xref: /openbmc/linux/sound/soc/ti/omap-mcbsp.c (revision 92e2eaa44a7f368dfa6e66428fc42f3eefa6baa3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4  *
5  * Copyright (C) 2008 Nokia Corporation
6  *
7  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/initval.h>
21 #include <sound/soc.h>
22 #include <sound/dmaengine_pcm.h>
23 
24 #include "omap-mcbsp-priv.h"
25 #include "omap-mcbsp.h"
26 #include "sdma-pcm.h"
27 
28 #define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
29 
30 enum {
31 	OMAP_MCBSP_WORD_8 = 0,
32 	OMAP_MCBSP_WORD_12,
33 	OMAP_MCBSP_WORD_16,
34 	OMAP_MCBSP_WORD_20,
35 	OMAP_MCBSP_WORD_24,
36 	OMAP_MCBSP_WORD_32,
37 };
38 
39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40 {
41 	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42 	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43 	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44 	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45 	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46 	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47 	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48 	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49 	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50 	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51 	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52 	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53 	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54 	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55 	dev_dbg(mcbsp->dev, "***********************\n");
56 }
57 
58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59 {
60 	struct clk *fck_src;
61 	const char *src;
62 	int r;
63 
64 	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65 		src = "pad_fck";
66 	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67 		src = "prcm_fck";
68 	else
69 		return -EINVAL;
70 
71 	fck_src = clk_get(mcbsp->dev, src);
72 	if (IS_ERR(fck_src)) {
73 		dev_info(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74 		return 0;
75 	}
76 
77 	if (mcbsp->active)
78 		pm_runtime_put_sync(mcbsp->dev);
79 
80 	r = clk_set_parent(mcbsp->fclk, fck_src);
81 	if (r)
82 		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
83 			src);
84 
85 	if (mcbsp->active)
86 		pm_runtime_get_sync(mcbsp->dev);
87 
88 	clk_put(fck_src);
89 
90 	return r;
91 }
92 
93 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
94 {
95 	struct omap_mcbsp *mcbsp = data;
96 	u16 irqst;
97 
98 	irqst = MCBSP_READ(mcbsp, IRQST);
99 	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
100 
101 	if (irqst & RSYNCERREN)
102 		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
103 	if (irqst & RFSREN)
104 		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
105 	if (irqst & REOFEN)
106 		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
107 	if (irqst & RRDYEN)
108 		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
109 	if (irqst & RUNDFLEN)
110 		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
111 	if (irqst & ROVFLEN)
112 		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
113 
114 	if (irqst & XSYNCERREN)
115 		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
116 	if (irqst & XFSXEN)
117 		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
118 	if (irqst & XEOFEN)
119 		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
120 	if (irqst & XRDYEN)
121 		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
122 	if (irqst & XUNDFLEN)
123 		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
124 	if (irqst & XOVFLEN)
125 		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
126 	if (irqst & XEMPTYEOFEN)
127 		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
128 
129 	MCBSP_WRITE(mcbsp, IRQST, irqst);
130 
131 	return IRQ_HANDLED;
132 }
133 
134 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
135 {
136 	struct omap_mcbsp *mcbsp = data;
137 	u16 irqst_spcr2;
138 
139 	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
140 	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
141 
142 	if (irqst_spcr2 & XSYNC_ERR) {
143 		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
144 			irqst_spcr2);
145 		/* Writing zero to XSYNC_ERR clears the IRQ */
146 		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
147 	}
148 
149 	return IRQ_HANDLED;
150 }
151 
152 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
153 {
154 	struct omap_mcbsp *mcbsp = data;
155 	u16 irqst_spcr1;
156 
157 	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
158 	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
159 
160 	if (irqst_spcr1 & RSYNC_ERR) {
161 		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
162 			irqst_spcr1);
163 		/* Writing zero to RSYNC_ERR clears the IRQ */
164 		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
165 	}
166 
167 	return IRQ_HANDLED;
168 }
169 
170 /*
171  * omap_mcbsp_config simply write a config to the
172  * appropriate McBSP.
173  * You either call this function or set the McBSP registers
174  * by yourself before calling omap_mcbsp_start().
175  */
176 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
177 			      const struct omap_mcbsp_reg_cfg *config)
178 {
179 	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
180 		mcbsp->id, mcbsp->phys_base);
181 
182 	/* We write the given config */
183 	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
184 	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
185 	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
186 	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
187 	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
188 	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
189 	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
190 	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
191 	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
192 	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
193 	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
194 	if (mcbsp->pdata->has_ccr) {
195 		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
196 		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
197 	}
198 	/* Enable wakeup behavior */
199 	if (mcbsp->pdata->has_wakeup)
200 		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
201 
202 	/* Enable TX/RX sync error interrupts by default */
203 	if (mcbsp->irq)
204 		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
205 			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
206 }
207 
208 /**
209  * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
210  * @mcbsp: omap_mcbsp struct for the McBSP instance
211  * @stream: Stream direction (playback/capture)
212  *
213  * Returns the address of mcbsp data transmit register or data receive register
214  * to be used by DMA for transferring/receiving data
215  */
216 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
217 				     unsigned int stream)
218 {
219 	int data_reg;
220 
221 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
222 		if (mcbsp->pdata->reg_size == 2)
223 			data_reg = OMAP_MCBSP_REG_DXR1;
224 		else
225 			data_reg = OMAP_MCBSP_REG_DXR;
226 	} else {
227 		if (mcbsp->pdata->reg_size == 2)
228 			data_reg = OMAP_MCBSP_REG_DRR1;
229 		else
230 			data_reg = OMAP_MCBSP_REG_DRR;
231 	}
232 
233 	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
234 }
235 
236 /*
237  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
238  * The threshold parameter is 1 based, and it is converted (threshold - 1)
239  * for the THRSH2 register.
240  */
241 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
242 {
243 	if (threshold && threshold <= mcbsp->max_tx_thres)
244 		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
245 }
246 
247 /*
248  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
249  * The threshold parameter is 1 based, and it is converted (threshold - 1)
250  * for the THRSH1 register.
251  */
252 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
253 {
254 	if (threshold && threshold <= mcbsp->max_rx_thres)
255 		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
256 }
257 
258 /*
259  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
260  */
261 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
262 {
263 	u16 buffstat;
264 
265 	/* Returns the number of free locations in the buffer */
266 	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
267 
268 	/* Number of slots are different in McBSP ports */
269 	return mcbsp->pdata->buffer_size - buffstat;
270 }
271 
272 /*
273  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
274  * to reach the threshold value (when the DMA will be triggered to read it)
275  */
276 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
277 {
278 	u16 buffstat, threshold;
279 
280 	/* Returns the number of used locations in the buffer */
281 	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
282 	/* RX threshold */
283 	threshold = MCBSP_READ(mcbsp, THRSH1);
284 
285 	/* Return the number of location till we reach the threshold limit */
286 	if (threshold <= buffstat)
287 		return 0;
288 	else
289 		return threshold - buffstat;
290 }
291 
292 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
293 {
294 	void *reg_cache;
295 	int err;
296 
297 	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
298 	if (!reg_cache)
299 		return -ENOMEM;
300 
301 	spin_lock(&mcbsp->lock);
302 	if (!mcbsp->free) {
303 		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
304 		err = -EBUSY;
305 		goto err_kfree;
306 	}
307 
308 	mcbsp->free = false;
309 	mcbsp->reg_cache = reg_cache;
310 	spin_unlock(&mcbsp->lock);
311 
312 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
313 		mcbsp->pdata->ops->request(mcbsp->id - 1);
314 
315 	/*
316 	 * Make sure that transmitter, receiver and sample-rate generator are
317 	 * not running before activating IRQs.
318 	 */
319 	MCBSP_WRITE(mcbsp, SPCR1, 0);
320 	MCBSP_WRITE(mcbsp, SPCR2, 0);
321 
322 	if (mcbsp->irq) {
323 		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
324 				  "McBSP", (void *)mcbsp);
325 		if (err != 0) {
326 			dev_err(mcbsp->dev, "Unable to request IRQ\n");
327 			goto err_clk_disable;
328 		}
329 	} else {
330 		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
331 				  "McBSP TX", (void *)mcbsp);
332 		if (err != 0) {
333 			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
334 			goto err_clk_disable;
335 		}
336 
337 		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
338 				  "McBSP RX", (void *)mcbsp);
339 		if (err != 0) {
340 			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
341 			goto err_free_irq;
342 		}
343 	}
344 
345 	return 0;
346 err_free_irq:
347 	free_irq(mcbsp->tx_irq, (void *)mcbsp);
348 err_clk_disable:
349 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
350 		mcbsp->pdata->ops->free(mcbsp->id - 1);
351 
352 	/* Disable wakeup behavior */
353 	if (mcbsp->pdata->has_wakeup)
354 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
355 
356 	spin_lock(&mcbsp->lock);
357 	mcbsp->free = true;
358 	mcbsp->reg_cache = NULL;
359 err_kfree:
360 	spin_unlock(&mcbsp->lock);
361 	kfree(reg_cache);
362 
363 	return err;
364 }
365 
366 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
367 {
368 	void *reg_cache;
369 
370 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
371 		mcbsp->pdata->ops->free(mcbsp->id - 1);
372 
373 	/* Disable wakeup behavior */
374 	if (mcbsp->pdata->has_wakeup)
375 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
376 
377 	/* Disable interrupt requests */
378 	if (mcbsp->irq) {
379 		MCBSP_WRITE(mcbsp, IRQEN, 0);
380 
381 		free_irq(mcbsp->irq, (void *)mcbsp);
382 	} else {
383 		free_irq(mcbsp->rx_irq, (void *)mcbsp);
384 		free_irq(mcbsp->tx_irq, (void *)mcbsp);
385 	}
386 
387 	reg_cache = mcbsp->reg_cache;
388 
389 	/*
390 	 * Select CLKS source from internal source unconditionally before
391 	 * marking the McBSP port as free.
392 	 * If the external clock source via MCBSP_CLKS pin has been selected the
393 	 * system will refuse to enter idle if the CLKS pin source is not reset
394 	 * back to internal source.
395 	 */
396 	if (!mcbsp_omap1())
397 		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
398 
399 	spin_lock(&mcbsp->lock);
400 	if (mcbsp->free)
401 		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
402 	else
403 		mcbsp->free = true;
404 	mcbsp->reg_cache = NULL;
405 	spin_unlock(&mcbsp->lock);
406 
407 	kfree(reg_cache);
408 }
409 
410 /*
411  * Here we start the McBSP, by enabling transmitter, receiver or both.
412  * If no transmitter or receiver is active prior calling, then sample-rate
413  * generator and frame sync are started.
414  */
415 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
416 {
417 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
418 	int rx = !tx;
419 	int enable_srg = 0;
420 	u16 w;
421 
422 	if (mcbsp->st_data)
423 		omap_mcbsp_st_start(mcbsp);
424 
425 	/* Only enable SRG, if McBSP is master */
426 	w = MCBSP_READ_CACHE(mcbsp, PCR0);
427 	if (w & (FSXM | FSRM | CLKXM | CLKRM))
428 		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
429 				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
430 
431 	if (enable_srg) {
432 		/* Start the sample generator */
433 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
434 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
435 	}
436 
437 	/* Enable transmitter and receiver */
438 	tx &= 1;
439 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
440 	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
441 
442 	rx &= 1;
443 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
444 	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
445 
446 	/*
447 	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
448 	 * REVISIT: 100us may give enough time for two CLKSRG, however
449 	 * due to some unknown PM related, clock gating etc. reason it
450 	 * is now at 500us.
451 	 */
452 	udelay(500);
453 
454 	if (enable_srg) {
455 		/* Start frame sync */
456 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
457 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
458 	}
459 
460 	if (mcbsp->pdata->has_ccr) {
461 		/* Release the transmitter and receiver */
462 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
463 		w &= ~(tx ? XDISABLE : 0);
464 		MCBSP_WRITE(mcbsp, XCCR, w);
465 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
466 		w &= ~(rx ? RDISABLE : 0);
467 		MCBSP_WRITE(mcbsp, RCCR, w);
468 	}
469 
470 	/* Dump McBSP Regs */
471 	omap_mcbsp_dump_reg(mcbsp);
472 }
473 
474 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
475 {
476 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
477 	int rx = !tx;
478 	int idle;
479 	u16 w;
480 
481 	/* Reset transmitter */
482 	tx &= 1;
483 	if (mcbsp->pdata->has_ccr) {
484 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
485 		w |= (tx ? XDISABLE : 0);
486 		MCBSP_WRITE(mcbsp, XCCR, w);
487 	}
488 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
489 	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
490 
491 	/* Reset receiver */
492 	rx &= 1;
493 	if (mcbsp->pdata->has_ccr) {
494 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
495 		w |= (rx ? RDISABLE : 0);
496 		MCBSP_WRITE(mcbsp, RCCR, w);
497 	}
498 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
499 	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
500 
501 	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
502 			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
503 
504 	if (idle) {
505 		/* Reset the sample rate generator */
506 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
507 		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
508 	}
509 
510 	if (mcbsp->st_data)
511 		omap_mcbsp_st_stop(mcbsp);
512 }
513 
514 #define max_thres(m)			(mcbsp->pdata->buffer_size)
515 #define valid_threshold(m, val)		((val) <= max_thres(m))
516 #define THRESHOLD_PROP_BUILDER(prop)					\
517 static ssize_t prop##_show(struct device *dev,				\
518 			struct device_attribute *attr, char *buf)	\
519 {									\
520 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
521 									\
522 	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
523 }									\
524 									\
525 static ssize_t prop##_store(struct device *dev,				\
526 				struct device_attribute *attr,		\
527 				const char *buf, size_t size)		\
528 {									\
529 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
530 	unsigned long val;						\
531 	int status;							\
532 									\
533 	status = kstrtoul(buf, 0, &val);				\
534 	if (status)							\
535 		return status;						\
536 									\
537 	if (!valid_threshold(mcbsp, val))				\
538 		return -EDOM;						\
539 									\
540 	mcbsp->prop = val;						\
541 	return size;							\
542 }									\
543 									\
544 static DEVICE_ATTR_RW(prop)
545 
546 THRESHOLD_PROP_BUILDER(max_tx_thres);
547 THRESHOLD_PROP_BUILDER(max_rx_thres);
548 
549 static const char * const dma_op_modes[] = {
550 	"element", "threshold",
551 };
552 
553 static ssize_t dma_op_mode_show(struct device *dev,
554 				struct device_attribute *attr, char *buf)
555 {
556 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
557 	int dma_op_mode, i = 0;
558 	ssize_t len = 0;
559 	const char * const *s;
560 
561 	dma_op_mode = mcbsp->dma_op_mode;
562 
563 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
564 		if (dma_op_mode == i)
565 			len += sysfs_emit_at(buf, len, "[%s] ", *s);
566 		else
567 			len += sysfs_emit_at(buf, len, "%s ", *s);
568 	}
569 	len += sysfs_emit_at(buf, len, "\n");
570 
571 	return len;
572 }
573 
574 static ssize_t dma_op_mode_store(struct device *dev,
575 				 struct device_attribute *attr, const char *buf,
576 				 size_t size)
577 {
578 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
579 	int i;
580 
581 	i = sysfs_match_string(dma_op_modes, buf);
582 	if (i < 0)
583 		return i;
584 
585 	spin_lock_irq(&mcbsp->lock);
586 	if (!mcbsp->free) {
587 		size = -EBUSY;
588 		goto unlock;
589 	}
590 	mcbsp->dma_op_mode = i;
591 
592 unlock:
593 	spin_unlock_irq(&mcbsp->lock);
594 
595 	return size;
596 }
597 
598 static DEVICE_ATTR_RW(dma_op_mode);
599 
600 static const struct attribute *additional_attrs[] = {
601 	&dev_attr_max_tx_thres.attr,
602 	&dev_attr_max_rx_thres.attr,
603 	&dev_attr_dma_op_mode.attr,
604 	NULL,
605 };
606 
607 static const struct attribute_group additional_attr_group = {
608 	.attrs = (struct attribute **)additional_attrs,
609 };
610 
611 /*
612  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
613  * 730 has only 2 McBSP, and both of them are MPU peripherals.
614  */
615 static int omap_mcbsp_init(struct platform_device *pdev)
616 {
617 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
618 	struct resource *res;
619 	int ret;
620 
621 	spin_lock_init(&mcbsp->lock);
622 	mcbsp->free = true;
623 
624 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
625 	if (!res)
626 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
627 
628 	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
629 	if (IS_ERR(mcbsp->io_base))
630 		return PTR_ERR(mcbsp->io_base);
631 
632 	mcbsp->phys_base = res->start;
633 	mcbsp->reg_cache_size = resource_size(res);
634 
635 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
636 	if (!res)
637 		mcbsp->phys_dma_base = mcbsp->phys_base;
638 	else
639 		mcbsp->phys_dma_base = res->start;
640 
641 	/*
642 	 * OMAP1, 2 uses two interrupt lines: TX, RX
643 	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
644 	 * OMAP4 and newer SoC only have the combined IRQ line.
645 	 * Use the combined IRQ if available since it gives better debugging
646 	 * possibilities.
647 	 */
648 	mcbsp->irq = platform_get_irq_byname(pdev, "common");
649 	if (mcbsp->irq == -ENXIO) {
650 		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
651 
652 		if (mcbsp->tx_irq == -ENXIO) {
653 			mcbsp->irq = platform_get_irq(pdev, 0);
654 			mcbsp->tx_irq = 0;
655 		} else {
656 			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
657 			mcbsp->irq = 0;
658 		}
659 	}
660 
661 	if (!pdev->dev.of_node) {
662 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
663 		if (!res) {
664 			dev_err(&pdev->dev, "invalid tx DMA channel\n");
665 			return -ENODEV;
666 		}
667 		mcbsp->dma_req[0] = res->start;
668 		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
669 
670 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
671 		if (!res) {
672 			dev_err(&pdev->dev, "invalid rx DMA channel\n");
673 			return -ENODEV;
674 		}
675 		mcbsp->dma_req[1] = res->start;
676 		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
677 	} else {
678 		mcbsp->dma_data[0].filter_data = "tx";
679 		mcbsp->dma_data[1].filter_data = "rx";
680 	}
681 
682 	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
683 						SNDRV_PCM_STREAM_PLAYBACK);
684 	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
685 						SNDRV_PCM_STREAM_CAPTURE);
686 
687 	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
688 	if (IS_ERR(mcbsp->fclk)) {
689 		ret = PTR_ERR(mcbsp->fclk);
690 		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
691 		return ret;
692 	}
693 
694 	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
695 	if (mcbsp->pdata->buffer_size) {
696 		/*
697 		 * Initially configure the maximum thresholds to a safe value.
698 		 * The McBSP FIFO usage with these values should not go under
699 		 * 16 locations.
700 		 * If the whole FIFO without safety buffer is used, than there
701 		 * is a possibility that the DMA will be not able to push the
702 		 * new data on time, causing channel shifts in runtime.
703 		 */
704 		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
705 		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
706 
707 		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
708 		if (ret) {
709 			dev_err(mcbsp->dev,
710 				"Unable to create additional controls\n");
711 			return ret;
712 		}
713 	}
714 
715 	return omap_mcbsp_st_init(pdev);
716 }
717 
718 /*
719  * Stream DMA parameters. DMA request line and port address are set runtime
720  * since they are different between OMAP1 and later OMAPs
721  */
722 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
723 		unsigned int packet_size)
724 {
725 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
726 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
727 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
728 	int words;
729 
730 	/* No need to proceed further if McBSP does not have FIFO */
731 	if (mcbsp->pdata->buffer_size == 0)
732 		return;
733 
734 	/*
735 	 * Configure McBSP threshold based on either:
736 	 * packet_size, when the sDMA is in packet mode, or based on the
737 	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
738 	 * for mono streams.
739 	 */
740 	if (packet_size)
741 		words = packet_size;
742 	else
743 		words = 1;
744 
745 	/* Configure McBSP internal buffer usage */
746 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
747 		omap_mcbsp_set_tx_threshold(mcbsp, words);
748 	else
749 		omap_mcbsp_set_rx_threshold(mcbsp, words);
750 }
751 
752 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
753 				    struct snd_pcm_hw_rule *rule)
754 {
755 	struct snd_interval *buffer_size = hw_param_interval(params,
756 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
757 	struct snd_interval *channels = hw_param_interval(params,
758 					SNDRV_PCM_HW_PARAM_CHANNELS);
759 	struct omap_mcbsp *mcbsp = rule->private;
760 	struct snd_interval frames;
761 	int size;
762 
763 	snd_interval_any(&frames);
764 	size = mcbsp->pdata->buffer_size;
765 
766 	frames.min = size / channels->min;
767 	frames.integer = 1;
768 	return snd_interval_refine(buffer_size, &frames);
769 }
770 
771 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
772 				  struct snd_soc_dai *cpu_dai)
773 {
774 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
775 	int err = 0;
776 
777 	if (!snd_soc_dai_active(cpu_dai))
778 		err = omap_mcbsp_request(mcbsp);
779 
780 	/*
781 	 * OMAP3 McBSP FIFO is word structured.
782 	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
783 	 * McBSP1,3,4,5 has 128 word long buffer
784 	 * This means that the size of the FIFO depends on the sample format.
785 	 * For example on McBSP3:
786 	 * 16bit samples: size is 128 * 2 = 256 bytes
787 	 * 32bit samples: size is 128 * 4 = 512 bytes
788 	 * It is simpler to place constraint for buffer and period based on
789 	 * channels.
790 	 * McBSP3 as example again (16 or 32 bit samples):
791 	 * 1 channel (mono): size is 128 frames (128 words)
792 	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
793 	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
794 	 */
795 	if (mcbsp->pdata->buffer_size) {
796 		/*
797 		* Rule for the buffer size. We should not allow
798 		* smaller buffer than the FIFO size to avoid underruns.
799 		* This applies only for the playback stream.
800 		*/
801 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
802 			snd_pcm_hw_rule_add(substream->runtime, 0,
803 					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
804 					    omap_mcbsp_hwrule_min_buffersize,
805 					    mcbsp,
806 					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
807 
808 		/* Make sure, that the period size is always even */
809 		snd_pcm_hw_constraint_step(substream->runtime, 0,
810 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
811 	}
812 
813 	return err;
814 }
815 
816 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
817 				    struct snd_soc_dai *cpu_dai)
818 {
819 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
820 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
821 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
822 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
823 
824 	if (mcbsp->latency[stream2])
825 		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
826 					       mcbsp->latency[stream2]);
827 	else if (mcbsp->latency[stream1])
828 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
829 
830 	mcbsp->latency[stream1] = 0;
831 
832 	if (!snd_soc_dai_active(cpu_dai)) {
833 		omap_mcbsp_free(mcbsp);
834 		mcbsp->configured = 0;
835 	}
836 }
837 
838 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
839 				  struct snd_soc_dai *cpu_dai)
840 {
841 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
842 	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
843 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
844 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
845 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
846 	int latency = mcbsp->latency[stream2];
847 
848 	/* Prevent omap hardware from hitting off between FIFO fills */
849 	if (!latency || mcbsp->latency[stream1] < latency)
850 		latency = mcbsp->latency[stream1];
851 
852 	if (cpu_latency_qos_request_active(pm_qos_req))
853 		cpu_latency_qos_update_request(pm_qos_req, latency);
854 	else if (latency)
855 		cpu_latency_qos_add_request(pm_qos_req, latency);
856 
857 	return 0;
858 }
859 
860 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
861 				  struct snd_soc_dai *cpu_dai)
862 {
863 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
864 
865 	switch (cmd) {
866 	case SNDRV_PCM_TRIGGER_START:
867 	case SNDRV_PCM_TRIGGER_RESUME:
868 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
869 		mcbsp->active++;
870 		omap_mcbsp_start(mcbsp, substream->stream);
871 		break;
872 
873 	case SNDRV_PCM_TRIGGER_STOP:
874 	case SNDRV_PCM_TRIGGER_SUSPEND:
875 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
876 		omap_mcbsp_stop(mcbsp, substream->stream);
877 		mcbsp->active--;
878 		break;
879 	default:
880 		return -EINVAL;
881 	}
882 
883 	return 0;
884 }
885 
886 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
887 			struct snd_pcm_substream *substream,
888 			struct snd_soc_dai *dai)
889 {
890 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
891 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
892 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
893 	u16 fifo_use;
894 	snd_pcm_sframes_t delay;
895 
896 	/* No need to proceed further if McBSP does not have FIFO */
897 	if (mcbsp->pdata->buffer_size == 0)
898 		return 0;
899 
900 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
901 		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
902 	else
903 		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
904 
905 	/*
906 	 * Divide the used locations with the channel count to get the
907 	 * FIFO usage in samples (don't care about partial samples in the
908 	 * buffer).
909 	 */
910 	delay = fifo_use / substream->runtime->channels;
911 
912 	return delay;
913 }
914 
915 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
916 				    struct snd_pcm_hw_params *params,
917 				    struct snd_soc_dai *cpu_dai)
918 {
919 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
920 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
921 	struct snd_dmaengine_dai_dma_data *dma_data;
922 	int wlen, channels, wpf;
923 	int pkt_size = 0;
924 	unsigned int format, div, framesize, master;
925 	unsigned int buffer_size = mcbsp->pdata->buffer_size;
926 
927 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
928 	channels = params_channels(params);
929 
930 	switch (params_format(params)) {
931 	case SNDRV_PCM_FORMAT_S16_LE:
932 		wlen = 16;
933 		break;
934 	case SNDRV_PCM_FORMAT_S32_LE:
935 		wlen = 32;
936 		break;
937 	default:
938 		return -EINVAL;
939 	}
940 	if (buffer_size) {
941 		int latency;
942 
943 		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
944 			int period_words, max_thrsh;
945 			int divider = 0;
946 
947 			period_words = params_period_bytes(params) / (wlen / 8);
948 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
949 				max_thrsh = mcbsp->max_tx_thres;
950 			else
951 				max_thrsh = mcbsp->max_rx_thres;
952 			/*
953 			 * Use sDMA packet mode if McBSP is in threshold mode:
954 			 * If period words less than the FIFO size the packet
955 			 * size is set to the number of period words, otherwise
956 			 * Look for the biggest threshold value which divides
957 			 * the period size evenly.
958 			 */
959 			divider = period_words / max_thrsh;
960 			if (period_words % max_thrsh)
961 				divider++;
962 			while (period_words % divider &&
963 				divider < period_words)
964 				divider++;
965 			if (divider == period_words)
966 				return -EINVAL;
967 
968 			pkt_size = period_words / divider;
969 		} else if (channels > 1) {
970 			/* Use packet mode for non mono streams */
971 			pkt_size = channels;
972 		}
973 
974 		latency = (buffer_size - pkt_size) / channels;
975 		latency = latency * USEC_PER_SEC /
976 			  (params->rate_num / params->rate_den);
977 		mcbsp->latency[substream->stream] = latency;
978 
979 		omap_mcbsp_set_threshold(substream, pkt_size);
980 	}
981 
982 	dma_data->maxburst = pkt_size;
983 
984 	if (mcbsp->configured) {
985 		/* McBSP already configured by another stream */
986 		return 0;
987 	}
988 
989 	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
990 	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
991 	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
992 	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
993 	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
994 	wpf = channels;
995 	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
996 			      format == SND_SOC_DAIFMT_LEFT_J)) {
997 		/* Use dual-phase frames */
998 		regs->rcr2	|= RPHASE;
999 		regs->xcr2	|= XPHASE;
1000 		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1001 		wpf--;
1002 		regs->rcr2	|= RFRLEN2(wpf - 1);
1003 		regs->xcr2	|= XFRLEN2(wpf - 1);
1004 	}
1005 
1006 	regs->rcr1	|= RFRLEN1(wpf - 1);
1007 	regs->xcr1	|= XFRLEN1(wpf - 1);
1008 
1009 	switch (params_format(params)) {
1010 	case SNDRV_PCM_FORMAT_S16_LE:
1011 		/* Set word lengths */
1012 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1013 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1014 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1015 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1016 		break;
1017 	case SNDRV_PCM_FORMAT_S32_LE:
1018 		/* Set word lengths */
1019 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1020 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1021 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1022 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1023 		break;
1024 	default:
1025 		/* Unsupported PCM format */
1026 		return -EINVAL;
1027 	}
1028 
1029 	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1030 	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1031 	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1032 	if (master == SND_SOC_DAIFMT_BP_FP) {
1033 		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1034 		framesize = (mcbsp->in_freq / div) / params_rate(params);
1035 
1036 		if (framesize < wlen * channels) {
1037 			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1038 					"channels\n", __func__);
1039 			return -EINVAL;
1040 		}
1041 	} else
1042 		framesize = wlen * channels;
1043 
1044 	/* Set FS period and length in terms of bit clock periods */
1045 	regs->srgr2	&= ~FPER(0xfff);
1046 	regs->srgr1	&= ~FWID(0xff);
1047 	switch (format) {
1048 	case SND_SOC_DAIFMT_I2S:
1049 	case SND_SOC_DAIFMT_LEFT_J:
1050 		regs->srgr2	|= FPER(framesize - 1);
1051 		regs->srgr1	|= FWID((framesize >> 1) - 1);
1052 		break;
1053 	case SND_SOC_DAIFMT_DSP_A:
1054 	case SND_SOC_DAIFMT_DSP_B:
1055 		regs->srgr2	|= FPER(framesize - 1);
1056 		regs->srgr1	|= FWID(0);
1057 		break;
1058 	}
1059 
1060 	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1061 	mcbsp->wlen = wlen;
1062 	mcbsp->configured = 1;
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1069  * cache is initialized here
1070  */
1071 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1072 				      unsigned int fmt)
1073 {
1074 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1075 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1076 	bool inv_fs = false;
1077 
1078 	if (mcbsp->configured)
1079 		return 0;
1080 
1081 	mcbsp->fmt = fmt;
1082 	memset(regs, 0, sizeof(*regs));
1083 	/* Generic McBSP register settings */
1084 	regs->spcr2	|= XINTM(3) | FREE;
1085 	regs->spcr1	|= RINTM(3);
1086 	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1087 	if (!mcbsp->pdata->has_ccr) {
1088 		regs->rcr2	|= RFIG;
1089 		regs->xcr2	|= XFIG;
1090 	}
1091 
1092 	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1093 	if (mcbsp->pdata->has_ccr) {
1094 		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1095 		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1096 	}
1097 
1098 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1099 	case SND_SOC_DAIFMT_I2S:
1100 		/* 1-bit data delay */
1101 		regs->rcr2	|= RDATDLY(1);
1102 		regs->xcr2	|= XDATDLY(1);
1103 		break;
1104 	case SND_SOC_DAIFMT_LEFT_J:
1105 		/* 0-bit data delay */
1106 		regs->rcr2	|= RDATDLY(0);
1107 		regs->xcr2	|= XDATDLY(0);
1108 		regs->spcr1	|= RJUST(2);
1109 		/* Invert FS polarity configuration */
1110 		inv_fs = true;
1111 		break;
1112 	case SND_SOC_DAIFMT_DSP_A:
1113 		/* 1-bit data delay */
1114 		regs->rcr2      |= RDATDLY(1);
1115 		regs->xcr2      |= XDATDLY(1);
1116 		/* Invert FS polarity configuration */
1117 		inv_fs = true;
1118 		break;
1119 	case SND_SOC_DAIFMT_DSP_B:
1120 		/* 0-bit data delay */
1121 		regs->rcr2      |= RDATDLY(0);
1122 		regs->xcr2      |= XDATDLY(0);
1123 		/* Invert FS polarity configuration */
1124 		inv_fs = true;
1125 		break;
1126 	default:
1127 		/* Unsupported data format */
1128 		return -EINVAL;
1129 	}
1130 
1131 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1132 	case SND_SOC_DAIFMT_BP_FP:
1133 		/* McBSP master. Set FS and bit clocks as outputs */
1134 		regs->pcr0	|= FSXM | FSRM |
1135 				   CLKXM | CLKRM;
1136 		/* Sample rate generator drives the FS */
1137 		regs->srgr2	|= FSGM;
1138 		break;
1139 	case SND_SOC_DAIFMT_BC_FP:
1140 		/* McBSP slave. FS clock as output */
1141 		regs->srgr2	|= FSGM;
1142 		regs->pcr0	|= FSXM | FSRM;
1143 		break;
1144 	case SND_SOC_DAIFMT_BC_FC:
1145 		/* McBSP slave */
1146 		break;
1147 	default:
1148 		/* Unsupported master/slave configuration */
1149 		return -EINVAL;
1150 	}
1151 
1152 	/* Set bit clock (CLKX/CLKR) and FS polarities */
1153 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1154 	case SND_SOC_DAIFMT_NB_NF:
1155 		/*
1156 		 * Normal BCLK + FS.
1157 		 * FS active low. TX data driven on falling edge of bit clock
1158 		 * and RX data sampled on rising edge of bit clock.
1159 		 */
1160 		regs->pcr0	|= FSXP | FSRP |
1161 				   CLKXP | CLKRP;
1162 		break;
1163 	case SND_SOC_DAIFMT_NB_IF:
1164 		regs->pcr0	|= CLKXP | CLKRP;
1165 		break;
1166 	case SND_SOC_DAIFMT_IB_NF:
1167 		regs->pcr0	|= FSXP | FSRP;
1168 		break;
1169 	case SND_SOC_DAIFMT_IB_IF:
1170 		break;
1171 	default:
1172 		return -EINVAL;
1173 	}
1174 	if (inv_fs)
1175 		regs->pcr0 ^= FSXP | FSRP;
1176 
1177 	return 0;
1178 }
1179 
1180 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1181 				     int div_id, int div)
1182 {
1183 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1184 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1185 
1186 	if (div_id != OMAP_MCBSP_CLKGDV)
1187 		return -ENODEV;
1188 
1189 	mcbsp->clk_div = div;
1190 	regs->srgr1	&= ~CLKGDV(0xff);
1191 	regs->srgr1	|= CLKGDV(div - 1);
1192 
1193 	return 0;
1194 }
1195 
1196 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1197 					 int clk_id, unsigned int freq,
1198 					 int dir)
1199 {
1200 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1201 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1202 	int err = 0;
1203 
1204 	if (mcbsp->active) {
1205 		if (freq == mcbsp->in_freq)
1206 			return 0;
1207 		else
1208 			return -EBUSY;
1209 	}
1210 
1211 	mcbsp->in_freq = freq;
1212 	regs->srgr2 &= ~CLKSM;
1213 	regs->pcr0 &= ~SCLKME;
1214 
1215 	switch (clk_id) {
1216 	case OMAP_MCBSP_SYSCLK_CLK:
1217 		regs->srgr2	|= CLKSM;
1218 		break;
1219 	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1220 		if (mcbsp_omap1()) {
1221 			err = -EINVAL;
1222 			break;
1223 		}
1224 		err = omap2_mcbsp_set_clks_src(mcbsp,
1225 					       MCBSP_CLKS_PRCM_SRC);
1226 		break;
1227 	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1228 		if (mcbsp_omap1()) {
1229 			err = 0;
1230 			break;
1231 		}
1232 		err = omap2_mcbsp_set_clks_src(mcbsp,
1233 					       MCBSP_CLKS_PAD_SRC);
1234 		break;
1235 
1236 	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1237 		regs->srgr2	|= CLKSM;
1238 		regs->pcr0	|= SCLKME;
1239 		/*
1240 		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1241 		 * disable output on those pins. This enables to inject the
1242 		 * reference clock through CLKX/CLKR. For this to work
1243 		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1244 		 */
1245 		regs->pcr0	&= ~CLKXM;
1246 		break;
1247 	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1248 		regs->pcr0	|= SCLKME;
1249 		/* Disable ouput on CLKR pin in master mode */
1250 		regs->pcr0	&= ~CLKRM;
1251 		break;
1252 	default:
1253 		err = -ENODEV;
1254 	}
1255 
1256 	return err;
1257 }
1258 
1259 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1260 {
1261 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1262 
1263 	pm_runtime_enable(mcbsp->dev);
1264 
1265 	snd_soc_dai_init_dma_data(dai,
1266 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1267 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1268 
1269 	return 0;
1270 }
1271 
1272 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1273 {
1274 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1275 
1276 	pm_runtime_disable(mcbsp->dev);
1277 
1278 	return 0;
1279 }
1280 
1281 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1282 	.probe		= omap_mcbsp_probe,
1283 	.remove		= omap_mcbsp_remove,
1284 	.startup	= omap_mcbsp_dai_startup,
1285 	.shutdown	= omap_mcbsp_dai_shutdown,
1286 	.prepare	= omap_mcbsp_dai_prepare,
1287 	.trigger	= omap_mcbsp_dai_trigger,
1288 	.delay		= omap_mcbsp_dai_delay,
1289 	.hw_params	= omap_mcbsp_dai_hw_params,
1290 	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1291 	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1292 	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1293 };
1294 
1295 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1296 	.playback = {
1297 		.channels_min = 1,
1298 		.channels_max = 16,
1299 		.rates = OMAP_MCBSP_RATES,
1300 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1301 	},
1302 	.capture = {
1303 		.channels_min = 1,
1304 		.channels_max = 16,
1305 		.rates = OMAP_MCBSP_RATES,
1306 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1307 	},
1308 	.ops = &mcbsp_dai_ops,
1309 };
1310 
1311 static const struct snd_soc_component_driver omap_mcbsp_component = {
1312 	.name			= "omap-mcbsp",
1313 	.legacy_dai_naming	= 1,
1314 };
1315 
1316 static struct omap_mcbsp_platform_data omap2420_pdata = {
1317 	.reg_step = 4,
1318 	.reg_size = 2,
1319 };
1320 
1321 static struct omap_mcbsp_platform_data omap2430_pdata = {
1322 	.reg_step = 4,
1323 	.reg_size = 4,
1324 	.has_ccr = true,
1325 };
1326 
1327 static struct omap_mcbsp_platform_data omap3_pdata = {
1328 	.reg_step = 4,
1329 	.reg_size = 4,
1330 	.has_ccr = true,
1331 	.has_wakeup = true,
1332 };
1333 
1334 static struct omap_mcbsp_platform_data omap4_pdata = {
1335 	.reg_step = 4,
1336 	.reg_size = 4,
1337 	.has_ccr = true,
1338 	.has_wakeup = true,
1339 };
1340 
1341 static const struct of_device_id omap_mcbsp_of_match[] = {
1342 	{
1343 		.compatible = "ti,omap2420-mcbsp",
1344 		.data = &omap2420_pdata,
1345 	},
1346 	{
1347 		.compatible = "ti,omap2430-mcbsp",
1348 		.data = &omap2430_pdata,
1349 	},
1350 	{
1351 		.compatible = "ti,omap3-mcbsp",
1352 		.data = &omap3_pdata,
1353 	},
1354 	{
1355 		.compatible = "ti,omap4-mcbsp",
1356 		.data = &omap4_pdata,
1357 	},
1358 	{ },
1359 };
1360 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1361 
1362 static int asoc_mcbsp_probe(struct platform_device *pdev)
1363 {
1364 	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1365 	struct omap_mcbsp *mcbsp;
1366 	const struct of_device_id *match;
1367 	int ret;
1368 
1369 	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1370 	if (match) {
1371 		struct device_node *node = pdev->dev.of_node;
1372 		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1373 		int buffer_size;
1374 
1375 		pdata = devm_kzalloc(&pdev->dev,
1376 				     sizeof(struct omap_mcbsp_platform_data),
1377 				     GFP_KERNEL);
1378 		if (!pdata)
1379 			return -ENOMEM;
1380 
1381 		memcpy(pdata, match->data, sizeof(*pdata));
1382 		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1383 			pdata->buffer_size = buffer_size;
1384 		if (pdata_quirk)
1385 			pdata->force_ick_on = pdata_quirk->force_ick_on;
1386 	} else if (!pdata) {
1387 		dev_err(&pdev->dev, "missing platform data.\n");
1388 		return -EINVAL;
1389 	}
1390 	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1391 	if (!mcbsp)
1392 		return -ENOMEM;
1393 
1394 	mcbsp->id = pdev->id;
1395 	mcbsp->pdata = pdata;
1396 	mcbsp->dev = &pdev->dev;
1397 	platform_set_drvdata(pdev, mcbsp);
1398 
1399 	ret = omap_mcbsp_init(pdev);
1400 	if (ret)
1401 		return ret;
1402 
1403 	if (mcbsp->pdata->reg_size == 2) {
1404 		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1405 		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1406 	}
1407 
1408 	ret = devm_snd_soc_register_component(&pdev->dev,
1409 					      &omap_mcbsp_component,
1410 					      &omap_mcbsp_dai, 1);
1411 	if (ret)
1412 		return ret;
1413 
1414 	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1415 }
1416 
1417 static void asoc_mcbsp_remove(struct platform_device *pdev)
1418 {
1419 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1420 
1421 	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1422 		mcbsp->pdata->ops->free(mcbsp->id);
1423 
1424 	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1425 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1426 }
1427 
1428 static struct platform_driver asoc_mcbsp_driver = {
1429 	.driver = {
1430 			.name = "omap-mcbsp",
1431 			.of_match_table = omap_mcbsp_of_match,
1432 	},
1433 
1434 	.probe = asoc_mcbsp_probe,
1435 	.remove_new = asoc_mcbsp_remove,
1436 };
1437 
1438 module_platform_driver(asoc_mcbsp_driver);
1439 
1440 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1441 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1442 MODULE_LICENSE("GPL");
1443 MODULE_ALIAS("platform:omap-mcbsp");
1444