xref: /openbmc/linux/sound/soc/ti/omap-mcbsp.c (revision 3cea11cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4  *
5  * Copyright (C) 2008 Nokia Corporation
6  *
7  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/initval.h>
21 #include <sound/soc.h>
22 #include <sound/dmaengine_pcm.h>
23 
24 #include "omap-mcbsp-priv.h"
25 #include "omap-mcbsp.h"
26 #include "sdma-pcm.h"
27 
28 #define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
29 
30 enum {
31 	OMAP_MCBSP_WORD_8 = 0,
32 	OMAP_MCBSP_WORD_12,
33 	OMAP_MCBSP_WORD_16,
34 	OMAP_MCBSP_WORD_20,
35 	OMAP_MCBSP_WORD_24,
36 	OMAP_MCBSP_WORD_32,
37 };
38 
39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40 {
41 	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42 	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43 	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44 	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45 	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46 	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47 	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48 	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49 	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50 	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51 	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52 	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53 	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54 	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55 	dev_dbg(mcbsp->dev, "***********************\n");
56 }
57 
58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59 {
60 	struct clk *fck_src;
61 	const char *src;
62 	int r;
63 
64 	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65 		src = "pad_fck";
66 	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67 		src = "prcm_fck";
68 	else
69 		return -EINVAL;
70 
71 	fck_src = clk_get(mcbsp->dev, src);
72 	if (IS_ERR(fck_src)) {
73 		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74 		return -EINVAL;
75 	}
76 
77 	pm_runtime_put_sync(mcbsp->dev);
78 
79 	r = clk_set_parent(mcbsp->fclk, fck_src);
80 	if (r)
81 		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
82 			src);
83 
84 	pm_runtime_get_sync(mcbsp->dev);
85 
86 	clk_put(fck_src);
87 
88 	return r;
89 }
90 
91 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
92 {
93 	struct omap_mcbsp *mcbsp = data;
94 	u16 irqst;
95 
96 	irqst = MCBSP_READ(mcbsp, IRQST);
97 	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
98 
99 	if (irqst & RSYNCERREN)
100 		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
101 	if (irqst & RFSREN)
102 		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
103 	if (irqst & REOFEN)
104 		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
105 	if (irqst & RRDYEN)
106 		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
107 	if (irqst & RUNDFLEN)
108 		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
109 	if (irqst & ROVFLEN)
110 		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
111 
112 	if (irqst & XSYNCERREN)
113 		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
114 	if (irqst & XFSXEN)
115 		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
116 	if (irqst & XEOFEN)
117 		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
118 	if (irqst & XRDYEN)
119 		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
120 	if (irqst & XUNDFLEN)
121 		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
122 	if (irqst & XOVFLEN)
123 		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
124 	if (irqst & XEMPTYEOFEN)
125 		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
126 
127 	MCBSP_WRITE(mcbsp, IRQST, irqst);
128 
129 	return IRQ_HANDLED;
130 }
131 
132 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
133 {
134 	struct omap_mcbsp *mcbsp = data;
135 	u16 irqst_spcr2;
136 
137 	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
138 	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
139 
140 	if (irqst_spcr2 & XSYNC_ERR) {
141 		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
142 			irqst_spcr2);
143 		/* Writing zero to XSYNC_ERR clears the IRQ */
144 		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
145 	}
146 
147 	return IRQ_HANDLED;
148 }
149 
150 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
151 {
152 	struct omap_mcbsp *mcbsp = data;
153 	u16 irqst_spcr1;
154 
155 	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
156 	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
157 
158 	if (irqst_spcr1 & RSYNC_ERR) {
159 		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
160 			irqst_spcr1);
161 		/* Writing zero to RSYNC_ERR clears the IRQ */
162 		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
163 	}
164 
165 	return IRQ_HANDLED;
166 }
167 
168 /*
169  * omap_mcbsp_config simply write a config to the
170  * appropriate McBSP.
171  * You either call this function or set the McBSP registers
172  * by yourself before calling omap_mcbsp_start().
173  */
174 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
175 			      const struct omap_mcbsp_reg_cfg *config)
176 {
177 	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
178 		mcbsp->id, mcbsp->phys_base);
179 
180 	/* We write the given config */
181 	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
182 	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
183 	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
184 	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
185 	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
186 	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
187 	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
188 	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
189 	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
190 	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
191 	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
192 	if (mcbsp->pdata->has_ccr) {
193 		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
194 		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
195 	}
196 	/* Enable wakeup behavior */
197 	if (mcbsp->pdata->has_wakeup)
198 		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
199 
200 	/* Enable TX/RX sync error interrupts by default */
201 	if (mcbsp->irq)
202 		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
203 			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
204 }
205 
206 /**
207  * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
208  * @mcbsp: omap_mcbsp struct for the McBSP instance
209  * @stream: Stream direction (playback/capture)
210  *
211  * Returns the address of mcbsp data transmit register or data receive register
212  * to be used by DMA for transferring/receiving data
213  */
214 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
215 				     unsigned int stream)
216 {
217 	int data_reg;
218 
219 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
220 		if (mcbsp->pdata->reg_size == 2)
221 			data_reg = OMAP_MCBSP_REG_DXR1;
222 		else
223 			data_reg = OMAP_MCBSP_REG_DXR;
224 	} else {
225 		if (mcbsp->pdata->reg_size == 2)
226 			data_reg = OMAP_MCBSP_REG_DRR1;
227 		else
228 			data_reg = OMAP_MCBSP_REG_DRR;
229 	}
230 
231 	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
232 }
233 
234 /*
235  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
236  * The threshold parameter is 1 based, and it is converted (threshold - 1)
237  * for the THRSH2 register.
238  */
239 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
240 {
241 	if (threshold && threshold <= mcbsp->max_tx_thres)
242 		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
243 }
244 
245 /*
246  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
247  * The threshold parameter is 1 based, and it is converted (threshold - 1)
248  * for the THRSH1 register.
249  */
250 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
251 {
252 	if (threshold && threshold <= mcbsp->max_rx_thres)
253 		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
254 }
255 
256 /*
257  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
258  */
259 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
260 {
261 	u16 buffstat;
262 
263 	/* Returns the number of free locations in the buffer */
264 	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
265 
266 	/* Number of slots are different in McBSP ports */
267 	return mcbsp->pdata->buffer_size - buffstat;
268 }
269 
270 /*
271  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
272  * to reach the threshold value (when the DMA will be triggered to read it)
273  */
274 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
275 {
276 	u16 buffstat, threshold;
277 
278 	/* Returns the number of used locations in the buffer */
279 	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
280 	/* RX threshold */
281 	threshold = MCBSP_READ(mcbsp, THRSH1);
282 
283 	/* Return the number of location till we reach the threshold limit */
284 	if (threshold <= buffstat)
285 		return 0;
286 	else
287 		return threshold - buffstat;
288 }
289 
290 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
291 {
292 	void *reg_cache;
293 	int err;
294 
295 	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
296 	if (!reg_cache)
297 		return -ENOMEM;
298 
299 	spin_lock(&mcbsp->lock);
300 	if (!mcbsp->free) {
301 		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
302 		err = -EBUSY;
303 		goto err_kfree;
304 	}
305 
306 	mcbsp->free = false;
307 	mcbsp->reg_cache = reg_cache;
308 	spin_unlock(&mcbsp->lock);
309 
310 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
311 		mcbsp->pdata->ops->request(mcbsp->id - 1);
312 
313 	/*
314 	 * Make sure that transmitter, receiver and sample-rate generator are
315 	 * not running before activating IRQs.
316 	 */
317 	MCBSP_WRITE(mcbsp, SPCR1, 0);
318 	MCBSP_WRITE(mcbsp, SPCR2, 0);
319 
320 	if (mcbsp->irq) {
321 		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
322 				  "McBSP", (void *)mcbsp);
323 		if (err != 0) {
324 			dev_err(mcbsp->dev, "Unable to request IRQ\n");
325 			goto err_clk_disable;
326 		}
327 	} else {
328 		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
329 				  "McBSP TX", (void *)mcbsp);
330 		if (err != 0) {
331 			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
332 			goto err_clk_disable;
333 		}
334 
335 		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
336 				  "McBSP RX", (void *)mcbsp);
337 		if (err != 0) {
338 			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
339 			goto err_free_irq;
340 		}
341 	}
342 
343 	return 0;
344 err_free_irq:
345 	free_irq(mcbsp->tx_irq, (void *)mcbsp);
346 err_clk_disable:
347 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
348 		mcbsp->pdata->ops->free(mcbsp->id - 1);
349 
350 	/* Disable wakeup behavior */
351 	if (mcbsp->pdata->has_wakeup)
352 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
353 
354 	spin_lock(&mcbsp->lock);
355 	mcbsp->free = true;
356 	mcbsp->reg_cache = NULL;
357 err_kfree:
358 	spin_unlock(&mcbsp->lock);
359 	kfree(reg_cache);
360 
361 	return err;
362 }
363 
364 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
365 {
366 	void *reg_cache;
367 
368 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
369 		mcbsp->pdata->ops->free(mcbsp->id - 1);
370 
371 	/* Disable wakeup behavior */
372 	if (mcbsp->pdata->has_wakeup)
373 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
374 
375 	/* Disable interrupt requests */
376 	if (mcbsp->irq)
377 		MCBSP_WRITE(mcbsp, IRQEN, 0);
378 
379 	if (mcbsp->irq) {
380 		free_irq(mcbsp->irq, (void *)mcbsp);
381 	} else {
382 		free_irq(mcbsp->rx_irq, (void *)mcbsp);
383 		free_irq(mcbsp->tx_irq, (void *)mcbsp);
384 	}
385 
386 	reg_cache = mcbsp->reg_cache;
387 
388 	/*
389 	 * Select CLKS source from internal source unconditionally before
390 	 * marking the McBSP port as free.
391 	 * If the external clock source via MCBSP_CLKS pin has been selected the
392 	 * system will refuse to enter idle if the CLKS pin source is not reset
393 	 * back to internal source.
394 	 */
395 	if (!mcbsp_omap1())
396 		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
397 
398 	spin_lock(&mcbsp->lock);
399 	if (mcbsp->free)
400 		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
401 	else
402 		mcbsp->free = true;
403 	mcbsp->reg_cache = NULL;
404 	spin_unlock(&mcbsp->lock);
405 
406 	kfree(reg_cache);
407 }
408 
409 /*
410  * Here we start the McBSP, by enabling transmitter, receiver or both.
411  * If no transmitter or receiver is active prior calling, then sample-rate
412  * generator and frame sync are started.
413  */
414 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
415 {
416 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
417 	int rx = !tx;
418 	int enable_srg = 0;
419 	u16 w;
420 
421 	if (mcbsp->st_data)
422 		omap_mcbsp_st_start(mcbsp);
423 
424 	/* Only enable SRG, if McBSP is master */
425 	w = MCBSP_READ_CACHE(mcbsp, PCR0);
426 	if (w & (FSXM | FSRM | CLKXM | CLKRM))
427 		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
428 				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
429 
430 	if (enable_srg) {
431 		/* Start the sample generator */
432 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
433 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
434 	}
435 
436 	/* Enable transmitter and receiver */
437 	tx &= 1;
438 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
439 	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
440 
441 	rx &= 1;
442 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
443 	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
444 
445 	/*
446 	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
447 	 * REVISIT: 100us may give enough time for two CLKSRG, however
448 	 * due to some unknown PM related, clock gating etc. reason it
449 	 * is now at 500us.
450 	 */
451 	udelay(500);
452 
453 	if (enable_srg) {
454 		/* Start frame sync */
455 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
456 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
457 	}
458 
459 	if (mcbsp->pdata->has_ccr) {
460 		/* Release the transmitter and receiver */
461 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
462 		w &= ~(tx ? XDISABLE : 0);
463 		MCBSP_WRITE(mcbsp, XCCR, w);
464 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
465 		w &= ~(rx ? RDISABLE : 0);
466 		MCBSP_WRITE(mcbsp, RCCR, w);
467 	}
468 
469 	/* Dump McBSP Regs */
470 	omap_mcbsp_dump_reg(mcbsp);
471 }
472 
473 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
474 {
475 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
476 	int rx = !tx;
477 	int idle;
478 	u16 w;
479 
480 	/* Reset transmitter */
481 	tx &= 1;
482 	if (mcbsp->pdata->has_ccr) {
483 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
484 		w |= (tx ? XDISABLE : 0);
485 		MCBSP_WRITE(mcbsp, XCCR, w);
486 	}
487 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
488 	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
489 
490 	/* Reset receiver */
491 	rx &= 1;
492 	if (mcbsp->pdata->has_ccr) {
493 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
494 		w |= (rx ? RDISABLE : 0);
495 		MCBSP_WRITE(mcbsp, RCCR, w);
496 	}
497 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
498 	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
499 
500 	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
501 			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
502 
503 	if (idle) {
504 		/* Reset the sample rate generator */
505 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
506 		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
507 	}
508 
509 	if (mcbsp->st_data)
510 		omap_mcbsp_st_stop(mcbsp);
511 }
512 
513 #define max_thres(m)			(mcbsp->pdata->buffer_size)
514 #define valid_threshold(m, val)		((val) <= max_thres(m))
515 #define THRESHOLD_PROP_BUILDER(prop)					\
516 static ssize_t prop##_show(struct device *dev,				\
517 			struct device_attribute *attr, char *buf)	\
518 {									\
519 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
520 									\
521 	return sprintf(buf, "%u\n", mcbsp->prop);			\
522 }									\
523 									\
524 static ssize_t prop##_store(struct device *dev,				\
525 				struct device_attribute *attr,		\
526 				const char *buf, size_t size)		\
527 {									\
528 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
529 	unsigned long val;						\
530 	int status;							\
531 									\
532 	status = kstrtoul(buf, 0, &val);				\
533 	if (status)							\
534 		return status;						\
535 									\
536 	if (!valid_threshold(mcbsp, val))				\
537 		return -EDOM;						\
538 									\
539 	mcbsp->prop = val;						\
540 	return size;							\
541 }									\
542 									\
543 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
544 
545 THRESHOLD_PROP_BUILDER(max_tx_thres);
546 THRESHOLD_PROP_BUILDER(max_rx_thres);
547 
548 static const char * const dma_op_modes[] = {
549 	"element", "threshold",
550 };
551 
552 static ssize_t dma_op_mode_show(struct device *dev,
553 				struct device_attribute *attr, char *buf)
554 {
555 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
556 	int dma_op_mode, i = 0;
557 	ssize_t len = 0;
558 	const char * const *s;
559 
560 	dma_op_mode = mcbsp->dma_op_mode;
561 
562 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
563 		if (dma_op_mode == i)
564 			len += sprintf(buf + len, "[%s] ", *s);
565 		else
566 			len += sprintf(buf + len, "%s ", *s);
567 	}
568 	len += sprintf(buf + len, "\n");
569 
570 	return len;
571 }
572 
573 static ssize_t dma_op_mode_store(struct device *dev,
574 				 struct device_attribute *attr, const char *buf,
575 				 size_t size)
576 {
577 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
578 	int i;
579 
580 	i = sysfs_match_string(dma_op_modes, buf);
581 	if (i < 0)
582 		return i;
583 
584 	spin_lock_irq(&mcbsp->lock);
585 	if (!mcbsp->free) {
586 		size = -EBUSY;
587 		goto unlock;
588 	}
589 	mcbsp->dma_op_mode = i;
590 
591 unlock:
592 	spin_unlock_irq(&mcbsp->lock);
593 
594 	return size;
595 }
596 
597 static DEVICE_ATTR_RW(dma_op_mode);
598 
599 static const struct attribute *additional_attrs[] = {
600 	&dev_attr_max_tx_thres.attr,
601 	&dev_attr_max_rx_thres.attr,
602 	&dev_attr_dma_op_mode.attr,
603 	NULL,
604 };
605 
606 static const struct attribute_group additional_attr_group = {
607 	.attrs = (struct attribute **)additional_attrs,
608 };
609 
610 /*
611  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
612  * 730 has only 2 McBSP, and both of them are MPU peripherals.
613  */
614 static int omap_mcbsp_init(struct platform_device *pdev)
615 {
616 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
617 	struct resource *res;
618 	int ret = 0;
619 
620 	spin_lock_init(&mcbsp->lock);
621 	mcbsp->free = true;
622 
623 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
624 	if (!res)
625 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
626 
627 	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
628 	if (IS_ERR(mcbsp->io_base))
629 		return PTR_ERR(mcbsp->io_base);
630 
631 	mcbsp->phys_base = res->start;
632 	mcbsp->reg_cache_size = resource_size(res);
633 
634 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
635 	if (!res)
636 		mcbsp->phys_dma_base = mcbsp->phys_base;
637 	else
638 		mcbsp->phys_dma_base = res->start;
639 
640 	/*
641 	 * OMAP1, 2 uses two interrupt lines: TX, RX
642 	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
643 	 * OMAP4 and newer SoC only have the combined IRQ line.
644 	 * Use the combined IRQ if available since it gives better debugging
645 	 * possibilities.
646 	 */
647 	mcbsp->irq = platform_get_irq_byname(pdev, "common");
648 	if (mcbsp->irq == -ENXIO) {
649 		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
650 
651 		if (mcbsp->tx_irq == -ENXIO) {
652 			mcbsp->irq = platform_get_irq(pdev, 0);
653 			mcbsp->tx_irq = 0;
654 		} else {
655 			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
656 			mcbsp->irq = 0;
657 		}
658 	}
659 
660 	if (!pdev->dev.of_node) {
661 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
662 		if (!res) {
663 			dev_err(&pdev->dev, "invalid tx DMA channel\n");
664 			return -ENODEV;
665 		}
666 		mcbsp->dma_req[0] = res->start;
667 		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
668 
669 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
670 		if (!res) {
671 			dev_err(&pdev->dev, "invalid rx DMA channel\n");
672 			return -ENODEV;
673 		}
674 		mcbsp->dma_req[1] = res->start;
675 		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
676 	} else {
677 		mcbsp->dma_data[0].filter_data = "tx";
678 		mcbsp->dma_data[1].filter_data = "rx";
679 	}
680 
681 	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
682 						SNDRV_PCM_STREAM_PLAYBACK);
683 	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
684 						SNDRV_PCM_STREAM_CAPTURE);
685 
686 	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
687 	if (IS_ERR(mcbsp->fclk)) {
688 		ret = PTR_ERR(mcbsp->fclk);
689 		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
690 		return ret;
691 	}
692 
693 	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
694 	if (mcbsp->pdata->buffer_size) {
695 		/*
696 		 * Initially configure the maximum thresholds to a safe value.
697 		 * The McBSP FIFO usage with these values should not go under
698 		 * 16 locations.
699 		 * If the whole FIFO without safety buffer is used, than there
700 		 * is a possibility that the DMA will be not able to push the
701 		 * new data on time, causing channel shifts in runtime.
702 		 */
703 		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
704 		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
705 
706 		ret = sysfs_create_group(&mcbsp->dev->kobj,
707 					 &additional_attr_group);
708 		if (ret) {
709 			dev_err(mcbsp->dev,
710 				"Unable to create additional controls\n");
711 			return ret;
712 		}
713 	}
714 
715 	ret = omap_mcbsp_st_init(pdev);
716 	if (ret)
717 		goto err_st;
718 
719 	return 0;
720 
721 err_st:
722 	if (mcbsp->pdata->buffer_size)
723 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
724 	return ret;
725 }
726 
727 /*
728  * Stream DMA parameters. DMA request line and port address are set runtime
729  * since they are different between OMAP1 and later OMAPs
730  */
731 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
732 		unsigned int packet_size)
733 {
734 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
735 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
736 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
737 	int words;
738 
739 	/* No need to proceed further if McBSP does not have FIFO */
740 	if (mcbsp->pdata->buffer_size == 0)
741 		return;
742 
743 	/*
744 	 * Configure McBSP threshold based on either:
745 	 * packet_size, when the sDMA is in packet mode, or based on the
746 	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
747 	 * for mono streams.
748 	 */
749 	if (packet_size)
750 		words = packet_size;
751 	else
752 		words = 1;
753 
754 	/* Configure McBSP internal buffer usage */
755 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
756 		omap_mcbsp_set_tx_threshold(mcbsp, words);
757 	else
758 		omap_mcbsp_set_rx_threshold(mcbsp, words);
759 }
760 
761 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
762 				    struct snd_pcm_hw_rule *rule)
763 {
764 	struct snd_interval *buffer_size = hw_param_interval(params,
765 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
766 	struct snd_interval *channels = hw_param_interval(params,
767 					SNDRV_PCM_HW_PARAM_CHANNELS);
768 	struct omap_mcbsp *mcbsp = rule->private;
769 	struct snd_interval frames;
770 	int size;
771 
772 	snd_interval_any(&frames);
773 	size = mcbsp->pdata->buffer_size;
774 
775 	frames.min = size / channels->min;
776 	frames.integer = 1;
777 	return snd_interval_refine(buffer_size, &frames);
778 }
779 
780 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
781 				  struct snd_soc_dai *cpu_dai)
782 {
783 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
784 	int err = 0;
785 
786 	if (!snd_soc_dai_active(cpu_dai))
787 		err = omap_mcbsp_request(mcbsp);
788 
789 	/*
790 	 * OMAP3 McBSP FIFO is word structured.
791 	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
792 	 * McBSP1,3,4,5 has 128 word long buffer
793 	 * This means that the size of the FIFO depends on the sample format.
794 	 * For example on McBSP3:
795 	 * 16bit samples: size is 128 * 2 = 256 bytes
796 	 * 32bit samples: size is 128 * 4 = 512 bytes
797 	 * It is simpler to place constraint for buffer and period based on
798 	 * channels.
799 	 * McBSP3 as example again (16 or 32 bit samples):
800 	 * 1 channel (mono): size is 128 frames (128 words)
801 	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
802 	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
803 	 */
804 	if (mcbsp->pdata->buffer_size) {
805 		/*
806 		* Rule for the buffer size. We should not allow
807 		* smaller buffer than the FIFO size to avoid underruns.
808 		* This applies only for the playback stream.
809 		*/
810 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
811 			snd_pcm_hw_rule_add(substream->runtime, 0,
812 					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
813 					    omap_mcbsp_hwrule_min_buffersize,
814 					    mcbsp,
815 					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
816 
817 		/* Make sure, that the period size is always even */
818 		snd_pcm_hw_constraint_step(substream->runtime, 0,
819 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
820 	}
821 
822 	return err;
823 }
824 
825 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
826 				    struct snd_soc_dai *cpu_dai)
827 {
828 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
829 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
830 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
831 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
832 
833 	if (mcbsp->latency[stream2])
834 		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
835 					       mcbsp->latency[stream2]);
836 	else if (mcbsp->latency[stream1])
837 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
838 
839 	mcbsp->latency[stream1] = 0;
840 
841 	if (!snd_soc_dai_active(cpu_dai)) {
842 		omap_mcbsp_free(mcbsp);
843 		mcbsp->configured = 0;
844 	}
845 }
846 
847 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
848 				  struct snd_soc_dai *cpu_dai)
849 {
850 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
851 	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
852 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
853 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
854 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
855 	int latency = mcbsp->latency[stream2];
856 
857 	/* Prevent omap hardware from hitting off between FIFO fills */
858 	if (!latency || mcbsp->latency[stream1] < latency)
859 		latency = mcbsp->latency[stream1];
860 
861 	if (cpu_latency_qos_request_active(pm_qos_req))
862 		cpu_latency_qos_update_request(pm_qos_req, latency);
863 	else if (latency)
864 		cpu_latency_qos_add_request(pm_qos_req, latency);
865 
866 	return 0;
867 }
868 
869 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
870 				  struct snd_soc_dai *cpu_dai)
871 {
872 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
873 
874 	switch (cmd) {
875 	case SNDRV_PCM_TRIGGER_START:
876 	case SNDRV_PCM_TRIGGER_RESUME:
877 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
878 		mcbsp->active++;
879 		omap_mcbsp_start(mcbsp, substream->stream);
880 		break;
881 
882 	case SNDRV_PCM_TRIGGER_STOP:
883 	case SNDRV_PCM_TRIGGER_SUSPEND:
884 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
885 		omap_mcbsp_stop(mcbsp, substream->stream);
886 		mcbsp->active--;
887 		break;
888 	default:
889 		return -EINVAL;
890 	}
891 
892 	return 0;
893 }
894 
895 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
896 			struct snd_pcm_substream *substream,
897 			struct snd_soc_dai *dai)
898 {
899 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
900 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
901 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
902 	u16 fifo_use;
903 	snd_pcm_sframes_t delay;
904 
905 	/* No need to proceed further if McBSP does not have FIFO */
906 	if (mcbsp->pdata->buffer_size == 0)
907 		return 0;
908 
909 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
910 		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
911 	else
912 		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
913 
914 	/*
915 	 * Divide the used locations with the channel count to get the
916 	 * FIFO usage in samples (don't care about partial samples in the
917 	 * buffer).
918 	 */
919 	delay = fifo_use / substream->runtime->channels;
920 
921 	return delay;
922 }
923 
924 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
925 				    struct snd_pcm_hw_params *params,
926 				    struct snd_soc_dai *cpu_dai)
927 {
928 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
929 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
930 	struct snd_dmaengine_dai_dma_data *dma_data;
931 	int wlen, channels, wpf;
932 	int pkt_size = 0;
933 	unsigned int format, div, framesize, master;
934 	unsigned int buffer_size = mcbsp->pdata->buffer_size;
935 
936 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
937 	channels = params_channels(params);
938 
939 	switch (params_format(params)) {
940 	case SNDRV_PCM_FORMAT_S16_LE:
941 		wlen = 16;
942 		break;
943 	case SNDRV_PCM_FORMAT_S32_LE:
944 		wlen = 32;
945 		break;
946 	default:
947 		return -EINVAL;
948 	}
949 	if (buffer_size) {
950 		int latency;
951 
952 		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
953 			int period_words, max_thrsh;
954 			int divider = 0;
955 
956 			period_words = params_period_bytes(params) / (wlen / 8);
957 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
958 				max_thrsh = mcbsp->max_tx_thres;
959 			else
960 				max_thrsh = mcbsp->max_rx_thres;
961 			/*
962 			 * Use sDMA packet mode if McBSP is in threshold mode:
963 			 * If period words less than the FIFO size the packet
964 			 * size is set to the number of period words, otherwise
965 			 * Look for the biggest threshold value which divides
966 			 * the period size evenly.
967 			 */
968 			divider = period_words / max_thrsh;
969 			if (period_words % max_thrsh)
970 				divider++;
971 			while (period_words % divider &&
972 				divider < period_words)
973 				divider++;
974 			if (divider == period_words)
975 				return -EINVAL;
976 
977 			pkt_size = period_words / divider;
978 		} else if (channels > 1) {
979 			/* Use packet mode for non mono streams */
980 			pkt_size = channels;
981 		}
982 
983 		latency = (buffer_size - pkt_size) / channels;
984 		latency = latency * USEC_PER_SEC /
985 			  (params->rate_num / params->rate_den);
986 		mcbsp->latency[substream->stream] = latency;
987 
988 		omap_mcbsp_set_threshold(substream, pkt_size);
989 	}
990 
991 	dma_data->maxburst = pkt_size;
992 
993 	if (mcbsp->configured) {
994 		/* McBSP already configured by another stream */
995 		return 0;
996 	}
997 
998 	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
999 	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
1000 	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1001 	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1002 	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1003 	wpf = channels;
1004 	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1005 			      format == SND_SOC_DAIFMT_LEFT_J)) {
1006 		/* Use dual-phase frames */
1007 		regs->rcr2	|= RPHASE;
1008 		regs->xcr2	|= XPHASE;
1009 		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1010 		wpf--;
1011 		regs->rcr2	|= RFRLEN2(wpf - 1);
1012 		regs->xcr2	|= XFRLEN2(wpf - 1);
1013 	}
1014 
1015 	regs->rcr1	|= RFRLEN1(wpf - 1);
1016 	regs->xcr1	|= XFRLEN1(wpf - 1);
1017 
1018 	switch (params_format(params)) {
1019 	case SNDRV_PCM_FORMAT_S16_LE:
1020 		/* Set word lengths */
1021 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1022 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1023 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1024 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1025 		break;
1026 	case SNDRV_PCM_FORMAT_S32_LE:
1027 		/* Set word lengths */
1028 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1029 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1030 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1031 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1032 		break;
1033 	default:
1034 		/* Unsupported PCM format */
1035 		return -EINVAL;
1036 	}
1037 
1038 	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1039 	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1040 	master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1041 	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
1042 		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1043 		framesize = (mcbsp->in_freq / div) / params_rate(params);
1044 
1045 		if (framesize < wlen * channels) {
1046 			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1047 					"channels\n", __func__);
1048 			return -EINVAL;
1049 		}
1050 	} else
1051 		framesize = wlen * channels;
1052 
1053 	/* Set FS period and length in terms of bit clock periods */
1054 	regs->srgr2	&= ~FPER(0xfff);
1055 	regs->srgr1	&= ~FWID(0xff);
1056 	switch (format) {
1057 	case SND_SOC_DAIFMT_I2S:
1058 	case SND_SOC_DAIFMT_LEFT_J:
1059 		regs->srgr2	|= FPER(framesize - 1);
1060 		regs->srgr1	|= FWID((framesize >> 1) - 1);
1061 		break;
1062 	case SND_SOC_DAIFMT_DSP_A:
1063 	case SND_SOC_DAIFMT_DSP_B:
1064 		regs->srgr2	|= FPER(framesize - 1);
1065 		regs->srgr1	|= FWID(0);
1066 		break;
1067 	}
1068 
1069 	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1070 	mcbsp->wlen = wlen;
1071 	mcbsp->configured = 1;
1072 
1073 	return 0;
1074 }
1075 
1076 /*
1077  * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1078  * cache is initialized here
1079  */
1080 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1081 				      unsigned int fmt)
1082 {
1083 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1084 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1085 	bool inv_fs = false;
1086 
1087 	if (mcbsp->configured)
1088 		return 0;
1089 
1090 	mcbsp->fmt = fmt;
1091 	memset(regs, 0, sizeof(*regs));
1092 	/* Generic McBSP register settings */
1093 	regs->spcr2	|= XINTM(3) | FREE;
1094 	regs->spcr1	|= RINTM(3);
1095 	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1096 	if (!mcbsp->pdata->has_ccr) {
1097 		regs->rcr2	|= RFIG;
1098 		regs->xcr2	|= XFIG;
1099 	}
1100 
1101 	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1102 	if (mcbsp->pdata->has_ccr) {
1103 		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1104 		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1105 	}
1106 
1107 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1108 	case SND_SOC_DAIFMT_I2S:
1109 		/* 1-bit data delay */
1110 		regs->rcr2	|= RDATDLY(1);
1111 		regs->xcr2	|= XDATDLY(1);
1112 		break;
1113 	case SND_SOC_DAIFMT_LEFT_J:
1114 		/* 0-bit data delay */
1115 		regs->rcr2	|= RDATDLY(0);
1116 		regs->xcr2	|= XDATDLY(0);
1117 		regs->spcr1	|= RJUST(2);
1118 		/* Invert FS polarity configuration */
1119 		inv_fs = true;
1120 		break;
1121 	case SND_SOC_DAIFMT_DSP_A:
1122 		/* 1-bit data delay */
1123 		regs->rcr2      |= RDATDLY(1);
1124 		regs->xcr2      |= XDATDLY(1);
1125 		/* Invert FS polarity configuration */
1126 		inv_fs = true;
1127 		break;
1128 	case SND_SOC_DAIFMT_DSP_B:
1129 		/* 0-bit data delay */
1130 		regs->rcr2      |= RDATDLY(0);
1131 		regs->xcr2      |= XDATDLY(0);
1132 		/* Invert FS polarity configuration */
1133 		inv_fs = true;
1134 		break;
1135 	default:
1136 		/* Unsupported data format */
1137 		return -EINVAL;
1138 	}
1139 
1140 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1141 	case SND_SOC_DAIFMT_CBS_CFS:
1142 		/* McBSP master. Set FS and bit clocks as outputs */
1143 		regs->pcr0	|= FSXM | FSRM |
1144 				   CLKXM | CLKRM;
1145 		/* Sample rate generator drives the FS */
1146 		regs->srgr2	|= FSGM;
1147 		break;
1148 	case SND_SOC_DAIFMT_CBM_CFS:
1149 		/* McBSP slave. FS clock as output */
1150 		regs->srgr2	|= FSGM;
1151 		regs->pcr0	|= FSXM | FSRM;
1152 		break;
1153 	case SND_SOC_DAIFMT_CBM_CFM:
1154 		/* McBSP slave */
1155 		break;
1156 	default:
1157 		/* Unsupported master/slave configuration */
1158 		return -EINVAL;
1159 	}
1160 
1161 	/* Set bit clock (CLKX/CLKR) and FS polarities */
1162 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1163 	case SND_SOC_DAIFMT_NB_NF:
1164 		/*
1165 		 * Normal BCLK + FS.
1166 		 * FS active low. TX data driven on falling edge of bit clock
1167 		 * and RX data sampled on rising edge of bit clock.
1168 		 */
1169 		regs->pcr0	|= FSXP | FSRP |
1170 				   CLKXP | CLKRP;
1171 		break;
1172 	case SND_SOC_DAIFMT_NB_IF:
1173 		regs->pcr0	|= CLKXP | CLKRP;
1174 		break;
1175 	case SND_SOC_DAIFMT_IB_NF:
1176 		regs->pcr0	|= FSXP | FSRP;
1177 		break;
1178 	case SND_SOC_DAIFMT_IB_IF:
1179 		break;
1180 	default:
1181 		return -EINVAL;
1182 	}
1183 	if (inv_fs)
1184 		regs->pcr0 ^= FSXP | FSRP;
1185 
1186 	return 0;
1187 }
1188 
1189 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1190 				     int div_id, int div)
1191 {
1192 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1193 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1194 
1195 	if (div_id != OMAP_MCBSP_CLKGDV)
1196 		return -ENODEV;
1197 
1198 	mcbsp->clk_div = div;
1199 	regs->srgr1	&= ~CLKGDV(0xff);
1200 	regs->srgr1	|= CLKGDV(div - 1);
1201 
1202 	return 0;
1203 }
1204 
1205 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1206 					 int clk_id, unsigned int freq,
1207 					 int dir)
1208 {
1209 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1210 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1211 	int err = 0;
1212 
1213 	if (mcbsp->active) {
1214 		if (freq == mcbsp->in_freq)
1215 			return 0;
1216 		else
1217 			return -EBUSY;
1218 	}
1219 
1220 	mcbsp->in_freq = freq;
1221 	regs->srgr2 &= ~CLKSM;
1222 	regs->pcr0 &= ~SCLKME;
1223 
1224 	switch (clk_id) {
1225 	case OMAP_MCBSP_SYSCLK_CLK:
1226 		regs->srgr2	|= CLKSM;
1227 		break;
1228 	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1229 		if (mcbsp_omap1()) {
1230 			err = -EINVAL;
1231 			break;
1232 		}
1233 		err = omap2_mcbsp_set_clks_src(mcbsp,
1234 					       MCBSP_CLKS_PRCM_SRC);
1235 		break;
1236 	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1237 		if (mcbsp_omap1()) {
1238 			err = 0;
1239 			break;
1240 		}
1241 		err = omap2_mcbsp_set_clks_src(mcbsp,
1242 					       MCBSP_CLKS_PAD_SRC);
1243 		break;
1244 
1245 	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1246 		regs->srgr2	|= CLKSM;
1247 		regs->pcr0	|= SCLKME;
1248 		/*
1249 		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1250 		 * disable output on those pins. This enables to inject the
1251 		 * reference clock through CLKX/CLKR. For this to work
1252 		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1253 		 */
1254 		regs->pcr0	&= ~CLKXM;
1255 		break;
1256 	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1257 		regs->pcr0	|= SCLKME;
1258 		/* Disable ouput on CLKR pin in master mode */
1259 		regs->pcr0	&= ~CLKRM;
1260 		break;
1261 	default:
1262 		err = -ENODEV;
1263 	}
1264 
1265 	return err;
1266 }
1267 
1268 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1269 	.startup	= omap_mcbsp_dai_startup,
1270 	.shutdown	= omap_mcbsp_dai_shutdown,
1271 	.prepare	= omap_mcbsp_dai_prepare,
1272 	.trigger	= omap_mcbsp_dai_trigger,
1273 	.delay		= omap_mcbsp_dai_delay,
1274 	.hw_params	= omap_mcbsp_dai_hw_params,
1275 	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1276 	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1277 	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1278 };
1279 
1280 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1281 {
1282 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1283 
1284 	pm_runtime_enable(mcbsp->dev);
1285 
1286 	snd_soc_dai_init_dma_data(dai,
1287 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1288 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1289 
1290 	return 0;
1291 }
1292 
1293 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1294 {
1295 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1296 
1297 	pm_runtime_disable(mcbsp->dev);
1298 
1299 	return 0;
1300 }
1301 
1302 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1303 	.probe = omap_mcbsp_probe,
1304 	.remove = omap_mcbsp_remove,
1305 	.playback = {
1306 		.channels_min = 1,
1307 		.channels_max = 16,
1308 		.rates = OMAP_MCBSP_RATES,
1309 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1310 	},
1311 	.capture = {
1312 		.channels_min = 1,
1313 		.channels_max = 16,
1314 		.rates = OMAP_MCBSP_RATES,
1315 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1316 	},
1317 	.ops = &mcbsp_dai_ops,
1318 };
1319 
1320 static const struct snd_soc_component_driver omap_mcbsp_component = {
1321 	.name		= "omap-mcbsp",
1322 };
1323 
1324 static struct omap_mcbsp_platform_data omap2420_pdata = {
1325 	.reg_step = 4,
1326 	.reg_size = 2,
1327 };
1328 
1329 static struct omap_mcbsp_platform_data omap2430_pdata = {
1330 	.reg_step = 4,
1331 	.reg_size = 4,
1332 	.has_ccr = true,
1333 };
1334 
1335 static struct omap_mcbsp_platform_data omap3_pdata = {
1336 	.reg_step = 4,
1337 	.reg_size = 4,
1338 	.has_ccr = true,
1339 	.has_wakeup = true,
1340 };
1341 
1342 static struct omap_mcbsp_platform_data omap4_pdata = {
1343 	.reg_step = 4,
1344 	.reg_size = 4,
1345 	.has_ccr = true,
1346 	.has_wakeup = true,
1347 };
1348 
1349 static const struct of_device_id omap_mcbsp_of_match[] = {
1350 	{
1351 		.compatible = "ti,omap2420-mcbsp",
1352 		.data = &omap2420_pdata,
1353 	},
1354 	{
1355 		.compatible = "ti,omap2430-mcbsp",
1356 		.data = &omap2430_pdata,
1357 	},
1358 	{
1359 		.compatible = "ti,omap3-mcbsp",
1360 		.data = &omap3_pdata,
1361 	},
1362 	{
1363 		.compatible = "ti,omap4-mcbsp",
1364 		.data = &omap4_pdata,
1365 	},
1366 	{ },
1367 };
1368 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1369 
1370 static int asoc_mcbsp_probe(struct platform_device *pdev)
1371 {
1372 	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1373 	struct omap_mcbsp *mcbsp;
1374 	const struct of_device_id *match;
1375 	int ret;
1376 
1377 	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1378 	if (match) {
1379 		struct device_node *node = pdev->dev.of_node;
1380 		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1381 		int buffer_size;
1382 
1383 		pdata = devm_kzalloc(&pdev->dev,
1384 				     sizeof(struct omap_mcbsp_platform_data),
1385 				     GFP_KERNEL);
1386 		if (!pdata)
1387 			return -ENOMEM;
1388 
1389 		memcpy(pdata, match->data, sizeof(*pdata));
1390 		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1391 			pdata->buffer_size = buffer_size;
1392 		if (pdata_quirk)
1393 			pdata->force_ick_on = pdata_quirk->force_ick_on;
1394 	} else if (!pdata) {
1395 		dev_err(&pdev->dev, "missing platform data.\n");
1396 		return -EINVAL;
1397 	}
1398 	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1399 	if (!mcbsp)
1400 		return -ENOMEM;
1401 
1402 	mcbsp->id = pdev->id;
1403 	mcbsp->pdata = pdata;
1404 	mcbsp->dev = &pdev->dev;
1405 	platform_set_drvdata(pdev, mcbsp);
1406 
1407 	ret = omap_mcbsp_init(pdev);
1408 	if (ret)
1409 		return ret;
1410 
1411 	if (mcbsp->pdata->reg_size == 2) {
1412 		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1413 		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1414 	}
1415 
1416 	ret = devm_snd_soc_register_component(&pdev->dev,
1417 					      &omap_mcbsp_component,
1418 					      &omap_mcbsp_dai, 1);
1419 	if (ret)
1420 		return ret;
1421 
1422 	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1423 }
1424 
1425 static int asoc_mcbsp_remove(struct platform_device *pdev)
1426 {
1427 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1428 
1429 	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1430 		mcbsp->pdata->ops->free(mcbsp->id);
1431 
1432 	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1433 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1434 
1435 	if (mcbsp->pdata->buffer_size)
1436 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1437 
1438 	omap_mcbsp_st_cleanup(pdev);
1439 
1440 	return 0;
1441 }
1442 
1443 static struct platform_driver asoc_mcbsp_driver = {
1444 	.driver = {
1445 			.name = "omap-mcbsp",
1446 			.of_match_table = omap_mcbsp_of_match,
1447 	},
1448 
1449 	.probe = asoc_mcbsp_probe,
1450 	.remove = asoc_mcbsp_remove,
1451 };
1452 
1453 module_platform_driver(asoc_mcbsp_driver);
1454 
1455 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1456 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1457 MODULE_LICENSE("GPL");
1458 MODULE_ALIAS("platform:omap-mcbsp");
1459