xref: /openbmc/linux/sound/soc/ti/omap-mcbsp.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /*
2  * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  *
6  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
7  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21  * 02110-1301 USA
22  *
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/initval.h>
35 #include <sound/soc.h>
36 #include <sound/dmaengine_pcm.h>
37 
38 #include "omap-mcbsp-priv.h"
39 #include "omap-mcbsp.h"
40 #include "sdma-pcm.h"
41 
42 #define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
43 
44 enum {
45 	OMAP_MCBSP_WORD_8 = 0,
46 	OMAP_MCBSP_WORD_12,
47 	OMAP_MCBSP_WORD_16,
48 	OMAP_MCBSP_WORD_20,
49 	OMAP_MCBSP_WORD_24,
50 	OMAP_MCBSP_WORD_32,
51 };
52 
53 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
54 {
55 	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
56 	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
57 	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
58 	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
59 	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
60 	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
61 	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
62 	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
63 	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
64 	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
65 	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
66 	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
67 	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
68 	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
69 	dev_dbg(mcbsp->dev, "***********************\n");
70 }
71 
72 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
73 {
74 	struct clk *fck_src;
75 	const char *src;
76 	int r;
77 
78 	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
79 		src = "pad_fck";
80 	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
81 		src = "prcm_fck";
82 	else
83 		return -EINVAL;
84 
85 	fck_src = clk_get(mcbsp->dev, src);
86 	if (IS_ERR(fck_src)) {
87 		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
88 		return -EINVAL;
89 	}
90 
91 	pm_runtime_put_sync(mcbsp->dev);
92 
93 	r = clk_set_parent(mcbsp->fclk, fck_src);
94 	if (r) {
95 		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
96 			src);
97 		clk_put(fck_src);
98 		return r;
99 	}
100 
101 	pm_runtime_get_sync(mcbsp->dev);
102 
103 	clk_put(fck_src);
104 
105 	return 0;
106 }
107 
108 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
109 {
110 	struct omap_mcbsp *mcbsp = data;
111 	u16 irqst;
112 
113 	irqst = MCBSP_READ(mcbsp, IRQST);
114 	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
115 
116 	if (irqst & RSYNCERREN)
117 		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
118 	if (irqst & RFSREN)
119 		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
120 	if (irqst & REOFEN)
121 		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
122 	if (irqst & RRDYEN)
123 		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
124 	if (irqst & RUNDFLEN)
125 		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
126 	if (irqst & ROVFLEN)
127 		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
128 
129 	if (irqst & XSYNCERREN)
130 		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
131 	if (irqst & XFSXEN)
132 		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
133 	if (irqst & XEOFEN)
134 		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
135 	if (irqst & XRDYEN)
136 		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
137 	if (irqst & XUNDFLEN)
138 		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
139 	if (irqst & XOVFLEN)
140 		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
141 	if (irqst & XEMPTYEOFEN)
142 		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
143 
144 	MCBSP_WRITE(mcbsp, IRQST, irqst);
145 
146 	return IRQ_HANDLED;
147 }
148 
149 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
150 {
151 	struct omap_mcbsp *mcbsp = data;
152 	u16 irqst_spcr2;
153 
154 	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
155 	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
156 
157 	if (irqst_spcr2 & XSYNC_ERR) {
158 		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
159 			irqst_spcr2);
160 		/* Writing zero to XSYNC_ERR clears the IRQ */
161 		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
162 	}
163 
164 	return IRQ_HANDLED;
165 }
166 
167 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
168 {
169 	struct omap_mcbsp *mcbsp = data;
170 	u16 irqst_spcr1;
171 
172 	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
173 	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
174 
175 	if (irqst_spcr1 & RSYNC_ERR) {
176 		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
177 			irqst_spcr1);
178 		/* Writing zero to RSYNC_ERR clears the IRQ */
179 		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
180 	}
181 
182 	return IRQ_HANDLED;
183 }
184 
185 /*
186  * omap_mcbsp_config simply write a config to the
187  * appropriate McBSP.
188  * You either call this function or set the McBSP registers
189  * by yourself before calling omap_mcbsp_start().
190  */
191 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
192 			      const struct omap_mcbsp_reg_cfg *config)
193 {
194 	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
195 		mcbsp->id, mcbsp->phys_base);
196 
197 	/* We write the given config */
198 	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
199 	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
200 	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
201 	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
202 	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
203 	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
204 	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
205 	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
206 	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
207 	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
208 	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
209 	if (mcbsp->pdata->has_ccr) {
210 		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
211 		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
212 	}
213 	/* Enable wakeup behavior */
214 	if (mcbsp->pdata->has_wakeup)
215 		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
216 
217 	/* Enable TX/RX sync error interrupts by default */
218 	if (mcbsp->irq)
219 		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
220 			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
221 }
222 
223 /**
224  * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
225  * @mcbsp: omap_mcbsp struct for the McBSP instance
226  * @stream: Stream direction (playback/capture)
227  *
228  * Returns the address of mcbsp data transmit register or data receive register
229  * to be used by DMA for transferring/receiving data
230  */
231 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
232 				     unsigned int stream)
233 {
234 	int data_reg;
235 
236 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
237 		if (mcbsp->pdata->reg_size == 2)
238 			data_reg = OMAP_MCBSP_REG_DXR1;
239 		else
240 			data_reg = OMAP_MCBSP_REG_DXR;
241 	} else {
242 		if (mcbsp->pdata->reg_size == 2)
243 			data_reg = OMAP_MCBSP_REG_DRR1;
244 		else
245 			data_reg = OMAP_MCBSP_REG_DRR;
246 	}
247 
248 	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
249 }
250 
251 /*
252  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
253  * The threshold parameter is 1 based, and it is converted (threshold - 1)
254  * for the THRSH2 register.
255  */
256 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
257 {
258 	if (threshold && threshold <= mcbsp->max_tx_thres)
259 		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
260 }
261 
262 /*
263  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
264  * The threshold parameter is 1 based, and it is converted (threshold - 1)
265  * for the THRSH1 register.
266  */
267 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
268 {
269 	if (threshold && threshold <= mcbsp->max_rx_thres)
270 		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
271 }
272 
273 /*
274  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
275  */
276 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
277 {
278 	u16 buffstat;
279 
280 	/* Returns the number of free locations in the buffer */
281 	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
282 
283 	/* Number of slots are different in McBSP ports */
284 	return mcbsp->pdata->buffer_size - buffstat;
285 }
286 
287 /*
288  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
289  * to reach the threshold value (when the DMA will be triggered to read it)
290  */
291 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
292 {
293 	u16 buffstat, threshold;
294 
295 	/* Returns the number of used locations in the buffer */
296 	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
297 	/* RX threshold */
298 	threshold = MCBSP_READ(mcbsp, THRSH1);
299 
300 	/* Return the number of location till we reach the threshold limit */
301 	if (threshold <= buffstat)
302 		return 0;
303 	else
304 		return threshold - buffstat;
305 }
306 
307 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
308 {
309 	void *reg_cache;
310 	int err;
311 
312 	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
313 	if (!reg_cache)
314 		return -ENOMEM;
315 
316 	spin_lock(&mcbsp->lock);
317 	if (!mcbsp->free) {
318 		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
319 		err = -EBUSY;
320 		goto err_kfree;
321 	}
322 
323 	mcbsp->free = false;
324 	mcbsp->reg_cache = reg_cache;
325 	spin_unlock(&mcbsp->lock);
326 
327 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
328 		mcbsp->pdata->ops->request(mcbsp->id - 1);
329 
330 	/*
331 	 * Make sure that transmitter, receiver and sample-rate generator are
332 	 * not running before activating IRQs.
333 	 */
334 	MCBSP_WRITE(mcbsp, SPCR1, 0);
335 	MCBSP_WRITE(mcbsp, SPCR2, 0);
336 
337 	if (mcbsp->irq) {
338 		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
339 				  "McBSP", (void *)mcbsp);
340 		if (err != 0) {
341 			dev_err(mcbsp->dev, "Unable to request IRQ\n");
342 			goto err_clk_disable;
343 		}
344 	} else {
345 		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
346 				  "McBSP TX", (void *)mcbsp);
347 		if (err != 0) {
348 			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
349 			goto err_clk_disable;
350 		}
351 
352 		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
353 				  "McBSP RX", (void *)mcbsp);
354 		if (err != 0) {
355 			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
356 			goto err_free_irq;
357 		}
358 	}
359 
360 	return 0;
361 err_free_irq:
362 	free_irq(mcbsp->tx_irq, (void *)mcbsp);
363 err_clk_disable:
364 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
365 		mcbsp->pdata->ops->free(mcbsp->id - 1);
366 
367 	/* Disable wakeup behavior */
368 	if (mcbsp->pdata->has_wakeup)
369 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
370 
371 	spin_lock(&mcbsp->lock);
372 	mcbsp->free = true;
373 	mcbsp->reg_cache = NULL;
374 err_kfree:
375 	spin_unlock(&mcbsp->lock);
376 	kfree(reg_cache);
377 
378 	return err;
379 }
380 
381 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
382 {
383 	void *reg_cache;
384 
385 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
386 		mcbsp->pdata->ops->free(mcbsp->id - 1);
387 
388 	/* Disable wakeup behavior */
389 	if (mcbsp->pdata->has_wakeup)
390 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
391 
392 	/* Disable interrupt requests */
393 	if (mcbsp->irq)
394 		MCBSP_WRITE(mcbsp, IRQEN, 0);
395 
396 	if (mcbsp->irq) {
397 		free_irq(mcbsp->irq, (void *)mcbsp);
398 	} else {
399 		free_irq(mcbsp->rx_irq, (void *)mcbsp);
400 		free_irq(mcbsp->tx_irq, (void *)mcbsp);
401 	}
402 
403 	reg_cache = mcbsp->reg_cache;
404 
405 	/*
406 	 * Select CLKS source from internal source unconditionally before
407 	 * marking the McBSP port as free.
408 	 * If the external clock source via MCBSP_CLKS pin has been selected the
409 	 * system will refuse to enter idle if the CLKS pin source is not reset
410 	 * back to internal source.
411 	 */
412 	if (!mcbsp_omap1())
413 		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
414 
415 	spin_lock(&mcbsp->lock);
416 	if (mcbsp->free)
417 		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
418 	else
419 		mcbsp->free = true;
420 	mcbsp->reg_cache = NULL;
421 	spin_unlock(&mcbsp->lock);
422 
423 	kfree(reg_cache);
424 }
425 
426 /*
427  * Here we start the McBSP, by enabling transmitter, receiver or both.
428  * If no transmitter or receiver is active prior calling, then sample-rate
429  * generator and frame sync are started.
430  */
431 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
432 {
433 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
434 	int rx = !tx;
435 	int enable_srg = 0;
436 	u16 w;
437 
438 	if (mcbsp->st_data)
439 		omap_mcbsp_st_start(mcbsp);
440 
441 	/* Only enable SRG, if McBSP is master */
442 	w = MCBSP_READ_CACHE(mcbsp, PCR0);
443 	if (w & (FSXM | FSRM | CLKXM | CLKRM))
444 		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
445 				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
446 
447 	if (enable_srg) {
448 		/* Start the sample generator */
449 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
450 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
451 	}
452 
453 	/* Enable transmitter and receiver */
454 	tx &= 1;
455 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
456 	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
457 
458 	rx &= 1;
459 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
460 	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
461 
462 	/*
463 	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
464 	 * REVISIT: 100us may give enough time for two CLKSRG, however
465 	 * due to some unknown PM related, clock gating etc. reason it
466 	 * is now at 500us.
467 	 */
468 	udelay(500);
469 
470 	if (enable_srg) {
471 		/* Start frame sync */
472 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
473 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
474 	}
475 
476 	if (mcbsp->pdata->has_ccr) {
477 		/* Release the transmitter and receiver */
478 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
479 		w &= ~(tx ? XDISABLE : 0);
480 		MCBSP_WRITE(mcbsp, XCCR, w);
481 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
482 		w &= ~(rx ? RDISABLE : 0);
483 		MCBSP_WRITE(mcbsp, RCCR, w);
484 	}
485 
486 	/* Dump McBSP Regs */
487 	omap_mcbsp_dump_reg(mcbsp);
488 }
489 
490 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
491 {
492 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
493 	int rx = !tx;
494 	int idle;
495 	u16 w;
496 
497 	/* Reset transmitter */
498 	tx &= 1;
499 	if (mcbsp->pdata->has_ccr) {
500 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
501 		w |= (tx ? XDISABLE : 0);
502 		MCBSP_WRITE(mcbsp, XCCR, w);
503 	}
504 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
505 	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
506 
507 	/* Reset receiver */
508 	rx &= 1;
509 	if (mcbsp->pdata->has_ccr) {
510 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
511 		w |= (rx ? RDISABLE : 0);
512 		MCBSP_WRITE(mcbsp, RCCR, w);
513 	}
514 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
515 	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
516 
517 	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
518 			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
519 
520 	if (idle) {
521 		/* Reset the sample rate generator */
522 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
523 		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
524 	}
525 
526 	if (mcbsp->st_data)
527 		omap_mcbsp_st_stop(mcbsp);
528 }
529 
530 #define max_thres(m)			(mcbsp->pdata->buffer_size)
531 #define valid_threshold(m, val)		((val) <= max_thres(m))
532 #define THRESHOLD_PROP_BUILDER(prop)					\
533 static ssize_t prop##_show(struct device *dev,				\
534 			struct device_attribute *attr, char *buf)	\
535 {									\
536 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
537 									\
538 	return sprintf(buf, "%u\n", mcbsp->prop);			\
539 }									\
540 									\
541 static ssize_t prop##_store(struct device *dev,				\
542 				struct device_attribute *attr,		\
543 				const char *buf, size_t size)		\
544 {									\
545 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
546 	unsigned long val;						\
547 	int status;							\
548 									\
549 	status = kstrtoul(buf, 0, &val);				\
550 	if (status)							\
551 		return status;						\
552 									\
553 	if (!valid_threshold(mcbsp, val))				\
554 		return -EDOM;						\
555 									\
556 	mcbsp->prop = val;						\
557 	return size;							\
558 }									\
559 									\
560 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
561 
562 THRESHOLD_PROP_BUILDER(max_tx_thres);
563 THRESHOLD_PROP_BUILDER(max_rx_thres);
564 
565 static const char * const dma_op_modes[] = {
566 	"element", "threshold",
567 };
568 
569 static ssize_t dma_op_mode_show(struct device *dev,
570 				struct device_attribute *attr, char *buf)
571 {
572 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
573 	int dma_op_mode, i = 0;
574 	ssize_t len = 0;
575 	const char * const *s;
576 
577 	dma_op_mode = mcbsp->dma_op_mode;
578 
579 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
580 		if (dma_op_mode == i)
581 			len += sprintf(buf + len, "[%s] ", *s);
582 		else
583 			len += sprintf(buf + len, "%s ", *s);
584 	}
585 	len += sprintf(buf + len, "\n");
586 
587 	return len;
588 }
589 
590 static ssize_t dma_op_mode_store(struct device *dev,
591 				 struct device_attribute *attr, const char *buf,
592 				 size_t size)
593 {
594 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
595 	int i;
596 
597 	i = sysfs_match_string(dma_op_modes, buf);
598 	if (i < 0)
599 		return i;
600 
601 	spin_lock_irq(&mcbsp->lock);
602 	if (!mcbsp->free) {
603 		size = -EBUSY;
604 		goto unlock;
605 	}
606 	mcbsp->dma_op_mode = i;
607 
608 unlock:
609 	spin_unlock_irq(&mcbsp->lock);
610 
611 	return size;
612 }
613 
614 static DEVICE_ATTR_RW(dma_op_mode);
615 
616 static const struct attribute *additional_attrs[] = {
617 	&dev_attr_max_tx_thres.attr,
618 	&dev_attr_max_rx_thres.attr,
619 	&dev_attr_dma_op_mode.attr,
620 	NULL,
621 };
622 
623 static const struct attribute_group additional_attr_group = {
624 	.attrs = (struct attribute **)additional_attrs,
625 };
626 
627 /*
628  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
629  * 730 has only 2 McBSP, and both of them are MPU peripherals.
630  */
631 static int omap_mcbsp_init(struct platform_device *pdev)
632 {
633 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
634 	struct resource *res;
635 	int ret = 0;
636 
637 	spin_lock_init(&mcbsp->lock);
638 	mcbsp->free = true;
639 
640 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
641 	if (!res)
642 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
643 
644 	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
645 	if (IS_ERR(mcbsp->io_base))
646 		return PTR_ERR(mcbsp->io_base);
647 
648 	mcbsp->phys_base = res->start;
649 	mcbsp->reg_cache_size = resource_size(res);
650 
651 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
652 	if (!res)
653 		mcbsp->phys_dma_base = mcbsp->phys_base;
654 	else
655 		mcbsp->phys_dma_base = res->start;
656 
657 	/*
658 	 * OMAP1, 2 uses two interrupt lines: TX, RX
659 	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
660 	 * OMAP4 and newer SoC only have the combined IRQ line.
661 	 * Use the combined IRQ if available since it gives better debugging
662 	 * possibilities.
663 	 */
664 	mcbsp->irq = platform_get_irq_byname(pdev, "common");
665 	if (mcbsp->irq == -ENXIO) {
666 		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
667 
668 		if (mcbsp->tx_irq == -ENXIO) {
669 			mcbsp->irq = platform_get_irq(pdev, 0);
670 			mcbsp->tx_irq = 0;
671 		} else {
672 			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
673 			mcbsp->irq = 0;
674 		}
675 	}
676 
677 	if (!pdev->dev.of_node) {
678 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
679 		if (!res) {
680 			dev_err(&pdev->dev, "invalid tx DMA channel\n");
681 			return -ENODEV;
682 		}
683 		mcbsp->dma_req[0] = res->start;
684 		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
685 
686 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
687 		if (!res) {
688 			dev_err(&pdev->dev, "invalid rx DMA channel\n");
689 			return -ENODEV;
690 		}
691 		mcbsp->dma_req[1] = res->start;
692 		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
693 	} else {
694 		mcbsp->dma_data[0].filter_data = "tx";
695 		mcbsp->dma_data[1].filter_data = "rx";
696 	}
697 
698 	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
699 						SNDRV_PCM_STREAM_PLAYBACK);
700 	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
701 						SNDRV_PCM_STREAM_CAPTURE);
702 
703 	mcbsp->fclk = clk_get(&pdev->dev, "fck");
704 	if (IS_ERR(mcbsp->fclk)) {
705 		ret = PTR_ERR(mcbsp->fclk);
706 		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
707 		return ret;
708 	}
709 
710 	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
711 	if (mcbsp->pdata->buffer_size) {
712 		/*
713 		 * Initially configure the maximum thresholds to a safe value.
714 		 * The McBSP FIFO usage with these values should not go under
715 		 * 16 locations.
716 		 * If the whole FIFO without safety buffer is used, than there
717 		 * is a possibility that the DMA will be not able to push the
718 		 * new data on time, causing channel shifts in runtime.
719 		 */
720 		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
721 		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
722 
723 		ret = sysfs_create_group(&mcbsp->dev->kobj,
724 					 &additional_attr_group);
725 		if (ret) {
726 			dev_err(mcbsp->dev,
727 				"Unable to create additional controls\n");
728 			goto err_thres;
729 		}
730 	}
731 
732 	ret = omap_mcbsp_st_init(pdev);
733 	if (ret)
734 		goto err_st;
735 
736 	return 0;
737 
738 err_st:
739 	if (mcbsp->pdata->buffer_size)
740 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
741 err_thres:
742 	clk_put(mcbsp->fclk);
743 	return ret;
744 }
745 
746 /*
747  * Stream DMA parameters. DMA request line and port address are set runtime
748  * since they are different between OMAP1 and later OMAPs
749  */
750 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
751 		unsigned int packet_size)
752 {
753 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
754 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
755 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
756 	int words;
757 
758 	/* No need to proceed further if McBSP does not have FIFO */
759 	if (mcbsp->pdata->buffer_size == 0)
760 		return;
761 
762 	/*
763 	 * Configure McBSP threshold based on either:
764 	 * packet_size, when the sDMA is in packet mode, or based on the
765 	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
766 	 * for mono streams.
767 	 */
768 	if (packet_size)
769 		words = packet_size;
770 	else
771 		words = 1;
772 
773 	/* Configure McBSP internal buffer usage */
774 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
775 		omap_mcbsp_set_tx_threshold(mcbsp, words);
776 	else
777 		omap_mcbsp_set_rx_threshold(mcbsp, words);
778 }
779 
780 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
781 				    struct snd_pcm_hw_rule *rule)
782 {
783 	struct snd_interval *buffer_size = hw_param_interval(params,
784 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
785 	struct snd_interval *channels = hw_param_interval(params,
786 					SNDRV_PCM_HW_PARAM_CHANNELS);
787 	struct omap_mcbsp *mcbsp = rule->private;
788 	struct snd_interval frames;
789 	int size;
790 
791 	snd_interval_any(&frames);
792 	size = mcbsp->pdata->buffer_size;
793 
794 	frames.min = size / channels->min;
795 	frames.integer = 1;
796 	return snd_interval_refine(buffer_size, &frames);
797 }
798 
799 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
800 				  struct snd_soc_dai *cpu_dai)
801 {
802 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
803 	int err = 0;
804 
805 	if (!cpu_dai->active)
806 		err = omap_mcbsp_request(mcbsp);
807 
808 	/*
809 	 * OMAP3 McBSP FIFO is word structured.
810 	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
811 	 * McBSP1,3,4,5 has 128 word long buffer
812 	 * This means that the size of the FIFO depends on the sample format.
813 	 * For example on McBSP3:
814 	 * 16bit samples: size is 128 * 2 = 256 bytes
815 	 * 32bit samples: size is 128 * 4 = 512 bytes
816 	 * It is simpler to place constraint for buffer and period based on
817 	 * channels.
818 	 * McBSP3 as example again (16 or 32 bit samples):
819 	 * 1 channel (mono): size is 128 frames (128 words)
820 	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
821 	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
822 	 */
823 	if (mcbsp->pdata->buffer_size) {
824 		/*
825 		* Rule for the buffer size. We should not allow
826 		* smaller buffer than the FIFO size to avoid underruns.
827 		* This applies only for the playback stream.
828 		*/
829 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
830 			snd_pcm_hw_rule_add(substream->runtime, 0,
831 					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
832 					    omap_mcbsp_hwrule_min_buffersize,
833 					    mcbsp,
834 					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
835 
836 		/* Make sure, that the period size is always even */
837 		snd_pcm_hw_constraint_step(substream->runtime, 0,
838 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
839 	}
840 
841 	return err;
842 }
843 
844 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
845 				    struct snd_soc_dai *cpu_dai)
846 {
847 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
848 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
849 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
850 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
851 
852 	if (mcbsp->latency[stream2])
853 		pm_qos_update_request(&mcbsp->pm_qos_req,
854 				      mcbsp->latency[stream2]);
855 	else if (mcbsp->latency[stream1])
856 		pm_qos_remove_request(&mcbsp->pm_qos_req);
857 
858 	mcbsp->latency[stream1] = 0;
859 
860 	if (!cpu_dai->active) {
861 		omap_mcbsp_free(mcbsp);
862 		mcbsp->configured = 0;
863 	}
864 }
865 
866 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
867 				  struct snd_soc_dai *cpu_dai)
868 {
869 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
870 	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
871 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
872 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
873 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
874 	int latency = mcbsp->latency[stream2];
875 
876 	/* Prevent omap hardware from hitting off between FIFO fills */
877 	if (!latency || mcbsp->latency[stream1] < latency)
878 		latency = mcbsp->latency[stream1];
879 
880 	if (pm_qos_request_active(pm_qos_req))
881 		pm_qos_update_request(pm_qos_req, latency);
882 	else if (latency)
883 		pm_qos_add_request(pm_qos_req, PM_QOS_CPU_DMA_LATENCY, latency);
884 
885 	return 0;
886 }
887 
888 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
889 				  struct snd_soc_dai *cpu_dai)
890 {
891 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
892 
893 	switch (cmd) {
894 	case SNDRV_PCM_TRIGGER_START:
895 	case SNDRV_PCM_TRIGGER_RESUME:
896 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
897 		mcbsp->active++;
898 		omap_mcbsp_start(mcbsp, substream->stream);
899 		break;
900 
901 	case SNDRV_PCM_TRIGGER_STOP:
902 	case SNDRV_PCM_TRIGGER_SUSPEND:
903 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
904 		omap_mcbsp_stop(mcbsp, substream->stream);
905 		mcbsp->active--;
906 		break;
907 	default:
908 		return -EINVAL;
909 	}
910 
911 	return 0;
912 }
913 
914 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
915 			struct snd_pcm_substream *substream,
916 			struct snd_soc_dai *dai)
917 {
918 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
919 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
920 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
921 	u16 fifo_use;
922 	snd_pcm_sframes_t delay;
923 
924 	/* No need to proceed further if McBSP does not have FIFO */
925 	if (mcbsp->pdata->buffer_size == 0)
926 		return 0;
927 
928 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
929 		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
930 	else
931 		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
932 
933 	/*
934 	 * Divide the used locations with the channel count to get the
935 	 * FIFO usage in samples (don't care about partial samples in the
936 	 * buffer).
937 	 */
938 	delay = fifo_use / substream->runtime->channels;
939 
940 	return delay;
941 }
942 
943 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
944 				    struct snd_pcm_hw_params *params,
945 				    struct snd_soc_dai *cpu_dai)
946 {
947 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
948 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
949 	struct snd_dmaengine_dai_dma_data *dma_data;
950 	int wlen, channels, wpf;
951 	int pkt_size = 0;
952 	unsigned int format, div, framesize, master;
953 	unsigned int buffer_size = mcbsp->pdata->buffer_size;
954 
955 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
956 	channels = params_channels(params);
957 
958 	switch (params_format(params)) {
959 	case SNDRV_PCM_FORMAT_S16_LE:
960 		wlen = 16;
961 		break;
962 	case SNDRV_PCM_FORMAT_S32_LE:
963 		wlen = 32;
964 		break;
965 	default:
966 		return -EINVAL;
967 	}
968 	if (buffer_size) {
969 		int latency;
970 
971 		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
972 			int period_words, max_thrsh;
973 			int divider = 0;
974 
975 			period_words = params_period_bytes(params) / (wlen / 8);
976 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
977 				max_thrsh = mcbsp->max_tx_thres;
978 			else
979 				max_thrsh = mcbsp->max_rx_thres;
980 			/*
981 			 * Use sDMA packet mode if McBSP is in threshold mode:
982 			 * If period words less than the FIFO size the packet
983 			 * size is set to the number of period words, otherwise
984 			 * Look for the biggest threshold value which divides
985 			 * the period size evenly.
986 			 */
987 			divider = period_words / max_thrsh;
988 			if (period_words % max_thrsh)
989 				divider++;
990 			while (period_words % divider &&
991 				divider < period_words)
992 				divider++;
993 			if (divider == period_words)
994 				return -EINVAL;
995 
996 			pkt_size = period_words / divider;
997 		} else if (channels > 1) {
998 			/* Use packet mode for non mono streams */
999 			pkt_size = channels;
1000 		}
1001 
1002 		latency = (buffer_size - pkt_size) / channels;
1003 		latency = latency * USEC_PER_SEC /
1004 			  (params->rate_num / params->rate_den);
1005 		mcbsp->latency[substream->stream] = latency;
1006 
1007 		omap_mcbsp_set_threshold(substream, pkt_size);
1008 	}
1009 
1010 	dma_data->maxburst = pkt_size;
1011 
1012 	if (mcbsp->configured) {
1013 		/* McBSP already configured by another stream */
1014 		return 0;
1015 	}
1016 
1017 	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
1018 	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
1019 	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1020 	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1021 	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1022 	wpf = channels;
1023 	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1024 			      format == SND_SOC_DAIFMT_LEFT_J)) {
1025 		/* Use dual-phase frames */
1026 		regs->rcr2	|= RPHASE;
1027 		regs->xcr2	|= XPHASE;
1028 		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1029 		wpf--;
1030 		regs->rcr2	|= RFRLEN2(wpf - 1);
1031 		regs->xcr2	|= XFRLEN2(wpf - 1);
1032 	}
1033 
1034 	regs->rcr1	|= RFRLEN1(wpf - 1);
1035 	regs->xcr1	|= XFRLEN1(wpf - 1);
1036 
1037 	switch (params_format(params)) {
1038 	case SNDRV_PCM_FORMAT_S16_LE:
1039 		/* Set word lengths */
1040 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1041 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1042 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1043 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1044 		break;
1045 	case SNDRV_PCM_FORMAT_S32_LE:
1046 		/* Set word lengths */
1047 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1048 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1049 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1050 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1051 		break;
1052 	default:
1053 		/* Unsupported PCM format */
1054 		return -EINVAL;
1055 	}
1056 
1057 	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1058 	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1059 	master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1060 	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
1061 		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1062 		framesize = (mcbsp->in_freq / div) / params_rate(params);
1063 
1064 		if (framesize < wlen * channels) {
1065 			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1066 					"channels\n", __func__);
1067 			return -EINVAL;
1068 		}
1069 	} else
1070 		framesize = wlen * channels;
1071 
1072 	/* Set FS period and length in terms of bit clock periods */
1073 	regs->srgr2	&= ~FPER(0xfff);
1074 	regs->srgr1	&= ~FWID(0xff);
1075 	switch (format) {
1076 	case SND_SOC_DAIFMT_I2S:
1077 	case SND_SOC_DAIFMT_LEFT_J:
1078 		regs->srgr2	|= FPER(framesize - 1);
1079 		regs->srgr1	|= FWID((framesize >> 1) - 1);
1080 		break;
1081 	case SND_SOC_DAIFMT_DSP_A:
1082 	case SND_SOC_DAIFMT_DSP_B:
1083 		regs->srgr2	|= FPER(framesize - 1);
1084 		regs->srgr1	|= FWID(0);
1085 		break;
1086 	}
1087 
1088 	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1089 	mcbsp->wlen = wlen;
1090 	mcbsp->configured = 1;
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1097  * cache is initialized here
1098  */
1099 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1100 				      unsigned int fmt)
1101 {
1102 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1103 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1104 	bool inv_fs = false;
1105 
1106 	if (mcbsp->configured)
1107 		return 0;
1108 
1109 	mcbsp->fmt = fmt;
1110 	memset(regs, 0, sizeof(*regs));
1111 	/* Generic McBSP register settings */
1112 	regs->spcr2	|= XINTM(3) | FREE;
1113 	regs->spcr1	|= RINTM(3);
1114 	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1115 	if (!mcbsp->pdata->has_ccr) {
1116 		regs->rcr2	|= RFIG;
1117 		regs->xcr2	|= XFIG;
1118 	}
1119 
1120 	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1121 	if (mcbsp->pdata->has_ccr) {
1122 		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1123 		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1124 	}
1125 
1126 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1127 	case SND_SOC_DAIFMT_I2S:
1128 		/* 1-bit data delay */
1129 		regs->rcr2	|= RDATDLY(1);
1130 		regs->xcr2	|= XDATDLY(1);
1131 		break;
1132 	case SND_SOC_DAIFMT_LEFT_J:
1133 		/* 0-bit data delay */
1134 		regs->rcr2	|= RDATDLY(0);
1135 		regs->xcr2	|= XDATDLY(0);
1136 		regs->spcr1	|= RJUST(2);
1137 		/* Invert FS polarity configuration */
1138 		inv_fs = true;
1139 		break;
1140 	case SND_SOC_DAIFMT_DSP_A:
1141 		/* 1-bit data delay */
1142 		regs->rcr2      |= RDATDLY(1);
1143 		regs->xcr2      |= XDATDLY(1);
1144 		/* Invert FS polarity configuration */
1145 		inv_fs = true;
1146 		break;
1147 	case SND_SOC_DAIFMT_DSP_B:
1148 		/* 0-bit data delay */
1149 		regs->rcr2      |= RDATDLY(0);
1150 		regs->xcr2      |= XDATDLY(0);
1151 		/* Invert FS polarity configuration */
1152 		inv_fs = true;
1153 		break;
1154 	default:
1155 		/* Unsupported data format */
1156 		return -EINVAL;
1157 	}
1158 
1159 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1160 	case SND_SOC_DAIFMT_CBS_CFS:
1161 		/* McBSP master. Set FS and bit clocks as outputs */
1162 		regs->pcr0	|= FSXM | FSRM |
1163 				   CLKXM | CLKRM;
1164 		/* Sample rate generator drives the FS */
1165 		regs->srgr2	|= FSGM;
1166 		break;
1167 	case SND_SOC_DAIFMT_CBM_CFS:
1168 		/* McBSP slave. FS clock as output */
1169 		regs->srgr2	|= FSGM;
1170 		regs->pcr0	|= FSXM | FSRM;
1171 		break;
1172 	case SND_SOC_DAIFMT_CBM_CFM:
1173 		/* McBSP slave */
1174 		break;
1175 	default:
1176 		/* Unsupported master/slave configuration */
1177 		return -EINVAL;
1178 	}
1179 
1180 	/* Set bit clock (CLKX/CLKR) and FS polarities */
1181 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1182 	case SND_SOC_DAIFMT_NB_NF:
1183 		/*
1184 		 * Normal BCLK + FS.
1185 		 * FS active low. TX data driven on falling edge of bit clock
1186 		 * and RX data sampled on rising edge of bit clock.
1187 		 */
1188 		regs->pcr0	|= FSXP | FSRP |
1189 				   CLKXP | CLKRP;
1190 		break;
1191 	case SND_SOC_DAIFMT_NB_IF:
1192 		regs->pcr0	|= CLKXP | CLKRP;
1193 		break;
1194 	case SND_SOC_DAIFMT_IB_NF:
1195 		regs->pcr0	|= FSXP | FSRP;
1196 		break;
1197 	case SND_SOC_DAIFMT_IB_IF:
1198 		break;
1199 	default:
1200 		return -EINVAL;
1201 	}
1202 	if (inv_fs == true)
1203 		regs->pcr0 ^= FSXP | FSRP;
1204 
1205 	return 0;
1206 }
1207 
1208 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1209 				     int div_id, int div)
1210 {
1211 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1212 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1213 
1214 	if (div_id != OMAP_MCBSP_CLKGDV)
1215 		return -ENODEV;
1216 
1217 	mcbsp->clk_div = div;
1218 	regs->srgr1	&= ~CLKGDV(0xff);
1219 	regs->srgr1	|= CLKGDV(div - 1);
1220 
1221 	return 0;
1222 }
1223 
1224 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1225 					 int clk_id, unsigned int freq,
1226 					 int dir)
1227 {
1228 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1229 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1230 	int err = 0;
1231 
1232 	if (mcbsp->active) {
1233 		if (freq == mcbsp->in_freq)
1234 			return 0;
1235 		else
1236 			return -EBUSY;
1237 	}
1238 
1239 	mcbsp->in_freq = freq;
1240 	regs->srgr2 &= ~CLKSM;
1241 	regs->pcr0 &= ~SCLKME;
1242 
1243 	switch (clk_id) {
1244 	case OMAP_MCBSP_SYSCLK_CLK:
1245 		regs->srgr2	|= CLKSM;
1246 		break;
1247 	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1248 		if (mcbsp_omap1()) {
1249 			err = -EINVAL;
1250 			break;
1251 		}
1252 		err = omap2_mcbsp_set_clks_src(mcbsp,
1253 					       MCBSP_CLKS_PRCM_SRC);
1254 		break;
1255 	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1256 		if (mcbsp_omap1()) {
1257 			err = 0;
1258 			break;
1259 		}
1260 		err = omap2_mcbsp_set_clks_src(mcbsp,
1261 					       MCBSP_CLKS_PAD_SRC);
1262 		break;
1263 
1264 	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1265 		regs->srgr2	|= CLKSM;
1266 		regs->pcr0	|= SCLKME;
1267 		/*
1268 		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1269 		 * disable output on those pins. This enables to inject the
1270 		 * reference clock through CLKX/CLKR. For this to work
1271 		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1272 		 */
1273 		regs->pcr0	&= ~CLKXM;
1274 		break;
1275 	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1276 		regs->pcr0	|= SCLKME;
1277 		/* Disable ouput on CLKR pin in master mode */
1278 		regs->pcr0	&= ~CLKRM;
1279 		break;
1280 	default:
1281 		err = -ENODEV;
1282 	}
1283 
1284 	return err;
1285 }
1286 
1287 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1288 	.startup	= omap_mcbsp_dai_startup,
1289 	.shutdown	= omap_mcbsp_dai_shutdown,
1290 	.prepare	= omap_mcbsp_dai_prepare,
1291 	.trigger	= omap_mcbsp_dai_trigger,
1292 	.delay		= omap_mcbsp_dai_delay,
1293 	.hw_params	= omap_mcbsp_dai_hw_params,
1294 	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1295 	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1296 	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1297 };
1298 
1299 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1300 {
1301 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1302 
1303 	pm_runtime_enable(mcbsp->dev);
1304 
1305 	snd_soc_dai_init_dma_data(dai,
1306 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1307 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1308 
1309 	return 0;
1310 }
1311 
1312 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1313 {
1314 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1315 
1316 	pm_runtime_disable(mcbsp->dev);
1317 
1318 	return 0;
1319 }
1320 
1321 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1322 	.probe = omap_mcbsp_probe,
1323 	.remove = omap_mcbsp_remove,
1324 	.playback = {
1325 		.channels_min = 1,
1326 		.channels_max = 16,
1327 		.rates = OMAP_MCBSP_RATES,
1328 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1329 	},
1330 	.capture = {
1331 		.channels_min = 1,
1332 		.channels_max = 16,
1333 		.rates = OMAP_MCBSP_RATES,
1334 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1335 	},
1336 	.ops = &mcbsp_dai_ops,
1337 };
1338 
1339 static const struct snd_soc_component_driver omap_mcbsp_component = {
1340 	.name		= "omap-mcbsp",
1341 };
1342 
1343 static struct omap_mcbsp_platform_data omap2420_pdata = {
1344 	.reg_step = 4,
1345 	.reg_size = 2,
1346 };
1347 
1348 static struct omap_mcbsp_platform_data omap2430_pdata = {
1349 	.reg_step = 4,
1350 	.reg_size = 4,
1351 	.has_ccr = true,
1352 };
1353 
1354 static struct omap_mcbsp_platform_data omap3_pdata = {
1355 	.reg_step = 4,
1356 	.reg_size = 4,
1357 	.has_ccr = true,
1358 	.has_wakeup = true,
1359 };
1360 
1361 static struct omap_mcbsp_platform_data omap4_pdata = {
1362 	.reg_step = 4,
1363 	.reg_size = 4,
1364 	.has_ccr = true,
1365 	.has_wakeup = true,
1366 };
1367 
1368 static const struct of_device_id omap_mcbsp_of_match[] = {
1369 	{
1370 		.compatible = "ti,omap2420-mcbsp",
1371 		.data = &omap2420_pdata,
1372 	},
1373 	{
1374 		.compatible = "ti,omap2430-mcbsp",
1375 		.data = &omap2430_pdata,
1376 	},
1377 	{
1378 		.compatible = "ti,omap3-mcbsp",
1379 		.data = &omap3_pdata,
1380 	},
1381 	{
1382 		.compatible = "ti,omap4-mcbsp",
1383 		.data = &omap4_pdata,
1384 	},
1385 	{ },
1386 };
1387 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1388 
1389 static int asoc_mcbsp_probe(struct platform_device *pdev)
1390 {
1391 	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1392 	struct omap_mcbsp *mcbsp;
1393 	const struct of_device_id *match;
1394 	int ret;
1395 
1396 	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1397 	if (match) {
1398 		struct device_node *node = pdev->dev.of_node;
1399 		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1400 		int buffer_size;
1401 
1402 		pdata = devm_kzalloc(&pdev->dev,
1403 				     sizeof(struct omap_mcbsp_platform_data),
1404 				     GFP_KERNEL);
1405 		if (!pdata)
1406 			return -ENOMEM;
1407 
1408 		memcpy(pdata, match->data, sizeof(*pdata));
1409 		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1410 			pdata->buffer_size = buffer_size;
1411 		if (pdata_quirk)
1412 			pdata->force_ick_on = pdata_quirk->force_ick_on;
1413 	} else if (!pdata) {
1414 		dev_err(&pdev->dev, "missing platform data.\n");
1415 		return -EINVAL;
1416 	}
1417 	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1418 	if (!mcbsp)
1419 		return -ENOMEM;
1420 
1421 	mcbsp->id = pdev->id;
1422 	mcbsp->pdata = pdata;
1423 	mcbsp->dev = &pdev->dev;
1424 	platform_set_drvdata(pdev, mcbsp);
1425 
1426 	ret = omap_mcbsp_init(pdev);
1427 	if (ret)
1428 		return ret;
1429 
1430 	if (mcbsp->pdata->reg_size == 2) {
1431 		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1432 		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1433 	}
1434 
1435 	ret = devm_snd_soc_register_component(&pdev->dev,
1436 					      &omap_mcbsp_component,
1437 					      &omap_mcbsp_dai, 1);
1438 	if (ret)
1439 		return ret;
1440 
1441 	return sdma_pcm_platform_register(&pdev->dev, NULL, NULL);
1442 }
1443 
1444 static int asoc_mcbsp_remove(struct platform_device *pdev)
1445 {
1446 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1447 
1448 	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1449 		mcbsp->pdata->ops->free(mcbsp->id);
1450 
1451 	if (pm_qos_request_active(&mcbsp->pm_qos_req))
1452 		pm_qos_remove_request(&mcbsp->pm_qos_req);
1453 
1454 	if (mcbsp->pdata->buffer_size)
1455 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1456 
1457 	omap_mcbsp_st_cleanup(pdev);
1458 
1459 	clk_put(mcbsp->fclk);
1460 
1461 	return 0;
1462 }
1463 
1464 static struct platform_driver asoc_mcbsp_driver = {
1465 	.driver = {
1466 			.name = "omap-mcbsp",
1467 			.of_match_table = omap_mcbsp_of_match,
1468 	},
1469 
1470 	.probe = asoc_mcbsp_probe,
1471 	.remove = asoc_mcbsp_remove,
1472 };
1473 
1474 module_platform_driver(asoc_mcbsp_driver);
1475 
1476 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1477 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1478 MODULE_LICENSE("GPL");
1479 MODULE_ALIAS("platform:omap-mcbsp");
1480