xref: /openbmc/linux/sound/soc/stm/stm32_sai_sub.c (revision 3d40aed8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 
18 #include <sound/asoundef.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 
23 #include "stm32_sai.h"
24 
25 #define SAI_FREE_PROTOCOL	0x0
26 #define SAI_SPDIF_PROTOCOL	0x1
27 
28 #define SAI_SLOT_SIZE_AUTO	0x0
29 #define SAI_SLOT_SIZE_16	0x1
30 #define SAI_SLOT_SIZE_32	0x2
31 
32 #define SAI_DATASIZE_8		0x2
33 #define SAI_DATASIZE_10		0x3
34 #define SAI_DATASIZE_16		0x4
35 #define SAI_DATASIZE_20		0x5
36 #define SAI_DATASIZE_24		0x6
37 #define SAI_DATASIZE_32		0x7
38 
39 #define STM_SAI_DAI_NAME_SIZE	15
40 
41 #define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42 #define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43 
44 #define STM_SAI_A_ID		0x0
45 #define STM_SAI_B_ID		0x1
46 
47 #define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
48 
49 #define SAI_SYNC_NONE		0x0
50 #define SAI_SYNC_INTERNAL	0x1
51 #define SAI_SYNC_EXTERNAL	0x2
52 
53 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
54 #define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
55 #define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
57 
58 #define SAI_IEC60958_BLOCK_FRAMES	192
59 #define SAI_IEC60958_STATUS_BYTES	24
60 
61 #define SAI_MCLK_NAME_LEN		32
62 #define SAI_RATE_11K			11025
63 
64 /**
65  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
66  * @pdev: device data pointer
67  * @regmap: SAI register map pointer
68  * @regmap_config: SAI sub block register map configuration pointer
69  * @dma_params: dma configuration data for rx or tx channel
70  * @cpu_dai_drv: DAI driver data pointer
71  * @cpu_dai: DAI runtime data pointer
72  * @substream: PCM substream data pointer
73  * @pdata: SAI block parent data pointer
74  * @np_sync_provider: synchronization provider node
75  * @sai_ck: kernel clock feeding the SAI clock generator
76  * @sai_mclk: master clock from SAI mclk provider
77  * @phys_addr: SAI registers physical base address
78  * @mclk_rate: SAI block master clock frequency (Hz). set at init
79  * @id: SAI sub block id corresponding to sub-block A or B
80  * @dir: SAI block direction (playback or capture). set at init
81  * @master: SAI block mode flag. (true=master, false=slave) set at init
82  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
83  * @fmt: SAI block format. relevant only for custom protocols. set at init
84  * @sync: SAI block synchronization mode. (none, internal or external)
85  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
86  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
87  * @fs_length: frame synchronization length. depends on protocol settings
88  * @slots: rx or tx slot number
89  * @slot_width: rx or tx slot width in bits
90  * @slot_mask: rx or tx active slots mask. set at init or at runtime
91  * @data_size: PCM data width. corresponds to PCM substream width.
92  * @spdif_frm_cnt: S/PDIF playback frame counter
93  * @iec958: iec958 data
94  * @ctrl_lock: control lock
95  * @irq_lock: prevent race condition with IRQ
96  */
97 struct stm32_sai_sub_data {
98 	struct platform_device *pdev;
99 	struct regmap *regmap;
100 	const struct regmap_config *regmap_config;
101 	struct snd_dmaengine_dai_dma_data dma_params;
102 	struct snd_soc_dai_driver cpu_dai_drv;
103 	struct snd_soc_dai *cpu_dai;
104 	struct snd_pcm_substream *substream;
105 	struct stm32_sai_data *pdata;
106 	struct device_node *np_sync_provider;
107 	struct clk *sai_ck;
108 	struct clk *sai_mclk;
109 	dma_addr_t phys_addr;
110 	unsigned int mclk_rate;
111 	unsigned int id;
112 	int dir;
113 	bool master;
114 	bool spdif;
115 	int fmt;
116 	int sync;
117 	int synco;
118 	int synci;
119 	int fs_length;
120 	int slots;
121 	int slot_width;
122 	int slot_mask;
123 	int data_size;
124 	unsigned int spdif_frm_cnt;
125 	struct snd_aes_iec958 iec958;
126 	struct mutex ctrl_lock; /* protect resources accessed by controls */
127 	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
128 };
129 
130 enum stm32_sai_fifo_th {
131 	STM_SAI_FIFO_TH_EMPTY,
132 	STM_SAI_FIFO_TH_QUARTER,
133 	STM_SAI_FIFO_TH_HALF,
134 	STM_SAI_FIFO_TH_3_QUARTER,
135 	STM_SAI_FIFO_TH_FULL,
136 };
137 
138 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
139 {
140 	switch (reg) {
141 	case STM_SAI_CR1_REGX:
142 	case STM_SAI_CR2_REGX:
143 	case STM_SAI_FRCR_REGX:
144 	case STM_SAI_SLOTR_REGX:
145 	case STM_SAI_IMR_REGX:
146 	case STM_SAI_SR_REGX:
147 	case STM_SAI_CLRFR_REGX:
148 	case STM_SAI_DR_REGX:
149 	case STM_SAI_PDMCR_REGX:
150 	case STM_SAI_PDMLY_REGX:
151 		return true;
152 	default:
153 		return false;
154 	}
155 }
156 
157 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
158 {
159 	switch (reg) {
160 	case STM_SAI_DR_REGX:
161 	case STM_SAI_SR_REGX:
162 		return true;
163 	default:
164 		return false;
165 	}
166 }
167 
168 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
169 {
170 	switch (reg) {
171 	case STM_SAI_CR1_REGX:
172 	case STM_SAI_CR2_REGX:
173 	case STM_SAI_FRCR_REGX:
174 	case STM_SAI_SLOTR_REGX:
175 	case STM_SAI_IMR_REGX:
176 	case STM_SAI_CLRFR_REGX:
177 	case STM_SAI_DR_REGX:
178 	case STM_SAI_PDMCR_REGX:
179 	case STM_SAI_PDMLY_REGX:
180 		return true;
181 	default:
182 		return false;
183 	}
184 }
185 
186 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
187 				unsigned int reg, unsigned int mask,
188 				unsigned int val)
189 {
190 	int ret;
191 
192 	ret = clk_enable(sai->pdata->pclk);
193 	if (ret < 0)
194 		return ret;
195 
196 	ret = regmap_update_bits(sai->regmap, reg, mask, val);
197 
198 	clk_disable(sai->pdata->pclk);
199 
200 	return ret;
201 }
202 
203 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
204 				unsigned int reg, unsigned int mask,
205 				unsigned int val)
206 {
207 	int ret;
208 
209 	ret = clk_enable(sai->pdata->pclk);
210 	if (ret < 0)
211 		return ret;
212 
213 	ret = regmap_write_bits(sai->regmap, reg, mask, val);
214 
215 	clk_disable(sai->pdata->pclk);
216 
217 	return ret;
218 }
219 
220 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
221 				unsigned int reg, unsigned int *val)
222 {
223 	int ret;
224 
225 	ret = clk_enable(sai->pdata->pclk);
226 	if (ret < 0)
227 		return ret;
228 
229 	ret = regmap_read(sai->regmap, reg, val);
230 
231 	clk_disable(sai->pdata->pclk);
232 
233 	return ret;
234 }
235 
236 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
237 	.reg_bits = 32,
238 	.reg_stride = 4,
239 	.val_bits = 32,
240 	.max_register = STM_SAI_DR_REGX,
241 	.readable_reg = stm32_sai_sub_readable_reg,
242 	.volatile_reg = stm32_sai_sub_volatile_reg,
243 	.writeable_reg = stm32_sai_sub_writeable_reg,
244 	.fast_io = true,
245 	.cache_type = REGCACHE_FLAT,
246 };
247 
248 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
249 	.reg_bits = 32,
250 	.reg_stride = 4,
251 	.val_bits = 32,
252 	.max_register = STM_SAI_PDMLY_REGX,
253 	.readable_reg = stm32_sai_sub_readable_reg,
254 	.volatile_reg = stm32_sai_sub_volatile_reg,
255 	.writeable_reg = stm32_sai_sub_writeable_reg,
256 	.fast_io = true,
257 	.cache_type = REGCACHE_FLAT,
258 };
259 
260 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
261 			       struct snd_ctl_elem_info *uinfo)
262 {
263 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
264 	uinfo->count = 1;
265 
266 	return 0;
267 }
268 
269 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
270 			      struct snd_ctl_elem_value *uctl)
271 {
272 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
273 
274 	mutex_lock(&sai->ctrl_lock);
275 	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
276 	mutex_unlock(&sai->ctrl_lock);
277 
278 	return 0;
279 }
280 
281 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
282 			      struct snd_ctl_elem_value *uctl)
283 {
284 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
285 
286 	mutex_lock(&sai->ctrl_lock);
287 	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
288 	mutex_unlock(&sai->ctrl_lock);
289 
290 	return 0;
291 }
292 
293 static const struct snd_kcontrol_new iec958_ctls = {
294 	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
295 			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
296 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
297 	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
298 	.info = snd_pcm_iec958_info,
299 	.get = snd_pcm_iec958_get,
300 	.put = snd_pcm_iec958_put,
301 };
302 
303 struct stm32_sai_mclk_data {
304 	struct clk_hw hw;
305 	unsigned long freq;
306 	struct stm32_sai_sub_data *sai_data;
307 };
308 
309 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
310 #define STM32_SAI_MAX_CLKS 1
311 
312 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
313 				 unsigned long input_rate,
314 				 unsigned long output_rate)
315 {
316 	int version = sai->pdata->conf.version;
317 	int div;
318 
319 	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
320 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
321 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
322 		return -EINVAL;
323 	}
324 	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
325 
326 	if (input_rate % div)
327 		dev_dbg(&sai->pdev->dev,
328 			"Rate not accurate. requested (%ld), actual (%ld)\n",
329 			output_rate, input_rate / div);
330 
331 	return div;
332 }
333 
334 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
335 				 unsigned int div)
336 {
337 	int version = sai->pdata->conf.version;
338 	int ret, cr1, mask;
339 
340 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
341 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
342 		return -EINVAL;
343 	}
344 
345 	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
346 	cr1 = SAI_XCR1_MCKDIV_SET(div);
347 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
348 	if (ret < 0)
349 		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
350 
351 	return ret;
352 }
353 
354 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
355 				      unsigned int rate)
356 {
357 	struct platform_device *pdev = sai->pdev;
358 	struct clk *parent_clk = sai->pdata->clk_x8k;
359 	int ret;
360 
361 	if (!(rate % SAI_RATE_11K))
362 		parent_clk = sai->pdata->clk_x11k;
363 
364 	ret = clk_set_parent(sai->sai_ck, parent_clk);
365 	if (ret)
366 		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
367 			ret, ret == -EBUSY ?
368 			"Active stream rates conflict\n" : "\n");
369 
370 	return ret;
371 }
372 
373 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
374 				      unsigned long *prate)
375 {
376 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
377 	struct stm32_sai_sub_data *sai = mclk->sai_data;
378 	int div;
379 
380 	div = stm32_sai_get_clk_div(sai, *prate, rate);
381 	if (div < 0)
382 		return div;
383 
384 	mclk->freq = *prate / div;
385 
386 	return mclk->freq;
387 }
388 
389 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
390 						unsigned long parent_rate)
391 {
392 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
393 
394 	return mclk->freq;
395 }
396 
397 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
398 				   unsigned long parent_rate)
399 {
400 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
401 	struct stm32_sai_sub_data *sai = mclk->sai_data;
402 	int div, ret;
403 
404 	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
405 	if (div < 0)
406 		return div;
407 
408 	ret = stm32_sai_set_clk_div(sai, div);
409 	if (ret)
410 		return ret;
411 
412 	mclk->freq = rate;
413 
414 	return 0;
415 }
416 
417 static int stm32_sai_mclk_enable(struct clk_hw *hw)
418 {
419 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
420 	struct stm32_sai_sub_data *sai = mclk->sai_data;
421 
422 	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
423 
424 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
425 				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
426 }
427 
428 static void stm32_sai_mclk_disable(struct clk_hw *hw)
429 {
430 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
431 	struct stm32_sai_sub_data *sai = mclk->sai_data;
432 
433 	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
434 
435 	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
436 }
437 
438 static const struct clk_ops mclk_ops = {
439 	.enable = stm32_sai_mclk_enable,
440 	.disable = stm32_sai_mclk_disable,
441 	.recalc_rate = stm32_sai_mclk_recalc_rate,
442 	.round_rate = stm32_sai_mclk_round_rate,
443 	.set_rate = stm32_sai_mclk_set_rate,
444 };
445 
446 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
447 {
448 	struct clk_hw *hw;
449 	struct stm32_sai_mclk_data *mclk;
450 	struct device *dev = &sai->pdev->dev;
451 	const char *pname = __clk_get_name(sai->sai_ck);
452 	char *mclk_name, *p, *s = (char *)pname;
453 	int ret, i = 0;
454 
455 	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
456 	if (!mclk)
457 		return -ENOMEM;
458 
459 	mclk_name = devm_kcalloc(dev, sizeof(char),
460 				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
461 	if (!mclk_name)
462 		return -ENOMEM;
463 
464 	/*
465 	 * Forge mclk clock name from parent clock name and suffix.
466 	 * String after "_" char is stripped in parent name.
467 	 */
468 	p = mclk_name;
469 	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
470 		*p++ = *s++;
471 		i++;
472 	}
473 	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
474 
475 	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
476 	mclk->sai_data = sai;
477 	hw = &mclk->hw;
478 
479 	dev_dbg(dev, "Register master clock %s\n", mclk_name);
480 	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
481 	if (ret) {
482 		dev_err(dev, "mclk register returned %d\n", ret);
483 		return ret;
484 	}
485 	sai->sai_mclk = hw->clk;
486 
487 	/* register mclk provider */
488 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
489 }
490 
491 static irqreturn_t stm32_sai_isr(int irq, void *devid)
492 {
493 	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
494 	struct platform_device *pdev = sai->pdev;
495 	unsigned int sr, imr, flags;
496 	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
497 
498 	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
499 	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
500 
501 	flags = sr & imr;
502 	if (!flags)
503 		return IRQ_NONE;
504 
505 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
506 			     SAI_XCLRFR_MASK);
507 
508 	if (!sai->substream) {
509 		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
510 		return IRQ_NONE;
511 	}
512 
513 	if (flags & SAI_XIMR_OVRUDRIE) {
514 		dev_err(&pdev->dev, "IRQ %s\n",
515 			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
516 		status = SNDRV_PCM_STATE_XRUN;
517 	}
518 
519 	if (flags & SAI_XIMR_MUTEDETIE)
520 		dev_dbg(&pdev->dev, "IRQ mute detected\n");
521 
522 	if (flags & SAI_XIMR_WCKCFGIE) {
523 		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
524 		status = SNDRV_PCM_STATE_DISCONNECTED;
525 	}
526 
527 	if (flags & SAI_XIMR_CNRDYIE)
528 		dev_err(&pdev->dev, "IRQ Codec not ready\n");
529 
530 	if (flags & SAI_XIMR_AFSDETIE) {
531 		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
532 		status = SNDRV_PCM_STATE_XRUN;
533 	}
534 
535 	if (flags & SAI_XIMR_LFSDETIE) {
536 		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
537 		status = SNDRV_PCM_STATE_XRUN;
538 	}
539 
540 	spin_lock(&sai->irq_lock);
541 	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
542 		snd_pcm_stop_xrun(sai->substream);
543 	spin_unlock(&sai->irq_lock);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
549 				int clk_id, unsigned int freq, int dir)
550 {
551 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
552 	int ret;
553 
554 	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
555 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
556 					   SAI_XCR1_NODIV,
557 					 freq ? 0 : SAI_XCR1_NODIV);
558 		if (ret < 0)
559 			return ret;
560 
561 		/* Assume shutdown if requested frequency is 0Hz */
562 		if (!freq) {
563 			/* Release mclk rate only if rate was actually set */
564 			if (sai->mclk_rate) {
565 				clk_rate_exclusive_put(sai->sai_mclk);
566 				sai->mclk_rate = 0;
567 			}
568 			return 0;
569 		}
570 
571 		/* If master clock is used, set parent clock now */
572 		ret = stm32_sai_set_parent_clock(sai, freq);
573 		if (ret)
574 			return ret;
575 
576 		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
577 		if (ret) {
578 			dev_err(cpu_dai->dev,
579 				ret == -EBUSY ?
580 				"Active streams have incompatible rates" :
581 				"Could not set mclk rate\n");
582 			return ret;
583 		}
584 
585 		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
586 		sai->mclk_rate = freq;
587 	}
588 
589 	return 0;
590 }
591 
592 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
593 				      u32 rx_mask, int slots, int slot_width)
594 {
595 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
596 	int slotr, slotr_mask, slot_size;
597 
598 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
599 		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
600 		return 0;
601 	}
602 
603 	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
604 		tx_mask, rx_mask, slots, slot_width);
605 
606 	switch (slot_width) {
607 	case 16:
608 		slot_size = SAI_SLOT_SIZE_16;
609 		break;
610 	case 32:
611 		slot_size = SAI_SLOT_SIZE_32;
612 		break;
613 	default:
614 		slot_size = SAI_SLOT_SIZE_AUTO;
615 		break;
616 	}
617 
618 	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
619 		SAI_XSLOTR_NBSLOT_SET(slots - 1);
620 	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
621 
622 	/* tx/rx mask set in machine init, if slot number defined in DT */
623 	if (STM_SAI_IS_PLAYBACK(sai)) {
624 		sai->slot_mask = tx_mask;
625 		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
626 	}
627 
628 	if (STM_SAI_IS_CAPTURE(sai)) {
629 		sai->slot_mask = rx_mask;
630 		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
631 	}
632 
633 	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
634 
635 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
636 
637 	sai->slot_width = slot_width;
638 	sai->slots = slots;
639 
640 	return 0;
641 }
642 
643 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
644 {
645 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
646 	int cr1, frcr = 0;
647 	int cr1_mask, frcr_mask = 0;
648 	int ret;
649 
650 	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
651 
652 	/* Do not generate master by default */
653 	cr1 = SAI_XCR1_NODIV;
654 	cr1_mask = SAI_XCR1_NODIV;
655 
656 	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
657 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
658 		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
659 		goto conf_update;
660 	}
661 
662 	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
663 
664 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
665 	/* SCK active high for all protocols */
666 	case SND_SOC_DAIFMT_I2S:
667 		cr1 |= SAI_XCR1_CKSTR;
668 		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
669 		break;
670 	/* Left justified */
671 	case SND_SOC_DAIFMT_MSB:
672 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
673 		break;
674 	/* Right justified */
675 	case SND_SOC_DAIFMT_LSB:
676 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
677 		break;
678 	case SND_SOC_DAIFMT_DSP_A:
679 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
680 		break;
681 	case SND_SOC_DAIFMT_DSP_B:
682 		frcr |= SAI_XFRCR_FSPOL;
683 		break;
684 	default:
685 		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
686 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
687 		return -EINVAL;
688 	}
689 
690 	cr1_mask |= SAI_XCR1_CKSTR;
691 	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
692 		     SAI_XFRCR_FSDEF;
693 
694 	/* DAI clock strobing. Invert setting previously set */
695 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
696 	case SND_SOC_DAIFMT_NB_NF:
697 		break;
698 	case SND_SOC_DAIFMT_IB_NF:
699 		cr1 ^= SAI_XCR1_CKSTR;
700 		break;
701 	case SND_SOC_DAIFMT_NB_IF:
702 		frcr ^= SAI_XFRCR_FSPOL;
703 		break;
704 	case SND_SOC_DAIFMT_IB_IF:
705 		/* Invert fs & sck */
706 		cr1 ^= SAI_XCR1_CKSTR;
707 		frcr ^= SAI_XFRCR_FSPOL;
708 		break;
709 	default:
710 		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
711 			fmt & SND_SOC_DAIFMT_INV_MASK);
712 		return -EINVAL;
713 	}
714 	cr1_mask |= SAI_XCR1_CKSTR;
715 	frcr_mask |= SAI_XFRCR_FSPOL;
716 
717 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
718 
719 	/* DAI clock master masks */
720 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
721 	case SND_SOC_DAIFMT_BC_FC:
722 		/* codec is master */
723 		cr1 |= SAI_XCR1_SLAVE;
724 		sai->master = false;
725 		break;
726 	case SND_SOC_DAIFMT_BP_FP:
727 		sai->master = true;
728 		break;
729 	default:
730 		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
731 			fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
732 		return -EINVAL;
733 	}
734 
735 	/* Set slave mode if sub-block is synchronized with another SAI */
736 	if (sai->sync) {
737 		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
738 		cr1 |= SAI_XCR1_SLAVE;
739 		sai->master = false;
740 	}
741 
742 	cr1_mask |= SAI_XCR1_SLAVE;
743 
744 conf_update:
745 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
746 	if (ret < 0) {
747 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
748 		return ret;
749 	}
750 
751 	sai->fmt = fmt;
752 
753 	return 0;
754 }
755 
756 static int stm32_sai_startup(struct snd_pcm_substream *substream,
757 			     struct snd_soc_dai *cpu_dai)
758 {
759 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
760 	int imr, cr2, ret;
761 	unsigned long flags;
762 
763 	spin_lock_irqsave(&sai->irq_lock, flags);
764 	sai->substream = substream;
765 	spin_unlock_irqrestore(&sai->irq_lock, flags);
766 
767 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
768 		snd_pcm_hw_constraint_mask64(substream->runtime,
769 					     SNDRV_PCM_HW_PARAM_FORMAT,
770 					     SNDRV_PCM_FMTBIT_S32_LE);
771 		snd_pcm_hw_constraint_single(substream->runtime,
772 					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
773 	}
774 
775 	ret = clk_prepare_enable(sai->sai_ck);
776 	if (ret < 0) {
777 		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
778 		return ret;
779 	}
780 
781 	/* Enable ITs */
782 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
783 			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
784 
785 	imr = SAI_XIMR_OVRUDRIE;
786 	if (STM_SAI_IS_CAPTURE(sai)) {
787 		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
788 		if (cr2 & SAI_XCR2_MUTECNT_MASK)
789 			imr |= SAI_XIMR_MUTEDETIE;
790 	}
791 
792 	if (sai->master)
793 		imr |= SAI_XIMR_WCKCFGIE;
794 	else
795 		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
796 
797 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
798 			     SAI_XIMR_MASK, imr);
799 
800 	return 0;
801 }
802 
803 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
804 				struct snd_pcm_substream *substream,
805 				struct snd_pcm_hw_params *params)
806 {
807 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
808 	int cr1, cr1_mask, ret;
809 
810 	/*
811 	 * DMA bursts increment is set to 4 words.
812 	 * SAI fifo threshold is set to half fifo, to keep enough space
813 	 * for DMA incoming bursts.
814 	 */
815 	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
816 			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
817 			     SAI_XCR2_FFLUSH |
818 			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
819 
820 	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
821 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
822 		sai->spdif_frm_cnt = 0;
823 		return 0;
824 	}
825 
826 	/* Mode, data format and channel config */
827 	cr1_mask = SAI_XCR1_DS_MASK;
828 	switch (params_format(params)) {
829 	case SNDRV_PCM_FORMAT_S8:
830 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
831 		break;
832 	case SNDRV_PCM_FORMAT_S16_LE:
833 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
834 		break;
835 	case SNDRV_PCM_FORMAT_S32_LE:
836 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
837 		break;
838 	default:
839 		dev_err(cpu_dai->dev, "Data format not supported\n");
840 		return -EINVAL;
841 	}
842 
843 	cr1_mask |= SAI_XCR1_MONO;
844 	if ((sai->slots == 2) && (params_channels(params) == 1))
845 		cr1 |= SAI_XCR1_MONO;
846 
847 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
848 	if (ret < 0) {
849 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
850 		return ret;
851 	}
852 
853 	return 0;
854 }
855 
856 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
857 {
858 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
859 	int slotr, slot_sz;
860 
861 	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
862 
863 	/*
864 	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
865 	 * By default slot width = data size, if not forced from DT
866 	 */
867 	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
868 	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
869 		sai->slot_width = sai->data_size;
870 
871 	if (sai->slot_width < sai->data_size) {
872 		dev_err(cpu_dai->dev,
873 			"Data size %d larger than slot width\n",
874 			sai->data_size);
875 		return -EINVAL;
876 	}
877 
878 	/* Slot number is set to 2, if not specified in DT */
879 	if (!sai->slots)
880 		sai->slots = 2;
881 
882 	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
883 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
884 			     SAI_XSLOTR_NBSLOT_MASK,
885 			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
886 
887 	/* Set default slots mask if not already set from DT */
888 	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
889 		sai->slot_mask = (1 << sai->slots) - 1;
890 		stm32_sai_sub_reg_up(sai,
891 				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
892 				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
893 	}
894 
895 	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
896 		sai->slots, sai->slot_width);
897 
898 	return 0;
899 }
900 
901 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
902 {
903 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
904 	int fs_active, offset, format;
905 	int frcr, frcr_mask;
906 
907 	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
908 	sai->fs_length = sai->slot_width * sai->slots;
909 
910 	fs_active = sai->fs_length / 2;
911 	if ((format == SND_SOC_DAIFMT_DSP_A) ||
912 	    (format == SND_SOC_DAIFMT_DSP_B))
913 		fs_active = 1;
914 
915 	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
916 	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
917 	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
918 
919 	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
920 		sai->fs_length, fs_active);
921 
922 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
923 
924 	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
925 		offset = sai->slot_width - sai->data_size;
926 
927 		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
928 				     SAI_XSLOTR_FBOFF_MASK,
929 				     SAI_XSLOTR_FBOFF_SET(offset));
930 	}
931 }
932 
933 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
934 {
935 	unsigned char *cs = sai->iec958.status;
936 
937 	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
938 	cs[1] = IEC958_AES1_CON_GENERAL;
939 	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
940 	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
941 }
942 
943 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
944 					struct snd_pcm_runtime *runtime)
945 {
946 	if (!runtime)
947 		return;
948 
949 	/* Force the sample rate according to runtime rate */
950 	mutex_lock(&sai->ctrl_lock);
951 	switch (runtime->rate) {
952 	case 22050:
953 		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
954 		break;
955 	case 44100:
956 		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
957 		break;
958 	case 88200:
959 		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
960 		break;
961 	case 176400:
962 		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
963 		break;
964 	case 24000:
965 		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
966 		break;
967 	case 48000:
968 		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
969 		break;
970 	case 96000:
971 		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
972 		break;
973 	case 192000:
974 		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
975 		break;
976 	case 32000:
977 		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
978 		break;
979 	default:
980 		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
981 		break;
982 	}
983 	mutex_unlock(&sai->ctrl_lock);
984 }
985 
986 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
987 				     struct snd_pcm_hw_params *params)
988 {
989 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
990 	int div = 0, cr1 = 0;
991 	int sai_clk_rate, mclk_ratio, den;
992 	unsigned int rate = params_rate(params);
993 	int ret;
994 
995 	if (!sai->sai_mclk) {
996 		ret = stm32_sai_set_parent_clock(sai, rate);
997 		if (ret)
998 			return ret;
999 	}
1000 	sai_clk_rate = clk_get_rate(sai->sai_ck);
1001 
1002 	if (STM_SAI_IS_F4(sai->pdata)) {
1003 		/* mclk on (NODIV=0)
1004 		 *   mclk_rate = 256 * fs
1005 		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1006 		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1007 		 * mclk off (NODIV=1)
1008 		 *   MCKDIV ignored. sck = sai_ck
1009 		 */
1010 		if (!sai->mclk_rate)
1011 			return 0;
1012 
1013 		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1014 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1015 						    2 * sai->mclk_rate);
1016 			if (div < 0)
1017 				return div;
1018 		}
1019 	} else {
1020 		/*
1021 		 * TDM mode :
1022 		 *   mclk on
1023 		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1024 		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1025 		 *   mclk off
1026 		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1027 		 * Note: NOMCK/NODIV correspond to same bit.
1028 		 */
1029 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1030 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1031 						    rate * 128);
1032 			if (div < 0)
1033 				return div;
1034 		} else {
1035 			if (sai->mclk_rate) {
1036 				mclk_ratio = sai->mclk_rate / rate;
1037 				if (mclk_ratio == 512) {
1038 					cr1 = SAI_XCR1_OSR;
1039 				} else if (mclk_ratio != 256) {
1040 					dev_err(cpu_dai->dev,
1041 						"Wrong mclk ratio %d\n",
1042 						mclk_ratio);
1043 					return -EINVAL;
1044 				}
1045 
1046 				stm32_sai_sub_reg_up(sai,
1047 						     STM_SAI_CR1_REGX,
1048 						     SAI_XCR1_OSR, cr1);
1049 
1050 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1051 							    sai->mclk_rate);
1052 				if (div < 0)
1053 					return div;
1054 			} else {
1055 				/* mclk-fs not set, master clock not active */
1056 				den = sai->fs_length * params_rate(params);
1057 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1058 							    den);
1059 				if (div < 0)
1060 					return div;
1061 			}
1062 		}
1063 	}
1064 
1065 	return stm32_sai_set_clk_div(sai, div);
1066 }
1067 
1068 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1069 			       struct snd_pcm_hw_params *params,
1070 			       struct snd_soc_dai *cpu_dai)
1071 {
1072 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1073 	int ret;
1074 
1075 	sai->data_size = params_width(params);
1076 
1077 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1078 		/* Rate not already set in runtime structure */
1079 		substream->runtime->rate = params_rate(params);
1080 		stm32_sai_set_iec958_status(sai, substream->runtime);
1081 	} else {
1082 		ret = stm32_sai_set_slots(cpu_dai);
1083 		if (ret < 0)
1084 			return ret;
1085 		stm32_sai_set_frame(cpu_dai);
1086 	}
1087 
1088 	ret = stm32_sai_set_config(cpu_dai, substream, params);
1089 	if (ret)
1090 		return ret;
1091 
1092 	if (sai->master)
1093 		ret = stm32_sai_configure_clock(cpu_dai, params);
1094 
1095 	return ret;
1096 }
1097 
1098 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1099 			     struct snd_soc_dai *cpu_dai)
1100 {
1101 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1102 	int ret;
1103 
1104 	switch (cmd) {
1105 	case SNDRV_PCM_TRIGGER_START:
1106 	case SNDRV_PCM_TRIGGER_RESUME:
1107 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1108 		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1109 
1110 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1111 				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1112 
1113 		/* Enable SAI */
1114 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1115 					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1116 		if (ret < 0)
1117 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1118 		break;
1119 	case SNDRV_PCM_TRIGGER_SUSPEND:
1120 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1121 	case SNDRV_PCM_TRIGGER_STOP:
1122 		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1123 
1124 		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1125 				     SAI_XIMR_MASK, 0);
1126 
1127 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1128 				     SAI_XCR1_SAIEN,
1129 				     (unsigned int)~SAI_XCR1_SAIEN);
1130 
1131 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1132 					   SAI_XCR1_DMAEN,
1133 					   (unsigned int)~SAI_XCR1_DMAEN);
1134 		if (ret < 0)
1135 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1136 
1137 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1138 			sai->spdif_frm_cnt = 0;
1139 		break;
1140 	default:
1141 		return -EINVAL;
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1148 			       struct snd_soc_dai *cpu_dai)
1149 {
1150 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1151 	unsigned long flags;
1152 
1153 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1154 
1155 	clk_disable_unprepare(sai->sai_ck);
1156 
1157 	spin_lock_irqsave(&sai->irq_lock, flags);
1158 	sai->substream = NULL;
1159 	spin_unlock_irqrestore(&sai->irq_lock, flags);
1160 }
1161 
1162 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1163 			     struct snd_soc_dai *cpu_dai)
1164 {
1165 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1166 	struct snd_kcontrol_new knew = iec958_ctls;
1167 
1168 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1169 		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1170 		knew.device = rtd->pcm->device;
1171 		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1178 {
1179 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1180 	int cr1 = 0, cr1_mask, ret;
1181 
1182 	sai->cpu_dai = cpu_dai;
1183 
1184 	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1185 	/*
1186 	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1187 	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1188 	 * constraints).
1189 	 */
1190 	sai->dma_params.maxburst = 4;
1191 	if (sai->pdata->conf.fifo_size < 8)
1192 		sai->dma_params.maxburst = 1;
1193 	/* Buswidth will be set by framework at runtime */
1194 	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1195 
1196 	if (STM_SAI_IS_PLAYBACK(sai))
1197 		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1198 	else
1199 		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1200 
1201 	/* Next settings are not relevant for spdif mode */
1202 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1203 		return 0;
1204 
1205 	cr1_mask = SAI_XCR1_RX_TX;
1206 	if (STM_SAI_IS_CAPTURE(sai))
1207 		cr1 |= SAI_XCR1_RX_TX;
1208 
1209 	/* Configure synchronization */
1210 	if (sai->sync == SAI_SYNC_EXTERNAL) {
1211 		/* Configure synchro client and provider */
1212 		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1213 					   sai->synco, sai->synci);
1214 		if (ret)
1215 			return ret;
1216 	}
1217 
1218 	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1219 	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1220 
1221 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1222 }
1223 
1224 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1225 	.set_sysclk	= stm32_sai_set_sysclk,
1226 	.set_fmt	= stm32_sai_set_dai_fmt,
1227 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1228 	.startup	= stm32_sai_startup,
1229 	.hw_params	= stm32_sai_hw_params,
1230 	.trigger	= stm32_sai_trigger,
1231 	.shutdown	= stm32_sai_shutdown,
1232 };
1233 
1234 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1235 				       int channel, unsigned long hwoff,
1236 				       void *buf, unsigned long bytes)
1237 {
1238 	struct snd_pcm_runtime *runtime = substream->runtime;
1239 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
1240 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
1241 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1242 	int *ptr = (int *)(runtime->dma_area + hwoff +
1243 			   channel * (runtime->dma_bytes / runtime->channels));
1244 	ssize_t cnt = bytes_to_samples(runtime, bytes);
1245 	unsigned int frm_cnt = sai->spdif_frm_cnt;
1246 	unsigned int byte;
1247 	unsigned int mask;
1248 
1249 	do {
1250 		*ptr = ((*ptr >> 8) & 0x00ffffff);
1251 
1252 		/* Set channel status bit */
1253 		byte = frm_cnt >> 3;
1254 		mask = 1 << (frm_cnt - (byte << 3));
1255 		if (sai->iec958.status[byte] & mask)
1256 			*ptr |= 0x04000000;
1257 		ptr++;
1258 
1259 		if (!(cnt % 2))
1260 			frm_cnt++;
1261 
1262 		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1263 			frm_cnt = 0;
1264 	} while (--cnt);
1265 	sai->spdif_frm_cnt = frm_cnt;
1266 
1267 	return 0;
1268 }
1269 
1270 /* No support of mmap in S/PDIF mode */
1271 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1272 	.info = SNDRV_PCM_INFO_INTERLEAVED,
1273 	.buffer_bytes_max = 8 * PAGE_SIZE,
1274 	.period_bytes_min = 1024,
1275 	.period_bytes_max = PAGE_SIZE,
1276 	.periods_min = 2,
1277 	.periods_max = 8,
1278 };
1279 
1280 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1281 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1282 	.buffer_bytes_max = 8 * PAGE_SIZE,
1283 	.period_bytes_min = 1024, /* 5ms at 48kHz */
1284 	.period_bytes_max = PAGE_SIZE,
1285 	.periods_min = 2,
1286 	.periods_max = 8,
1287 };
1288 
1289 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1290 		.probe = stm32_sai_dai_probe,
1291 		.pcm_new = stm32_sai_pcm_new,
1292 		.id = 1, /* avoid call to fmt_single_name() */
1293 		.playback = {
1294 			.channels_min = 1,
1295 			.channels_max = 16,
1296 			.rate_min = 8000,
1297 			.rate_max = 192000,
1298 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1299 			/* DMA does not support 24 bits transfers */
1300 			.formats =
1301 				SNDRV_PCM_FMTBIT_S8 |
1302 				SNDRV_PCM_FMTBIT_S16_LE |
1303 				SNDRV_PCM_FMTBIT_S32_LE,
1304 		},
1305 		.ops = &stm32_sai_pcm_dai_ops,
1306 };
1307 
1308 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1309 		.probe = stm32_sai_dai_probe,
1310 		.id = 1, /* avoid call to fmt_single_name() */
1311 		.capture = {
1312 			.channels_min = 1,
1313 			.channels_max = 16,
1314 			.rate_min = 8000,
1315 			.rate_max = 192000,
1316 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1317 			/* DMA does not support 24 bits transfers */
1318 			.formats =
1319 				SNDRV_PCM_FMTBIT_S8 |
1320 				SNDRV_PCM_FMTBIT_S16_LE |
1321 				SNDRV_PCM_FMTBIT_S32_LE,
1322 		},
1323 		.ops = &stm32_sai_pcm_dai_ops,
1324 };
1325 
1326 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1327 	.pcm_hardware = &stm32_sai_pcm_hw,
1328 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1329 };
1330 
1331 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1332 	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1333 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1334 	.process = stm32_sai_pcm_process_spdif,
1335 };
1336 
1337 static const struct snd_soc_component_driver stm32_component = {
1338 	.name = "stm32-sai",
1339 	.legacy_dai_naming = 1,
1340 };
1341 
1342 static const struct of_device_id stm32_sai_sub_ids[] = {
1343 	{ .compatible = "st,stm32-sai-sub-a",
1344 	  .data = (void *)STM_SAI_A_ID},
1345 	{ .compatible = "st,stm32-sai-sub-b",
1346 	  .data = (void *)STM_SAI_B_ID},
1347 	{}
1348 };
1349 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1350 
1351 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1352 				  struct stm32_sai_sub_data *sai)
1353 {
1354 	struct device_node *np = pdev->dev.of_node;
1355 	struct resource *res;
1356 	void __iomem *base;
1357 	struct of_phandle_args args;
1358 	int ret;
1359 
1360 	if (!np)
1361 		return -ENODEV;
1362 
1363 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1364 	if (IS_ERR(base))
1365 		return PTR_ERR(base);
1366 
1367 	sai->phys_addr = res->start;
1368 
1369 	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1370 	/* Note: PDM registers not available for sub-block B */
1371 	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1372 		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1373 
1374 	/*
1375 	 * Do not manage peripheral clock through regmap framework as this
1376 	 * can lead to circular locking issue with sai master clock provider.
1377 	 * Manage peripheral clock directly in driver instead.
1378 	 */
1379 	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1380 					    sai->regmap_config);
1381 	if (IS_ERR(sai->regmap))
1382 		return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
1383 				     "Regmap init error\n");
1384 
1385 	/* Get direction property */
1386 	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1387 		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1388 	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1389 		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1390 	} else {
1391 		dev_err(&pdev->dev, "Unsupported direction\n");
1392 		return -EINVAL;
1393 	}
1394 
1395 	/* Get spdif iec60958 property */
1396 	sai->spdif = false;
1397 	if (of_property_present(np, "st,iec60958")) {
1398 		if (!STM_SAI_HAS_SPDIF(sai) ||
1399 		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1400 			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1401 			return -EINVAL;
1402 		}
1403 		stm32_sai_init_iec958_status(sai);
1404 		sai->spdif = true;
1405 		sai->master = true;
1406 	}
1407 
1408 	/* Get synchronization property */
1409 	args.np = NULL;
1410 	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1411 	if (ret < 0  && ret != -ENOENT) {
1412 		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1413 		return ret;
1414 	}
1415 
1416 	sai->sync = SAI_SYNC_NONE;
1417 	if (args.np) {
1418 		if (args.np == np) {
1419 			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1420 			of_node_put(args.np);
1421 			return -EINVAL;
1422 		}
1423 
1424 		sai->np_sync_provider  = of_get_parent(args.np);
1425 		if (!sai->np_sync_provider) {
1426 			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1427 				np);
1428 			of_node_put(args.np);
1429 			return -ENODEV;
1430 		}
1431 
1432 		sai->sync = SAI_SYNC_INTERNAL;
1433 		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1434 			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1435 				dev_err(&pdev->dev,
1436 					"External synchro not supported\n");
1437 				of_node_put(args.np);
1438 				return -EINVAL;
1439 			}
1440 			sai->sync = SAI_SYNC_EXTERNAL;
1441 
1442 			sai->synci = args.args[0];
1443 			if (sai->synci < 1 ||
1444 			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1445 				dev_err(&pdev->dev, "Wrong SAI index\n");
1446 				of_node_put(args.np);
1447 				return -EINVAL;
1448 			}
1449 
1450 			if (of_property_match_string(args.np, "compatible",
1451 						     "st,stm32-sai-sub-a") >= 0)
1452 				sai->synco = STM_SAI_SYNC_OUT_A;
1453 
1454 			if (of_property_match_string(args.np, "compatible",
1455 						     "st,stm32-sai-sub-b") >= 0)
1456 				sai->synco = STM_SAI_SYNC_OUT_B;
1457 
1458 			if (!sai->synco) {
1459 				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1460 				of_node_put(args.np);
1461 				return -EINVAL;
1462 			}
1463 		}
1464 
1465 		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1466 			pdev->name, args.np->full_name);
1467 	}
1468 
1469 	of_node_put(args.np);
1470 	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1471 	if (IS_ERR(sai->sai_ck))
1472 		return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
1473 				     "Missing kernel clock sai_ck\n");
1474 
1475 	ret = clk_prepare(sai->pdata->pclk);
1476 	if (ret < 0)
1477 		return ret;
1478 
1479 	if (STM_SAI_IS_F4(sai->pdata))
1480 		return 0;
1481 
1482 	/* Register mclk provider if requested */
1483 	if (of_property_present(np, "#clock-cells")) {
1484 		ret = stm32_sai_add_mclk_provider(sai);
1485 		if (ret < 0)
1486 			return ret;
1487 	} else {
1488 		sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
1489 		if (IS_ERR(sai->sai_mclk))
1490 			return PTR_ERR(sai->sai_mclk);
1491 	}
1492 
1493 	return 0;
1494 }
1495 
1496 static int stm32_sai_sub_probe(struct platform_device *pdev)
1497 {
1498 	struct stm32_sai_sub_data *sai;
1499 	const struct of_device_id *of_id;
1500 	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1501 	int ret;
1502 
1503 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1504 	if (!sai)
1505 		return -ENOMEM;
1506 
1507 	of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1508 	if (!of_id)
1509 		return -EINVAL;
1510 	sai->id = (uintptr_t)of_id->data;
1511 
1512 	sai->pdev = pdev;
1513 	mutex_init(&sai->ctrl_lock);
1514 	spin_lock_init(&sai->irq_lock);
1515 	platform_set_drvdata(pdev, sai);
1516 
1517 	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1518 	if (!sai->pdata) {
1519 		dev_err(&pdev->dev, "Parent device data not available\n");
1520 		return -EINVAL;
1521 	}
1522 
1523 	ret = stm32_sai_sub_parse_of(pdev, sai);
1524 	if (ret)
1525 		return ret;
1526 
1527 	if (STM_SAI_IS_PLAYBACK(sai))
1528 		sai->cpu_dai_drv = stm32_sai_playback_dai;
1529 	else
1530 		sai->cpu_dai_drv = stm32_sai_capture_dai;
1531 	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1532 
1533 	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1534 			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1535 	if (ret) {
1536 		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1537 		return ret;
1538 	}
1539 
1540 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1541 		conf = &stm32_sai_pcm_config_spdif;
1542 
1543 	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1544 	if (ret)
1545 		return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
1546 
1547 	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1548 					 &sai->cpu_dai_drv, 1);
1549 	if (ret) {
1550 		snd_dmaengine_pcm_unregister(&pdev->dev);
1551 		return ret;
1552 	}
1553 
1554 	pm_runtime_enable(&pdev->dev);
1555 
1556 	return 0;
1557 }
1558 
1559 static void stm32_sai_sub_remove(struct platform_device *pdev)
1560 {
1561 	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1562 
1563 	clk_unprepare(sai->pdata->pclk);
1564 	snd_dmaengine_pcm_unregister(&pdev->dev);
1565 	snd_soc_unregister_component(&pdev->dev);
1566 	pm_runtime_disable(&pdev->dev);
1567 }
1568 
1569 #ifdef CONFIG_PM_SLEEP
1570 static int stm32_sai_sub_suspend(struct device *dev)
1571 {
1572 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1573 	int ret;
1574 
1575 	ret = clk_enable(sai->pdata->pclk);
1576 	if (ret < 0)
1577 		return ret;
1578 
1579 	regcache_cache_only(sai->regmap, true);
1580 	regcache_mark_dirty(sai->regmap);
1581 
1582 	clk_disable(sai->pdata->pclk);
1583 
1584 	return 0;
1585 }
1586 
1587 static int stm32_sai_sub_resume(struct device *dev)
1588 {
1589 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1590 	int ret;
1591 
1592 	ret = clk_enable(sai->pdata->pclk);
1593 	if (ret < 0)
1594 		return ret;
1595 
1596 	regcache_cache_only(sai->regmap, false);
1597 	ret = regcache_sync(sai->regmap);
1598 
1599 	clk_disable(sai->pdata->pclk);
1600 
1601 	return ret;
1602 }
1603 #endif /* CONFIG_PM_SLEEP */
1604 
1605 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1606 	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1607 };
1608 
1609 static struct platform_driver stm32_sai_sub_driver = {
1610 	.driver = {
1611 		.name = "st,stm32-sai-sub",
1612 		.of_match_table = stm32_sai_sub_ids,
1613 		.pm = &stm32_sai_sub_pm_ops,
1614 	},
1615 	.probe = stm32_sai_sub_probe,
1616 	.remove_new = stm32_sai_sub_remove,
1617 };
1618 
1619 module_platform_driver(stm32_sai_sub_driver);
1620 
1621 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1622 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1623 MODULE_ALIAS("platform:st,stm32-sai-sub");
1624 MODULE_LICENSE("GPL v2");
1625