xref: /openbmc/linux/sound/soc/stm/stm32_sai_sub.c (revision 51b67a6e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/regmap.h>
16 
17 #include <sound/asoundef.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 
22 #include "stm32_sai.h"
23 
24 #define SAI_FREE_PROTOCOL	0x0
25 #define SAI_SPDIF_PROTOCOL	0x1
26 
27 #define SAI_SLOT_SIZE_AUTO	0x0
28 #define SAI_SLOT_SIZE_16	0x1
29 #define SAI_SLOT_SIZE_32	0x2
30 
31 #define SAI_DATASIZE_8		0x2
32 #define SAI_DATASIZE_10		0x3
33 #define SAI_DATASIZE_16		0x4
34 #define SAI_DATASIZE_20		0x5
35 #define SAI_DATASIZE_24		0x6
36 #define SAI_DATASIZE_32		0x7
37 
38 #define STM_SAI_DAI_NAME_SIZE	15
39 
40 #define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
41 #define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
42 
43 #define STM_SAI_A_ID		0x0
44 #define STM_SAI_B_ID		0x1
45 
46 #define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
47 #define STM_SAI_IS_SUB_B(x)	((x)->id == STM_SAI_B_ID)
48 #define STM_SAI_BLOCK_NAME(x)	(((x)->id == STM_SAI_A_ID) ? "A" : "B")
49 
50 #define SAI_SYNC_NONE		0x0
51 #define SAI_SYNC_INTERNAL	0x1
52 #define SAI_SYNC_EXTERNAL	0x2
53 
54 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
55 #define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
57 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
58 
59 #define SAI_IEC60958_BLOCK_FRAMES	192
60 #define SAI_IEC60958_STATUS_BYTES	24
61 
62 #define SAI_MCLK_NAME_LEN		32
63 #define SAI_RATE_11K			11025
64 
65 /**
66  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
67  * @pdev: device data pointer
68  * @regmap: SAI register map pointer
69  * @regmap_config: SAI sub block register map configuration pointer
70  * @dma_params: dma configuration data for rx or tx channel
71  * @cpu_dai_drv: DAI driver data pointer
72  * @cpu_dai: DAI runtime data pointer
73  * @substream: PCM substream data pointer
74  * @pdata: SAI block parent data pointer
75  * @np_sync_provider: synchronization provider node
76  * @sai_ck: kernel clock feeding the SAI clock generator
77  * @sai_mclk: master clock from SAI mclk provider
78  * @phys_addr: SAI registers physical base address
79  * @mclk_rate: SAI block master clock frequency (Hz). set at init
80  * @id: SAI sub block id corresponding to sub-block A or B
81  * @dir: SAI block direction (playback or capture). set at init
82  * @master: SAI block mode flag. (true=master, false=slave) set at init
83  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
84  * @fmt: SAI block format. relevant only for custom protocols. set at init
85  * @sync: SAI block synchronization mode. (none, internal or external)
86  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
87  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
88  * @fs_length: frame synchronization length. depends on protocol settings
89  * @slots: rx or tx slot number
90  * @slot_width: rx or tx slot width in bits
91  * @slot_mask: rx or tx active slots mask. set at init or at runtime
92  * @data_size: PCM data width. corresponds to PCM substream width.
93  * @spdif_frm_cnt: S/PDIF playback frame counter
94  * @iec958: iec958 data
95  * @ctrl_lock: control lock
96  * @irq_lock: prevent race condition with IRQ
97  */
98 struct stm32_sai_sub_data {
99 	struct platform_device *pdev;
100 	struct regmap *regmap;
101 	const struct regmap_config *regmap_config;
102 	struct snd_dmaengine_dai_dma_data dma_params;
103 	struct snd_soc_dai_driver cpu_dai_drv;
104 	struct snd_soc_dai *cpu_dai;
105 	struct snd_pcm_substream *substream;
106 	struct stm32_sai_data *pdata;
107 	struct device_node *np_sync_provider;
108 	struct clk *sai_ck;
109 	struct clk *sai_mclk;
110 	dma_addr_t phys_addr;
111 	unsigned int mclk_rate;
112 	unsigned int id;
113 	int dir;
114 	bool master;
115 	bool spdif;
116 	int fmt;
117 	int sync;
118 	int synco;
119 	int synci;
120 	int fs_length;
121 	int slots;
122 	int slot_width;
123 	int slot_mask;
124 	int data_size;
125 	unsigned int spdif_frm_cnt;
126 	struct snd_aes_iec958 iec958;
127 	struct mutex ctrl_lock; /* protect resources accessed by controls */
128 	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
129 };
130 
131 enum stm32_sai_fifo_th {
132 	STM_SAI_FIFO_TH_EMPTY,
133 	STM_SAI_FIFO_TH_QUARTER,
134 	STM_SAI_FIFO_TH_HALF,
135 	STM_SAI_FIFO_TH_3_QUARTER,
136 	STM_SAI_FIFO_TH_FULL,
137 };
138 
139 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
140 {
141 	switch (reg) {
142 	case STM_SAI_CR1_REGX:
143 	case STM_SAI_CR2_REGX:
144 	case STM_SAI_FRCR_REGX:
145 	case STM_SAI_SLOTR_REGX:
146 	case STM_SAI_IMR_REGX:
147 	case STM_SAI_SR_REGX:
148 	case STM_SAI_CLRFR_REGX:
149 	case STM_SAI_DR_REGX:
150 	case STM_SAI_PDMCR_REGX:
151 	case STM_SAI_PDMLY_REGX:
152 		return true;
153 	default:
154 		return false;
155 	}
156 }
157 
158 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
159 {
160 	switch (reg) {
161 	case STM_SAI_DR_REGX:
162 	case STM_SAI_SR_REGX:
163 		return true;
164 	default:
165 		return false;
166 	}
167 }
168 
169 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
170 {
171 	switch (reg) {
172 	case STM_SAI_CR1_REGX:
173 	case STM_SAI_CR2_REGX:
174 	case STM_SAI_FRCR_REGX:
175 	case STM_SAI_SLOTR_REGX:
176 	case STM_SAI_IMR_REGX:
177 	case STM_SAI_CLRFR_REGX:
178 	case STM_SAI_DR_REGX:
179 	case STM_SAI_PDMCR_REGX:
180 	case STM_SAI_PDMLY_REGX:
181 		return true;
182 	default:
183 		return false;
184 	}
185 }
186 
187 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
188 	.reg_bits = 32,
189 	.reg_stride = 4,
190 	.val_bits = 32,
191 	.max_register = STM_SAI_DR_REGX,
192 	.readable_reg = stm32_sai_sub_readable_reg,
193 	.volatile_reg = stm32_sai_sub_volatile_reg,
194 	.writeable_reg = stm32_sai_sub_writeable_reg,
195 	.fast_io = true,
196 	.cache_type = REGCACHE_FLAT,
197 };
198 
199 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
200 	.reg_bits = 32,
201 	.reg_stride = 4,
202 	.val_bits = 32,
203 	.max_register = STM_SAI_PDMLY_REGX,
204 	.readable_reg = stm32_sai_sub_readable_reg,
205 	.volatile_reg = stm32_sai_sub_volatile_reg,
206 	.writeable_reg = stm32_sai_sub_writeable_reg,
207 	.fast_io = true,
208 	.cache_type = REGCACHE_FLAT,
209 };
210 
211 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
212 			       struct snd_ctl_elem_info *uinfo)
213 {
214 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
215 	uinfo->count = 1;
216 
217 	return 0;
218 }
219 
220 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
221 			      struct snd_ctl_elem_value *uctl)
222 {
223 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
224 
225 	mutex_lock(&sai->ctrl_lock);
226 	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
227 	mutex_unlock(&sai->ctrl_lock);
228 
229 	return 0;
230 }
231 
232 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
233 			      struct snd_ctl_elem_value *uctl)
234 {
235 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
236 
237 	mutex_lock(&sai->ctrl_lock);
238 	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
239 	mutex_unlock(&sai->ctrl_lock);
240 
241 	return 0;
242 }
243 
244 static const struct snd_kcontrol_new iec958_ctls = {
245 	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
246 			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
247 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
248 	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
249 	.info = snd_pcm_iec958_info,
250 	.get = snd_pcm_iec958_get,
251 	.put = snd_pcm_iec958_put,
252 };
253 
254 struct stm32_sai_mclk_data {
255 	struct clk_hw hw;
256 	unsigned long freq;
257 	struct stm32_sai_sub_data *sai_data;
258 };
259 
260 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
261 #define STM32_SAI_MAX_CLKS 1
262 
263 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
264 				 unsigned long input_rate,
265 				 unsigned long output_rate)
266 {
267 	int version = sai->pdata->conf.version;
268 	int div;
269 
270 	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
271 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
272 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
273 		return -EINVAL;
274 	}
275 	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
276 
277 	if (input_rate % div)
278 		dev_dbg(&sai->pdev->dev,
279 			"Rate not accurate. requested (%ld), actual (%ld)\n",
280 			output_rate, input_rate / div);
281 
282 	return div;
283 }
284 
285 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
286 				 unsigned int div)
287 {
288 	int version = sai->pdata->conf.version;
289 	int ret, cr1, mask;
290 
291 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
292 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
293 		return -EINVAL;
294 	}
295 
296 	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
297 	cr1 = SAI_XCR1_MCKDIV_SET(div);
298 	ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, mask, cr1);
299 	if (ret < 0)
300 		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
301 
302 	return ret;
303 }
304 
305 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
306 				      unsigned int rate)
307 {
308 	struct platform_device *pdev = sai->pdev;
309 	struct clk *parent_clk = sai->pdata->clk_x8k;
310 	int ret;
311 
312 	if (!(rate % SAI_RATE_11K))
313 		parent_clk = sai->pdata->clk_x11k;
314 
315 	ret = clk_set_parent(sai->sai_ck, parent_clk);
316 	if (ret)
317 		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
318 			ret, ret == -EBUSY ?
319 			"Active stream rates conflict\n" : "\n");
320 
321 	return ret;
322 }
323 
324 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
325 				      unsigned long *prate)
326 {
327 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
328 	struct stm32_sai_sub_data *sai = mclk->sai_data;
329 	int div;
330 
331 	div = stm32_sai_get_clk_div(sai, *prate, rate);
332 	if (div < 0)
333 		return div;
334 
335 	mclk->freq = *prate / div;
336 
337 	return mclk->freq;
338 }
339 
340 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
341 						unsigned long parent_rate)
342 {
343 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
344 
345 	return mclk->freq;
346 }
347 
348 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
349 				   unsigned long parent_rate)
350 {
351 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
352 	struct stm32_sai_sub_data *sai = mclk->sai_data;
353 	int div, ret;
354 
355 	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
356 	if (div < 0)
357 		return div;
358 
359 	ret = stm32_sai_set_clk_div(sai, div);
360 	if (ret)
361 		return ret;
362 
363 	mclk->freq = rate;
364 
365 	return 0;
366 }
367 
368 static int stm32_sai_mclk_enable(struct clk_hw *hw)
369 {
370 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
371 	struct stm32_sai_sub_data *sai = mclk->sai_data;
372 
373 	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
374 
375 	return regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
376 				  SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
377 }
378 
379 static void stm32_sai_mclk_disable(struct clk_hw *hw)
380 {
381 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
382 	struct stm32_sai_sub_data *sai = mclk->sai_data;
383 
384 	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
385 
386 	regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
387 }
388 
389 static const struct clk_ops mclk_ops = {
390 	.enable = stm32_sai_mclk_enable,
391 	.disable = stm32_sai_mclk_disable,
392 	.recalc_rate = stm32_sai_mclk_recalc_rate,
393 	.round_rate = stm32_sai_mclk_round_rate,
394 	.set_rate = stm32_sai_mclk_set_rate,
395 };
396 
397 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
398 {
399 	struct clk_hw *hw;
400 	struct stm32_sai_mclk_data *mclk;
401 	struct device *dev = &sai->pdev->dev;
402 	const char *pname = __clk_get_name(sai->sai_ck);
403 	char *mclk_name, *p, *s = (char *)pname;
404 	int ret, i = 0;
405 
406 	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
407 	if (!mclk)
408 		return -ENOMEM;
409 
410 	mclk_name = devm_kcalloc(dev, sizeof(char),
411 				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
412 	if (!mclk_name)
413 		return -ENOMEM;
414 
415 	/*
416 	 * Forge mclk clock name from parent clock name and suffix.
417 	 * String after "_" char is stripped in parent name.
418 	 */
419 	p = mclk_name;
420 	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
421 		*p++ = *s++;
422 		i++;
423 	}
424 	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
425 
426 	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
427 	mclk->sai_data = sai;
428 	hw = &mclk->hw;
429 
430 	dev_dbg(dev, "Register master clock %s\n", mclk_name);
431 	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
432 	if (ret) {
433 		dev_err(dev, "mclk register returned %d\n", ret);
434 		return ret;
435 	}
436 	sai->sai_mclk = hw->clk;
437 
438 	/* register mclk provider */
439 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
440 }
441 
442 static irqreturn_t stm32_sai_isr(int irq, void *devid)
443 {
444 	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
445 	struct platform_device *pdev = sai->pdev;
446 	unsigned int sr, imr, flags;
447 	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
448 
449 	regmap_read(sai->regmap, STM_SAI_IMR_REGX, &imr);
450 	regmap_read(sai->regmap, STM_SAI_SR_REGX, &sr);
451 
452 	flags = sr & imr;
453 	if (!flags)
454 		return IRQ_NONE;
455 
456 	regmap_write_bits(sai->regmap, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
457 			  SAI_XCLRFR_MASK);
458 
459 	if (!sai->substream) {
460 		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
461 		return IRQ_NONE;
462 	}
463 
464 	if (flags & SAI_XIMR_OVRUDRIE) {
465 		dev_err(&pdev->dev, "IRQ %s\n",
466 			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
467 		status = SNDRV_PCM_STATE_XRUN;
468 	}
469 
470 	if (flags & SAI_XIMR_MUTEDETIE)
471 		dev_dbg(&pdev->dev, "IRQ mute detected\n");
472 
473 	if (flags & SAI_XIMR_WCKCFGIE) {
474 		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
475 		status = SNDRV_PCM_STATE_DISCONNECTED;
476 	}
477 
478 	if (flags & SAI_XIMR_CNRDYIE)
479 		dev_err(&pdev->dev, "IRQ Codec not ready\n");
480 
481 	if (flags & SAI_XIMR_AFSDETIE) {
482 		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
483 		status = SNDRV_PCM_STATE_XRUN;
484 	}
485 
486 	if (flags & SAI_XIMR_LFSDETIE) {
487 		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
488 		status = SNDRV_PCM_STATE_XRUN;
489 	}
490 
491 	spin_lock(&sai->irq_lock);
492 	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
493 		snd_pcm_stop_xrun(sai->substream);
494 	spin_unlock(&sai->irq_lock);
495 
496 	return IRQ_HANDLED;
497 }
498 
499 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
500 				int clk_id, unsigned int freq, int dir)
501 {
502 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
503 	int ret;
504 
505 	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
506 		ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
507 					 SAI_XCR1_NODIV,
508 					 (unsigned int)~SAI_XCR1_NODIV);
509 		if (ret < 0)
510 			return ret;
511 
512 		/* If master clock is used, set parent clock now */
513 		ret = stm32_sai_set_parent_clock(sai, freq);
514 		if (ret)
515 			return ret;
516 
517 		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
518 		if (ret) {
519 			dev_err(cpu_dai->dev,
520 				ret == -EBUSY ?
521 				"Active streams have incompatible rates" :
522 				"Could not set mclk rate\n");
523 			return ret;
524 		}
525 
526 		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
527 		sai->mclk_rate = freq;
528 	}
529 
530 	return 0;
531 }
532 
533 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
534 				      u32 rx_mask, int slots, int slot_width)
535 {
536 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
537 	int slotr, slotr_mask, slot_size;
538 
539 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
540 		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
541 		return 0;
542 	}
543 
544 	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
545 		tx_mask, rx_mask, slots, slot_width);
546 
547 	switch (slot_width) {
548 	case 16:
549 		slot_size = SAI_SLOT_SIZE_16;
550 		break;
551 	case 32:
552 		slot_size = SAI_SLOT_SIZE_32;
553 		break;
554 	default:
555 		slot_size = SAI_SLOT_SIZE_AUTO;
556 		break;
557 	}
558 
559 	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
560 		SAI_XSLOTR_NBSLOT_SET(slots - 1);
561 	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
562 
563 	/* tx/rx mask set in machine init, if slot number defined in DT */
564 	if (STM_SAI_IS_PLAYBACK(sai)) {
565 		sai->slot_mask = tx_mask;
566 		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
567 	}
568 
569 	if (STM_SAI_IS_CAPTURE(sai)) {
570 		sai->slot_mask = rx_mask;
571 		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
572 	}
573 
574 	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
575 
576 	regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
577 
578 	sai->slot_width = slot_width;
579 	sai->slots = slots;
580 
581 	return 0;
582 }
583 
584 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
585 {
586 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
587 	int cr1, frcr = 0;
588 	int cr1_mask, frcr_mask = 0;
589 	int ret;
590 
591 	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
592 
593 	/* Do not generate master by default */
594 	cr1 = SAI_XCR1_NODIV;
595 	cr1_mask = SAI_XCR1_NODIV;
596 
597 	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
598 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
599 		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
600 		goto conf_update;
601 	}
602 
603 	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
604 
605 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
606 	/* SCK active high for all protocols */
607 	case SND_SOC_DAIFMT_I2S:
608 		cr1 |= SAI_XCR1_CKSTR;
609 		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
610 		break;
611 	/* Left justified */
612 	case SND_SOC_DAIFMT_MSB:
613 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
614 		break;
615 	/* Right justified */
616 	case SND_SOC_DAIFMT_LSB:
617 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
618 		break;
619 	case SND_SOC_DAIFMT_DSP_A:
620 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
621 		break;
622 	case SND_SOC_DAIFMT_DSP_B:
623 		frcr |= SAI_XFRCR_FSPOL;
624 		break;
625 	default:
626 		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
627 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
628 		return -EINVAL;
629 	}
630 
631 	cr1_mask |= SAI_XCR1_CKSTR;
632 	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
633 		     SAI_XFRCR_FSDEF;
634 
635 	/* DAI clock strobing. Invert setting previously set */
636 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
637 	case SND_SOC_DAIFMT_NB_NF:
638 		break;
639 	case SND_SOC_DAIFMT_IB_NF:
640 		cr1 ^= SAI_XCR1_CKSTR;
641 		break;
642 	case SND_SOC_DAIFMT_NB_IF:
643 		frcr ^= SAI_XFRCR_FSPOL;
644 		break;
645 	case SND_SOC_DAIFMT_IB_IF:
646 		/* Invert fs & sck */
647 		cr1 ^= SAI_XCR1_CKSTR;
648 		frcr ^= SAI_XFRCR_FSPOL;
649 		break;
650 	default:
651 		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
652 			fmt & SND_SOC_DAIFMT_INV_MASK);
653 		return -EINVAL;
654 	}
655 	cr1_mask |= SAI_XCR1_CKSTR;
656 	frcr_mask |= SAI_XFRCR_FSPOL;
657 
658 	regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
659 
660 	/* DAI clock master masks */
661 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
662 	case SND_SOC_DAIFMT_CBM_CFM:
663 		/* codec is master */
664 		cr1 |= SAI_XCR1_SLAVE;
665 		sai->master = false;
666 		break;
667 	case SND_SOC_DAIFMT_CBS_CFS:
668 		sai->master = true;
669 		break;
670 	default:
671 		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
672 			fmt & SND_SOC_DAIFMT_MASTER_MASK);
673 		return -EINVAL;
674 	}
675 
676 	/* Set slave mode if sub-block is synchronized with another SAI */
677 	if (sai->sync) {
678 		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
679 		cr1 |= SAI_XCR1_SLAVE;
680 		sai->master = false;
681 	}
682 
683 	cr1_mask |= SAI_XCR1_SLAVE;
684 
685 conf_update:
686 	ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
687 	if (ret < 0) {
688 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
689 		return ret;
690 	}
691 
692 	sai->fmt = fmt;
693 
694 	return 0;
695 }
696 
697 static int stm32_sai_startup(struct snd_pcm_substream *substream,
698 			     struct snd_soc_dai *cpu_dai)
699 {
700 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
701 	int imr, cr2, ret;
702 	unsigned long flags;
703 
704 	spin_lock_irqsave(&sai->irq_lock, flags);
705 	sai->substream = substream;
706 	spin_unlock_irqrestore(&sai->irq_lock, flags);
707 
708 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
709 		snd_pcm_hw_constraint_mask64(substream->runtime,
710 					     SNDRV_PCM_HW_PARAM_FORMAT,
711 					     SNDRV_PCM_FMTBIT_S32_LE);
712 		snd_pcm_hw_constraint_single(substream->runtime,
713 					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
714 	}
715 
716 	ret = clk_prepare_enable(sai->sai_ck);
717 	if (ret < 0) {
718 		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
719 		return ret;
720 	}
721 
722 	/* Enable ITs */
723 	regmap_write_bits(sai->regmap, STM_SAI_CLRFR_REGX,
724 			  SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
725 
726 	imr = SAI_XIMR_OVRUDRIE;
727 	if (STM_SAI_IS_CAPTURE(sai)) {
728 		regmap_read(sai->regmap, STM_SAI_CR2_REGX, &cr2);
729 		if (cr2 & SAI_XCR2_MUTECNT_MASK)
730 			imr |= SAI_XIMR_MUTEDETIE;
731 	}
732 
733 	if (sai->master)
734 		imr |= SAI_XIMR_WCKCFGIE;
735 	else
736 		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
737 
738 	regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX,
739 			   SAI_XIMR_MASK, imr);
740 
741 	return 0;
742 }
743 
744 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
745 				struct snd_pcm_substream *substream,
746 				struct snd_pcm_hw_params *params)
747 {
748 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
749 	int cr1, cr1_mask, ret;
750 
751 	/*
752 	 * DMA bursts increment is set to 4 words.
753 	 * SAI fifo threshold is set to half fifo, to keep enough space
754 	 * for DMA incoming bursts.
755 	 */
756 	regmap_write_bits(sai->regmap, STM_SAI_CR2_REGX,
757 			  SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
758 			  SAI_XCR2_FFLUSH |
759 			  SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
760 
761 	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
762 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
763 		sai->spdif_frm_cnt = 0;
764 		return 0;
765 	}
766 
767 	/* Mode, data format and channel config */
768 	cr1_mask = SAI_XCR1_DS_MASK;
769 	switch (params_format(params)) {
770 	case SNDRV_PCM_FORMAT_S8:
771 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
772 		break;
773 	case SNDRV_PCM_FORMAT_S16_LE:
774 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
775 		break;
776 	case SNDRV_PCM_FORMAT_S32_LE:
777 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
778 		break;
779 	default:
780 		dev_err(cpu_dai->dev, "Data format not supported");
781 		return -EINVAL;
782 	}
783 
784 	cr1_mask |= SAI_XCR1_MONO;
785 	if ((sai->slots == 2) && (params_channels(params) == 1))
786 		cr1 |= SAI_XCR1_MONO;
787 
788 	ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
789 	if (ret < 0) {
790 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
791 		return ret;
792 	}
793 
794 	return 0;
795 }
796 
797 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
798 {
799 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
800 	int slotr, slot_sz;
801 
802 	regmap_read(sai->regmap, STM_SAI_SLOTR_REGX, &slotr);
803 
804 	/*
805 	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
806 	 * By default slot width = data size, if not forced from DT
807 	 */
808 	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
809 	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
810 		sai->slot_width = sai->data_size;
811 
812 	if (sai->slot_width < sai->data_size) {
813 		dev_err(cpu_dai->dev,
814 			"Data size %d larger than slot width\n",
815 			sai->data_size);
816 		return -EINVAL;
817 	}
818 
819 	/* Slot number is set to 2, if not specified in DT */
820 	if (!sai->slots)
821 		sai->slots = 2;
822 
823 	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
824 	regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX,
825 			   SAI_XSLOTR_NBSLOT_MASK,
826 			   SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
827 
828 	/* Set default slots mask if not already set from DT */
829 	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
830 		sai->slot_mask = (1 << sai->slots) - 1;
831 		regmap_update_bits(sai->regmap,
832 				   STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
833 				   SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
834 	}
835 
836 	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
837 		sai->slots, sai->slot_width);
838 
839 	return 0;
840 }
841 
842 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
843 {
844 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
845 	int fs_active, offset, format;
846 	int frcr, frcr_mask;
847 
848 	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
849 	sai->fs_length = sai->slot_width * sai->slots;
850 
851 	fs_active = sai->fs_length / 2;
852 	if ((format == SND_SOC_DAIFMT_DSP_A) ||
853 	    (format == SND_SOC_DAIFMT_DSP_B))
854 		fs_active = 1;
855 
856 	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
857 	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
858 	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
859 
860 	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
861 		sai->fs_length, fs_active);
862 
863 	regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
864 
865 	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
866 		offset = sai->slot_width - sai->data_size;
867 
868 		regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX,
869 				   SAI_XSLOTR_FBOFF_MASK,
870 				   SAI_XSLOTR_FBOFF_SET(offset));
871 	}
872 }
873 
874 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
875 {
876 	unsigned char *cs = sai->iec958.status;
877 
878 	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
879 	cs[1] = IEC958_AES1_CON_GENERAL;
880 	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
881 	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
882 }
883 
884 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
885 					struct snd_pcm_runtime *runtime)
886 {
887 	if (!runtime)
888 		return;
889 
890 	/* Force the sample rate according to runtime rate */
891 	mutex_lock(&sai->ctrl_lock);
892 	switch (runtime->rate) {
893 	case 22050:
894 		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
895 		break;
896 	case 44100:
897 		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
898 		break;
899 	case 88200:
900 		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
901 		break;
902 	case 176400:
903 		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
904 		break;
905 	case 24000:
906 		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
907 		break;
908 	case 48000:
909 		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
910 		break;
911 	case 96000:
912 		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
913 		break;
914 	case 192000:
915 		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
916 		break;
917 	case 32000:
918 		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
919 		break;
920 	default:
921 		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
922 		break;
923 	}
924 	mutex_unlock(&sai->ctrl_lock);
925 }
926 
927 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
928 				     struct snd_pcm_hw_params *params)
929 {
930 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
931 	int div = 0, cr1 = 0;
932 	int sai_clk_rate, mclk_ratio, den;
933 	unsigned int rate = params_rate(params);
934 	int ret;
935 
936 	if (!sai->sai_mclk) {
937 		ret = stm32_sai_set_parent_clock(sai, rate);
938 		if (ret)
939 			return ret;
940 	}
941 	sai_clk_rate = clk_get_rate(sai->sai_ck);
942 
943 	if (STM_SAI_IS_F4(sai->pdata)) {
944 		/* mclk on (NODIV=0)
945 		 *   mclk_rate = 256 * fs
946 		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
947 		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
948 		 * mclk off (NODIV=1)
949 		 *   MCKDIV ignored. sck = sai_ck
950 		 */
951 		if (!sai->mclk_rate)
952 			return 0;
953 
954 		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
955 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
956 						    2 * sai->mclk_rate);
957 			if (div < 0)
958 				return div;
959 		}
960 	} else {
961 		/*
962 		 * TDM mode :
963 		 *   mclk on
964 		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
965 		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
966 		 *   mclk off
967 		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
968 		 * Note: NOMCK/NODIV correspond to same bit.
969 		 */
970 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
971 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
972 						    rate * 128);
973 			if (div < 0)
974 				return div;
975 		} else {
976 			if (sai->mclk_rate) {
977 				mclk_ratio = sai->mclk_rate / rate;
978 				if (mclk_ratio == 512) {
979 					cr1 = SAI_XCR1_OSR;
980 				} else if (mclk_ratio != 256) {
981 					dev_err(cpu_dai->dev,
982 						"Wrong mclk ratio %d\n",
983 						mclk_ratio);
984 					return -EINVAL;
985 				}
986 
987 				regmap_update_bits(sai->regmap,
988 						   STM_SAI_CR1_REGX,
989 						   SAI_XCR1_OSR, cr1);
990 
991 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
992 							    sai->mclk_rate);
993 				if (div < 0)
994 					return div;
995 			} else {
996 				/* mclk-fs not set, master clock not active */
997 				den = sai->fs_length * params_rate(params);
998 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
999 							    den);
1000 				if (div < 0)
1001 					return div;
1002 			}
1003 		}
1004 	}
1005 
1006 	return stm32_sai_set_clk_div(sai, div);
1007 }
1008 
1009 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1010 			       struct snd_pcm_hw_params *params,
1011 			       struct snd_soc_dai *cpu_dai)
1012 {
1013 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1014 	int ret;
1015 
1016 	sai->data_size = params_width(params);
1017 
1018 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1019 		/* Rate not already set in runtime structure */
1020 		substream->runtime->rate = params_rate(params);
1021 		stm32_sai_set_iec958_status(sai, substream->runtime);
1022 	} else {
1023 		ret = stm32_sai_set_slots(cpu_dai);
1024 		if (ret < 0)
1025 			return ret;
1026 		stm32_sai_set_frame(cpu_dai);
1027 	}
1028 
1029 	ret = stm32_sai_set_config(cpu_dai, substream, params);
1030 	if (ret)
1031 		return ret;
1032 
1033 	if (sai->master)
1034 		ret = stm32_sai_configure_clock(cpu_dai, params);
1035 
1036 	return ret;
1037 }
1038 
1039 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1040 			     struct snd_soc_dai *cpu_dai)
1041 {
1042 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1043 	int ret;
1044 
1045 	switch (cmd) {
1046 	case SNDRV_PCM_TRIGGER_START:
1047 	case SNDRV_PCM_TRIGGER_RESUME:
1048 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1049 		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1050 
1051 		regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
1052 				   SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1053 
1054 		/* Enable SAI */
1055 		ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
1056 					 SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1057 		if (ret < 0)
1058 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1059 		break;
1060 	case SNDRV_PCM_TRIGGER_SUSPEND:
1061 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1062 	case SNDRV_PCM_TRIGGER_STOP:
1063 		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1064 
1065 		regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX,
1066 				   SAI_XIMR_MASK, 0);
1067 
1068 		regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
1069 				   SAI_XCR1_SAIEN,
1070 				   (unsigned int)~SAI_XCR1_SAIEN);
1071 
1072 		ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
1073 					 SAI_XCR1_DMAEN,
1074 					 (unsigned int)~SAI_XCR1_DMAEN);
1075 		if (ret < 0)
1076 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1077 
1078 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1079 			sai->spdif_frm_cnt = 0;
1080 		break;
1081 	default:
1082 		return -EINVAL;
1083 	}
1084 
1085 	return ret;
1086 }
1087 
1088 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1089 			       struct snd_soc_dai *cpu_dai)
1090 {
1091 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1092 	unsigned long flags;
1093 
1094 	regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1095 
1096 	regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_NODIV,
1097 			   SAI_XCR1_NODIV);
1098 
1099 	/* Release mclk rate only if rate was actually set */
1100 	if (sai->mclk_rate) {
1101 		clk_rate_exclusive_put(sai->sai_mclk);
1102 		sai->mclk_rate = 0;
1103 	}
1104 
1105 	clk_disable_unprepare(sai->sai_ck);
1106 
1107 	spin_lock_irqsave(&sai->irq_lock, flags);
1108 	sai->substream = NULL;
1109 	spin_unlock_irqrestore(&sai->irq_lock, flags);
1110 }
1111 
1112 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1113 			     struct snd_soc_dai *cpu_dai)
1114 {
1115 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1116 	struct snd_kcontrol_new knew = iec958_ctls;
1117 
1118 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1119 		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1120 		knew.device = rtd->pcm->device;
1121 		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1128 {
1129 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1130 	int cr1 = 0, cr1_mask, ret;
1131 
1132 	sai->cpu_dai = cpu_dai;
1133 
1134 	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1135 	/*
1136 	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1137 	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1138 	 * constraints).
1139 	 */
1140 	sai->dma_params.maxburst = 4;
1141 	if (sai->pdata->conf.fifo_size < 8)
1142 		sai->dma_params.maxburst = 1;
1143 	/* Buswidth will be set by framework at runtime */
1144 	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1145 
1146 	if (STM_SAI_IS_PLAYBACK(sai))
1147 		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1148 	else
1149 		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1150 
1151 	/* Next settings are not relevant for spdif mode */
1152 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1153 		return 0;
1154 
1155 	cr1_mask = SAI_XCR1_RX_TX;
1156 	if (STM_SAI_IS_CAPTURE(sai))
1157 		cr1 |= SAI_XCR1_RX_TX;
1158 
1159 	/* Configure synchronization */
1160 	if (sai->sync == SAI_SYNC_EXTERNAL) {
1161 		/* Configure synchro client and provider */
1162 		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1163 					   sai->synco, sai->synci);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1169 	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1170 
1171 	return regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
1172 }
1173 
1174 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1175 	.set_sysclk	= stm32_sai_set_sysclk,
1176 	.set_fmt	= stm32_sai_set_dai_fmt,
1177 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1178 	.startup	= stm32_sai_startup,
1179 	.hw_params	= stm32_sai_hw_params,
1180 	.trigger	= stm32_sai_trigger,
1181 	.shutdown	= stm32_sai_shutdown,
1182 };
1183 
1184 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1185 				       int channel, unsigned long hwoff,
1186 				       void *buf, unsigned long bytes)
1187 {
1188 	struct snd_pcm_runtime *runtime = substream->runtime;
1189 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1190 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1191 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1192 	int *ptr = (int *)(runtime->dma_area + hwoff +
1193 			   channel * (runtime->dma_bytes / runtime->channels));
1194 	ssize_t cnt = bytes_to_samples(runtime, bytes);
1195 	unsigned int frm_cnt = sai->spdif_frm_cnt;
1196 	unsigned int byte;
1197 	unsigned int mask;
1198 
1199 	do {
1200 		*ptr = ((*ptr >> 8) & 0x00ffffff);
1201 
1202 		/* Set channel status bit */
1203 		byte = frm_cnt >> 3;
1204 		mask = 1 << (frm_cnt - (byte << 3));
1205 		if (sai->iec958.status[byte] & mask)
1206 			*ptr |= 0x04000000;
1207 		ptr++;
1208 
1209 		if (!(cnt % 2))
1210 			frm_cnt++;
1211 
1212 		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1213 			frm_cnt = 0;
1214 	} while (--cnt);
1215 	sai->spdif_frm_cnt = frm_cnt;
1216 
1217 	return 0;
1218 }
1219 
1220 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1221 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1222 	.buffer_bytes_max = 8 * PAGE_SIZE,
1223 	.period_bytes_min = 1024, /* 5ms at 48kHz */
1224 	.period_bytes_max = PAGE_SIZE,
1225 	.periods_min = 2,
1226 	.periods_max = 8,
1227 };
1228 
1229 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1230 		.probe = stm32_sai_dai_probe,
1231 		.pcm_new = stm32_sai_pcm_new,
1232 		.id = 1, /* avoid call to fmt_single_name() */
1233 		.playback = {
1234 			.channels_min = 1,
1235 			.channels_max = 2,
1236 			.rate_min = 8000,
1237 			.rate_max = 192000,
1238 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1239 			/* DMA does not support 24 bits transfers */
1240 			.formats =
1241 				SNDRV_PCM_FMTBIT_S8 |
1242 				SNDRV_PCM_FMTBIT_S16_LE |
1243 				SNDRV_PCM_FMTBIT_S32_LE,
1244 		},
1245 		.ops = &stm32_sai_pcm_dai_ops,
1246 };
1247 
1248 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1249 		.probe = stm32_sai_dai_probe,
1250 		.id = 1, /* avoid call to fmt_single_name() */
1251 		.capture = {
1252 			.channels_min = 1,
1253 			.channels_max = 2,
1254 			.rate_min = 8000,
1255 			.rate_max = 192000,
1256 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1257 			/* DMA does not support 24 bits transfers */
1258 			.formats =
1259 				SNDRV_PCM_FMTBIT_S8 |
1260 				SNDRV_PCM_FMTBIT_S16_LE |
1261 				SNDRV_PCM_FMTBIT_S32_LE,
1262 		},
1263 		.ops = &stm32_sai_pcm_dai_ops,
1264 };
1265 
1266 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1267 	.pcm_hardware = &stm32_sai_pcm_hw,
1268 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1269 };
1270 
1271 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1272 	.pcm_hardware = &stm32_sai_pcm_hw,
1273 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1274 	.process = stm32_sai_pcm_process_spdif,
1275 };
1276 
1277 static const struct snd_soc_component_driver stm32_component = {
1278 	.name = "stm32-sai",
1279 };
1280 
1281 static const struct of_device_id stm32_sai_sub_ids[] = {
1282 	{ .compatible = "st,stm32-sai-sub-a",
1283 	  .data = (void *)STM_SAI_A_ID},
1284 	{ .compatible = "st,stm32-sai-sub-b",
1285 	  .data = (void *)STM_SAI_B_ID},
1286 	{}
1287 };
1288 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1289 
1290 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1291 				  struct stm32_sai_sub_data *sai)
1292 {
1293 	struct device_node *np = pdev->dev.of_node;
1294 	struct resource *res;
1295 	void __iomem *base;
1296 	struct of_phandle_args args;
1297 	int ret;
1298 
1299 	if (!np)
1300 		return -ENODEV;
1301 
1302 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1303 	base = devm_ioremap_resource(&pdev->dev, res);
1304 	if (IS_ERR(base))
1305 		return PTR_ERR(base);
1306 
1307 	sai->phys_addr = res->start;
1308 
1309 	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1310 	/* Note: PDM registers not available for sub-block B */
1311 	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1312 		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1313 
1314 	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "sai_ck",
1315 						base, sai->regmap_config);
1316 	if (IS_ERR(sai->regmap)) {
1317 		dev_err(&pdev->dev, "Failed to initialize MMIO\n");
1318 		return PTR_ERR(sai->regmap);
1319 	}
1320 
1321 	/* Get direction property */
1322 	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1323 		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1324 	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1325 		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1326 	} else {
1327 		dev_err(&pdev->dev, "Unsupported direction\n");
1328 		return -EINVAL;
1329 	}
1330 
1331 	/* Get spdif iec60958 property */
1332 	sai->spdif = false;
1333 	if (of_get_property(np, "st,iec60958", NULL)) {
1334 		if (!STM_SAI_HAS_SPDIF(sai) ||
1335 		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1336 			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1337 			return -EINVAL;
1338 		}
1339 		stm32_sai_init_iec958_status(sai);
1340 		sai->spdif = true;
1341 		sai->master = true;
1342 	}
1343 
1344 	/* Get synchronization property */
1345 	args.np = NULL;
1346 	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1347 	if (ret < 0  && ret != -ENOENT) {
1348 		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1349 		return ret;
1350 	}
1351 
1352 	sai->sync = SAI_SYNC_NONE;
1353 	if (args.np) {
1354 		if (args.np == np) {
1355 			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1356 			of_node_put(args.np);
1357 			return -EINVAL;
1358 		}
1359 
1360 		sai->np_sync_provider  = of_get_parent(args.np);
1361 		if (!sai->np_sync_provider) {
1362 			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1363 				np);
1364 			of_node_put(args.np);
1365 			return -ENODEV;
1366 		}
1367 
1368 		sai->sync = SAI_SYNC_INTERNAL;
1369 		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1370 			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1371 				dev_err(&pdev->dev,
1372 					"External synchro not supported\n");
1373 				of_node_put(args.np);
1374 				return -EINVAL;
1375 			}
1376 			sai->sync = SAI_SYNC_EXTERNAL;
1377 
1378 			sai->synci = args.args[0];
1379 			if (sai->synci < 1 ||
1380 			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1381 				dev_err(&pdev->dev, "Wrong SAI index\n");
1382 				of_node_put(args.np);
1383 				return -EINVAL;
1384 			}
1385 
1386 			if (of_property_match_string(args.np, "compatible",
1387 						     "st,stm32-sai-sub-a") >= 0)
1388 				sai->synco = STM_SAI_SYNC_OUT_A;
1389 
1390 			if (of_property_match_string(args.np, "compatible",
1391 						     "st,stm32-sai-sub-b") >= 0)
1392 				sai->synco = STM_SAI_SYNC_OUT_B;
1393 
1394 			if (!sai->synco) {
1395 				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1396 				of_node_put(args.np);
1397 				return -EINVAL;
1398 			}
1399 		}
1400 
1401 		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1402 			pdev->name, args.np->full_name);
1403 	}
1404 
1405 	of_node_put(args.np);
1406 	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1407 	if (IS_ERR(sai->sai_ck)) {
1408 		dev_err(&pdev->dev, "Missing kernel clock sai_ck\n");
1409 		return PTR_ERR(sai->sai_ck);
1410 	}
1411 
1412 	if (STM_SAI_IS_F4(sai->pdata))
1413 		return 0;
1414 
1415 	/* Register mclk provider if requested */
1416 	if (of_find_property(np, "#clock-cells", NULL)) {
1417 		ret = stm32_sai_add_mclk_provider(sai);
1418 		if (ret < 0)
1419 			return ret;
1420 	} else {
1421 		sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
1422 		if (IS_ERR(sai->sai_mclk)) {
1423 			if (PTR_ERR(sai->sai_mclk) != -ENOENT)
1424 				return PTR_ERR(sai->sai_mclk);
1425 			sai->sai_mclk = NULL;
1426 		}
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 static int stm32_sai_sub_probe(struct platform_device *pdev)
1433 {
1434 	struct stm32_sai_sub_data *sai;
1435 	const struct of_device_id *of_id;
1436 	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1437 	int ret;
1438 
1439 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1440 	if (!sai)
1441 		return -ENOMEM;
1442 
1443 	of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1444 	if (!of_id)
1445 		return -EINVAL;
1446 	sai->id = (uintptr_t)of_id->data;
1447 
1448 	sai->pdev = pdev;
1449 	mutex_init(&sai->ctrl_lock);
1450 	spin_lock_init(&sai->irq_lock);
1451 	platform_set_drvdata(pdev, sai);
1452 
1453 	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1454 	if (!sai->pdata) {
1455 		dev_err(&pdev->dev, "Parent device data not available\n");
1456 		return -EINVAL;
1457 	}
1458 
1459 	ret = stm32_sai_sub_parse_of(pdev, sai);
1460 	if (ret)
1461 		return ret;
1462 
1463 	if (STM_SAI_IS_PLAYBACK(sai))
1464 		sai->cpu_dai_drv = stm32_sai_playback_dai;
1465 	else
1466 		sai->cpu_dai_drv = stm32_sai_capture_dai;
1467 	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1468 
1469 	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1470 			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1471 	if (ret) {
1472 		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1473 		return ret;
1474 	}
1475 
1476 	ret = devm_snd_soc_register_component(&pdev->dev, &stm32_component,
1477 					      &sai->cpu_dai_drv, 1);
1478 	if (ret)
1479 		return ret;
1480 
1481 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1482 		conf = &stm32_sai_pcm_config_spdif;
1483 
1484 	ret = devm_snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1485 	if (ret) {
1486 		dev_err(&pdev->dev, "Could not register pcm dma\n");
1487 		return ret;
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 #ifdef CONFIG_PM_SLEEP
1494 static int stm32_sai_sub_suspend(struct device *dev)
1495 {
1496 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1497 
1498 	regcache_cache_only(sai->regmap, true);
1499 	regcache_mark_dirty(sai->regmap);
1500 	return 0;
1501 }
1502 
1503 static int stm32_sai_sub_resume(struct device *dev)
1504 {
1505 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1506 
1507 	regcache_cache_only(sai->regmap, false);
1508 	return regcache_sync(sai->regmap);
1509 }
1510 #endif /* CONFIG_PM_SLEEP */
1511 
1512 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1513 	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1514 };
1515 
1516 static struct platform_driver stm32_sai_sub_driver = {
1517 	.driver = {
1518 		.name = "st,stm32-sai-sub",
1519 		.of_match_table = stm32_sai_sub_ids,
1520 		.pm = &stm32_sai_sub_pm_ops,
1521 	},
1522 	.probe = stm32_sai_sub_probe,
1523 };
1524 
1525 module_platform_driver(stm32_sai_sub_driver);
1526 
1527 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1528 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1529 MODULE_ALIAS("platform:st,stm32-sai-sub");
1530 MODULE_LICENSE("GPL v2");
1531