volatile __u32 status;
133 	volatile __u32 version;
134 	__u8 precision;		/* In bits, either 8 or 16 */
135 	__u8 channels;		/* 1 or 2 */
136 };
137 
138 /*
139  * Control mode first
140  */
141 
142 /* Time Slot 1, Status register */
143 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
144 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
145 				/* 0: line: 2.8V, speaker 8V */
146 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
147 #define CS4215_RSRVD_1  (1<<5)
148 
149 /* Time Slot 2, Data Format Register */
150 #define CS4215_DFR_LINEAR16	0
151 #define CS4215_DFR_ULAW		1
152 #define CS4215_DFR_ALAW		2
153 #define CS4215_DFR_LINEAR8	3
154 #define CS4215_DFR_STEREO	(1<<2)
155 static struct {
156 	unsigned short freq;
157 	unsigned char xtal;
158 	unsigned char csval;
159 } CS4215_FREQ[] = {
160 	{  8000, (1 << 4), (0 << 3) },
161 	{ 16000, (1 << 4), (1 << 3) },
162 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
163 	{ 32000, (1 << 4), (3 << 3) },
164      /* {    NA, (1 << 4), (4 << 3) }, */
165      /* {    NA, (1 << 4), (5 << 3) }, */
166 	{ 48000, (1 << 4), (6 << 3) },
167 	{  9600, (1 << 4), (7 << 3) },
168 	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
169 	{ 11025, (2 << 4), (1 << 3) },
170 	{ 18900, (2 << 4), (2 << 3) },
171 	{ 22050, (2 << 4), (3 << 3) },
172 	{ 37800, (2 << 4), (4 << 3) },
173 	{ 44100, (2 << 4), (5 << 3) },
174 	{ 33075, (2 << 4), (6 << 3) },
175 	{  6615, (2 << 4), (7 << 3) },
176 	{ 0, 0, 0}
177 };
178 
179 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
180 
181 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
182 
183 /* Time Slot 3, Serial Port Control register */
184 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
185 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
186 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
187 #define CS4215_BSEL_128	(1<<2)
188 #define CS4215_BSEL_256	(2<<2)
189 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
190 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
191 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
192 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
193 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
194 
195 /* Time Slot 4, Test Register */
196 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
197 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
198 
199 /* Time Slot 5, Parallel Port Register */
200 /* Read only here and the same as the in data mode */
201 
202 /* Time Slot 6, Reserved  */
203 
204 /* Time Slot 7, Version Register  */
205 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
206 
207 /* Time Slot 8, Reserved  */
208 
209 /*
210  * Data mode
211  */
212 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
213 
214 /* Time Slot 5, Output Setting  */
215 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
216 #define CS4215_LE	(1<<6)	/* Line Out Enable */
217 #define CS4215_HE	(1<<7)	/* Headphone Enable */
218 
219 /* Time Slot 6, Output Setting  */
220 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
221 #define CS4215_SE	(1<<6)	/* Speaker Enable */
222 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
223 
224 /* Time Slot 7, Input Setting */
225 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
226 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
227 #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
228 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
229 #define CS4215_PIO1	(1<<7)
230 
231 /* Time Slot 8, Input Setting */
232 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
233 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
234 
235 /***************************************************************************
236 		DBRI specific definitions and structures
237 ****************************************************************************/
238 
239 /* DBRI main registers */
240 #define REG0	0x00		/* Status and Control */
241 #define REG1	0x04		/* Mode and Interrupt */
242 #define REG2	0x08		/* Parallel IO */
243 #define REG3	0x0c		/* Test */
244 #define REG8	0x20		/* Command Queue Pointer */
245 #define REG9	0x24		/* Interrupt Queue Pointer */
246 
247 #define DBRI_NO_CMDS	64
248 #define DBRI_INT_BLK	64
249 #define DBRI_NO_DESCS	64
250 #define DBRI_NO_PIPES	32
251 #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
252 
253 #define DBRI_REC	0
254 #define DBRI_PLAY	1
255 #define DBRI_NO_STREAMS	2
256 
257 /* One transmit/receive descriptor */
258 /* When ba != 0 descriptor is used */
259 struct dbri_mem {
260 	volatile __u32 word1;
261 	__u32 ba;	/* Transmit/Receive Buffer Address */
262 	__u32 nda;	/* Next Descriptor Address */
263 	volatile __u32 word4;
264 };
265 
266 /* This structure is in a DMA region where it can accessed by both
267  * the CPU and the DBRI
268  */
269 struct dbri_dma {
270 	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
271 	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
272 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
273 };
274 
275 #define dbri_dma_off(member, elem)	\
276 	((u32)(unsigned long)		\
277 	 (&(((struct dbri_dma *)0)->member[elem])))
278 
279 enum in_or_out { PIPEinput, PIPEoutput };
280 
281 struct dbri_pipe {
282 	u32 sdp;		/* SDP command word */
283 	int nextpipe;		/* Next pipe in linked list */
284 	int length;		/* Length of timeslot (bits) */
285 	int first_desc;		/* Index of first descriptor */
286 	int desc;		/* Index of active descriptor */
287 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
288 };
289 
290 /* Per stream (playback or record) information */
291 struct dbri_streaminfo {
292 	struct snd_pcm_substream *substream;
293 	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
294 	int size;		/* Size of DMA buffer             */
295 	size_t offset;		/* offset in user buffer          */
296 	int pipe;		/* Data pipe used                 */
297 	int left_gain;		/* mixer elements                 */
298 	int right_gain;
299 };
300 
301 /* This structure holds the information for both chips (DBRI & CS4215) */
302 struct snd_dbri {
303 	int regs_size, irq;	/* Needed for unload */
304 	struct platform_device *op;	/* OF device info */
305 	spinlock_t lock;
306 
307 	struct dbri_dma *dma;	/* Pointer to our DMA block */
308 	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
309 
310 	void __iomem *regs;	/* dbri HW regs */
311 	int dbri_irqp;		/* intr queue pointer */
312 
313 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
314 	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
315 	spinlock_t cmdlock;	/* Protects cmd queue accesses */
316 	s32 *cmdptr;		/* Pointer to the last queued cmd */
317 
318 	int chi_bpf;
319 
320 	struct cs4215 mm;	/* mmcodec special info */
321 				/* per stream (playback/record) info */
322 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
323 };
324 
325 #define DBRI_MAX_VOLUME		63	/* Output volume */
326 #define DBRI_MAX_GAIN		15	/* Input gain */
327 
328 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
329 #define D_P		(1<<15)	/* Program command & queue pointer valid */
330 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
331 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
332 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
333 #define D_X		(1<<7)	/* Sanity Timer Disable */
334 #define D_T		(1<<6)	/* Permit activation of the TE interface */
335 #define D_N		(1<<5)	/* Permit activation of the NT interface */
336 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
337 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
338 #define D_D		(1<<2)	/* Disable Master Mode */
339 #define D_H		(1<<1)	/* Halt for Analysis */
340 #define D_R		(1<<0)	/* Soft Reset */
341 
342 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
343 #define D_LITTLE_END	(1<<8)	/* Byte Order */
344 #define D_BIG_END	(0<<8)	/* Byte Order */
345 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
346 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
347 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
348 #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
349 #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
350 
351 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
352 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
353 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
354 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
355 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
356 #define D_ENPIO		(0xf0)	/* Enable all the pins */
357 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
358 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
359 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
360 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
361 
362 /* DBRI Commands (Page 20) */
363 #define D_WAIT		0x0	/* Stop execution */
364 #define D_PAUSE		0x1	/* Flush long pipes */
365 #define D_JUMP		0x2	/* New command queue */
366 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
367 #define D_REX		0x4	/* Report command execution via interrupt */
368 #define D_SDP		0x5	/* Setup Data Pipe */
369 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
370 #define D_DTS		0x7	/* Define Time Slot */
371 #define D_SSP		0x8	/* Set short Data Pipe */
372 #define D_CHI		0x9	/* Set CHI Global Mode */
373 #define D_NT		0xa	/* NT Command */
374 #define D_TE		0xb	/* TE Command */
375 #define D_CDEC		0xc	/* Codec setup */
376 #define D_TEST		0xd	/* No comment */
377 #define D_CDM		0xe	/* CHI Data mode command */
378 
379 /* Special bits for some commands */
380 #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
381 
382 /* Setup Data Pipe */
383 /* IRM */
384 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
385 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
386 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
387 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
388 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
389 
390 /* Pipe data MODE */
391 #define D_SDP_MEM	(0<<13)	/* To/from memory */
392 #define D_SDP_HDLC	(2<<13)
393 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
394 #define D_SDP_SER	(4<<13)	/* Serial to serial */
395 #define D_SDP_FIXED	(6<<13)	/* Short only */
396 #define D_SDP_MODE(v)	((v)&(7<<13))
397 
398 #define D_SDP_TO_SER	(1<<12)	/* Direction */
399 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
400 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
401 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
402 #define D_SDP_P		(1<<10)	/* Pointer Valid */
403 #define D_SDP_A		(1<<8)	/* Abort */
404 #define D_SDP_C		(1<<7)	/* Clear */
405 
406 /* Define Time Slot */
407 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
408 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
409 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
410 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
411 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
412 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
413 
414 /* Time Slot defines */
415 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
416 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
417 #define D_TS_DI		(1<<13)	/* Data Invert */
418 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
419 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
420 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
421 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
422 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
423 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
424 
425 /* Concentration Highway Interface Modes */
426 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
427 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
428 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
429 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
430 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
431 #define D_CHI_FD	(1<<11)	/* Frame Drive */
432 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
433 
434 /* NT: These are here for completeness */
435 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
436 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
437 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
438 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
439 #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
440 #define D_NT_FT		(1<<12)	/* Fixed Timing */
441 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
442 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
443 #define D_NT_ACT	(1<<9)	/* Activate Interface */
444 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
445 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
446 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
447 #define D_NT_FACT	(1<<1)	/* Force Activation */
448 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
449 
450 /* Codec Setup */
451 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
452 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
453 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
454 
455 /* Test */
456 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
457 #define D_TEST_SIZE(v)	((v)<<11)	/* */
458 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
459 #define D_TEST_PROC	0x6	/* Microprocessor test */
460 #define D_TEST_SER	0x7	/* Serial-Controller test */
461 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
462 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
463 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
464 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
465 #define D_TEST_DUMP	0xe	/* ROM Dump */
466 
467 /* CHI Data Mode */
468 #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
469 #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
470 #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
471 #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
472 #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
473 #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
474 
475 /* The Interrupts */
476 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
477 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
478 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
479 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
480 #define D_INTR_EOL	5	/* End of List */
481 #define D_INTR_CMDI	6	/* Command has bean read */
482 #define D_INTR_XCMP	8	/* Transmission of frame complete */
483 #define D_INTR_SBRI	9	/* BRI status change info */
484 #define D_INTR_FXDT	10	/* Fixed data change */
485 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
486 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
487 #define D_INTR_DBYT	12	/* Dropped by frame slip */
488 #define D_INTR_RBYT	13	/* Repeated by frame slip */
489 #define D_INTR_LINT	14	/* Lost Interrupt */
490 #define D_INTR_UNDR	15	/* DMA underrun */
491 
492 #define D_INTR_TE	32
493 #define D_INTR_NT	34
494 #define D_INTR_CHI	36
495 #define D_INTR_CMD	38
496 
497 #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
498 #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
499 #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
500 #define D_INTR_GETVAL(v)	((v) & 0xffff)
501 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
502 
503 #define D_P_0		0	/* TE receive anchor */
504 #define D_P_1		1	/* TE transmit anchor */
505 #define D_P_2		2	/* NT transmit anchor */
506 #define D_P_3		3	/* NT receive anchor */
507 #define D_P_4		4	/* CHI send data */
508 #define D_P_5		5	/* CHI receive data */
509 #define D_P_6		6	/* */
510 #define D_P_7		7	/* */
511 #define D_P_8		8	/* */
512 #define D_P_9		9	/* */
513 #define D_P_10		10	/* */
514 #define D_P_11		11	/* */
515 #define D_P_12		12	/* */
516 #define D_P_13		13	/* */
517 #define D_P_14		14	/* */
518 #define D_P_15		15	/* */
519 #define D_P_16		16	/* CHI anchor pipe */
520 #define D_P_17		17	/* CHI send */
521 #define D_P_18		18	/* CHI receive */
522 #define D_P_19		19	/* CHI receive */
523 #define D_P_20		20	/* CHI receive */
524 #define D_P_21		21	/* */
525 #define D_P_22		22	/* */
526 #define D_P_23		23	/* */
527 #define D_P_24		24	/* */
528 #define D_P_25		25	/* */
529 #define D_P_26		26	/* */
530 #define D_P_27		27	/* */
531 #define D_P_28		28	/* */
532 #define D_P_29		29	/* */
533 #define D_P_30		30	/* */
534 #define D_P_31		31	/* */
535 
536 /* Transmit descriptor defines */
537 #define DBRI_TD_F	(1 << 31)	/* End of Frame */
538 #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
539 #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
540 #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
541 #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
542 #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
543 #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
544 #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
545 #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
546 #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
547 #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
548 			/* Maximum buffer size per TD: almost 8KB */
549 #define DBRI_TD_MAXCNT	((1 << 13) - 4)
550 
551 /* Receive descriptor defines */
552 #define DBRI_RD_F	(1 << 31)	/* End of Frame */
553 #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
554 #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
555 #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
556 #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
557 #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
558 #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
559 #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
560 #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
561 #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
562 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
563 
564 /* stream_info[] access */
565 /* Translate the ALSA direction into the array index */
566 #define DBRI_STREAMNO(substream)				\
567 		(substream->stream ==				\
568 		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
569 
570 /* Return a pointer to dbri_streaminfo */
571 #define DBRI_STREAM(dbri, substream)	\
572 		&dbri->stream_info[DBRI_STREAMNO(substream)]
573 
574 /*
575  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
576  * So we have to reverse the bits. Note: not all bit lengths are supported
577  */
578 static __u32 reverse_bytes(__u32 b, int len)
579 {
580 	switch (len) {
581 	case 32:
582 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
583 		/* fall through */
584 	case 16:
585 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
586 		/* fall through */
587 	case 8:
588 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
589 		/* fall through */
590 	case 4:
591 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
592 		/* fall through */
593 	case 2:
594 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
595 	case 1:
596 	case 0:
597 		break;
598 	default:
599 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
600 	}
601 
602 	return b;
603 }
604 
605 /*
606 ****************************************************************************
607 ************** DBRI initialization and command synchronization *************
608 ****************************************************************************
609 
610 Commands are sent to the DBRI by building a list of them in memory,
611 then writing the address of the first list item to DBRI register 8.
612 The list is terminated with a WAIT command, which generates a
613 CPU interrupt to signal completion.
614 
615 Since the DBRI can run in parallel with the CPU, several means of
616 synchronization present themselves. The method implemented here uses
617 the dbri_cmdwait() to wait for execution of batch of sent commands.
618 
619 A circular command buffer is used here. A new command is being added
620 while another can be executed. The scheme works by adding two WAIT commands
621 after each sent batch of commands. When the next batch is prepared it is
622 added after the WAIT commands then the WAITs are replaced with single JUMP
623 command to the new batch. The the DBRI is forced to reread the last WAIT
624 command (replaced by the JUMP by then). If the DBRI is still executing
625 previous commands the request to reread the WAIT command is ignored.
626 
627 Every time a routine wants to write commands to the DBRI, it must
628 first call dbri_cmdlock() and get pointer to a free space in
629 dbri->dma->cmd buffer. After this, the commands can be written to
630 the buffer, and dbri_cmdsend() is called with the final pointer value
631 to send them to the DBRI.
632 
633 */
634 
635 #define MAXLOOPS 20
636 /*
637  * Wait for the current command string to execute
638  */
639 static void dbri_cmdwait(struct snd_dbri *dbri)
640 {
641 	int maxloops = MAXLOOPS;
642 	unsigned long flags;
643 
644 	/* Delay if previous commands are still being processed */
645 	spin_lock_irqsave(&dbri->lock, flags);
646 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
647 		spin_unlock_irqrestore(&dbri->lock, flags);
648 		msleep_interruptible(1);
649 		spin_lock_irqsave(&dbri->lock, flags);
650 	}
651 	spin_unlock_irqrestore(&dbri->lock, flags);
652 
653 	if (maxloops == 0)
654 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
655 	else
656 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
657 			MAXLOOPS - maxloops - 1);
658 }
659 /*
660  * Lock the command queue and return pointer to space for len cmd words
661  * It locks the cmdlock spinlock.
662  */
663 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
664 {
665 	u32 dvma_addr = (u32)dbri->dma_dvma;
666 
667 	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
668 	len += 2;
669 	spin_lock(&dbri->cmdlock);
670 	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
671 		return dbri->cmdptr + 2;
672 	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
673 		return dbri->dma->cmd;
674 	else
675 		printk(KERN_ERR "DBRI: no space for commands.");
676 
677 	return NULL;
678 }
679 
680 /*
681  * Send prepared cmd string. It works by writing a JUMP cmd into
682  * the last WAIT cmd and force DBRI to reread the cmd.
683  * The JUMP cmd points to the new cmd string.
684  * It also releases the cmdlock spinlock.
685  *
686  * Lock must be held before calling this.
687  */
688 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
689 {
690 	u32 dvma_addr = (u32)dbri->dma_dvma;
691 	s32 tmp, addr;
692 	static int wait_id = 0;
693 
694 	wait_id++;
695 	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
696 	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
697 	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
698 
699 	/* Replace the last command with JUMP */
700 	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
701 	*(dbri->cmdptr+1) = addr;
702 	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
703 
704 #ifdef DBRI_DEBUG
705 	if (cmd > dbri->cmdptr) {
706 		s32 *ptr;
707 
708 		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
709 			dprintk(D_CMD, "cmd: %lx:%08x\n",
710 				(unsigned long)ptr, *ptr);
711 	} else {
712 		s32 *ptr = dbri->cmdptr;
713 
714 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
715 		ptr++;
716 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
717 		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
718 			dprintk(D_CMD, "cmd: %lx:%08x\n",
719 				(unsigned long)ptr, *ptr);
720 	}
721 #endif
722 
723 	/* Reread the last command */
724 	tmp = sbus_readl(dbri->regs + REG0);
725 	tmp |= D_P;
726 	sbus_writel(tmp, dbri->regs + REG0);
727 
728 	dbri->cmdptr = cmd;
729 	spin_unlock(&dbri->cmdlock);
730 }
731 
732 /* Lock must be held when calling this */
733 static void dbri_reset(struct snd_dbri *dbri)
734 {
735 	int i;
736 	u32 tmp;
737 
738 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
739 		sbus_readl(dbri->regs + REG0),
740 		sbus_readl(dbri->regs + REG2),
741 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
742 
743 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
744 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
745 		udelay(10);
746 
747 	/* A brute approach - DBRI falls back to working burst size by itself
748 	 * On SS20 D_S does not work, so do not try so high. */
749 	tmp = sbus_readl(dbri->regs + REG0);
750 	tmp |= D_G | D_E;
751 	tmp &= ~D_S;
752 	sbus_writel(tmp, dbri->regs + REG0);
753 }
754 
755 /* Lock must not be held before calling this */
756 static void dbri_initialize(struct snd_dbri *dbri)
757 {
758 	u32 dvma_addr = (u32)dbri->dma_dvma;
759 	s32 *cmd;
760 	u32 dma_addr;
761 	unsigned long flags;
762 	int n;
763 
764 	spin_lock_irqsave(&dbri->lock, flags);
765 
766 	dbri_reset(dbri);
767 
768 	/* Initialize pipes */
769 	for (n = 0; n < DBRI_NO_PIPES; n++)
770 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
771 
772 	spin_lock_init(&dbri->cmdlock);
773 	/*
774 	 * Initialize the interrupt ring buffer.
775 	 */
776 	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
777 	dbri->dma->intr[0] = dma_addr;
778 	dbri->dbri_irqp = 1;
779 	/*
780 	 * Set up the interrupt queue
781 	 */
782 	spin_lock(&dbri->cmdlock);
783 	cmd = dbri->cmdptr = dbri->dma->cmd;
784 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
785 	*(cmd++) = dma_addr;
786 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
787 	dbri->cmdptr = cmd;
788 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
789 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
790 	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
791 	sbus_writel(dma_addr, dbri->regs + REG8);
792 	spin_unlock(&dbri->cmdlock);
793 
794 	spin_unlock_irqrestore(&dbri->lock, flags);
795 	dbri_cmdwait(dbri);
796 }
797 
798 /*
799 ****************************************************************************
800 ************************** DBRI data pipe management ***********************
801 ****************************************************************************
802 
803 While DBRI control functions use the command and interrupt buffers, the
804 main data path takes the form of data pipes, which can be short (command
805 and interrupt driven), or long (attached to DMA buffers).  These functions
806 provide a rudimentary means of setting up and managing the DBRI's pipes,
807 but the calling functions have to make sure they respect the pipes' linked
808 list ordering, among other things.  The transmit and receive functions
809 here interface closely with the transmit and receive interrupt code.
810 
811 */
812 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
813 {
814 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
815 }
816 
817 /* reset_pipe(dbri, pipe)
818  *
819  * Called on an in-use pipe to clear anything being transmitted or received
820  * Lock must be held before calling this.
821  */
822 static void reset_pipe(struct snd_dbri *dbri, int pipe)
823 {
824 	int sdp;
825 	int desc;
826 	s32 *cmd;
827 
828 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
829 		printk(KERN_ERR "DBRI: reset_pipe called with "
830 			"illegal pipe number\n");
831 		return;
832 	}
833 
834 	sdp = dbri->pipes[pipe].sdp;
835 	if (sdp == 0) {
836 		printk(KERN_ERR "DBRI: reset_pipe called "
837 			"on uninitialized pipe\n");
838 		return;
839 	}
840 
841 	cmd = dbri_cmdlock(dbri, 3);
842 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
843 	*(cmd++) = 0;
844 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
845 	dbri_cmdsend(dbri, cmd, 3);
846 
847 	desc = dbri->pipes[pipe].first_desc;
848 	if (desc >= 0)
849 		do {
850 			dbri->dma->desc[desc].ba = 0;
851 			dbri->dma->desc[desc].nda = 0;
852 			desc = dbri->next_desc[desc];
853 		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
854 
855 	dbri->pipes[pipe].desc = -1;
856 	dbri->pipes[pipe].first_desc = -1;
857 }
858 
859 /*
860  * Lock must be held before calling this.
861  */
862 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
863 {
864 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
865 		printk(KERN_ERR "DBRI: setup_pipe called "
866 			"with illegal pipe number\n");
867 		return;
868 	}
869 
870 	if ((sdp & 0xf800) != sdp) {
871 		printk(KERN_ERR "DBRI: setup_pipe called "
872 			"with strange SDP value\n");
873 		/* sdp &= 0xf800; */
874 	}
875 
876 	/* If this is a fixed receive pipe, arrange for an interrupt
877 	 * every time its data changes
878 	 */
879 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
880 		sdp |= D_SDP_CHANGE;
881 
882 	sdp |= D_PIPE(pipe);
883 	dbri->pipes[pipe].sdp = sdp;
884 	dbri->pipes[pipe].desc = -1;
885 	dbri->pipes[pipe].first_desc = -1;
886 
887 	reset_pipe(dbri, pipe);
888 }
889 
890 /*
891  * Lock must be held before calling this.
892  */
893 static void link_time_slot(struct snd_dbri *dbri, int pipe,
894 			   int prevpipe, int nextpipe,
895 			   int length, int cycle)
896 {
897 	s32 *cmd;
898 	int val;
899 
900 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
901 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
902 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
903 		printk(KERN_ERR
904 		    "DBRI: link_time_slot called with illegal pipe number\n");
905 		return;
906 	}
907 
908 	if (dbri->pipes[pipe].sdp == 0
909 			|| dbri->pipes[prevpipe].sdp == 0
910 			|| dbri->pipes[nextpipe].sdp == 0) {
911 		printk(KERN_ERR "DBRI: link_time_slot called "
912 			"on uninitialized pipe\n");
913 		return;
914 	}
915 
916 	dbri->pipes[prevpipe].nextpipe = pipe;
917 	dbri->pipes[pipe].nextpipe = nextpipe;
918 	dbri->pipes[pipe].length = length;
919 
920 	cmd = dbri_cmdlock(dbri, 4);
921 
922 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
923 		/* Deal with CHI special case:
924 		 * "If transmission on edges 0 or 1 is desired, then cycle n
925 		 *  (where n = # of bit times per frame...) must be used."
926 		 *                  - DBRI data sheet, page 11
927 		 */
928 		if (prevpipe == 16 && cycle == 0)
929 			cycle = dbri->chi_bpf;
930 
931 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
932 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
933 		*(cmd++) = 0;
934 		*(cmd++) =
935 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
936 	} else {
937 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
938 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
939 		*(cmd++) =
940 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
941 		*(cmd++) = 0;
942 	}
943 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
944 
945 	dbri_cmdsend(dbri, cmd, 4);
946 }
947 
948 #if 0
949 /*
950  * Lock must be held before calling this.
951  */
952 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
953 			     enum in_or_out direction, int prevpipe,
954 			     int nextpipe)
955 {
956 	s32 *cmd;
957 	int val;
958 
959 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
960 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
961 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
962 		printk(KERN_ERR
963 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
964 		return;
965 	}
966 
967 	cmd = dbri_cmdlock(dbri, 4);
968 
969 	if (direction == PIPEinput) {
970 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
971 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
972 		*(cmd++) = D_TS_NEXT(nextpipe);
973 		*(cmd++) = 0;
974 	} else {
975 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
976 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
977 		*(cmd++) = 0;
978 		*(cmd++) = D_TS_NEXT(nextpipe);
979 	}
980 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
981 
982 	dbri_cmdsend(dbri, cmd, 4);
983 }
984 #endif
985 
986 /* xmit_fixed() / recv_fixed()
987  *
988  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
989  * expected to change much, and which we don't need to buffer.
990  * The DBRI only interrupts us when the data changes (receive pipes),
991  * or only changes the data when this function is called (transmit pipes).
992  * Only short pipes (numbers 16-31) can be used in fixed data mode.
993  *
994  * These function operate on a 32-bit field, no matter how large
995  * the actual time slot is.  The interrupt handler takes care of bit
996  * ordering and alignment.  An 8-bit time slot will always end up
997  * in the low-order 8 bits, filled either MSB-first or LSB-first,
998  * depending on the settings passed to setup_pipe().
999  *
1000  * Lock must not be held before calling it.
1001  */
1002 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1003 {
1004 	s32 *cmd;
1005 	unsigned long flags;
1006 
1007 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1008 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1009 		return;
1010 	}
1011 
1012 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1013 		printk(KERN_ERR "DBRI: xmit_fixed: "
1014 			"Uninitialized pipe %d\n", pipe);
1015 		return;
1016 	}
1017 
1018 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1019 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1020 		return;
1021 	}
1022 
1023 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1024 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1025 			pipe);
1026 		return;
1027 	}
1028 
1029 	/* DBRI short pipes always transmit LSB first */
1030 
1031 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1032 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1033 
1034 	cmd = dbri_cmdlock(dbri, 3);
1035 
1036 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1037 	*(cmd++) = data;
1038 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1039 
1040 	spin_lock_irqsave(&dbri->lock, flags);
1041 	dbri_cmdsend(dbri, cmd, 3);
1042 	spin_unlock_irqrestore(&dbri->lock, flags);
1043 	dbri_cmdwait(dbri);
1044 
1045 }
1046 
1047 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1048 {
1049 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1050 		printk(KERN_ERR "DBRI: recv_fixed called with "
1051 			"illegal pipe number\n");
1052 		return;
1053 	}
1054 
1055 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1056 		printk(KERN_ERR "DBRI: recv_fixed called on "
1057 			"non-fixed pipe %d\n", pipe);
1058 		return;
1059 	}
1060 
1061 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1062 		printk(KERN_ERR "DBRI: recv_fixed called on "
1063 			"transmit pipe %d\n", pipe);
1064 		return;
1065 	}
1066 
1067 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1068 }
1069 
1070 /* setup_descs()
1071  *
1072  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1073  * with a DMA buffer.
1074  *
1075  * Only pipe numbers 0-15 can be used in this mode.
1076  *
1077  * This function takes a stream number pointing to a data buffer,
1078  * and work by building chains of descriptors which identify the
1079  * data buffers.  Buffers too large for a single descriptor will
1080  * be spread across multiple descriptors.
1081  *
1082  * All descriptors create a ring buffer.
1083  *
1084  * Lock must be held before calling this.
1085  */
1086 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1087 {
1088 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1089 	u32 dvma_addr = (u32)dbri->dma_dvma;
1090 	__u32 dvma_buffer;
1091 	int desc;
1092 	int len;
1093 	int first_desc = -1;
1094 	int last_desc = -1;
1095 
1096 	if (info->pipe < 0 || info->pipe > 15) {
1097 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1098 		return -2;
1099 	}
1100 
1101 	if (dbri->pipes[info->pipe].sdp == 0) {
1102 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1103 		       info->pipe);
1104 		return -2;
1105 	}
1106 
1107 	dvma_buffer = info->dvma_buffer;
1108 	len = info->size;
1109 
1110 	if (streamno == DBRI_PLAY) {
1111 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1112 			printk(KERN_ERR "DBRI: setup_descs: "
1113 				"Called on receive pipe %d\n", info->pipe);
1114 			return -2;
1115 		}
1116 	} else {
1117 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1118 			printk(KERN_ERR
1119 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1120 			     info->pipe);
1121 			return -2;
1122 		}
1123 		/* Should be able to queue multiple buffers
1124 		 * to receive on a pipe
1125 		 */
1126 		if (pipe_active(dbri, info->pipe)) {
1127 			printk(KERN_ERR "DBRI: recv_on_pipe: "
1128 				"Called on active pipe %d\n", info->pipe);
1129 			return -2;
1130 		}
1131 
1132 		/* Make sure buffer size is multiple of four */
1133 		len &= ~3;
1134 	}
1135 
1136 	/* Free descriptors if pipe has any */
1137 	desc = dbri->pipes[info->pipe].first_desc;
1138 	if (desc >= 0)
1139 		do {
1140 			dbri->dma->desc[desc].ba = 0;
1141 			dbri->dma->desc[desc].nda = 0;
1142 			desc = dbri->next_desc[desc];
1143 		} while (desc != -1 &&
1144 			 desc != dbri->pipes[info->pipe].first_desc);
1145 
1146 	dbri->pipes[info->pipe].desc = -1;
1147 	dbri->pipes[info->pipe].first_desc = -1;
1148 
1149 	desc = 0;
1150 	while (len > 0) {
1151 		int mylen;
1152 
1153 		for (; desc < DBRI_NO_DESCS; desc++) {
1154 			if (!dbri->dma->desc[desc].ba)
1155 				break;
1156 		}
1157 
1158 		if (desc == DBRI_NO_DESCS) {
1159 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1160 			return -1;
1161 		}
1162 
1163 		if (len > DBRI_TD_MAXCNT)
1164 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1165 		else
1166 			mylen = len;
1167 
1168 		if (mylen > period)
1169 			mylen = period;
1170 
1171 		dbri->next_desc[desc] = -1;
1172 		dbri->dma->desc[desc].ba = dvma_buffer;
1173 		dbri->dma->desc[desc].nda = 0;
1174 
1175 		if (streamno == DBRI_PLAY) {
1176 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1177 			dbri->dma->desc[desc].word4 = 0;
1178 			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1179 		} else {
1180 			dbri->dma->desc[desc].word1 = 0;
1181 			dbri->dma->desc[desc].word4 =
1182 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1183 		}
1184 
1185 		if (first_desc == -1)
1186 			first_desc = desc;
1187 		else {
1188 			dbri->next_desc[last_desc] = desc;
1189 			dbri->dma->desc[last_desc].nda =
1190 			    dvma_addr + dbri_dma_off(desc, desc);
1191 		}
1192 
1193 		last_desc = desc;
1194 		dvma_buffer += mylen;
1195 		len -= mylen;
1196 	}
1197 
1198 	if (first_desc == -1 || last_desc == -1) {
1199 		printk(KERN_ERR "DBRI: setup_descs: "
1200 			" Not enough descriptors available\n");
1201 		return -1;
1202 	}
1203 
1204 	dbri->dma->desc[last_desc].nda =
1205 	    dvma_addr + dbri_dma_off(desc, first_desc);
1206 	dbri->next_desc[last_desc] = first_desc;
1207 	dbri->pipes[info->pipe].first_desc = first_desc;
1208 	dbri->pipes[info->pipe].desc = first_desc;
1209 
1210 #ifdef DBRI_DEBUG
1211 	for (desc = first_desc; desc != -1;) {
1212 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1213 			desc,
1214 			dbri->dma->desc[desc].word1,
1215 			dbri->dma->desc[desc].ba,
1216 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1217 			desc = dbri->next_desc[desc];
1218 			if (desc == first_desc)
1219 				break;
1220 	}
1221 #endif
1222 	return 0;
1223 }
1224 
1225 /*
1226 ****************************************************************************
1227 ************************** DBRI - CHI interface ****************************
1228 ****************************************************************************
1229 
1230 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1231 multiplexed serial interface which the DBRI can operate in either master
1232 (give clock/frame sync) or slave (take clock/frame sync) mode.
1233 
1234 */
1235 
1236 enum master_or_slave { CHImaster, CHIslave };
1237 
1238 /*
1239  * Lock must not be held before calling it.
1240  */
1241 static void reset_chi(struct snd_dbri *dbri,
1242 		      enum master_or_slave master_or_slave,
1243 		      int bits_per_frame)
1244 {
1245 	s32 *cmd;
1246 	int val;
1247 
1248 	/* Set CHI Anchor: Pipe 16 */
1249 
1250 	cmd = dbri_cmdlock(dbri, 4);
1251 	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1252 		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1253 	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1254 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1256 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1257 	dbri_cmdsend(dbri, cmd, 4);
1258 
1259 	dbri->pipes[16].sdp = 1;
1260 	dbri->pipes[16].nextpipe = 16;
1261 
1262 	cmd = dbri_cmdlock(dbri, 4);
1263 
1264 	if (master_or_slave == CHIslave) {
1265 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1266 		 *
1267 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1268 		 * IR     = give immediate CHI status interrupt
1269 		 * EN     = give CHI status interrupt upon change
1270 		 */
1271 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1272 	} else {
1273 		/* Setup DBRI for CHI Master - generate clock, FS
1274 		 *
1275 		 * BPF				=  bits per 8 kHz frame
1276 		 * 12.288 MHz / CHICM_divisor	= clock rate
1277 		 * FD = 1 - drive CHIFS on rising edge of CHICK
1278 		 */
1279 		int clockrate = bits_per_frame * 8;
1280 		int divisor = 12288 / clockrate;
1281 
1282 		if (divisor > 255 || divisor * clockrate != 12288)
1283 			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1284 				"in setup_chi\n");
1285 
1286 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1287 				    | D_CHI_BPF(bits_per_frame));
1288 	}
1289 
1290 	dbri->chi_bpf = bits_per_frame;
1291 
1292 	/* CHI Data Mode
1293 	 *
1294 	 * RCE   =  0 - receive on falling edge of CHICK
1295 	 * XCE   =  1 - transmit on rising edge of CHICK
1296 	 * XEN   =  1 - enable transmitter
1297 	 * REN   =  1 - enable receiver
1298 	 */
1299 
1300 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1301 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1302 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1303 
1304 	dbri_cmdsend(dbri, cmd, 4);
1305 }
1306 
1307 /*
1308 ****************************************************************************
1309 *********************** CS4215 audio codec management **********************
1310 ****************************************************************************
1311 
1312 In the standard SPARC audio configuration, the CS4215 codec is attached
1313 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1314 
1315  * Lock must not be held before calling it.
1316 
1317 */
1318 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1319 {
1320 	unsigned long flags;
1321 
1322 	spin_lock_irqsave(&dbri->lock, flags);
1323 	/*
1324 	 * Data mode:
1325 	 * Pipe  4: Send timeslots 1-4 (audio data)
1326 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1327 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1328 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1329 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1330 	 *          not relevant for us (only for doublechecking).
1331 	 *
1332 	 * Control mode:
1333 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1334 	 * Pipe 18: Receive timeslot 1 (clb).
1335 	 * Pipe 19: Receive timeslot 7 (version).
1336 	 */
1337 
1338 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1339 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1340 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1341 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1342 
1343 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1344 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1346 	spin_unlock_irqrestore(&dbri->lock, flags);
1347 
1348 	dbri_cmdwait(dbri);
1349 }
1350 
1351 static int cs4215_init_data(struct cs4215 *mm)
1352 {
1353 	/*
1354 	 * No action, memory resetting only.
1355 	 *
1356 	 * Data Time Slot 5-8
1357 	 * Speaker,Line and Headphone enable. Gain set to the half.
1358 	 * Input is mike.
1359 	 */
1360 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1361 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1362 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1363 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1364 
1365 	/*
1366 	 * Control Time Slot 1-4
1367 	 * 0: Default I/O voltage scale
1368 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1369 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1370 	 * 3: Tests disabled
1371 	 */
1372 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1373 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1374 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1375 	mm->ctrl[3] = 0;
1376 
1377 	mm->status = 0;
1378 	mm->version = 0xff;
1379 	mm->precision = 8;	/* For ULAW */
1380 	mm->channels = 1;
1381 
1382 	return 0;
1383 }
1384 
1385 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1386 {
1387 	if (muted) {
1388 		dbri->mm.data[0] |= 63;
1389 		dbri->mm.data[1] |= 63;
1390 		dbri->mm.data[2] &= ~15;
1391 		dbri->mm.data[3] &= ~15;
1392 	} else {
1393 		/* Start by setting the playback attenuation. */
1394 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1395 		int left_gain = info->left_gain & 0x3f;
1396 		int right_gain = info->right_gain & 0x3f;
1397 
1398 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1399 		dbri->mm.data[1] &= ~0x3f;
1400 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1401 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1402 
1403 		/* Now set the recording gain. */
1404 		info = &dbri->stream_info[DBRI_REC];
1405 		left_gain = info->left_gain & 0xf;
1406 		right_gain = info->right_gain & 0xf;
1407 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1408 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1409 	}
1410 
1411 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1412 }
1413 
1414 /*
1415  * Set the CS4215 to data mode.
1416  */
1417 static void cs4215_open(struct snd_dbri *dbri)
1418 {
1419 	int data_width;
1420 	u32 tmp;
1421 	unsigned long flags;
1422 
1423 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1424 		dbri->mm.channels, dbri->mm.precision);
1425 
1426 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1427 	 * to make sure this takes.  This avoids clicking noises.
1428 	 */
1429 
1430 	cs4215_setdata(dbri, 1);
1431 	udelay(125);
1432 
1433 	/*
1434 	 * Data mode:
1435 	 * Pipe  4: Send timeslots 1-4 (audio data)
1436 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1437 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1438 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1439 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1440 	 *          not relevant for us (only for doublechecking).
1441 	 *
1442 	 * Just like in control mode, the time slots are all offset by eight
1443 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1444 	 * even if it's the CHI master.  Don't ask me...
1445 	 */
1446 	spin_lock_irqsave(&dbri->lock, flags);
1447 	tmp = sbus_readl(dbri->regs + REG0);
1448 	tmp &= ~(D_C);		/* Disable CHI */
1449 	sbus_writel(tmp, dbri->regs + REG0);
1450 
1451 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1452 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1453 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1454 
1455 	reset_chi(dbri, CHIslave, 128);
1456 
1457 	/* Note: this next doesn't work for 8-bit stereo, because the two
1458 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1459 	 * (See CS4215 datasheet Fig 15)
1460 	 *
1461 	 * DBRI non-contiguous mode would be required to make this work.
1462 	 */
1463 	data_width = dbri->mm.channels * dbri->mm.precision;
1464 
1465 	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1466 	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1467 	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1468 	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1469 
1470 	/* FIXME: enable CHI after _setdata? */
1471 	tmp = sbus_readl(dbri->regs + REG0);
1472 	tmp |= D_C;		/* Enable CHI */
1473 	sbus_writel(tmp, dbri->regs + REG0);
1474 	spin_unlock_irqrestore(&dbri->lock, flags);
1475 
1476 	cs4215_setdata(dbri, 0);
1477 }
1478 
1479 /*
1480  * Send the control information (i.e. audio format)
1481  */
1482 static int cs4215_setctrl(struct snd_dbri *dbri)
1483 {
1484 	int i, val;
1485 	u32 tmp;
1486 	unsigned long flags;
1487 
1488 	/* FIXME - let the CPU do something useful during these delays */
1489 
1490 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1491 	 * to make sure this takes.  This avoids clicking noises.
1492 	 */
1493 	cs4215_setdata(dbri, 1);
1494 	udelay(125);
1495 
1496 	/*
1497 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1498 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1499 	 */
1500 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1501 	sbus_writel(val, dbri->regs + REG2);
1502 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1503 	udelay(34);
1504 
1505 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1506 	 * operate as CHI master, supplying clocking and frame synchronization.
1507 	 *
1508 	 * In Data mode, however, the CS4215 must be CHI master to insure
1509 	 * that its data stream is synchronous with its codec.
1510 	 *
1511 	 * The upshot of all this?  We start by putting the DBRI into master
1512 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1513 	 * into Data mode and put the DBRI into slave mode.  Various timing
1514 	 * requirements must be observed along the way.
1515 	 *
1516 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1517 	 * others?), the addressing of the CS4215's time slots is
1518 	 * offset by eight bits, so we add eight to all the "cycle"
1519 	 * values in the Define Time Slot (DTS) commands.  This is
1520 	 * done in hardware by a TI 248 that delays the DBRI->4215
1521 	 * frame sync signal by eight clock cycles.  Anybody know why?
1522 	 */
1523 	spin_lock_irqsave(&dbri->lock, flags);
1524 	tmp = sbus_readl(dbri->regs + REG0);
1525 	tmp &= ~D_C;		/* Disable CHI */
1526 	sbus_writel(tmp, dbri->regs + REG0);
1527 
1528 	reset_chi(dbri, CHImaster, 128);
1529 
1530 	/*
1531 	 * Control mode:
1532 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1533 	 * Pipe 18: Receive timeslot 1 (clb).
1534 	 * Pipe 19: Receive timeslot 7 (version).
1535 	 */
1536 
1537 	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1538 	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1539 	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1540 	spin_unlock_irqrestore(&dbri->lock, flags);
1541 
1542 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1543 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1544 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1545 
1546 	spin_lock_irqsave(&dbri->lock, flags);
1547 	tmp = sbus_readl(dbri->regs + REG0);
1548 	tmp |= D_C;		/* Enable CHI */
1549 	sbus_writel(tmp, dbri->regs + REG0);
1550 	spin_unlock_irqrestore(&dbri->lock, flags);
1551 
1552 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1553 		msleep_interruptible(1);
1554 
1555 	if (i == 0) {
1556 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1557 			dbri->mm.status);
1558 		return -1;
1559 	}
1560 
1561 	/* Disable changes to our copy of the version number, as we are about
1562 	 * to leave control mode.
1563 	 */
1564 	recv_fixed(dbri, 19, NULL);
1565 
1566 	/* Terminate CS4215 control mode - data sheet says
1567 	 * "Set CLB=1 and send two more frames of valid control info"
1568 	 */
1569 	dbri->mm.ctrl[0] |= CS4215_CLB;
1570 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1571 
1572 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1573 	udelay(250);
1574 
1575 	cs4215_setdata(dbri, 0);
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * Setup the codec with the sampling rate, audio format and number of
1582  * channels.
1583  * As part of the process we resend the settings for the data
1584  * timeslots as well.
1585  */
1586 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1587 			  snd_pcm_format_t format, unsigned int channels)
1588 {
1589 	int freq_idx;
1590 	int ret = 0;
1591 
1592 	/* Lookup index for this rate */
1593 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1594 		if (CS4215_FREQ[freq_idx].freq == rate)
1595 			break;
1596 	}
1597 	if (CS4215_FREQ[freq_idx].freq != rate) {
1598 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1599 		return -1;
1600 	}
1601 
1602 	switch (format) {
1603 	case SNDRV_PCM_FORMAT_MU_LAW:
1604 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1605 		dbri->mm.precision = 8;
1606 		break;
1607 	case SNDRV_PCM_FORMAT_A_LAW:
1608 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1609 		dbri->mm.precision = 8;
1610 		break;
1611 	case SNDRV_PCM_FORMAT_U8:
1612 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1613 		dbri->mm.precision = 8;
1614 		break;
1615 	case SNDRV_PCM_FORMAT_S16_BE:
1616 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1617 		dbri->mm.precision = 16;
1618 		break;
1619 	default:
1620 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1621 		return -1;
1622 	}
1623 
1624 	/* Add rate parameters */
1625 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1626 	dbri->mm.ctrl[2] = CS4215_XCLK |
1627 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1628 
1629 	dbri->mm.channels = channels;
1630 	if (channels == 2)
1631 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1632 
1633 	ret = cs4215_setctrl(dbri);
1634 	if (ret == 0)
1635 		cs4215_open(dbri);	/* set codec to data mode */
1636 
1637 	return ret;
1638 }
1639 
1640 /*
1641  *
1642  */
1643 static int cs4215_init(struct snd_dbri *dbri)
1644 {
1645 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1646 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1647 
1648 	/* Look for the cs4215 chips */
1649 	if (reg2 & D_PIO2) {
1650 		dprintk(D_MM, "Onboard CS4215 detected\n");
1651 		dbri->mm.onboard = 1;
1652 	}
1653 	if (reg2 & D_PIO0) {
1654 		dprintk(D_MM, "Speakerbox detected\n");
1655 		dbri->mm.onboard = 0;
1656 
1657 		if (reg2 & D_PIO2) {
1658 			printk(KERN_INFO "DBRI: Using speakerbox / "
1659 			       "ignoring onboard mmcodec.\n");
1660 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1661 		}
1662 	}
1663 
1664 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1665 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1666 		return -EIO;
1667 	}
1668 
1669 	cs4215_setup_pipes(dbri);
1670 	cs4215_init_data(&dbri->mm);
1671 
1672 	/* Enable capture of the status & version timeslots. */
1673 	recv_fixed(dbri, 18, &dbri->mm.status);
1674 	recv_fixed(dbri, 19, &dbri->mm.version);
1675 
1676 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1677 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1678 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1679 			dbri->mm.offset);
1680 		return -EIO;
1681 	}
1682 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1683 
1684 	return 0;
1685 }
1686 
1687 /*
1688 ****************************************************************************
1689 *************************** DBRI interrupt handler *************************
1690 ****************************************************************************
1691 
1692 The DBRI communicates with the CPU mainly via a circular interrupt
1693 buffer.  When an interrupt is signaled, the CPU walks through the
1694 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1695 Complicated interrupts are handled by dedicated functions (which
1696 appear first in this file).  Any pending interrupts can be serviced by
1697 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1698 interrupts are disabled.
1699 
1700 */
1701 
1702 /* xmit_descs()
1703  *
1704  * Starts transmitting the current TD's for recording/playing.
1705  * For playback, ALSA has filled the DMA memory with new data (we hope).
1706  */
1707 static void xmit_descs(struct snd_dbri *dbri)
1708 {
1709 	struct dbri_streaminfo *info;
1710 	u32 dvma_addr;
1711 	s32 *cmd;
1712 	unsigned long flags;
1713 	int first_td;
1714 
1715 	if (dbri == NULL)
1716 		return;		/* Disabled */
1717 
1718 	dvma_addr = (u32)dbri->dma_dvma;
1719 	info = &dbri->stream_info[DBRI_REC];
1720 	spin_lock_irqsave(&dbri->lock, flags);
1721 
1722 	if (info->pipe >= 0) {
1723 		first_td = dbri->pipes[info->pipe].first_desc;
1724 
1725 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1726 
1727 		/* Stream could be closed by the time we run. */
1728 		if (first_td >= 0) {
1729 			cmd = dbri_cmdlock(dbri, 2);
1730 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1731 					    dbri->pipes[info->pipe].sdp
1732 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1733 			*(cmd++) = dvma_addr +
1734 				   dbri_dma_off(desc, first_td);
1735 			dbri_cmdsend(dbri, cmd, 2);
1736 
1737 			/* Reset our admin of the pipe. */
1738 			dbri->pipes[info->pipe].desc = first_td;
1739 		}
1740 	}
1741 
1742 	info = &dbri->stream_info[DBRI_PLAY];
1743 
1744 	if (info->pipe >= 0) {
1745 		first_td = dbri->pipes[info->pipe].first_desc;
1746 
1747 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1748 
1749 		/* Stream could be closed by the time we run. */
1750 		if (first_td >= 0) {
1751 			cmd = dbri_cmdlock(dbri, 2);
1752 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1753 					    dbri->pipes[info->pipe].sdp
1754 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1755 			*(cmd++) = dvma_addr +
1756 				   dbri_dma_off(desc, first_td);
1757 			dbri_cmdsend(dbri, cmd, 2);
1758 
1759 			/* Reset our admin of the pipe. */
1760 			dbri->pipes[info->pipe].desc = first_td;
1761 		}
1762 	}
1763 
1764 	spin_unlock_irqrestore(&dbri->lock, flags);
1765 }
1766 
1767 /* transmission_complete_intr()
1768  *
1769  * Called by main interrupt handler when DBRI signals transmission complete
1770  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1771  *
1772  * Walks through the pipe's list of transmit buffer descriptors and marks
1773  * them as available. Stops when the first descriptor is found without
1774  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1775  *
1776  * The DMA buffers are not released. They form a ring buffer and
1777  * they are filled by ALSA while others are transmitted by DMA.
1778  *
1779  */
1780 
1781 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1782 {
1783 	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1784 	int td = dbri->pipes[pipe].desc;
1785 	int status;
1786 
1787 	while (td >= 0) {
1788 		if (td >= DBRI_NO_DESCS) {
1789 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1790 			return;
1791 		}
1792 
1793 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1794 		if (!(status & DBRI_TD_TBC))
1795 			break;
1796 
1797 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1798 
1799 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1800 		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1801 
1802 		td = dbri->next_desc[td];
1803 		dbri->pipes[pipe].desc = td;
1804 	}
1805 
1806 	/* Notify ALSA */
1807 	spin_unlock(&dbri->lock);
1808 	snd_pcm_period_elapsed(info->substream);
1809 	spin_lock(&dbri->lock);
1810 }
1811 
1812 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1813 {
1814 	struct dbri_streaminfo *info;
1815 	int rd = dbri->pipes[pipe].desc;
1816 	s32 status;
1817 
1818 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1819 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1820 		return;
1821 	}
1822 
1823 	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1824 	status = dbri->dma->desc[rd].word1;
1825 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1826 
1827 	info = &dbri->stream_info[DBRI_REC];
1828 	info->offset += DBRI_RD_CNT(status);
1829 
1830 	/* FIXME: Check status */
1831 
1832 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1833 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1834 
1835 	/* Notify ALSA */
1836 	spin_unlock(&dbri->lock);
1837 	snd_pcm_period_elapsed(info->substream);
1838 	spin_lock(&dbri->lock);
1839 }
1840 
1841 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1842 {
1843 	int val = D_INTR_GETVAL(x);
1844 	int channel = D_INTR_GETCHAN(x);
1845 	int command = D_INTR_GETCMD(x);
1846 	int code = D_INTR_GETCODE(x);
1847 #ifdef DBRI_DEBUG
1848 	int rval = D_INTR_GETRVAL(x);
1849 #endif
1850 
1851 	if (channel == D_INTR_CMD) {
1852 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1853 			cmds[command], val);
1854 	} else {
1855 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1856 			channel, code, rval);
1857 	}
1858 
1859 	switch (code) {
1860 	case D_INTR_CMDI:
1861 		if (command != D_WAIT)
1862 			printk(KERN_ERR "DBRI: Command read interrupt\n");
1863 		break;
1864 	case D_INTR_BRDY:
1865 		reception_complete_intr(dbri, channel);
1866 		break;
1867 	case D_INTR_XCMP:
1868 	case D_INTR_MINT:
1869 		transmission_complete_intr(dbri, channel);
1870 		break;
1871 	case D_INTR_UNDR:
1872 		/* UNDR - Transmission underrun
1873 		 * resend SDP command with clear pipe bit (C) set
1874 		 */
1875 		{
1876 	/* FIXME: do something useful in case of underrun */
1877 			printk(KERN_ERR "DBRI: Underrun error\n");
1878 #if 0
1879 			s32 *cmd;
1880 			int pipe = channel;
1881 			int td = dbri->pipes[pipe].desc;
1882 
1883 			dbri->dma->desc[td].word4 = 0;
1884 			cmd = dbri_cmdlock(dbri, NoGetLock);
1885 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1886 					    dbri->pipes[pipe].sdp
1887 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1888 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1889 			dbri_cmdsend(dbri, cmd);
1890 #endif
1891 		}
1892 		break;
1893 	case D_INTR_FXDT:
1894 		/* FXDT - Fixed data change */
1895 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1896 			val = reverse_bytes(val, dbri->pipes[channel].length);
1897 
1898 		if (dbri->pipes[channel].recv_fixed_ptr)
1899 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1900 		break;
1901 	default:
1902 		if (channel != D_INTR_CMD)
1903 			printk(KERN_WARNING
1904 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1905 	}
1906 }
1907 
1908 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1909  * buffer until it finds a zero word (indicating nothing more to do
1910  * right now).  Non-zero words require processing and are handed off
1911  * to dbri_process_one_interrupt AFTER advancing the pointer.
1912  */
1913 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1914 {
1915 	s32 x;
1916 
1917 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1918 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1919 		dbri->dbri_irqp++;
1920 		if (dbri->dbri_irqp == DBRI_INT_BLK)
1921 			dbri->dbri_irqp = 1;
1922 
1923 		dbri_process_one_interrupt(dbri, x);
1924 	}
1925 }
1926 
1927 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1928 {
1929 	struct snd_dbri *dbri = dev_id;
1930 	static int errcnt = 0;
1931 	int x;
1932 
1933 	if (dbri == NULL)
1934 		return IRQ_NONE;
1935 	spin_lock(&dbri->lock);
1936 
1937 	/*
1938 	 * Read it, so the interrupt goes away.
1939 	 */
1940 	x = sbus_readl(dbri->regs + REG1);
1941 
1942 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1943 		u32 tmp;
1944 
1945 		if (x & D_MRR)
1946 			printk(KERN_ERR
1947 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1948 			       x);
1949 		if (x & D_MLE)
1950 			printk(KERN_ERR
1951 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1952 			       x);
1953 		if (x & D_LBG)
1954 			printk(KERN_ERR
1955 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1956 		if (x & D_MBE)
1957 			printk(KERN_ERR
1958 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1959 
1960 		/* Some of these SBus errors cause the chip's SBus circuitry
1961 		 * to be disabled, so just re-enable and try to keep going.
1962 		 *
1963 		 * The only one I've seen is MRR, which will be triggered
1964 		 * if you let a transmit pipe underrun, then try to CDP it.
1965 		 *
1966 		 * If these things persist, we reset the chip.
1967 		 */
1968 		if ((++errcnt) % 10 == 0) {
1969 			dprintk(D_INT, "Interrupt errors exceeded.\n");
1970 			dbri_reset(dbri);
1971 		} else {
1972 			tmp = sbus_readl(dbri->regs + REG0);
1973 			tmp &= ~(D_D);
1974 			sbus_writel(tmp, dbri->regs + REG0);
1975 		}
1976 	}
1977 
1978 	dbri_process_interrupt_buffer(dbri);
1979 
1980 	spin_unlock(&dbri->lock);
1981 
1982 	return IRQ_HANDLED;
1983 }
1984 
1985 /****************************************************************************
1986 		PCM Interface
1987 ****************************************************************************/
1988 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1989 	.info		= SNDRV_PCM_INFO_MMAP |
1990 			  SNDRV_PCM_INFO_INTERLEAVED |
1991 			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1992 			  SNDRV_PCM_INFO_MMAP_VALID |
1993 			  SNDRV_PCM_INFO_BATCH,
1994 	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1995 			  SNDRV_PCM_FMTBIT_A_LAW |
1996 			  SNDRV_PCM_FMTBIT_U8 |
1997 			  SNDRV_PCM_FMTBIT_S16_BE,
1998 	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1999 	.rate_min		= 5512,
2000 	.rate_max		= 48000,
2001 	.channels_min		= 1,
2002 	.channels_max		= 2,
2003 	.buffer_bytes_max	= 64 * 1024,
2004 	.period_bytes_min	= 1,
2005 	.period_bytes_max	= DBRI_TD_MAXCNT,
2006 	.periods_min		= 1,
2007 	.periods_max		= 1024,
2008 };
2009 
2010 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2011 			      struct snd_pcm_hw_rule *rule)
2012 {
2013 	struct snd_interval *c = hw_param_interval(params,
2014 				SNDRV_PCM_HW_PARAM_CHANNELS);
2015 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2016 	struct snd_mask fmt;
2017 
2018 	snd_mask_any(&fmt);
2019 	if (c->min > 1) {
2020 		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2021 		return snd_mask_refine(f, &fmt);
2022 	}
2023 	return 0;
2024 }
2025 
2026 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2027 				struct snd_pcm_hw_rule *rule)
2028 {
2029 	struct snd_interval *c = hw_param_interval(params,
2030 				SNDRV_PCM_HW_PARAM_CHANNELS);
2031 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2032 	struct snd_interval ch;
2033 
2034 	snd_interval_any(&ch);
2035 	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2036 		ch.min = 1;
2037 		ch.max = 1;
2038 		ch.integer = 1;
2039 		return snd_interval_refine(c, &ch);
2040 	}
2041 	return 0;
2042 }
2043 
2044 static int snd_dbri_open(struct snd_pcm_substream *substream)
2045 {
2046 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2047 	struct snd_pcm_runtime *runtime = substream->runtime;
2048 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2049 	unsigned long flags;
2050 
2051 	dprintk(D_USR, "open audio output.\n");
2052 	runtime->hw = snd_dbri_pcm_hw;
2053 
2054 	spin_lock_irqsave(&dbri->lock, flags);
2055 	info->substream = substream;
2056 	info->offset = 0;
2057 	info->dvma_buffer = 0;
2058 	info->pipe = -1;
2059 	spin_unlock_irqrestore(&dbri->lock, flags);
2060 
2061 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2062 			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2063 			    -1);
2064 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2065 			    snd_hw_rule_channels, NULL,
2066 			    SNDRV_PCM_HW_PARAM_CHANNELS,
2067 			    -1);
2068 
2069 	cs4215_open(dbri);
2070 
2071 	return 0;
2072 }
2073 
2074 static int snd_dbri_close(struct snd_pcm_substream *substream)
2075 {
2076 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2077 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2078 
2079 	dprintk(D_USR, "close audio output.\n");
2080 	info->substream = NULL;
2081 	info->offset = 0;
2082 
2083 	return 0;
2084 }
2085 
2086 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2087 			      struct snd_pcm_hw_params *hw_params)
2088 {
2089 	struct snd_pcm_runtime *runtime = substream->runtime;
2090 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2091 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2092 	int direction;
2093 	int ret;
2094 
2095 	/* set sampling rate, audio format and number of channels */
2096 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2097 			     params_format(hw_params),
2098 			     params_channels(hw_params));
2099 	if (ret != 0)
2100 		return ret;
2101 
2102 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2103 				params_buffer_bytes(hw_params))) < 0) {
2104 		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2105 		return ret;
2106 	}
2107 
2108 	/* hw_params can get called multiple times. Only map the DMA once.
2109 	 */
2110 	if (info->dvma_buffer == 0) {
2111 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2112 			direction = DMA_TO_DEVICE;
2113 		else
2114 			direction = DMA_FROM_DEVICE;
2115 
2116 		info->dvma_buffer =
2117 			dma_map_single(&dbri->op->dev,
2118 				       runtime->dma_area,
2119 				       params_buffer_bytes(hw_params),
2120 				       direction);
2121 	}
2122 
2123 	direction = params_buffer_bytes(hw_params);
2124 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2125 		direction, info->dvma_buffer);
2126 	return 0;
2127 }
2128 
2129 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2130 {
2131 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2132 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2133 	int direction;
2134 
2135 	dprintk(D_USR, "hw_free.\n");
2136 
2137 	/* hw_free can get called multiple times. Only unmap the DMA once.
2138 	 */
2139 	if (info->dvma_buffer) {
2140 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2141 			direction = DMA_TO_DEVICE;
2142 		else
2143 			direction = DMA_FROM_DEVICE;
2144 
2145 		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2146 				 substream->runtime->buffer_size, direction);
2147 		info->dvma_buffer = 0;
2148 	}
2149 	if (info->pipe != -1) {
2150 		reset_pipe(dbri, info->pipe);
2151 		info->pipe = -1;
2152 	}
2153 
2154 	return snd_pcm_lib_free_pages(substream);
2155 }
2156 
2157 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2158 {
2159 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2160 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2161 	int ret;
2162 
2163 	info->size = snd_pcm_lib_buffer_bytes(substream);
2164 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2165 		info->pipe = 4;	/* Send pipe */
2166 	else
2167 		info->pipe = 6;	/* Receive pipe */
2168 
2169 	spin_lock_irq(&dbri->lock);
2170 	info->offset = 0;
2171 
2172 	/* Setup the all the transmit/receive descriptors to cover the
2173 	 * whole DMA buffer.
2174 	 */
2175 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2176 			  snd_pcm_lib_period_bytes(substream));
2177 
2178 	spin_unlock_irq(&dbri->lock);
2179 
2180 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2181 	return ret;
2182 }
2183 
2184 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2185 {
2186 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2187 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2188 	int ret = 0;
2189 
2190 	switch (cmd) {
2191 	case SNDRV_PCM_TRIGGER_START:
2192 		dprintk(D_USR, "start audio, period is %d bytes\n",
2193 			(int)snd_pcm_lib_period_bytes(substream));
2194 		/* Re-submit the TDs. */
2195 		xmit_descs(dbri);
2196 		break;
2197 	case SNDRV_PCM_TRIGGER_STOP:
2198 		dprintk(D_USR, "stop audio.\n");
2199 		reset_pipe(dbri, info->pipe);
2200 		break;
2201 	default:
2202 		ret = -EINVAL;
2203 	}
2204 
2205 	return ret;
2206 }
2207 
2208 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2209 {
2210 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2211 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2212 	snd_pcm_uframes_t ret;
2213 
2214 	ret = bytes_to_frames(substream->runtime, info->offset)
2215 		% substream->runtime->buffer_size;
2216 	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2217 		ret, substream->runtime->buffer_size);
2218 	return ret;
2219 }
2220 
2221 static const struct snd_pcm_ops snd_dbri_ops = {
2222 	.open = snd_dbri_open,
2223 	.close = snd_dbri_close,
2224 	.ioctl = snd_pcm_lib_ioctl,
2225 	.hw_params = snd_dbri_hw_params,
2226 	.hw_free = snd_dbri_hw_free,
2227 	.prepare = snd_dbri_prepare,
2228 	.trigger = snd_dbri_trigger,
2229 	.pointer = snd_dbri_pointer,
2230 };
2231 
2232 static int snd_dbri_pcm(struct snd_card *card)
2233 {
2234 	struct snd_pcm *pcm;
2235 	int err;
2236 
2237 	if ((err = snd_pcm_new(card,
2238 			       /* ID */		    "sun_dbri",
2239 			       /* device */	    0,
2240 			       /* playback count */ 1,
2241 			       /* capture count */  1, &pcm)) < 0)
2242 		return err;
2243 
2244 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2245 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2246 
2247 	pcm->private_data = card->private_data;
2248 	pcm->info_flags = 0;
2249 	strcpy(pcm->name, card->shortname);
2250 
2251 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2252 					      snd_dma_continuous_data(GFP_KERNEL),
2253 					      64 * 1024, 64 * 1024);
2254 	return 0;
2255 }
2256 
2257 /*****************************************************************************
2258 			Mixer interface
2259 *****************************************************************************/
2260 
2261 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2262 				  struct snd_ctl_elem_info *uinfo)
2263 {
2264 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2265 	uinfo->count = 2;
2266 	uinfo->value.integer.min = 0;
2267 	if (kcontrol->private_value == DBRI_PLAY)
2268 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2269 	else
2270 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2271 	return 0;
2272 }
2273 
2274 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2275 				 struct snd_ctl_elem_value *ucontrol)
2276 {
2277 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2278 	struct dbri_streaminfo *info;
2279 
2280 	if (snd_BUG_ON(!dbri))
2281 		return -EINVAL;
2282 	info = &dbri->stream_info[kcontrol->private_value];
2283 
2284 	ucontrol->value.integer.value[0] = info->left_gain;
2285 	ucontrol->value.integer.value[1] = info->right_gain;
2286 	return 0;
2287 }
2288 
2289 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2290 				 struct snd_ctl_elem_value *ucontrol)
2291 {
2292 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2293 	struct dbri_streaminfo *info =
2294 				&dbri->stream_info[kcontrol->private_value];
2295 	unsigned int vol[2];
2296 	int changed = 0;
2297 
2298 	vol[0] = ucontrol->value.integer.value[0];
2299 	vol[1] = ucontrol->value.integer.value[1];
2300 	if (kcontrol->private_value == DBRI_PLAY) {
2301 		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2302 			return -EINVAL;
2303 	} else {
2304 		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2305 			return -EINVAL;
2306 	}
2307 
2308 	if (info->left_gain != vol[0]) {
2309 		info->left_gain = vol[0];
2310 		changed = 1;
2311 	}
2312 	if (info->right_gain != vol[1]) {
2313 		info->right_gain = vol[1];
2314 		changed = 1;
2315 	}
2316 	if (changed) {
2317 		/* First mute outputs, and wait 1/8000 sec (125 us)
2318 		 * to make sure this takes.  This avoids clicking noises.
2319 		 */
2320 		cs4215_setdata(dbri, 1);
2321 		udelay(125);
2322 		cs4215_setdata(dbri, 0);
2323 	}
2324 	return changed;
2325 }
2326 
2327 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2328 				  struct snd_ctl_elem_info *uinfo)
2329 {
2330 	int mask = (kcontrol->private_value >> 16) & 0xff;
2331 
2332 	uinfo->type = (mask == 1) ?
2333 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2334 	uinfo->count = 1;
2335 	uinfo->value.integer.min = 0;
2336 	uinfo->value.integer.max = mask;
2337 	return 0;
2338 }
2339 
2340 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2341 				 struct snd_ctl_elem_value *ucontrol)
2342 {
2343 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2344 	int elem = kcontrol->private_value & 0xff;
2345 	int shift = (kcontrol->private_value >> 8) & 0xff;
2346 	int mask = (kcontrol->private_value >> 16) & 0xff;
2347 	int invert = (kcontrol->private_value >> 24) & 1;
2348 
2349 	if (snd_BUG_ON(!dbri))
2350 		return -EINVAL;
2351 
2352 	if (elem < 4)
2353 		ucontrol->value.integer.value[0] =
2354 		    (dbri->mm.data[elem] >> shift) & mask;
2355 	else
2356 		ucontrol->value.integer.value[0] =
2357 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2358 
2359 	if (invert == 1)
2360 		ucontrol->value.integer.value[0] =
2361 		    mask - ucontrol->value.integer.value[0];
2362 	return 0;
2363 }
2364 
2365 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2366 				 struct snd_ctl_elem_value *ucontrol)
2367 {
2368 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2369 	int elem = kcontrol->private_value & 0xff;
2370 	int shift = (kcontrol->private_value >> 8) & 0xff;
2371 	int mask = (kcontrol->private_value >> 16) & 0xff;
2372 	int invert = (kcontrol->private_value >> 24) & 1;
2373 	int changed = 0;
2374 	unsigned short val;
2375 
2376 	if (snd_BUG_ON(!dbri))
2377 		return -EINVAL;
2378 
2379 	val = (ucontrol->value.integer.value[0] & mask);
2380 	if (invert == 1)
2381 		val = mask - val;
2382 	val <<= shift;
2383 
2384 	if (elem < 4) {
2385 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2386 				       ~(mask << shift)) | val;
2387 		changed = (val != dbri->mm.data[elem]);
2388 	} else {
2389 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2390 					   ~(mask << shift)) | val;
2391 		changed = (val != dbri->mm.ctrl[elem - 4]);
2392 	}
2393 
2394 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2395 		"mixer-value=%ld, mm-value=0x%x\n",
2396 		mask, changed, ucontrol->value.integer.value[0],
2397 		dbri->mm.data[elem & 3]);
2398 
2399 	if (changed) {
2400 		/* First mute outputs, and wait 1/8000 sec (125 us)
2401 		 * to make sure this takes.  This avoids clicking noises.
2402 		 */
2403 		cs4215_setdata(dbri, 1);
2404 		udelay(125);
2405 		cs4215_setdata(dbri, 0);
2406 	}
2407 	return changed;
2408 }
2409 
2410 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2411    timeslots. Shift is the bit offset in the timeslot, mask defines the
2412    number of bits. invert is a boolean for use with attenuation.
2413  */
2414 #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2415 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2416   .info = snd_cs4215_info_single,				\
2417   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2418   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2419 			((invert) << 24) },
2420 
2421 static struct snd_kcontrol_new dbri_controls[] = {
2422 	{
2423 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2424 	 .name  = "Playback Volume",
2425 	 .info  = snd_cs4215_info_volume,
2426 	 .get   = snd_cs4215_get_volume,
2427 	 .put   = snd_cs4215_put_volume,
2428 	 .private_value = DBRI_PLAY,
2429 	 },
2430 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2431 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2432 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2433 	{
2434 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2435 	 .name  = "Capture Volume",
2436 	 .info  = snd_cs4215_info_volume,
2437 	 .get   = snd_cs4215_get_volume,
2438 	 .put   = snd_cs4215_put_volume,
2439 	 .private_value = DBRI_REC,
2440 	 },
2441 	/* FIXME: mic/line switch */
2442 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2443 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2444 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2445 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2446 };
2447 
2448 static int snd_dbri_mixer(struct snd_card *card)
2449 {
2450 	int idx, err;
2451 	struct snd_dbri *dbri;
2452 
2453 	if (snd_BUG_ON(!card || !card->private_data))
2454 		return -EINVAL;
2455 	dbri = card->private_data;
2456 
2457 	strcpy(card->mixername, card->shortname);
2458 
2459 	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2460 		err = snd_ctl_add(card,
2461 				snd_ctl_new1(&dbri_controls[idx], dbri));
2462 		if (err < 0)
2463 			return err;
2464 	}
2465 
2466 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2467 		dbri->stream_info[idx].left_gain = 0;
2468 		dbri->stream_info[idx].right_gain = 0;
2469 	}
2470 
2471 	return 0;
2472 }
2473 
2474 /****************************************************************************
2475 			/proc interface
2476 ****************************************************************************/
2477 static void dbri_regs_read(struct snd_info_entry *entry,
2478 			   struct snd_info_buffer *buffer)
2479 {
2480 	struct snd_dbri *dbri = entry->private_data;
2481 
2482 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2483 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2484 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2485 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2486 }
2487 
2488 #ifdef DBRI_DEBUG
2489 static void dbri_debug_read(struct snd_info_entry *entry,
2490 			    struct snd_info_buffer *buffer)
2491 {
2492 	struct snd_dbri *dbri = entry->private_data;
2493 	int pipe;
2494 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2495 
2496 	for (pipe = 0; pipe < 32; pipe++) {
2497 		if (pipe_active(dbri, pipe)) {
2498 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2499 			snd_iprintf(buffer,
2500 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2501 				    "len=%d next %d\n",
2502 				    pipe,
2503 				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2504 								 "input",
2505 				    pptr->sdp, pptr->desc,
2506 				    pptr->length, pptr->nextpipe);
2507 		}
2508 	}
2509 }
2510 #endif
2511 
2512 static void snd_dbri_proc(struct snd_card *card)
2513 {
2514 	struct snd_dbri *dbri = card->private_data;
2515 
2516 	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2517 #ifdef DBRI_DEBUG
2518 	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2519 #endif
2520 }
2521 
2522 /*
2523 ****************************************************************************
2524 **************************** Initialization ********************************
2525 ****************************************************************************
2526 */
2527 static void snd_dbri_free(struct snd_dbri *dbri);
2528 
2529 static int snd_dbri_create(struct snd_card *card,
2530 			   struct platform_device *op,
2531 			   int irq, int dev)
2532 {
2533 	struct snd_dbri *dbri = card->private_data;
2534 	int err;
2535 
2536 	spin_lock_init(&dbri->lock);
2537 	dbri->op = op;
2538 	dbri->irq = irq;
2539 
2540 	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2541 				       &dbri->dma_dvma, GFP_KERNEL);
2542 	if (!dbri->dma)
2543 		return -ENOMEM;
2544 
2545 	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2546 		dbri->dma, dbri->dma_dvma);
2547 
2548 	/* Map the registers into memory. */
2549 	dbri->regs_size = resource_size(&op->resource[0]);
2550 	dbri->regs = of_ioremap(&op->resource[0], 0,
2551 				dbri->regs_size, "DBRI Registers");
2552 	if (!dbri->regs) {
2553 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2554 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2555 				  (void *)dbri->dma, dbri->dma_dvma);
2556 		return -EIO;
2557 	}
2558 
2559 	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2560 			  "DBRI audio", dbri);
2561 	if (err) {
2562 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2563 		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2564 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2565 				  (void *)dbri->dma, dbri->dma_dvma);
2566 		return err;
2567 	}
2568 
2569 	/* Do low level initialization of the DBRI and CS4215 chips */
2570 	dbri_initialize(dbri);
2571 	err = cs4215_init(dbri);
2572 	if (err) {
2573 		snd_dbri_free(dbri);
2574 		return err;
2575 	}
2576 
2577 	return 0;
2578 }
2579 
2580 static void snd_dbri_free(struct snd_dbri *dbri)
2581 {
2582 	dprintk(D_GEN, "snd_dbri_free\n");
2583 	dbri_reset(dbri);
2584 
2585 	if (dbri->irq)
2586 		free_irq(dbri->irq, dbri);
2587 
2588 	if (dbri->regs)
2589 		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2590 
2591 	if (dbri->dma)
2592 		dma_free_coherent(&dbri->op->dev,
2593 				  sizeof(struct dbri_dma),
2594 				  (void *)dbri->dma, dbri->dma_dvma);
2595 }
2596 
2597 static int dbri_probe(struct platform_device *op)
2598 {
2599 	struct snd_dbri *dbri;
2600 	struct resource *rp;
2601 	struct snd_card *card;
2602 	static int dev = 0;
2603 	int irq;
2604 	int err;
2605 
2606 	if (dev >= SNDRV_CARDS)
2607 		return -ENODEV;
2608 	if (!enable[dev]) {
2609 		dev++;
2610 		return -ENOENT;
2611 	}
2612 
2613 	irq = op->archdata.irqs[0];
2614 	if (irq <= 0) {
2615 		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2616 		return -ENODEV;
2617 	}
2618 
2619 	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2620 			   sizeof(struct snd_dbri), &card);
2621 	if (err < 0)
2622 		return err;
2623 
2624 	strcpy(card->driver, "DBRI");
2625 	strcpy(card->shortname, "Sun DBRI");
2626 	rp = &op->resource[0];
2627 	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2628 		card->shortname,
2629 		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2630 
2631 	err = snd_dbri_create(card, op, irq, dev);
2632 	if (err < 0) {
2633 		snd_card_free(card);
2634 		return err;
2635 	}
2636 
2637 	dbri = card->private_data;
2638 	err = snd_dbri_pcm(card);
2639 	if (err < 0)
2640 		goto _err;
2641 
2642 	err = snd_dbri_mixer(card);
2643 	if (err < 0)
2644 		goto _err;
2645 
2646 	/* /proc file handling */
2647 	snd_dbri_proc(card);
2648 	dev_set_drvdata(&op->dev, card);
2649 
2650 	err = snd_card_register(card);
2651 	if (err < 0)
2652 		goto _err;
2653 
2654 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2655 	       dev, dbri->regs,
2656 	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2657 	dev++;
2658 
2659 	return 0;
2660 
2661 _err:
2662 	snd_dbri_free(dbri);
2663 	snd_card_free(card);
2664 	return err;
2665 }
2666 
2667 static int dbri_remove(struct platform_device *op)
2668 {
2669 	struct snd_card *card = dev_get_drvdata(&op->dev);
2670 
2671 	snd_dbri_free(card->private_data);
2672 	snd_card_free(card);
2673 
2674 	return 0;
2675 }
2676 
2677 static const struct of_device_id dbri_match[] = {
2678 	{
2679 		.name = "SUNW,DBRIe",
2680 	},
2681 	{
2682 		.name = "SUNW,DBRIf",
2683 	},
2684 	{},
2685 };
2686 
2687 MODULE_DEVICE_TABLE(of, dbri_match);
2688 
2689 static struct platform_driver dbri_sbus_driver = {
2690 	.driver = {
2691 		.name = "dbri",
2692 		.of_match_table = dbri_match,
2693 	},
2694 	.probe		= dbri_probe,
2695 	.remove		= dbri_remove,
2696 };
2697 
2698 module_platform_driver(dbri_sbus_driver);
2699