1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port 4 * 5 * Copyright (C) 2008 Nokia Corporation 6 * 7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com> 8 * Peter Ujfalusi <peter.ujfalusi@ti.com> 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <sound/core.h> 18 #include <sound/pcm.h> 19 #include <sound/pcm_params.h> 20 #include <sound/initval.h> 21 #include <sound/soc.h> 22 #include <sound/dmaengine_pcm.h> 23 24 #include "omap-mcbsp-priv.h" 25 #include "omap-mcbsp.h" 26 #include "sdma-pcm.h" 27 28 #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000) 29 30 enum { 31 OMAP_MCBSP_WORD_8 = 0, 32 OMAP_MCBSP_WORD_12, 33 OMAP_MCBSP_WORD_16, 34 OMAP_MCBSP_WORD_20, 35 OMAP_MCBSP_WORD_24, 36 OMAP_MCBSP_WORD_32, 37 }; 38 39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp) 40 { 41 dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id); 42 dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2)); 43 dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1)); 44 dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2)); 45 dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1)); 46 dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2)); 47 dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1)); 48 dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2)); 49 dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1)); 50 dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2)); 51 dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1)); 52 dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2)); 53 dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1)); 54 dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0)); 55 dev_dbg(mcbsp->dev, "***********************\n"); 56 } 57 58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id) 59 { 60 struct clk *fck_src; 61 const char *src; 62 int r; 63 64 if (fck_src_id == MCBSP_CLKS_PAD_SRC) 65 src = "pad_fck"; 66 else if (fck_src_id == MCBSP_CLKS_PRCM_SRC) 67 src = "prcm_fck"; 68 else 69 return -EINVAL; 70 71 fck_src = clk_get(mcbsp->dev, src); 72 if (IS_ERR(fck_src)) { 73 dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src); 74 return -EINVAL; 75 } 76 77 pm_runtime_put_sync(mcbsp->dev); 78 79 r = clk_set_parent(mcbsp->fclk, fck_src); 80 if (r) 81 dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n", 82 src); 83 84 pm_runtime_get_sync(mcbsp->dev); 85 86 clk_put(fck_src); 87 88 return r; 89 } 90 91 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data) 92 { 93 struct omap_mcbsp *mcbsp = data; 94 u16 irqst; 95 96 irqst = MCBSP_READ(mcbsp, IRQST); 97 dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst); 98 99 if (irqst & RSYNCERREN) 100 dev_err(mcbsp->dev, "RX Frame Sync Error!\n"); 101 if (irqst & RFSREN) 102 dev_dbg(mcbsp->dev, "RX Frame Sync\n"); 103 if (irqst & REOFEN) 104 dev_dbg(mcbsp->dev, "RX End Of Frame\n"); 105 if (irqst & RRDYEN) 106 dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n"); 107 if (irqst & RUNDFLEN) 108 dev_err(mcbsp->dev, "RX Buffer Underflow!\n"); 109 if (irqst & ROVFLEN) 110 dev_err(mcbsp->dev, "RX Buffer Overflow!\n"); 111 112 if (irqst & XSYNCERREN) 113 dev_err(mcbsp->dev, "TX Frame Sync Error!\n"); 114 if (irqst & XFSXEN) 115 dev_dbg(mcbsp->dev, "TX Frame Sync\n"); 116 if (irqst & XEOFEN) 117 dev_dbg(mcbsp->dev, "TX End Of Frame\n"); 118 if (irqst & XRDYEN) 119 dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n"); 120 if (irqst & XUNDFLEN) 121 dev_err(mcbsp->dev, "TX Buffer Underflow!\n"); 122 if (irqst & XOVFLEN) 123 dev_err(mcbsp->dev, "TX Buffer Overflow!\n"); 124 if (irqst & XEMPTYEOFEN) 125 dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n"); 126 127 MCBSP_WRITE(mcbsp, IRQST, irqst); 128 129 return IRQ_HANDLED; 130 } 131 132 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data) 133 { 134 struct omap_mcbsp *mcbsp = data; 135 u16 irqst_spcr2; 136 137 irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2); 138 dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2); 139 140 if (irqst_spcr2 & XSYNC_ERR) { 141 dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n", 142 irqst_spcr2); 143 /* Writing zero to XSYNC_ERR clears the IRQ */ 144 MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2)); 145 } 146 147 return IRQ_HANDLED; 148 } 149 150 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data) 151 { 152 struct omap_mcbsp *mcbsp = data; 153 u16 irqst_spcr1; 154 155 irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1); 156 dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1); 157 158 if (irqst_spcr1 & RSYNC_ERR) { 159 dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n", 160 irqst_spcr1); 161 /* Writing zero to RSYNC_ERR clears the IRQ */ 162 MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1)); 163 } 164 165 return IRQ_HANDLED; 166 } 167 168 /* 169 * omap_mcbsp_config simply write a config to the 170 * appropriate McBSP. 171 * You either call this function or set the McBSP registers 172 * by yourself before calling omap_mcbsp_start(). 173 */ 174 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp, 175 const struct omap_mcbsp_reg_cfg *config) 176 { 177 dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n", 178 mcbsp->id, mcbsp->phys_base); 179 180 /* We write the given config */ 181 MCBSP_WRITE(mcbsp, SPCR2, config->spcr2); 182 MCBSP_WRITE(mcbsp, SPCR1, config->spcr1); 183 MCBSP_WRITE(mcbsp, RCR2, config->rcr2); 184 MCBSP_WRITE(mcbsp, RCR1, config->rcr1); 185 MCBSP_WRITE(mcbsp, XCR2, config->xcr2); 186 MCBSP_WRITE(mcbsp, XCR1, config->xcr1); 187 MCBSP_WRITE(mcbsp, SRGR2, config->srgr2); 188 MCBSP_WRITE(mcbsp, SRGR1, config->srgr1); 189 MCBSP_WRITE(mcbsp, MCR2, config->mcr2); 190 MCBSP_WRITE(mcbsp, MCR1, config->mcr1); 191 MCBSP_WRITE(mcbsp, PCR0, config->pcr0); 192 if (mcbsp->pdata->has_ccr) { 193 MCBSP_WRITE(mcbsp, XCCR, config->xccr); 194 MCBSP_WRITE(mcbsp, RCCR, config->rccr); 195 } 196 /* Enable wakeup behavior */ 197 if (mcbsp->pdata->has_wakeup) 198 MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN); 199 200 /* Enable TX/RX sync error interrupts by default */ 201 if (mcbsp->irq) 202 MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN | 203 RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN); 204 } 205 206 /** 207 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register 208 * @mcbsp: omap_mcbsp struct for the McBSP instance 209 * @stream: Stream direction (playback/capture) 210 * 211 * Returns the address of mcbsp data transmit register or data receive register 212 * to be used by DMA for transferring/receiving data 213 */ 214 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp, 215 unsigned int stream) 216 { 217 int data_reg; 218 219 if (stream == SNDRV_PCM_STREAM_PLAYBACK) { 220 if (mcbsp->pdata->reg_size == 2) 221 data_reg = OMAP_MCBSP_REG_DXR1; 222 else 223 data_reg = OMAP_MCBSP_REG_DXR; 224 } else { 225 if (mcbsp->pdata->reg_size == 2) 226 data_reg = OMAP_MCBSP_REG_DRR1; 227 else 228 data_reg = OMAP_MCBSP_REG_DRR; 229 } 230 231 return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step; 232 } 233 234 /* 235 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words. 236 * The threshold parameter is 1 based, and it is converted (threshold - 1) 237 * for the THRSH2 register. 238 */ 239 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold) 240 { 241 if (threshold && threshold <= mcbsp->max_tx_thres) 242 MCBSP_WRITE(mcbsp, THRSH2, threshold - 1); 243 } 244 245 /* 246 * omap_mcbsp_set_rx_threshold configures the receive threshold in words. 247 * The threshold parameter is 1 based, and it is converted (threshold - 1) 248 * for the THRSH1 register. 249 */ 250 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold) 251 { 252 if (threshold && threshold <= mcbsp->max_rx_thres) 253 MCBSP_WRITE(mcbsp, THRSH1, threshold - 1); 254 } 255 256 /* 257 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO 258 */ 259 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp) 260 { 261 u16 buffstat; 262 263 /* Returns the number of free locations in the buffer */ 264 buffstat = MCBSP_READ(mcbsp, XBUFFSTAT); 265 266 /* Number of slots are different in McBSP ports */ 267 return mcbsp->pdata->buffer_size - buffstat; 268 } 269 270 /* 271 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO 272 * to reach the threshold value (when the DMA will be triggered to read it) 273 */ 274 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp) 275 { 276 u16 buffstat, threshold; 277 278 /* Returns the number of used locations in the buffer */ 279 buffstat = MCBSP_READ(mcbsp, RBUFFSTAT); 280 /* RX threshold */ 281 threshold = MCBSP_READ(mcbsp, THRSH1); 282 283 /* Return the number of location till we reach the threshold limit */ 284 if (threshold <= buffstat) 285 return 0; 286 else 287 return threshold - buffstat; 288 } 289 290 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp) 291 { 292 void *reg_cache; 293 int err; 294 295 reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL); 296 if (!reg_cache) 297 return -ENOMEM; 298 299 spin_lock(&mcbsp->lock); 300 if (!mcbsp->free) { 301 dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id); 302 err = -EBUSY; 303 goto err_kfree; 304 } 305 306 mcbsp->free = false; 307 mcbsp->reg_cache = reg_cache; 308 spin_unlock(&mcbsp->lock); 309 310 if(mcbsp->pdata->ops && mcbsp->pdata->ops->request) 311 mcbsp->pdata->ops->request(mcbsp->id - 1); 312 313 /* 314 * Make sure that transmitter, receiver and sample-rate generator are 315 * not running before activating IRQs. 316 */ 317 MCBSP_WRITE(mcbsp, SPCR1, 0); 318 MCBSP_WRITE(mcbsp, SPCR2, 0); 319 320 if (mcbsp->irq) { 321 err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0, 322 "McBSP", (void *)mcbsp); 323 if (err != 0) { 324 dev_err(mcbsp->dev, "Unable to request IRQ\n"); 325 goto err_clk_disable; 326 } 327 } else { 328 err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0, 329 "McBSP TX", (void *)mcbsp); 330 if (err != 0) { 331 dev_err(mcbsp->dev, "Unable to request TX IRQ\n"); 332 goto err_clk_disable; 333 } 334 335 err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0, 336 "McBSP RX", (void *)mcbsp); 337 if (err != 0) { 338 dev_err(mcbsp->dev, "Unable to request RX IRQ\n"); 339 goto err_free_irq; 340 } 341 } 342 343 return 0; 344 err_free_irq: 345 free_irq(mcbsp->tx_irq, (void *)mcbsp); 346 err_clk_disable: 347 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free) 348 mcbsp->pdata->ops->free(mcbsp->id - 1); 349 350 /* Disable wakeup behavior */ 351 if (mcbsp->pdata->has_wakeup) 352 MCBSP_WRITE(mcbsp, WAKEUPEN, 0); 353 354 spin_lock(&mcbsp->lock); 355 mcbsp->free = true; 356 mcbsp->reg_cache = NULL; 357 err_kfree: 358 spin_unlock(&mcbsp->lock); 359 kfree(reg_cache); 360 361 return err; 362 } 363 364 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp) 365 { 366 void *reg_cache; 367 368 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free) 369 mcbsp->pdata->ops->free(mcbsp->id - 1); 370 371 /* Disable wakeup behavior */ 372 if (mcbsp->pdata->has_wakeup) 373 MCBSP_WRITE(mcbsp, WAKEUPEN, 0); 374 375 /* Disable interrupt requests */ 376 if (mcbsp->irq) { 377 MCBSP_WRITE(mcbsp, IRQEN, 0); 378 379 free_irq(mcbsp->irq, (void *)mcbsp); 380 } else { 381 free_irq(mcbsp->rx_irq, (void *)mcbsp); 382 free_irq(mcbsp->tx_irq, (void *)mcbsp); 383 } 384 385 reg_cache = mcbsp->reg_cache; 386 387 /* 388 * Select CLKS source from internal source unconditionally before 389 * marking the McBSP port as free. 390 * If the external clock source via MCBSP_CLKS pin has been selected the 391 * system will refuse to enter idle if the CLKS pin source is not reset 392 * back to internal source. 393 */ 394 if (!mcbsp_omap1()) 395 omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC); 396 397 spin_lock(&mcbsp->lock); 398 if (mcbsp->free) 399 dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id); 400 else 401 mcbsp->free = true; 402 mcbsp->reg_cache = NULL; 403 spin_unlock(&mcbsp->lock); 404 405 kfree(reg_cache); 406 } 407 408 /* 409 * Here we start the McBSP, by enabling transmitter, receiver or both. 410 * If no transmitter or receiver is active prior calling, then sample-rate 411 * generator and frame sync are started. 412 */ 413 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream) 414 { 415 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK); 416 int rx = !tx; 417 int enable_srg = 0; 418 u16 w; 419 420 if (mcbsp->st_data) 421 omap_mcbsp_st_start(mcbsp); 422 423 /* Only enable SRG, if McBSP is master */ 424 w = MCBSP_READ_CACHE(mcbsp, PCR0); 425 if (w & (FSXM | FSRM | CLKXM | CLKRM)) 426 enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | 427 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); 428 429 if (enable_srg) { 430 /* Start the sample generator */ 431 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 432 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6)); 433 } 434 435 /* Enable transmitter and receiver */ 436 tx &= 1; 437 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 438 MCBSP_WRITE(mcbsp, SPCR2, w | tx); 439 440 rx &= 1; 441 w = MCBSP_READ_CACHE(mcbsp, SPCR1); 442 MCBSP_WRITE(mcbsp, SPCR1, w | rx); 443 444 /* 445 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec 446 * REVISIT: 100us may give enough time for two CLKSRG, however 447 * due to some unknown PM related, clock gating etc. reason it 448 * is now at 500us. 449 */ 450 udelay(500); 451 452 if (enable_srg) { 453 /* Start frame sync */ 454 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 455 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7)); 456 } 457 458 if (mcbsp->pdata->has_ccr) { 459 /* Release the transmitter and receiver */ 460 w = MCBSP_READ_CACHE(mcbsp, XCCR); 461 w &= ~(tx ? XDISABLE : 0); 462 MCBSP_WRITE(mcbsp, XCCR, w); 463 w = MCBSP_READ_CACHE(mcbsp, RCCR); 464 w &= ~(rx ? RDISABLE : 0); 465 MCBSP_WRITE(mcbsp, RCCR, w); 466 } 467 468 /* Dump McBSP Regs */ 469 omap_mcbsp_dump_reg(mcbsp); 470 } 471 472 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream) 473 { 474 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK); 475 int rx = !tx; 476 int idle; 477 u16 w; 478 479 /* Reset transmitter */ 480 tx &= 1; 481 if (mcbsp->pdata->has_ccr) { 482 w = MCBSP_READ_CACHE(mcbsp, XCCR); 483 w |= (tx ? XDISABLE : 0); 484 MCBSP_WRITE(mcbsp, XCCR, w); 485 } 486 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 487 MCBSP_WRITE(mcbsp, SPCR2, w & ~tx); 488 489 /* Reset receiver */ 490 rx &= 1; 491 if (mcbsp->pdata->has_ccr) { 492 w = MCBSP_READ_CACHE(mcbsp, RCCR); 493 w |= (rx ? RDISABLE : 0); 494 MCBSP_WRITE(mcbsp, RCCR, w); 495 } 496 w = MCBSP_READ_CACHE(mcbsp, SPCR1); 497 MCBSP_WRITE(mcbsp, SPCR1, w & ~rx); 498 499 idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | 500 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); 501 502 if (idle) { 503 /* Reset the sample rate generator */ 504 w = MCBSP_READ_CACHE(mcbsp, SPCR2); 505 MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6)); 506 } 507 508 if (mcbsp->st_data) 509 omap_mcbsp_st_stop(mcbsp); 510 } 511 512 #define max_thres(m) (mcbsp->pdata->buffer_size) 513 #define valid_threshold(m, val) ((val) <= max_thres(m)) 514 #define THRESHOLD_PROP_BUILDER(prop) \ 515 static ssize_t prop##_show(struct device *dev, \ 516 struct device_attribute *attr, char *buf) \ 517 { \ 518 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ 519 \ 520 return sprintf(buf, "%u\n", mcbsp->prop); \ 521 } \ 522 \ 523 static ssize_t prop##_store(struct device *dev, \ 524 struct device_attribute *attr, \ 525 const char *buf, size_t size) \ 526 { \ 527 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ 528 unsigned long val; \ 529 int status; \ 530 \ 531 status = kstrtoul(buf, 0, &val); \ 532 if (status) \ 533 return status; \ 534 \ 535 if (!valid_threshold(mcbsp, val)) \ 536 return -EDOM; \ 537 \ 538 mcbsp->prop = val; \ 539 return size; \ 540 } \ 541 \ 542 static DEVICE_ATTR_RW(prop) 543 544 THRESHOLD_PROP_BUILDER(max_tx_thres); 545 THRESHOLD_PROP_BUILDER(max_rx_thres); 546 547 static const char * const dma_op_modes[] = { 548 "element", "threshold", 549 }; 550 551 static ssize_t dma_op_mode_show(struct device *dev, 552 struct device_attribute *attr, char *buf) 553 { 554 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); 555 int dma_op_mode, i = 0; 556 ssize_t len = 0; 557 const char * const *s; 558 559 dma_op_mode = mcbsp->dma_op_mode; 560 561 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) { 562 if (dma_op_mode == i) 563 len += sprintf(buf + len, "[%s] ", *s); 564 else 565 len += sprintf(buf + len, "%s ", *s); 566 } 567 len += sprintf(buf + len, "\n"); 568 569 return len; 570 } 571 572 static ssize_t dma_op_mode_store(struct device *dev, 573 struct device_attribute *attr, const char *buf, 574 size_t size) 575 { 576 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); 577 int i; 578 579 i = sysfs_match_string(dma_op_modes, buf); 580 if (i < 0) 581 return i; 582 583 spin_lock_irq(&mcbsp->lock); 584 if (!mcbsp->free) { 585 size = -EBUSY; 586 goto unlock; 587 } 588 mcbsp->dma_op_mode = i; 589 590 unlock: 591 spin_unlock_irq(&mcbsp->lock); 592 593 return size; 594 } 595 596 static DEVICE_ATTR_RW(dma_op_mode); 597 598 static const struct attribute *additional_attrs[] = { 599 &dev_attr_max_tx_thres.attr, 600 &dev_attr_max_rx_thres.attr, 601 &dev_attr_dma_op_mode.attr, 602 NULL, 603 }; 604 605 static const struct attribute_group additional_attr_group = { 606 .attrs = (struct attribute **)additional_attrs, 607 }; 608 609 /* 610 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510. 611 * 730 has only 2 McBSP, and both of them are MPU peripherals. 612 */ 613 static int omap_mcbsp_init(struct platform_device *pdev) 614 { 615 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev); 616 struct resource *res; 617 int ret = 0; 618 619 spin_lock_init(&mcbsp->lock); 620 mcbsp->free = true; 621 622 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu"); 623 if (!res) 624 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 625 626 mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res); 627 if (IS_ERR(mcbsp->io_base)) 628 return PTR_ERR(mcbsp->io_base); 629 630 mcbsp->phys_base = res->start; 631 mcbsp->reg_cache_size = resource_size(res); 632 633 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma"); 634 if (!res) 635 mcbsp->phys_dma_base = mcbsp->phys_base; 636 else 637 mcbsp->phys_dma_base = res->start; 638 639 /* 640 * OMAP1, 2 uses two interrupt lines: TX, RX 641 * OMAP2430, OMAP3 SoC have combined IRQ line as well. 642 * OMAP4 and newer SoC only have the combined IRQ line. 643 * Use the combined IRQ if available since it gives better debugging 644 * possibilities. 645 */ 646 mcbsp->irq = platform_get_irq_byname(pdev, "common"); 647 if (mcbsp->irq == -ENXIO) { 648 mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx"); 649 650 if (mcbsp->tx_irq == -ENXIO) { 651 mcbsp->irq = platform_get_irq(pdev, 0); 652 mcbsp->tx_irq = 0; 653 } else { 654 mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx"); 655 mcbsp->irq = 0; 656 } 657 } 658 659 if (!pdev->dev.of_node) { 660 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx"); 661 if (!res) { 662 dev_err(&pdev->dev, "invalid tx DMA channel\n"); 663 return -ENODEV; 664 } 665 mcbsp->dma_req[0] = res->start; 666 mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0]; 667 668 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx"); 669 if (!res) { 670 dev_err(&pdev->dev, "invalid rx DMA channel\n"); 671 return -ENODEV; 672 } 673 mcbsp->dma_req[1] = res->start; 674 mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1]; 675 } else { 676 mcbsp->dma_data[0].filter_data = "tx"; 677 mcbsp->dma_data[1].filter_data = "rx"; 678 } 679 680 mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp, 681 SNDRV_PCM_STREAM_PLAYBACK); 682 mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp, 683 SNDRV_PCM_STREAM_CAPTURE); 684 685 mcbsp->fclk = devm_clk_get(&pdev->dev, "fck"); 686 if (IS_ERR(mcbsp->fclk)) { 687 ret = PTR_ERR(mcbsp->fclk); 688 dev_err(mcbsp->dev, "unable to get fck: %d\n", ret); 689 return ret; 690 } 691 692 mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT; 693 if (mcbsp->pdata->buffer_size) { 694 /* 695 * Initially configure the maximum thresholds to a safe value. 696 * The McBSP FIFO usage with these values should not go under 697 * 16 locations. 698 * If the whole FIFO without safety buffer is used, than there 699 * is a possibility that the DMA will be not able to push the 700 * new data on time, causing channel shifts in runtime. 701 */ 702 mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10; 703 mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10; 704 705 ret = devm_device_add_group(mcbsp->dev, &additional_attr_group); 706 if (ret) { 707 dev_err(mcbsp->dev, 708 "Unable to create additional controls\n"); 709 return ret; 710 } 711 } 712 713 return omap_mcbsp_st_init(pdev); 714 } 715 716 /* 717 * Stream DMA parameters. DMA request line and port address are set runtime 718 * since they are different between OMAP1 and later OMAPs 719 */ 720 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream, 721 unsigned int packet_size) 722 { 723 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); 724 struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0); 725 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 726 int words; 727 728 /* No need to proceed further if McBSP does not have FIFO */ 729 if (mcbsp->pdata->buffer_size == 0) 730 return; 731 732 /* 733 * Configure McBSP threshold based on either: 734 * packet_size, when the sDMA is in packet mode, or based on the 735 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1 736 * for mono streams. 737 */ 738 if (packet_size) 739 words = packet_size; 740 else 741 words = 1; 742 743 /* Configure McBSP internal buffer usage */ 744 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 745 omap_mcbsp_set_tx_threshold(mcbsp, words); 746 else 747 omap_mcbsp_set_rx_threshold(mcbsp, words); 748 } 749 750 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params, 751 struct snd_pcm_hw_rule *rule) 752 { 753 struct snd_interval *buffer_size = hw_param_interval(params, 754 SNDRV_PCM_HW_PARAM_BUFFER_SIZE); 755 struct snd_interval *channels = hw_param_interval(params, 756 SNDRV_PCM_HW_PARAM_CHANNELS); 757 struct omap_mcbsp *mcbsp = rule->private; 758 struct snd_interval frames; 759 int size; 760 761 snd_interval_any(&frames); 762 size = mcbsp->pdata->buffer_size; 763 764 frames.min = size / channels->min; 765 frames.integer = 1; 766 return snd_interval_refine(buffer_size, &frames); 767 } 768 769 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream, 770 struct snd_soc_dai *cpu_dai) 771 { 772 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 773 int err = 0; 774 775 if (!snd_soc_dai_active(cpu_dai)) 776 err = omap_mcbsp_request(mcbsp); 777 778 /* 779 * OMAP3 McBSP FIFO is word structured. 780 * McBSP2 has 1024 + 256 = 1280 word long buffer, 781 * McBSP1,3,4,5 has 128 word long buffer 782 * This means that the size of the FIFO depends on the sample format. 783 * For example on McBSP3: 784 * 16bit samples: size is 128 * 2 = 256 bytes 785 * 32bit samples: size is 128 * 4 = 512 bytes 786 * It is simpler to place constraint for buffer and period based on 787 * channels. 788 * McBSP3 as example again (16 or 32 bit samples): 789 * 1 channel (mono): size is 128 frames (128 words) 790 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words) 791 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words) 792 */ 793 if (mcbsp->pdata->buffer_size) { 794 /* 795 * Rule for the buffer size. We should not allow 796 * smaller buffer than the FIFO size to avoid underruns. 797 * This applies only for the playback stream. 798 */ 799 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 800 snd_pcm_hw_rule_add(substream->runtime, 0, 801 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 802 omap_mcbsp_hwrule_min_buffersize, 803 mcbsp, 804 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 805 806 /* Make sure, that the period size is always even */ 807 snd_pcm_hw_constraint_step(substream->runtime, 0, 808 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2); 809 } 810 811 return err; 812 } 813 814 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream, 815 struct snd_soc_dai *cpu_dai) 816 { 817 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 818 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 819 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE; 820 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 821 822 if (mcbsp->latency[stream2]) 823 cpu_latency_qos_update_request(&mcbsp->pm_qos_req, 824 mcbsp->latency[stream2]); 825 else if (mcbsp->latency[stream1]) 826 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req); 827 828 mcbsp->latency[stream1] = 0; 829 830 if (!snd_soc_dai_active(cpu_dai)) { 831 omap_mcbsp_free(mcbsp); 832 mcbsp->configured = 0; 833 } 834 } 835 836 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream, 837 struct snd_soc_dai *cpu_dai) 838 { 839 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 840 struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req; 841 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 842 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE; 843 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 844 int latency = mcbsp->latency[stream2]; 845 846 /* Prevent omap hardware from hitting off between FIFO fills */ 847 if (!latency || mcbsp->latency[stream1] < latency) 848 latency = mcbsp->latency[stream1]; 849 850 if (cpu_latency_qos_request_active(pm_qos_req)) 851 cpu_latency_qos_update_request(pm_qos_req, latency); 852 else if (latency) 853 cpu_latency_qos_add_request(pm_qos_req, latency); 854 855 return 0; 856 } 857 858 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd, 859 struct snd_soc_dai *cpu_dai) 860 { 861 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 862 863 switch (cmd) { 864 case SNDRV_PCM_TRIGGER_START: 865 case SNDRV_PCM_TRIGGER_RESUME: 866 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 867 mcbsp->active++; 868 omap_mcbsp_start(mcbsp, substream->stream); 869 break; 870 871 case SNDRV_PCM_TRIGGER_STOP: 872 case SNDRV_PCM_TRIGGER_SUSPEND: 873 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 874 omap_mcbsp_stop(mcbsp, substream->stream); 875 mcbsp->active--; 876 break; 877 default: 878 return -EINVAL; 879 } 880 881 return 0; 882 } 883 884 static snd_pcm_sframes_t omap_mcbsp_dai_delay( 885 struct snd_pcm_substream *substream, 886 struct snd_soc_dai *dai) 887 { 888 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); 889 struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0); 890 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 891 u16 fifo_use; 892 snd_pcm_sframes_t delay; 893 894 /* No need to proceed further if McBSP does not have FIFO */ 895 if (mcbsp->pdata->buffer_size == 0) 896 return 0; 897 898 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 899 fifo_use = omap_mcbsp_get_tx_delay(mcbsp); 900 else 901 fifo_use = omap_mcbsp_get_rx_delay(mcbsp); 902 903 /* 904 * Divide the used locations with the channel count to get the 905 * FIFO usage in samples (don't care about partial samples in the 906 * buffer). 907 */ 908 delay = fifo_use / substream->runtime->channels; 909 910 return delay; 911 } 912 913 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream, 914 struct snd_pcm_hw_params *params, 915 struct snd_soc_dai *cpu_dai) 916 { 917 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 918 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; 919 struct snd_dmaengine_dai_dma_data *dma_data; 920 int wlen, channels, wpf; 921 int pkt_size = 0; 922 unsigned int format, div, framesize, master; 923 unsigned int buffer_size = mcbsp->pdata->buffer_size; 924 925 dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream); 926 channels = params_channels(params); 927 928 switch (params_format(params)) { 929 case SNDRV_PCM_FORMAT_S16_LE: 930 wlen = 16; 931 break; 932 case SNDRV_PCM_FORMAT_S32_LE: 933 wlen = 32; 934 break; 935 default: 936 return -EINVAL; 937 } 938 if (buffer_size) { 939 int latency; 940 941 if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) { 942 int period_words, max_thrsh; 943 int divider = 0; 944 945 period_words = params_period_bytes(params) / (wlen / 8); 946 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 947 max_thrsh = mcbsp->max_tx_thres; 948 else 949 max_thrsh = mcbsp->max_rx_thres; 950 /* 951 * Use sDMA packet mode if McBSP is in threshold mode: 952 * If period words less than the FIFO size the packet 953 * size is set to the number of period words, otherwise 954 * Look for the biggest threshold value which divides 955 * the period size evenly. 956 */ 957 divider = period_words / max_thrsh; 958 if (period_words % max_thrsh) 959 divider++; 960 while (period_words % divider && 961 divider < period_words) 962 divider++; 963 if (divider == period_words) 964 return -EINVAL; 965 966 pkt_size = period_words / divider; 967 } else if (channels > 1) { 968 /* Use packet mode for non mono streams */ 969 pkt_size = channels; 970 } 971 972 latency = (buffer_size - pkt_size) / channels; 973 latency = latency * USEC_PER_SEC / 974 (params->rate_num / params->rate_den); 975 mcbsp->latency[substream->stream] = latency; 976 977 omap_mcbsp_set_threshold(substream, pkt_size); 978 } 979 980 dma_data->maxburst = pkt_size; 981 982 if (mcbsp->configured) { 983 /* McBSP already configured by another stream */ 984 return 0; 985 } 986 987 regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7)); 988 regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7)); 989 regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7)); 990 regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7)); 991 format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK; 992 wpf = channels; 993 if (channels == 2 && (format == SND_SOC_DAIFMT_I2S || 994 format == SND_SOC_DAIFMT_LEFT_J)) { 995 /* Use dual-phase frames */ 996 regs->rcr2 |= RPHASE; 997 regs->xcr2 |= XPHASE; 998 /* Set 1 word per (McBSP) frame for phase1 and phase2 */ 999 wpf--; 1000 regs->rcr2 |= RFRLEN2(wpf - 1); 1001 regs->xcr2 |= XFRLEN2(wpf - 1); 1002 } 1003 1004 regs->rcr1 |= RFRLEN1(wpf - 1); 1005 regs->xcr1 |= XFRLEN1(wpf - 1); 1006 1007 switch (params_format(params)) { 1008 case SNDRV_PCM_FORMAT_S16_LE: 1009 /* Set word lengths */ 1010 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16); 1011 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16); 1012 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16); 1013 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16); 1014 break; 1015 case SNDRV_PCM_FORMAT_S32_LE: 1016 /* Set word lengths */ 1017 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32); 1018 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32); 1019 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32); 1020 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32); 1021 break; 1022 default: 1023 /* Unsupported PCM format */ 1024 return -EINVAL; 1025 } 1026 1027 /* In McBSP master modes, FRAME (i.e. sample rate) is generated 1028 * by _counting_ BCLKs. Calculate frame size in BCLKs */ 1029 master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK; 1030 if (master == SND_SOC_DAIFMT_BP_FP) { 1031 div = mcbsp->clk_div ? mcbsp->clk_div : 1; 1032 framesize = (mcbsp->in_freq / div) / params_rate(params); 1033 1034 if (framesize < wlen * channels) { 1035 printk(KERN_ERR "%s: not enough bandwidth for desired rate and " 1036 "channels\n", __func__); 1037 return -EINVAL; 1038 } 1039 } else 1040 framesize = wlen * channels; 1041 1042 /* Set FS period and length in terms of bit clock periods */ 1043 regs->srgr2 &= ~FPER(0xfff); 1044 regs->srgr1 &= ~FWID(0xff); 1045 switch (format) { 1046 case SND_SOC_DAIFMT_I2S: 1047 case SND_SOC_DAIFMT_LEFT_J: 1048 regs->srgr2 |= FPER(framesize - 1); 1049 regs->srgr1 |= FWID((framesize >> 1) - 1); 1050 break; 1051 case SND_SOC_DAIFMT_DSP_A: 1052 case SND_SOC_DAIFMT_DSP_B: 1053 regs->srgr2 |= FPER(framesize - 1); 1054 regs->srgr1 |= FWID(0); 1055 break; 1056 } 1057 1058 omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs); 1059 mcbsp->wlen = wlen; 1060 mcbsp->configured = 1; 1061 1062 return 0; 1063 } 1064 1065 /* 1066 * This must be called before _set_clkdiv and _set_sysclk since McBSP register 1067 * cache is initialized here 1068 */ 1069 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai, 1070 unsigned int fmt) 1071 { 1072 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 1073 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; 1074 bool inv_fs = false; 1075 1076 if (mcbsp->configured) 1077 return 0; 1078 1079 mcbsp->fmt = fmt; 1080 memset(regs, 0, sizeof(*regs)); 1081 /* Generic McBSP register settings */ 1082 regs->spcr2 |= XINTM(3) | FREE; 1083 regs->spcr1 |= RINTM(3); 1084 /* RFIG and XFIG are not defined in 2430 and on OMAP3+ */ 1085 if (!mcbsp->pdata->has_ccr) { 1086 regs->rcr2 |= RFIG; 1087 regs->xcr2 |= XFIG; 1088 } 1089 1090 /* Configure XCCR/RCCR only for revisions which have ccr registers */ 1091 if (mcbsp->pdata->has_ccr) { 1092 regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE; 1093 regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE; 1094 } 1095 1096 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 1097 case SND_SOC_DAIFMT_I2S: 1098 /* 1-bit data delay */ 1099 regs->rcr2 |= RDATDLY(1); 1100 regs->xcr2 |= XDATDLY(1); 1101 break; 1102 case SND_SOC_DAIFMT_LEFT_J: 1103 /* 0-bit data delay */ 1104 regs->rcr2 |= RDATDLY(0); 1105 regs->xcr2 |= XDATDLY(0); 1106 regs->spcr1 |= RJUST(2); 1107 /* Invert FS polarity configuration */ 1108 inv_fs = true; 1109 break; 1110 case SND_SOC_DAIFMT_DSP_A: 1111 /* 1-bit data delay */ 1112 regs->rcr2 |= RDATDLY(1); 1113 regs->xcr2 |= XDATDLY(1); 1114 /* Invert FS polarity configuration */ 1115 inv_fs = true; 1116 break; 1117 case SND_SOC_DAIFMT_DSP_B: 1118 /* 0-bit data delay */ 1119 regs->rcr2 |= RDATDLY(0); 1120 regs->xcr2 |= XDATDLY(0); 1121 /* Invert FS polarity configuration */ 1122 inv_fs = true; 1123 break; 1124 default: 1125 /* Unsupported data format */ 1126 return -EINVAL; 1127 } 1128 1129 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { 1130 case SND_SOC_DAIFMT_BP_FP: 1131 /* McBSP master. Set FS and bit clocks as outputs */ 1132 regs->pcr0 |= FSXM | FSRM | 1133 CLKXM | CLKRM; 1134 /* Sample rate generator drives the FS */ 1135 regs->srgr2 |= FSGM; 1136 break; 1137 case SND_SOC_DAIFMT_BC_FP: 1138 /* McBSP slave. FS clock as output */ 1139 regs->srgr2 |= FSGM; 1140 regs->pcr0 |= FSXM | FSRM; 1141 break; 1142 case SND_SOC_DAIFMT_BC_FC: 1143 /* McBSP slave */ 1144 break; 1145 default: 1146 /* Unsupported master/slave configuration */ 1147 return -EINVAL; 1148 } 1149 1150 /* Set bit clock (CLKX/CLKR) and FS polarities */ 1151 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 1152 case SND_SOC_DAIFMT_NB_NF: 1153 /* 1154 * Normal BCLK + FS. 1155 * FS active low. TX data driven on falling edge of bit clock 1156 * and RX data sampled on rising edge of bit clock. 1157 */ 1158 regs->pcr0 |= FSXP | FSRP | 1159 CLKXP | CLKRP; 1160 break; 1161 case SND_SOC_DAIFMT_NB_IF: 1162 regs->pcr0 |= CLKXP | CLKRP; 1163 break; 1164 case SND_SOC_DAIFMT_IB_NF: 1165 regs->pcr0 |= FSXP | FSRP; 1166 break; 1167 case SND_SOC_DAIFMT_IB_IF: 1168 break; 1169 default: 1170 return -EINVAL; 1171 } 1172 if (inv_fs) 1173 regs->pcr0 ^= FSXP | FSRP; 1174 1175 return 0; 1176 } 1177 1178 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai, 1179 int div_id, int div) 1180 { 1181 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 1182 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; 1183 1184 if (div_id != OMAP_MCBSP_CLKGDV) 1185 return -ENODEV; 1186 1187 mcbsp->clk_div = div; 1188 regs->srgr1 &= ~CLKGDV(0xff); 1189 regs->srgr1 |= CLKGDV(div - 1); 1190 1191 return 0; 1192 } 1193 1194 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai, 1195 int clk_id, unsigned int freq, 1196 int dir) 1197 { 1198 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); 1199 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; 1200 int err = 0; 1201 1202 if (mcbsp->active) { 1203 if (freq == mcbsp->in_freq) 1204 return 0; 1205 else 1206 return -EBUSY; 1207 } 1208 1209 mcbsp->in_freq = freq; 1210 regs->srgr2 &= ~CLKSM; 1211 regs->pcr0 &= ~SCLKME; 1212 1213 switch (clk_id) { 1214 case OMAP_MCBSP_SYSCLK_CLK: 1215 regs->srgr2 |= CLKSM; 1216 break; 1217 case OMAP_MCBSP_SYSCLK_CLKS_FCLK: 1218 if (mcbsp_omap1()) { 1219 err = -EINVAL; 1220 break; 1221 } 1222 err = omap2_mcbsp_set_clks_src(mcbsp, 1223 MCBSP_CLKS_PRCM_SRC); 1224 break; 1225 case OMAP_MCBSP_SYSCLK_CLKS_EXT: 1226 if (mcbsp_omap1()) { 1227 err = 0; 1228 break; 1229 } 1230 err = omap2_mcbsp_set_clks_src(mcbsp, 1231 MCBSP_CLKS_PAD_SRC); 1232 break; 1233 1234 case OMAP_MCBSP_SYSCLK_CLKX_EXT: 1235 regs->srgr2 |= CLKSM; 1236 regs->pcr0 |= SCLKME; 1237 /* 1238 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG, 1239 * disable output on those pins. This enables to inject the 1240 * reference clock through CLKX/CLKR. For this to work 1241 * set_dai_sysclk() _needs_ to be called after set_dai_fmt(). 1242 */ 1243 regs->pcr0 &= ~CLKXM; 1244 break; 1245 case OMAP_MCBSP_SYSCLK_CLKR_EXT: 1246 regs->pcr0 |= SCLKME; 1247 /* Disable ouput on CLKR pin in master mode */ 1248 regs->pcr0 &= ~CLKRM; 1249 break; 1250 default: 1251 err = -ENODEV; 1252 } 1253 1254 return err; 1255 } 1256 1257 static const struct snd_soc_dai_ops mcbsp_dai_ops = { 1258 .startup = omap_mcbsp_dai_startup, 1259 .shutdown = omap_mcbsp_dai_shutdown, 1260 .prepare = omap_mcbsp_dai_prepare, 1261 .trigger = omap_mcbsp_dai_trigger, 1262 .delay = omap_mcbsp_dai_delay, 1263 .hw_params = omap_mcbsp_dai_hw_params, 1264 .set_fmt = omap_mcbsp_dai_set_dai_fmt, 1265 .set_clkdiv = omap_mcbsp_dai_set_clkdiv, 1266 .set_sysclk = omap_mcbsp_dai_set_dai_sysclk, 1267 }; 1268 1269 static int omap_mcbsp_probe(struct snd_soc_dai *dai) 1270 { 1271 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai); 1272 1273 pm_runtime_enable(mcbsp->dev); 1274 1275 snd_soc_dai_init_dma_data(dai, 1276 &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK], 1277 &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]); 1278 1279 return 0; 1280 } 1281 1282 static int omap_mcbsp_remove(struct snd_soc_dai *dai) 1283 { 1284 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai); 1285 1286 pm_runtime_disable(mcbsp->dev); 1287 1288 return 0; 1289 } 1290 1291 static struct snd_soc_dai_driver omap_mcbsp_dai = { 1292 .probe = omap_mcbsp_probe, 1293 .remove = omap_mcbsp_remove, 1294 .playback = { 1295 .channels_min = 1, 1296 .channels_max = 16, 1297 .rates = OMAP_MCBSP_RATES, 1298 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, 1299 }, 1300 .capture = { 1301 .channels_min = 1, 1302 .channels_max = 16, 1303 .rates = OMAP_MCBSP_RATES, 1304 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, 1305 }, 1306 .ops = &mcbsp_dai_ops, 1307 }; 1308 1309 static const struct snd_soc_component_driver omap_mcbsp_component = { 1310 .name = "omap-mcbsp", 1311 .legacy_dai_naming = 1, 1312 }; 1313 1314 static struct omap_mcbsp_platform_data omap2420_pdata = { 1315 .reg_step = 4, 1316 .reg_size = 2, 1317 }; 1318 1319 static struct omap_mcbsp_platform_data omap2430_pdata = { 1320 .reg_step = 4, 1321 .reg_size = 4, 1322 .has_ccr = true, 1323 }; 1324 1325 static struct omap_mcbsp_platform_data omap3_pdata = { 1326 .reg_step = 4, 1327 .reg_size = 4, 1328 .has_ccr = true, 1329 .has_wakeup = true, 1330 }; 1331 1332 static struct omap_mcbsp_platform_data omap4_pdata = { 1333 .reg_step = 4, 1334 .reg_size = 4, 1335 .has_ccr = true, 1336 .has_wakeup = true, 1337 }; 1338 1339 static const struct of_device_id omap_mcbsp_of_match[] = { 1340 { 1341 .compatible = "ti,omap2420-mcbsp", 1342 .data = &omap2420_pdata, 1343 }, 1344 { 1345 .compatible = "ti,omap2430-mcbsp", 1346 .data = &omap2430_pdata, 1347 }, 1348 { 1349 .compatible = "ti,omap3-mcbsp", 1350 .data = &omap3_pdata, 1351 }, 1352 { 1353 .compatible = "ti,omap4-mcbsp", 1354 .data = &omap4_pdata, 1355 }, 1356 { }, 1357 }; 1358 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match); 1359 1360 static int asoc_mcbsp_probe(struct platform_device *pdev) 1361 { 1362 struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev); 1363 struct omap_mcbsp *mcbsp; 1364 const struct of_device_id *match; 1365 int ret; 1366 1367 match = of_match_device(omap_mcbsp_of_match, &pdev->dev); 1368 if (match) { 1369 struct device_node *node = pdev->dev.of_node; 1370 struct omap_mcbsp_platform_data *pdata_quirk = pdata; 1371 int buffer_size; 1372 1373 pdata = devm_kzalloc(&pdev->dev, 1374 sizeof(struct omap_mcbsp_platform_data), 1375 GFP_KERNEL); 1376 if (!pdata) 1377 return -ENOMEM; 1378 1379 memcpy(pdata, match->data, sizeof(*pdata)); 1380 if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size)) 1381 pdata->buffer_size = buffer_size; 1382 if (pdata_quirk) 1383 pdata->force_ick_on = pdata_quirk->force_ick_on; 1384 } else if (!pdata) { 1385 dev_err(&pdev->dev, "missing platform data.\n"); 1386 return -EINVAL; 1387 } 1388 mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL); 1389 if (!mcbsp) 1390 return -ENOMEM; 1391 1392 mcbsp->id = pdev->id; 1393 mcbsp->pdata = pdata; 1394 mcbsp->dev = &pdev->dev; 1395 platform_set_drvdata(pdev, mcbsp); 1396 1397 ret = omap_mcbsp_init(pdev); 1398 if (ret) 1399 return ret; 1400 1401 if (mcbsp->pdata->reg_size == 2) { 1402 omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE; 1403 omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE; 1404 } 1405 1406 ret = devm_snd_soc_register_component(&pdev->dev, 1407 &omap_mcbsp_component, 1408 &omap_mcbsp_dai, 1); 1409 if (ret) 1410 return ret; 1411 1412 return sdma_pcm_platform_register(&pdev->dev, "tx", "rx"); 1413 } 1414 1415 static int asoc_mcbsp_remove(struct platform_device *pdev) 1416 { 1417 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev); 1418 1419 if (mcbsp->pdata->ops && mcbsp->pdata->ops->free) 1420 mcbsp->pdata->ops->free(mcbsp->id); 1421 1422 if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req)) 1423 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req); 1424 1425 return 0; 1426 } 1427 1428 static struct platform_driver asoc_mcbsp_driver = { 1429 .driver = { 1430 .name = "omap-mcbsp", 1431 .of_match_table = omap_mcbsp_of_match, 1432 }, 1433 1434 .probe = asoc_mcbsp_probe, 1435 .remove = asoc_mcbsp_remove, 1436 }; 1437 1438 module_platform_driver(asoc_mcbsp_driver); 1439 1440 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>"); 1441 MODULE_DESCRIPTION("OMAP I2S SoC Interface"); 1442 MODULE_LICENSE("GPL"); 1443 MODULE_ALIAS("platform:omap-mcbsp"); 1444