xref: /openbmc/linux/sound/soc/ti/omap-mcbsp.c (revision 66c98360)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4  *
5  * Copyright (C) 2008 Nokia Corporation
6  *
7  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/initval.h>
21 #include <sound/soc.h>
22 #include <sound/dmaengine_pcm.h>
23 
24 #include "omap-mcbsp-priv.h"
25 #include "omap-mcbsp.h"
26 #include "sdma-pcm.h"
27 
28 #define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
29 
30 enum {
31 	OMAP_MCBSP_WORD_8 = 0,
32 	OMAP_MCBSP_WORD_12,
33 	OMAP_MCBSP_WORD_16,
34 	OMAP_MCBSP_WORD_20,
35 	OMAP_MCBSP_WORD_24,
36 	OMAP_MCBSP_WORD_32,
37 };
38 
39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40 {
41 	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42 	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43 	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44 	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45 	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46 	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47 	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48 	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49 	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50 	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51 	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52 	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53 	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54 	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55 	dev_dbg(mcbsp->dev, "***********************\n");
56 }
57 
58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59 {
60 	struct clk *fck_src;
61 	const char *src;
62 	int r;
63 
64 	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65 		src = "pad_fck";
66 	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67 		src = "prcm_fck";
68 	else
69 		return -EINVAL;
70 
71 	fck_src = clk_get(mcbsp->dev, src);
72 	if (IS_ERR(fck_src)) {
73 		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74 		return -EINVAL;
75 	}
76 
77 	pm_runtime_put_sync(mcbsp->dev);
78 
79 	r = clk_set_parent(mcbsp->fclk, fck_src);
80 	if (r)
81 		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
82 			src);
83 
84 	pm_runtime_get_sync(mcbsp->dev);
85 
86 	clk_put(fck_src);
87 
88 	return r;
89 }
90 
91 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
92 {
93 	struct omap_mcbsp *mcbsp = data;
94 	u16 irqst;
95 
96 	irqst = MCBSP_READ(mcbsp, IRQST);
97 	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
98 
99 	if (irqst & RSYNCERREN)
100 		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
101 	if (irqst & RFSREN)
102 		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
103 	if (irqst & REOFEN)
104 		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
105 	if (irqst & RRDYEN)
106 		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
107 	if (irqst & RUNDFLEN)
108 		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
109 	if (irqst & ROVFLEN)
110 		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
111 
112 	if (irqst & XSYNCERREN)
113 		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
114 	if (irqst & XFSXEN)
115 		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
116 	if (irqst & XEOFEN)
117 		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
118 	if (irqst & XRDYEN)
119 		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
120 	if (irqst & XUNDFLEN)
121 		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
122 	if (irqst & XOVFLEN)
123 		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
124 	if (irqst & XEMPTYEOFEN)
125 		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
126 
127 	MCBSP_WRITE(mcbsp, IRQST, irqst);
128 
129 	return IRQ_HANDLED;
130 }
131 
132 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
133 {
134 	struct omap_mcbsp *mcbsp = data;
135 	u16 irqst_spcr2;
136 
137 	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
138 	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
139 
140 	if (irqst_spcr2 & XSYNC_ERR) {
141 		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
142 			irqst_spcr2);
143 		/* Writing zero to XSYNC_ERR clears the IRQ */
144 		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
145 	}
146 
147 	return IRQ_HANDLED;
148 }
149 
150 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
151 {
152 	struct omap_mcbsp *mcbsp = data;
153 	u16 irqst_spcr1;
154 
155 	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
156 	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
157 
158 	if (irqst_spcr1 & RSYNC_ERR) {
159 		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
160 			irqst_spcr1);
161 		/* Writing zero to RSYNC_ERR clears the IRQ */
162 		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
163 	}
164 
165 	return IRQ_HANDLED;
166 }
167 
168 /*
169  * omap_mcbsp_config simply write a config to the
170  * appropriate McBSP.
171  * You either call this function or set the McBSP registers
172  * by yourself before calling omap_mcbsp_start().
173  */
174 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
175 			      const struct omap_mcbsp_reg_cfg *config)
176 {
177 	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
178 		mcbsp->id, mcbsp->phys_base);
179 
180 	/* We write the given config */
181 	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
182 	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
183 	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
184 	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
185 	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
186 	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
187 	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
188 	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
189 	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
190 	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
191 	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
192 	if (mcbsp->pdata->has_ccr) {
193 		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
194 		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
195 	}
196 	/* Enable wakeup behavior */
197 	if (mcbsp->pdata->has_wakeup)
198 		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
199 
200 	/* Enable TX/RX sync error interrupts by default */
201 	if (mcbsp->irq)
202 		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
203 			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
204 }
205 
206 /**
207  * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
208  * @mcbsp: omap_mcbsp struct for the McBSP instance
209  * @stream: Stream direction (playback/capture)
210  *
211  * Returns the address of mcbsp data transmit register or data receive register
212  * to be used by DMA for transferring/receiving data
213  */
214 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
215 				     unsigned int stream)
216 {
217 	int data_reg;
218 
219 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
220 		if (mcbsp->pdata->reg_size == 2)
221 			data_reg = OMAP_MCBSP_REG_DXR1;
222 		else
223 			data_reg = OMAP_MCBSP_REG_DXR;
224 	} else {
225 		if (mcbsp->pdata->reg_size == 2)
226 			data_reg = OMAP_MCBSP_REG_DRR1;
227 		else
228 			data_reg = OMAP_MCBSP_REG_DRR;
229 	}
230 
231 	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
232 }
233 
234 /*
235  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
236  * The threshold parameter is 1 based, and it is converted (threshold - 1)
237  * for the THRSH2 register.
238  */
239 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
240 {
241 	if (threshold && threshold <= mcbsp->max_tx_thres)
242 		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
243 }
244 
245 /*
246  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
247  * The threshold parameter is 1 based, and it is converted (threshold - 1)
248  * for the THRSH1 register.
249  */
250 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
251 {
252 	if (threshold && threshold <= mcbsp->max_rx_thres)
253 		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
254 }
255 
256 /*
257  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
258  */
259 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
260 {
261 	u16 buffstat;
262 
263 	/* Returns the number of free locations in the buffer */
264 	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
265 
266 	/* Number of slots are different in McBSP ports */
267 	return mcbsp->pdata->buffer_size - buffstat;
268 }
269 
270 /*
271  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
272  * to reach the threshold value (when the DMA will be triggered to read it)
273  */
274 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
275 {
276 	u16 buffstat, threshold;
277 
278 	/* Returns the number of used locations in the buffer */
279 	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
280 	/* RX threshold */
281 	threshold = MCBSP_READ(mcbsp, THRSH1);
282 
283 	/* Return the number of location till we reach the threshold limit */
284 	if (threshold <= buffstat)
285 		return 0;
286 	else
287 		return threshold - buffstat;
288 }
289 
290 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
291 {
292 	void *reg_cache;
293 	int err;
294 
295 	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
296 	if (!reg_cache)
297 		return -ENOMEM;
298 
299 	spin_lock(&mcbsp->lock);
300 	if (!mcbsp->free) {
301 		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
302 		err = -EBUSY;
303 		goto err_kfree;
304 	}
305 
306 	mcbsp->free = false;
307 	mcbsp->reg_cache = reg_cache;
308 	spin_unlock(&mcbsp->lock);
309 
310 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
311 		mcbsp->pdata->ops->request(mcbsp->id - 1);
312 
313 	/*
314 	 * Make sure that transmitter, receiver and sample-rate generator are
315 	 * not running before activating IRQs.
316 	 */
317 	MCBSP_WRITE(mcbsp, SPCR1, 0);
318 	MCBSP_WRITE(mcbsp, SPCR2, 0);
319 
320 	if (mcbsp->irq) {
321 		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
322 				  "McBSP", (void *)mcbsp);
323 		if (err != 0) {
324 			dev_err(mcbsp->dev, "Unable to request IRQ\n");
325 			goto err_clk_disable;
326 		}
327 	} else {
328 		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
329 				  "McBSP TX", (void *)mcbsp);
330 		if (err != 0) {
331 			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
332 			goto err_clk_disable;
333 		}
334 
335 		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
336 				  "McBSP RX", (void *)mcbsp);
337 		if (err != 0) {
338 			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
339 			goto err_free_irq;
340 		}
341 	}
342 
343 	return 0;
344 err_free_irq:
345 	free_irq(mcbsp->tx_irq, (void *)mcbsp);
346 err_clk_disable:
347 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
348 		mcbsp->pdata->ops->free(mcbsp->id - 1);
349 
350 	/* Disable wakeup behavior */
351 	if (mcbsp->pdata->has_wakeup)
352 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
353 
354 	spin_lock(&mcbsp->lock);
355 	mcbsp->free = true;
356 	mcbsp->reg_cache = NULL;
357 err_kfree:
358 	spin_unlock(&mcbsp->lock);
359 	kfree(reg_cache);
360 
361 	return err;
362 }
363 
364 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
365 {
366 	void *reg_cache;
367 
368 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
369 		mcbsp->pdata->ops->free(mcbsp->id - 1);
370 
371 	/* Disable wakeup behavior */
372 	if (mcbsp->pdata->has_wakeup)
373 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
374 
375 	/* Disable interrupt requests */
376 	if (mcbsp->irq) {
377 		MCBSP_WRITE(mcbsp, IRQEN, 0);
378 
379 		free_irq(mcbsp->irq, (void *)mcbsp);
380 	} else {
381 		free_irq(mcbsp->rx_irq, (void *)mcbsp);
382 		free_irq(mcbsp->tx_irq, (void *)mcbsp);
383 	}
384 
385 	reg_cache = mcbsp->reg_cache;
386 
387 	/*
388 	 * Select CLKS source from internal source unconditionally before
389 	 * marking the McBSP port as free.
390 	 * If the external clock source via MCBSP_CLKS pin has been selected the
391 	 * system will refuse to enter idle if the CLKS pin source is not reset
392 	 * back to internal source.
393 	 */
394 	if (!mcbsp_omap1())
395 		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
396 
397 	spin_lock(&mcbsp->lock);
398 	if (mcbsp->free)
399 		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
400 	else
401 		mcbsp->free = true;
402 	mcbsp->reg_cache = NULL;
403 	spin_unlock(&mcbsp->lock);
404 
405 	kfree(reg_cache);
406 }
407 
408 /*
409  * Here we start the McBSP, by enabling transmitter, receiver or both.
410  * If no transmitter or receiver is active prior calling, then sample-rate
411  * generator and frame sync are started.
412  */
413 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
414 {
415 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
416 	int rx = !tx;
417 	int enable_srg = 0;
418 	u16 w;
419 
420 	if (mcbsp->st_data)
421 		omap_mcbsp_st_start(mcbsp);
422 
423 	/* Only enable SRG, if McBSP is master */
424 	w = MCBSP_READ_CACHE(mcbsp, PCR0);
425 	if (w & (FSXM | FSRM | CLKXM | CLKRM))
426 		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
427 				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
428 
429 	if (enable_srg) {
430 		/* Start the sample generator */
431 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
432 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
433 	}
434 
435 	/* Enable transmitter and receiver */
436 	tx &= 1;
437 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
438 	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
439 
440 	rx &= 1;
441 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
442 	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
443 
444 	/*
445 	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
446 	 * REVISIT: 100us may give enough time for two CLKSRG, however
447 	 * due to some unknown PM related, clock gating etc. reason it
448 	 * is now at 500us.
449 	 */
450 	udelay(500);
451 
452 	if (enable_srg) {
453 		/* Start frame sync */
454 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
455 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
456 	}
457 
458 	if (mcbsp->pdata->has_ccr) {
459 		/* Release the transmitter and receiver */
460 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
461 		w &= ~(tx ? XDISABLE : 0);
462 		MCBSP_WRITE(mcbsp, XCCR, w);
463 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
464 		w &= ~(rx ? RDISABLE : 0);
465 		MCBSP_WRITE(mcbsp, RCCR, w);
466 	}
467 
468 	/* Dump McBSP Regs */
469 	omap_mcbsp_dump_reg(mcbsp);
470 }
471 
472 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
473 {
474 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
475 	int rx = !tx;
476 	int idle;
477 	u16 w;
478 
479 	/* Reset transmitter */
480 	tx &= 1;
481 	if (mcbsp->pdata->has_ccr) {
482 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
483 		w |= (tx ? XDISABLE : 0);
484 		MCBSP_WRITE(mcbsp, XCCR, w);
485 	}
486 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
487 	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
488 
489 	/* Reset receiver */
490 	rx &= 1;
491 	if (mcbsp->pdata->has_ccr) {
492 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
493 		w |= (rx ? RDISABLE : 0);
494 		MCBSP_WRITE(mcbsp, RCCR, w);
495 	}
496 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
497 	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
498 
499 	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
500 			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
501 
502 	if (idle) {
503 		/* Reset the sample rate generator */
504 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
505 		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
506 	}
507 
508 	if (mcbsp->st_data)
509 		omap_mcbsp_st_stop(mcbsp);
510 }
511 
512 #define max_thres(m)			(mcbsp->pdata->buffer_size)
513 #define valid_threshold(m, val)		((val) <= max_thres(m))
514 #define THRESHOLD_PROP_BUILDER(prop)					\
515 static ssize_t prop##_show(struct device *dev,				\
516 			struct device_attribute *attr, char *buf)	\
517 {									\
518 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
519 									\
520 	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
521 }									\
522 									\
523 static ssize_t prop##_store(struct device *dev,				\
524 				struct device_attribute *attr,		\
525 				const char *buf, size_t size)		\
526 {									\
527 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
528 	unsigned long val;						\
529 	int status;							\
530 									\
531 	status = kstrtoul(buf, 0, &val);				\
532 	if (status)							\
533 		return status;						\
534 									\
535 	if (!valid_threshold(mcbsp, val))				\
536 		return -EDOM;						\
537 									\
538 	mcbsp->prop = val;						\
539 	return size;							\
540 }									\
541 									\
542 static DEVICE_ATTR_RW(prop)
543 
544 THRESHOLD_PROP_BUILDER(max_tx_thres);
545 THRESHOLD_PROP_BUILDER(max_rx_thres);
546 
547 static const char * const dma_op_modes[] = {
548 	"element", "threshold",
549 };
550 
551 static ssize_t dma_op_mode_show(struct device *dev,
552 				struct device_attribute *attr, char *buf)
553 {
554 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
555 	int dma_op_mode, i = 0;
556 	ssize_t len = 0;
557 	const char * const *s;
558 
559 	dma_op_mode = mcbsp->dma_op_mode;
560 
561 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
562 		if (dma_op_mode == i)
563 			len += sysfs_emit_at(buf, len, "[%s] ", *s);
564 		else
565 			len += sysfs_emit_at(buf, len, "%s ", *s);
566 	}
567 	len += sysfs_emit_at(buf, len, "\n");
568 
569 	return len;
570 }
571 
572 static ssize_t dma_op_mode_store(struct device *dev,
573 				 struct device_attribute *attr, const char *buf,
574 				 size_t size)
575 {
576 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
577 	int i;
578 
579 	i = sysfs_match_string(dma_op_modes, buf);
580 	if (i < 0)
581 		return i;
582 
583 	spin_lock_irq(&mcbsp->lock);
584 	if (!mcbsp->free) {
585 		size = -EBUSY;
586 		goto unlock;
587 	}
588 	mcbsp->dma_op_mode = i;
589 
590 unlock:
591 	spin_unlock_irq(&mcbsp->lock);
592 
593 	return size;
594 }
595 
596 static DEVICE_ATTR_RW(dma_op_mode);
597 
598 static const struct attribute *additional_attrs[] = {
599 	&dev_attr_max_tx_thres.attr,
600 	&dev_attr_max_rx_thres.attr,
601 	&dev_attr_dma_op_mode.attr,
602 	NULL,
603 };
604 
605 static const struct attribute_group additional_attr_group = {
606 	.attrs = (struct attribute **)additional_attrs,
607 };
608 
609 /*
610  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
611  * 730 has only 2 McBSP, and both of them are MPU peripherals.
612  */
613 static int omap_mcbsp_init(struct platform_device *pdev)
614 {
615 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
616 	struct resource *res;
617 	int ret;
618 
619 	spin_lock_init(&mcbsp->lock);
620 	mcbsp->free = true;
621 
622 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
623 	if (!res)
624 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
625 
626 	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
627 	if (IS_ERR(mcbsp->io_base))
628 		return PTR_ERR(mcbsp->io_base);
629 
630 	mcbsp->phys_base = res->start;
631 	mcbsp->reg_cache_size = resource_size(res);
632 
633 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
634 	if (!res)
635 		mcbsp->phys_dma_base = mcbsp->phys_base;
636 	else
637 		mcbsp->phys_dma_base = res->start;
638 
639 	/*
640 	 * OMAP1, 2 uses two interrupt lines: TX, RX
641 	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
642 	 * OMAP4 and newer SoC only have the combined IRQ line.
643 	 * Use the combined IRQ if available since it gives better debugging
644 	 * possibilities.
645 	 */
646 	mcbsp->irq = platform_get_irq_byname(pdev, "common");
647 	if (mcbsp->irq == -ENXIO) {
648 		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
649 
650 		if (mcbsp->tx_irq == -ENXIO) {
651 			mcbsp->irq = platform_get_irq(pdev, 0);
652 			mcbsp->tx_irq = 0;
653 		} else {
654 			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
655 			mcbsp->irq = 0;
656 		}
657 	}
658 
659 	if (!pdev->dev.of_node) {
660 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
661 		if (!res) {
662 			dev_err(&pdev->dev, "invalid tx DMA channel\n");
663 			return -ENODEV;
664 		}
665 		mcbsp->dma_req[0] = res->start;
666 		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
667 
668 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
669 		if (!res) {
670 			dev_err(&pdev->dev, "invalid rx DMA channel\n");
671 			return -ENODEV;
672 		}
673 		mcbsp->dma_req[1] = res->start;
674 		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
675 	} else {
676 		mcbsp->dma_data[0].filter_data = "tx";
677 		mcbsp->dma_data[1].filter_data = "rx";
678 	}
679 
680 	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
681 						SNDRV_PCM_STREAM_PLAYBACK);
682 	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
683 						SNDRV_PCM_STREAM_CAPTURE);
684 
685 	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
686 	if (IS_ERR(mcbsp->fclk)) {
687 		ret = PTR_ERR(mcbsp->fclk);
688 		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
689 		return ret;
690 	}
691 
692 	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
693 	if (mcbsp->pdata->buffer_size) {
694 		/*
695 		 * Initially configure the maximum thresholds to a safe value.
696 		 * The McBSP FIFO usage with these values should not go under
697 		 * 16 locations.
698 		 * If the whole FIFO without safety buffer is used, than there
699 		 * is a possibility that the DMA will be not able to push the
700 		 * new data on time, causing channel shifts in runtime.
701 		 */
702 		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
703 		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
704 
705 		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
706 		if (ret) {
707 			dev_err(mcbsp->dev,
708 				"Unable to create additional controls\n");
709 			return ret;
710 		}
711 	}
712 
713 	return omap_mcbsp_st_init(pdev);
714 }
715 
716 /*
717  * Stream DMA parameters. DMA request line and port address are set runtime
718  * since they are different between OMAP1 and later OMAPs
719  */
720 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
721 		unsigned int packet_size)
722 {
723 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
724 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
725 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
726 	int words;
727 
728 	/* No need to proceed further if McBSP does not have FIFO */
729 	if (mcbsp->pdata->buffer_size == 0)
730 		return;
731 
732 	/*
733 	 * Configure McBSP threshold based on either:
734 	 * packet_size, when the sDMA is in packet mode, or based on the
735 	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
736 	 * for mono streams.
737 	 */
738 	if (packet_size)
739 		words = packet_size;
740 	else
741 		words = 1;
742 
743 	/* Configure McBSP internal buffer usage */
744 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
745 		omap_mcbsp_set_tx_threshold(mcbsp, words);
746 	else
747 		omap_mcbsp_set_rx_threshold(mcbsp, words);
748 }
749 
750 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
751 				    struct snd_pcm_hw_rule *rule)
752 {
753 	struct snd_interval *buffer_size = hw_param_interval(params,
754 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
755 	struct snd_interval *channels = hw_param_interval(params,
756 					SNDRV_PCM_HW_PARAM_CHANNELS);
757 	struct omap_mcbsp *mcbsp = rule->private;
758 	struct snd_interval frames;
759 	int size;
760 
761 	snd_interval_any(&frames);
762 	size = mcbsp->pdata->buffer_size;
763 
764 	frames.min = size / channels->min;
765 	frames.integer = 1;
766 	return snd_interval_refine(buffer_size, &frames);
767 }
768 
769 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
770 				  struct snd_soc_dai *cpu_dai)
771 {
772 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
773 	int err = 0;
774 
775 	if (!snd_soc_dai_active(cpu_dai))
776 		err = omap_mcbsp_request(mcbsp);
777 
778 	/*
779 	 * OMAP3 McBSP FIFO is word structured.
780 	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
781 	 * McBSP1,3,4,5 has 128 word long buffer
782 	 * This means that the size of the FIFO depends on the sample format.
783 	 * For example on McBSP3:
784 	 * 16bit samples: size is 128 * 2 = 256 bytes
785 	 * 32bit samples: size is 128 * 4 = 512 bytes
786 	 * It is simpler to place constraint for buffer and period based on
787 	 * channels.
788 	 * McBSP3 as example again (16 or 32 bit samples):
789 	 * 1 channel (mono): size is 128 frames (128 words)
790 	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
791 	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
792 	 */
793 	if (mcbsp->pdata->buffer_size) {
794 		/*
795 		* Rule for the buffer size. We should not allow
796 		* smaller buffer than the FIFO size to avoid underruns.
797 		* This applies only for the playback stream.
798 		*/
799 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
800 			snd_pcm_hw_rule_add(substream->runtime, 0,
801 					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
802 					    omap_mcbsp_hwrule_min_buffersize,
803 					    mcbsp,
804 					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
805 
806 		/* Make sure, that the period size is always even */
807 		snd_pcm_hw_constraint_step(substream->runtime, 0,
808 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
809 	}
810 
811 	return err;
812 }
813 
814 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
815 				    struct snd_soc_dai *cpu_dai)
816 {
817 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
818 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
819 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
820 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
821 
822 	if (mcbsp->latency[stream2])
823 		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
824 					       mcbsp->latency[stream2]);
825 	else if (mcbsp->latency[stream1])
826 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
827 
828 	mcbsp->latency[stream1] = 0;
829 
830 	if (!snd_soc_dai_active(cpu_dai)) {
831 		omap_mcbsp_free(mcbsp);
832 		mcbsp->configured = 0;
833 	}
834 }
835 
836 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
837 				  struct snd_soc_dai *cpu_dai)
838 {
839 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
840 	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
841 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
842 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
843 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
844 	int latency = mcbsp->latency[stream2];
845 
846 	/* Prevent omap hardware from hitting off between FIFO fills */
847 	if (!latency || mcbsp->latency[stream1] < latency)
848 		latency = mcbsp->latency[stream1];
849 
850 	if (cpu_latency_qos_request_active(pm_qos_req))
851 		cpu_latency_qos_update_request(pm_qos_req, latency);
852 	else if (latency)
853 		cpu_latency_qos_add_request(pm_qos_req, latency);
854 
855 	return 0;
856 }
857 
858 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
859 				  struct snd_soc_dai *cpu_dai)
860 {
861 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
862 
863 	switch (cmd) {
864 	case SNDRV_PCM_TRIGGER_START:
865 	case SNDRV_PCM_TRIGGER_RESUME:
866 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
867 		mcbsp->active++;
868 		omap_mcbsp_start(mcbsp, substream->stream);
869 		break;
870 
871 	case SNDRV_PCM_TRIGGER_STOP:
872 	case SNDRV_PCM_TRIGGER_SUSPEND:
873 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
874 		omap_mcbsp_stop(mcbsp, substream->stream);
875 		mcbsp->active--;
876 		break;
877 	default:
878 		return -EINVAL;
879 	}
880 
881 	return 0;
882 }
883 
884 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
885 			struct snd_pcm_substream *substream,
886 			struct snd_soc_dai *dai)
887 {
888 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
889 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
890 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
891 	u16 fifo_use;
892 	snd_pcm_sframes_t delay;
893 
894 	/* No need to proceed further if McBSP does not have FIFO */
895 	if (mcbsp->pdata->buffer_size == 0)
896 		return 0;
897 
898 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
899 		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
900 	else
901 		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
902 
903 	/*
904 	 * Divide the used locations with the channel count to get the
905 	 * FIFO usage in samples (don't care about partial samples in the
906 	 * buffer).
907 	 */
908 	delay = fifo_use / substream->runtime->channels;
909 
910 	return delay;
911 }
912 
913 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
914 				    struct snd_pcm_hw_params *params,
915 				    struct snd_soc_dai *cpu_dai)
916 {
917 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
918 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
919 	struct snd_dmaengine_dai_dma_data *dma_data;
920 	int wlen, channels, wpf;
921 	int pkt_size = 0;
922 	unsigned int format, div, framesize, master;
923 	unsigned int buffer_size = mcbsp->pdata->buffer_size;
924 
925 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
926 	channels = params_channels(params);
927 
928 	switch (params_format(params)) {
929 	case SNDRV_PCM_FORMAT_S16_LE:
930 		wlen = 16;
931 		break;
932 	case SNDRV_PCM_FORMAT_S32_LE:
933 		wlen = 32;
934 		break;
935 	default:
936 		return -EINVAL;
937 	}
938 	if (buffer_size) {
939 		int latency;
940 
941 		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
942 			int period_words, max_thrsh;
943 			int divider = 0;
944 
945 			period_words = params_period_bytes(params) / (wlen / 8);
946 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
947 				max_thrsh = mcbsp->max_tx_thres;
948 			else
949 				max_thrsh = mcbsp->max_rx_thres;
950 			/*
951 			 * Use sDMA packet mode if McBSP is in threshold mode:
952 			 * If period words less than the FIFO size the packet
953 			 * size is set to the number of period words, otherwise
954 			 * Look for the biggest threshold value which divides
955 			 * the period size evenly.
956 			 */
957 			divider = period_words / max_thrsh;
958 			if (period_words % max_thrsh)
959 				divider++;
960 			while (period_words % divider &&
961 				divider < period_words)
962 				divider++;
963 			if (divider == period_words)
964 				return -EINVAL;
965 
966 			pkt_size = period_words / divider;
967 		} else if (channels > 1) {
968 			/* Use packet mode for non mono streams */
969 			pkt_size = channels;
970 		}
971 
972 		latency = (buffer_size - pkt_size) / channels;
973 		latency = latency * USEC_PER_SEC /
974 			  (params->rate_num / params->rate_den);
975 		mcbsp->latency[substream->stream] = latency;
976 
977 		omap_mcbsp_set_threshold(substream, pkt_size);
978 	}
979 
980 	dma_data->maxburst = pkt_size;
981 
982 	if (mcbsp->configured) {
983 		/* McBSP already configured by another stream */
984 		return 0;
985 	}
986 
987 	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
988 	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
989 	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
990 	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
991 	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
992 	wpf = channels;
993 	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
994 			      format == SND_SOC_DAIFMT_LEFT_J)) {
995 		/* Use dual-phase frames */
996 		regs->rcr2	|= RPHASE;
997 		regs->xcr2	|= XPHASE;
998 		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
999 		wpf--;
1000 		regs->rcr2	|= RFRLEN2(wpf - 1);
1001 		regs->xcr2	|= XFRLEN2(wpf - 1);
1002 	}
1003 
1004 	regs->rcr1	|= RFRLEN1(wpf - 1);
1005 	regs->xcr1	|= XFRLEN1(wpf - 1);
1006 
1007 	switch (params_format(params)) {
1008 	case SNDRV_PCM_FORMAT_S16_LE:
1009 		/* Set word lengths */
1010 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1011 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1012 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1013 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1014 		break;
1015 	case SNDRV_PCM_FORMAT_S32_LE:
1016 		/* Set word lengths */
1017 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1018 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1019 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1020 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1021 		break;
1022 	default:
1023 		/* Unsupported PCM format */
1024 		return -EINVAL;
1025 	}
1026 
1027 	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1028 	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1029 	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1030 	if (master == SND_SOC_DAIFMT_BP_FP) {
1031 		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1032 		framesize = (mcbsp->in_freq / div) / params_rate(params);
1033 
1034 		if (framesize < wlen * channels) {
1035 			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1036 					"channels\n", __func__);
1037 			return -EINVAL;
1038 		}
1039 	} else
1040 		framesize = wlen * channels;
1041 
1042 	/* Set FS period and length in terms of bit clock periods */
1043 	regs->srgr2	&= ~FPER(0xfff);
1044 	regs->srgr1	&= ~FWID(0xff);
1045 	switch (format) {
1046 	case SND_SOC_DAIFMT_I2S:
1047 	case SND_SOC_DAIFMT_LEFT_J:
1048 		regs->srgr2	|= FPER(framesize - 1);
1049 		regs->srgr1	|= FWID((framesize >> 1) - 1);
1050 		break;
1051 	case SND_SOC_DAIFMT_DSP_A:
1052 	case SND_SOC_DAIFMT_DSP_B:
1053 		regs->srgr2	|= FPER(framesize - 1);
1054 		regs->srgr1	|= FWID(0);
1055 		break;
1056 	}
1057 
1058 	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1059 	mcbsp->wlen = wlen;
1060 	mcbsp->configured = 1;
1061 
1062 	return 0;
1063 }
1064 
1065 /*
1066  * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1067  * cache is initialized here
1068  */
1069 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1070 				      unsigned int fmt)
1071 {
1072 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1073 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1074 	bool inv_fs = false;
1075 
1076 	if (mcbsp->configured)
1077 		return 0;
1078 
1079 	mcbsp->fmt = fmt;
1080 	memset(regs, 0, sizeof(*regs));
1081 	/* Generic McBSP register settings */
1082 	regs->spcr2	|= XINTM(3) | FREE;
1083 	regs->spcr1	|= RINTM(3);
1084 	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1085 	if (!mcbsp->pdata->has_ccr) {
1086 		regs->rcr2	|= RFIG;
1087 		regs->xcr2	|= XFIG;
1088 	}
1089 
1090 	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1091 	if (mcbsp->pdata->has_ccr) {
1092 		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1093 		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1094 	}
1095 
1096 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1097 	case SND_SOC_DAIFMT_I2S:
1098 		/* 1-bit data delay */
1099 		regs->rcr2	|= RDATDLY(1);
1100 		regs->xcr2	|= XDATDLY(1);
1101 		break;
1102 	case SND_SOC_DAIFMT_LEFT_J:
1103 		/* 0-bit data delay */
1104 		regs->rcr2	|= RDATDLY(0);
1105 		regs->xcr2	|= XDATDLY(0);
1106 		regs->spcr1	|= RJUST(2);
1107 		/* Invert FS polarity configuration */
1108 		inv_fs = true;
1109 		break;
1110 	case SND_SOC_DAIFMT_DSP_A:
1111 		/* 1-bit data delay */
1112 		regs->rcr2      |= RDATDLY(1);
1113 		regs->xcr2      |= XDATDLY(1);
1114 		/* Invert FS polarity configuration */
1115 		inv_fs = true;
1116 		break;
1117 	case SND_SOC_DAIFMT_DSP_B:
1118 		/* 0-bit data delay */
1119 		regs->rcr2      |= RDATDLY(0);
1120 		regs->xcr2      |= XDATDLY(0);
1121 		/* Invert FS polarity configuration */
1122 		inv_fs = true;
1123 		break;
1124 	default:
1125 		/* Unsupported data format */
1126 		return -EINVAL;
1127 	}
1128 
1129 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1130 	case SND_SOC_DAIFMT_BP_FP:
1131 		/* McBSP master. Set FS and bit clocks as outputs */
1132 		regs->pcr0	|= FSXM | FSRM |
1133 				   CLKXM | CLKRM;
1134 		/* Sample rate generator drives the FS */
1135 		regs->srgr2	|= FSGM;
1136 		break;
1137 	case SND_SOC_DAIFMT_BC_FP:
1138 		/* McBSP slave. FS clock as output */
1139 		regs->srgr2	|= FSGM;
1140 		regs->pcr0	|= FSXM | FSRM;
1141 		break;
1142 	case SND_SOC_DAIFMT_BC_FC:
1143 		/* McBSP slave */
1144 		break;
1145 	default:
1146 		/* Unsupported master/slave configuration */
1147 		return -EINVAL;
1148 	}
1149 
1150 	/* Set bit clock (CLKX/CLKR) and FS polarities */
1151 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1152 	case SND_SOC_DAIFMT_NB_NF:
1153 		/*
1154 		 * Normal BCLK + FS.
1155 		 * FS active low. TX data driven on falling edge of bit clock
1156 		 * and RX data sampled on rising edge of bit clock.
1157 		 */
1158 		regs->pcr0	|= FSXP | FSRP |
1159 				   CLKXP | CLKRP;
1160 		break;
1161 	case SND_SOC_DAIFMT_NB_IF:
1162 		regs->pcr0	|= CLKXP | CLKRP;
1163 		break;
1164 	case SND_SOC_DAIFMT_IB_NF:
1165 		regs->pcr0	|= FSXP | FSRP;
1166 		break;
1167 	case SND_SOC_DAIFMT_IB_IF:
1168 		break;
1169 	default:
1170 		return -EINVAL;
1171 	}
1172 	if (inv_fs)
1173 		regs->pcr0 ^= FSXP | FSRP;
1174 
1175 	return 0;
1176 }
1177 
1178 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1179 				     int div_id, int div)
1180 {
1181 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1182 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1183 
1184 	if (div_id != OMAP_MCBSP_CLKGDV)
1185 		return -ENODEV;
1186 
1187 	mcbsp->clk_div = div;
1188 	regs->srgr1	&= ~CLKGDV(0xff);
1189 	regs->srgr1	|= CLKGDV(div - 1);
1190 
1191 	return 0;
1192 }
1193 
1194 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1195 					 int clk_id, unsigned int freq,
1196 					 int dir)
1197 {
1198 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1199 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1200 	int err = 0;
1201 
1202 	if (mcbsp->active) {
1203 		if (freq == mcbsp->in_freq)
1204 			return 0;
1205 		else
1206 			return -EBUSY;
1207 	}
1208 
1209 	mcbsp->in_freq = freq;
1210 	regs->srgr2 &= ~CLKSM;
1211 	regs->pcr0 &= ~SCLKME;
1212 
1213 	switch (clk_id) {
1214 	case OMAP_MCBSP_SYSCLK_CLK:
1215 		regs->srgr2	|= CLKSM;
1216 		break;
1217 	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1218 		if (mcbsp_omap1()) {
1219 			err = -EINVAL;
1220 			break;
1221 		}
1222 		err = omap2_mcbsp_set_clks_src(mcbsp,
1223 					       MCBSP_CLKS_PRCM_SRC);
1224 		break;
1225 	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1226 		if (mcbsp_omap1()) {
1227 			err = 0;
1228 			break;
1229 		}
1230 		err = omap2_mcbsp_set_clks_src(mcbsp,
1231 					       MCBSP_CLKS_PAD_SRC);
1232 		break;
1233 
1234 	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1235 		regs->srgr2	|= CLKSM;
1236 		regs->pcr0	|= SCLKME;
1237 		/*
1238 		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1239 		 * disable output on those pins. This enables to inject the
1240 		 * reference clock through CLKX/CLKR. For this to work
1241 		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1242 		 */
1243 		regs->pcr0	&= ~CLKXM;
1244 		break;
1245 	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1246 		regs->pcr0	|= SCLKME;
1247 		/* Disable ouput on CLKR pin in master mode */
1248 		regs->pcr0	&= ~CLKRM;
1249 		break;
1250 	default:
1251 		err = -ENODEV;
1252 	}
1253 
1254 	return err;
1255 }
1256 
1257 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1258 	.startup	= omap_mcbsp_dai_startup,
1259 	.shutdown	= omap_mcbsp_dai_shutdown,
1260 	.prepare	= omap_mcbsp_dai_prepare,
1261 	.trigger	= omap_mcbsp_dai_trigger,
1262 	.delay		= omap_mcbsp_dai_delay,
1263 	.hw_params	= omap_mcbsp_dai_hw_params,
1264 	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1265 	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1266 	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1267 };
1268 
1269 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1270 {
1271 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1272 
1273 	pm_runtime_enable(mcbsp->dev);
1274 
1275 	snd_soc_dai_init_dma_data(dai,
1276 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1277 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1278 
1279 	return 0;
1280 }
1281 
1282 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1283 {
1284 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1285 
1286 	pm_runtime_disable(mcbsp->dev);
1287 
1288 	return 0;
1289 }
1290 
1291 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1292 	.probe = omap_mcbsp_probe,
1293 	.remove = omap_mcbsp_remove,
1294 	.playback = {
1295 		.channels_min = 1,
1296 		.channels_max = 16,
1297 		.rates = OMAP_MCBSP_RATES,
1298 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1299 	},
1300 	.capture = {
1301 		.channels_min = 1,
1302 		.channels_max = 16,
1303 		.rates = OMAP_MCBSP_RATES,
1304 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1305 	},
1306 	.ops = &mcbsp_dai_ops,
1307 };
1308 
1309 static const struct snd_soc_component_driver omap_mcbsp_component = {
1310 	.name			= "omap-mcbsp",
1311 	.legacy_dai_naming	= 1,
1312 };
1313 
1314 static struct omap_mcbsp_platform_data omap2420_pdata = {
1315 	.reg_step = 4,
1316 	.reg_size = 2,
1317 };
1318 
1319 static struct omap_mcbsp_platform_data omap2430_pdata = {
1320 	.reg_step = 4,
1321 	.reg_size = 4,
1322 	.has_ccr = true,
1323 };
1324 
1325 static struct omap_mcbsp_platform_data omap3_pdata = {
1326 	.reg_step = 4,
1327 	.reg_size = 4,
1328 	.has_ccr = true,
1329 	.has_wakeup = true,
1330 };
1331 
1332 static struct omap_mcbsp_platform_data omap4_pdata = {
1333 	.reg_step = 4,
1334 	.reg_size = 4,
1335 	.has_ccr = true,
1336 	.has_wakeup = true,
1337 };
1338 
1339 static const struct of_device_id omap_mcbsp_of_match[] = {
1340 	{
1341 		.compatible = "ti,omap2420-mcbsp",
1342 		.data = &omap2420_pdata,
1343 	},
1344 	{
1345 		.compatible = "ti,omap2430-mcbsp",
1346 		.data = &omap2430_pdata,
1347 	},
1348 	{
1349 		.compatible = "ti,omap3-mcbsp",
1350 		.data = &omap3_pdata,
1351 	},
1352 	{
1353 		.compatible = "ti,omap4-mcbsp",
1354 		.data = &omap4_pdata,
1355 	},
1356 	{ },
1357 };
1358 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1359 
1360 static int asoc_mcbsp_probe(struct platform_device *pdev)
1361 {
1362 	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1363 	struct omap_mcbsp *mcbsp;
1364 	const struct of_device_id *match;
1365 	int ret;
1366 
1367 	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1368 	if (match) {
1369 		struct device_node *node = pdev->dev.of_node;
1370 		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1371 		int buffer_size;
1372 
1373 		pdata = devm_kzalloc(&pdev->dev,
1374 				     sizeof(struct omap_mcbsp_platform_data),
1375 				     GFP_KERNEL);
1376 		if (!pdata)
1377 			return -ENOMEM;
1378 
1379 		memcpy(pdata, match->data, sizeof(*pdata));
1380 		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1381 			pdata->buffer_size = buffer_size;
1382 		if (pdata_quirk)
1383 			pdata->force_ick_on = pdata_quirk->force_ick_on;
1384 	} else if (!pdata) {
1385 		dev_err(&pdev->dev, "missing platform data.\n");
1386 		return -EINVAL;
1387 	}
1388 	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1389 	if (!mcbsp)
1390 		return -ENOMEM;
1391 
1392 	mcbsp->id = pdev->id;
1393 	mcbsp->pdata = pdata;
1394 	mcbsp->dev = &pdev->dev;
1395 	platform_set_drvdata(pdev, mcbsp);
1396 
1397 	ret = omap_mcbsp_init(pdev);
1398 	if (ret)
1399 		return ret;
1400 
1401 	if (mcbsp->pdata->reg_size == 2) {
1402 		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403 		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1404 	}
1405 
1406 	ret = devm_snd_soc_register_component(&pdev->dev,
1407 					      &omap_mcbsp_component,
1408 					      &omap_mcbsp_dai, 1);
1409 	if (ret)
1410 		return ret;
1411 
1412 	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1413 }
1414 
1415 static void asoc_mcbsp_remove(struct platform_device *pdev)
1416 {
1417 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1418 
1419 	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1420 		mcbsp->pdata->ops->free(mcbsp->id);
1421 
1422 	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1423 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1424 }
1425 
1426 static struct platform_driver asoc_mcbsp_driver = {
1427 	.driver = {
1428 			.name = "omap-mcbsp",
1429 			.of_match_table = omap_mcbsp_of_match,
1430 	},
1431 
1432 	.probe = asoc_mcbsp_probe,
1433 	.remove_new = asoc_mcbsp_remove,
1434 };
1435 
1436 module_platform_driver(asoc_mcbsp_driver);
1437 
1438 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1439 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1440 MODULE_LICENSE("GPL");
1441 MODULE_ALIAS("platform:omap-mcbsp");
1442