xref: /openbmc/linux/sound/soc/sof/intel/cnl.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 //
3 // This file is provided under a dual BSD/GPLv2 license.  When using or
4 // redistributing this file, you may do so under either license.
5 //
6 // Copyright(c) 2018 Intel Corporation. All rights reserved.
7 //
8 // Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com>
9 //	    Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
10 //	    Rander Wang <rander.wang@intel.com>
11 //          Keyon Jie <yang.jie@linux.intel.com>
12 //
13 
14 /*
15  * Hardware interface for audio DSP on Cannonlake.
16  */
17 
18 #include <sound/sof/ext_manifest4.h>
19 #include <sound/sof/ipc4/header.h>
20 #include <trace/events/sof_intel.h>
21 #include "../ipc4-priv.h"
22 #include "../ops.h"
23 #include "hda.h"
24 #include "hda-ipc.h"
25 #include "../sof-audio.h"
26 
27 static const struct snd_sof_debugfs_map cnl_dsp_debugfs[] = {
28 	{"hda", HDA_DSP_HDA_BAR, 0, 0x4000, SOF_DEBUGFS_ACCESS_ALWAYS},
29 	{"pp", HDA_DSP_PP_BAR,  0, 0x1000, SOF_DEBUGFS_ACCESS_ALWAYS},
30 	{"dsp", HDA_DSP_BAR,  0, 0x10000, SOF_DEBUGFS_ACCESS_ALWAYS},
31 };
32 
33 static void cnl_ipc_host_done(struct snd_sof_dev *sdev);
34 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev);
35 
36 irqreturn_t cnl_ipc4_irq_thread(int irq, void *context)
37 {
38 	struct sof_ipc4_msg notification_data = {{ 0 }};
39 	struct snd_sof_dev *sdev = context;
40 	bool ipc_irq = false;
41 	u32 hipcida, hipctdr;
42 
43 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
44 	if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
45 		/* DSP received the message */
46 		snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
47 					CNL_DSP_REG_HIPCCTL,
48 					CNL_DSP_REG_HIPCCTL_DONE, 0);
49 		cnl_ipc_dsp_done(sdev);
50 
51 		ipc_irq = true;
52 	}
53 
54 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
55 	if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
56 		/* Message from DSP (reply or notification) */
57 		u32 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
58 					       CNL_DSP_REG_HIPCTDD);
59 		u32 primary = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
60 		u32 extension = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
61 
62 		if (primary & SOF_IPC4_MSG_DIR_MASK) {
63 			/* Reply received */
64 			if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
65 				struct sof_ipc4_msg *data = sdev->ipc->msg.reply_data;
66 
67 				data->primary = primary;
68 				data->extension = extension;
69 
70 				spin_lock_irq(&sdev->ipc_lock);
71 
72 				snd_sof_ipc_get_reply(sdev);
73 				snd_sof_ipc_reply(sdev, data->primary);
74 
75 				spin_unlock_irq(&sdev->ipc_lock);
76 			} else {
77 				dev_dbg_ratelimited(sdev->dev,
78 						    "IPC reply before FW_READY: %#x|%#x\n",
79 						    primary, extension);
80 			}
81 		} else {
82 			/* Notification received */
83 			notification_data.primary = primary;
84 			notification_data.extension = extension;
85 
86 			sdev->ipc->msg.rx_data = &notification_data;
87 			snd_sof_ipc_msgs_rx(sdev);
88 			sdev->ipc->msg.rx_data = NULL;
89 		}
90 
91 		/* Let DSP know that we have finished processing the message */
92 		cnl_ipc_host_done(sdev);
93 
94 		ipc_irq = true;
95 	}
96 
97 	if (!ipc_irq)
98 		/* This interrupt is not shared so no need to return IRQ_NONE. */
99 		dev_dbg_ratelimited(sdev->dev, "nothing to do in IPC IRQ thread\n");
100 
101 	return IRQ_HANDLED;
102 }
103 
104 irqreturn_t cnl_ipc_irq_thread(int irq, void *context)
105 {
106 	struct snd_sof_dev *sdev = context;
107 	u32 hipci;
108 	u32 hipcida;
109 	u32 hipctdr;
110 	u32 hipctdd;
111 	u32 msg;
112 	u32 msg_ext;
113 	bool ipc_irq = false;
114 
115 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
116 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
117 	hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
118 	hipci = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
119 
120 	/* reply message from DSP */
121 	if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
122 		msg_ext = hipci & CNL_DSP_REG_HIPCIDR_MSG_MASK;
123 		msg = hipcida & CNL_DSP_REG_HIPCIDA_MSG_MASK;
124 
125 		trace_sof_intel_ipc_firmware_response(sdev, msg, msg_ext);
126 
127 		/* mask Done interrupt */
128 		snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
129 					CNL_DSP_REG_HIPCCTL,
130 					CNL_DSP_REG_HIPCCTL_DONE, 0);
131 
132 		if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
133 			spin_lock_irq(&sdev->ipc_lock);
134 
135 			/* handle immediate reply from DSP core */
136 			hda_dsp_ipc_get_reply(sdev);
137 			snd_sof_ipc_reply(sdev, msg);
138 
139 			cnl_ipc_dsp_done(sdev);
140 
141 			spin_unlock_irq(&sdev->ipc_lock);
142 		} else {
143 			dev_dbg_ratelimited(sdev->dev, "IPC reply before FW_READY: %#x\n",
144 					    msg);
145 		}
146 
147 		ipc_irq = true;
148 	}
149 
150 	/* new message from DSP */
151 	if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
152 		msg = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
153 		msg_ext = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
154 
155 		trace_sof_intel_ipc_firmware_initiated(sdev, msg, msg_ext);
156 
157 		/* handle messages from DSP */
158 		if ((hipctdr & SOF_IPC_PANIC_MAGIC_MASK) == SOF_IPC_PANIC_MAGIC) {
159 			struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
160 			bool non_recoverable = true;
161 
162 			/*
163 			 * This is a PANIC message!
164 			 *
165 			 * If it is arriving during firmware boot and it is not
166 			 * the last boot attempt then change the non_recoverable
167 			 * to false as the DSP might be able to boot in the next
168 			 * iteration(s)
169 			 */
170 			if (sdev->fw_state == SOF_FW_BOOT_IN_PROGRESS &&
171 			    hda->boot_iteration < HDA_FW_BOOT_ATTEMPTS)
172 				non_recoverable = false;
173 
174 			snd_sof_dsp_panic(sdev, HDA_DSP_PANIC_OFFSET(msg_ext),
175 					  non_recoverable);
176 		} else {
177 			snd_sof_ipc_msgs_rx(sdev);
178 		}
179 
180 		cnl_ipc_host_done(sdev);
181 
182 		ipc_irq = true;
183 	}
184 
185 	if (!ipc_irq) {
186 		/*
187 		 * This interrupt is not shared so no need to return IRQ_NONE.
188 		 */
189 		dev_dbg_ratelimited(sdev->dev,
190 				    "nothing to do in IPC IRQ thread\n");
191 	}
192 
193 	return IRQ_HANDLED;
194 }
195 
196 static void cnl_ipc_host_done(struct snd_sof_dev *sdev)
197 {
198 	/*
199 	 * clear busy interrupt to tell dsp controller this
200 	 * interrupt has been accepted, not trigger it again
201 	 */
202 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
203 				       CNL_DSP_REG_HIPCTDR,
204 				       CNL_DSP_REG_HIPCTDR_BUSY,
205 				       CNL_DSP_REG_HIPCTDR_BUSY);
206 	/*
207 	 * set done bit to ack dsp the msg has been
208 	 * processed and send reply msg to dsp
209 	 */
210 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
211 				       CNL_DSP_REG_HIPCTDA,
212 				       CNL_DSP_REG_HIPCTDA_DONE,
213 				       CNL_DSP_REG_HIPCTDA_DONE);
214 }
215 
216 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev)
217 {
218 	/*
219 	 * set DONE bit - tell DSP we have received the reply msg
220 	 * from DSP, and processed it, don't send more reply to host
221 	 */
222 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
223 				       CNL_DSP_REG_HIPCIDA,
224 				       CNL_DSP_REG_HIPCIDA_DONE,
225 				       CNL_DSP_REG_HIPCIDA_DONE);
226 
227 	/* unmask Done interrupt */
228 	snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
229 				CNL_DSP_REG_HIPCCTL,
230 				CNL_DSP_REG_HIPCCTL_DONE,
231 				CNL_DSP_REG_HIPCCTL_DONE);
232 }
233 
234 static bool cnl_compact_ipc_compress(struct snd_sof_ipc_msg *msg,
235 				     u32 *dr, u32 *dd)
236 {
237 	struct sof_ipc_pm_gate *pm_gate = msg->msg_data;
238 
239 	if (pm_gate->hdr.cmd == (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_GATE)) {
240 		/* send the compact message via the primary register */
241 		*dr = HDA_IPC_MSG_COMPACT | HDA_IPC_PM_GATE;
242 
243 		/* send payload via the extended data register */
244 		*dd = pm_gate->flags;
245 
246 		return true;
247 	}
248 
249 	return false;
250 }
251 
252 int cnl_ipc4_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
253 {
254 	struct sof_ipc4_msg *msg_data = msg->msg_data;
255 
256 	/* send the message via mailbox */
257 	if (msg_data->data_size)
258 		sof_mailbox_write(sdev, sdev->host_box.offset, msg_data->data_ptr,
259 				  msg_data->data_size);
260 
261 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, msg_data->extension);
262 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
263 			  msg_data->primary | CNL_DSP_REG_HIPCIDR_BUSY);
264 
265 	return 0;
266 }
267 
268 int cnl_ipc_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
269 {
270 	struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
271 	struct sof_ipc_cmd_hdr *hdr;
272 	u32 dr = 0;
273 	u32 dd = 0;
274 
275 	/*
276 	 * Currently the only compact IPC supported is the PM_GATE
277 	 * IPC which is used for transitioning the DSP between the
278 	 * D0I0 and D0I3 states. And these are sent only during the
279 	 * set_power_state() op. Therefore, there will never be a case
280 	 * that a compact IPC results in the DSP exiting D0I3 without
281 	 * the host and FW being in sync.
282 	 */
283 	if (cnl_compact_ipc_compress(msg, &dr, &dd)) {
284 		/* send the message via IPC registers */
285 		snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD,
286 				  dd);
287 		snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
288 				  CNL_DSP_REG_HIPCIDR_BUSY | dr);
289 		return 0;
290 	}
291 
292 	/* send the message via mailbox */
293 	sof_mailbox_write(sdev, sdev->host_box.offset, msg->msg_data,
294 			  msg->msg_size);
295 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
296 			  CNL_DSP_REG_HIPCIDR_BUSY);
297 
298 	hdr = msg->msg_data;
299 
300 	/*
301 	 * Use mod_delayed_work() to schedule the delayed work
302 	 * to avoid scheduling multiple workqueue items when
303 	 * IPCs are sent at a high-rate. mod_delayed_work()
304 	 * modifies the timer if the work is pending.
305 	 * Also, a new delayed work should not be queued after the
306 	 * CTX_SAVE IPC, which is sent before the DSP enters D3.
307 	 */
308 	if (hdr->cmd != (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_CTX_SAVE))
309 		mod_delayed_work(system_wq, &hdev->d0i3_work,
310 				 msecs_to_jiffies(SOF_HDA_D0I3_WORK_DELAY_MS));
311 
312 	return 0;
313 }
314 
315 void cnl_ipc_dump(struct snd_sof_dev *sdev)
316 {
317 	u32 hipcctl;
318 	u32 hipcida;
319 	u32 hipctdr;
320 
321 	hda_ipc_irq_dump(sdev);
322 
323 	/* read IPC status */
324 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
325 	hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
326 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
327 
328 	/* dump the IPC regs */
329 	/* TODO: parse the raw msg */
330 	dev_err(sdev->dev,
331 		"error: host status 0x%8.8x dsp status 0x%8.8x mask 0x%8.8x\n",
332 		hipcida, hipctdr, hipcctl);
333 }
334 
335 void cnl_ipc4_dump(struct snd_sof_dev *sdev)
336 {
337 	u32 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl;
338 
339 	hda_ipc_irq_dump(sdev);
340 
341 	hipcidr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
342 	hipcidd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD);
343 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
344 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
345 	hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
346 	hipctda = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDA);
347 	hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
348 
349 	/* dump the IPC regs */
350 	/* TODO: parse the raw msg */
351 	dev_err(sdev->dev,
352 		"Host IPC initiator: %#x|%#x|%#x, target: %#x|%#x|%#x, ctl: %#x\n",
353 		hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl);
354 }
355 
356 /* cannonlake ops */
357 struct snd_sof_dsp_ops sof_cnl_ops;
358 EXPORT_SYMBOL_NS(sof_cnl_ops, SND_SOC_SOF_INTEL_HDA_COMMON);
359 
360 int sof_cnl_ops_init(struct snd_sof_dev *sdev)
361 {
362 	/* common defaults */
363 	memcpy(&sof_cnl_ops, &sof_hda_common_ops, sizeof(struct snd_sof_dsp_ops));
364 
365 	/* probe/remove/shutdown */
366 	sof_cnl_ops.shutdown	= hda_dsp_shutdown;
367 
368 	/* ipc */
369 	if (sdev->pdata->ipc_type == SOF_IPC) {
370 		/* doorbell */
371 		sof_cnl_ops.irq_thread	= cnl_ipc_irq_thread;
372 
373 		/* ipc */
374 		sof_cnl_ops.send_msg	= cnl_ipc_send_msg;
375 
376 		/* debug */
377 		sof_cnl_ops.ipc_dump	= cnl_ipc_dump;
378 	}
379 
380 	if (sdev->pdata->ipc_type == SOF_INTEL_IPC4) {
381 		struct sof_ipc4_fw_data *ipc4_data;
382 
383 		sdev->private = devm_kzalloc(sdev->dev, sizeof(*ipc4_data), GFP_KERNEL);
384 		if (!sdev->private)
385 			return -ENOMEM;
386 
387 		ipc4_data = sdev->private;
388 		ipc4_data->manifest_fw_hdr_offset = SOF_MAN4_FW_HDR_OFFSET;
389 
390 		ipc4_data->mtrace_type = SOF_IPC4_MTRACE_INTEL_CAVS_1_8;
391 
392 		/* doorbell */
393 		sof_cnl_ops.irq_thread	= cnl_ipc4_irq_thread;
394 
395 		/* ipc */
396 		sof_cnl_ops.send_msg	= cnl_ipc4_send_msg;
397 
398 		/* debug */
399 		sof_cnl_ops.ipc_dump	= cnl_ipc4_dump;
400 	}
401 
402 	/* set DAI driver ops */
403 	hda_set_dai_drv_ops(sdev, &sof_cnl_ops);
404 
405 	/* debug */
406 	sof_cnl_ops.debug_map	= cnl_dsp_debugfs;
407 	sof_cnl_ops.debug_map_count	= ARRAY_SIZE(cnl_dsp_debugfs);
408 
409 	/* pre/post fw run */
410 	sof_cnl_ops.post_fw_run = hda_dsp_post_fw_run;
411 
412 	/* firmware run */
413 	sof_cnl_ops.run = hda_dsp_cl_boot_firmware;
414 
415 	/* dsp core get/put */
416 	sof_cnl_ops.core_get = hda_dsp_core_get;
417 
418 	return 0;
419 };
420 EXPORT_SYMBOL_NS(sof_cnl_ops_init, SND_SOC_SOF_INTEL_HDA_COMMON);
421 
422 const struct sof_intel_dsp_desc cnl_chip_info = {
423 	/* Cannonlake */
424 	.cores_num = 4,
425 	.init_core_mask = 1,
426 	.host_managed_cores_mask = GENMASK(3, 0),
427 	.ipc_req = CNL_DSP_REG_HIPCIDR,
428 	.ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
429 	.ipc_ack = CNL_DSP_REG_HIPCIDA,
430 	.ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
431 	.ipc_ctl = CNL_DSP_REG_HIPCCTL,
432 	.rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
433 	.rom_init_timeout	= 300,
434 	.ssp_count = CNL_SSP_COUNT,
435 	.ssp_base_offset = CNL_SSP_BASE_OFFSET,
436 	.sdw_shim_base = SDW_SHIM_BASE,
437 	.sdw_alh_base = SDW_ALH_BASE,
438 	.check_sdw_irq	= hda_common_check_sdw_irq,
439 	.check_ipc_irq	= hda_dsp_check_ipc_irq,
440 	.cl_init = cl_dsp_init,
441 	.power_down_dsp = hda_power_down_dsp,
442 	.disable_interrupts = hda_dsp_disable_interrupts,
443 	.hw_ip_version = SOF_INTEL_CAVS_1_8,
444 };
445 EXPORT_SYMBOL_NS(cnl_chip_info, SND_SOC_SOF_INTEL_HDA_COMMON);
446 
447 /*
448  * JasperLake is technically derived from IceLake, and should be in
449  * described in icl.c. However since JasperLake was designed with
450  * two cores, it cannot support the IceLake-specific power-up sequences
451  * which rely on core3. To simplify, JasperLake uses the CannonLake ops and
452  * is described in cnl.c
453  */
454 const struct sof_intel_dsp_desc jsl_chip_info = {
455 	/* Jasperlake */
456 	.cores_num = 2,
457 	.init_core_mask = 1,
458 	.host_managed_cores_mask = GENMASK(1, 0),
459 	.ipc_req = CNL_DSP_REG_HIPCIDR,
460 	.ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
461 	.ipc_ack = CNL_DSP_REG_HIPCIDA,
462 	.ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
463 	.ipc_ctl = CNL_DSP_REG_HIPCCTL,
464 	.rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
465 	.rom_init_timeout	= 300,
466 	.ssp_count = ICL_SSP_COUNT,
467 	.ssp_base_offset = CNL_SSP_BASE_OFFSET,
468 	.sdw_shim_base = SDW_SHIM_BASE,
469 	.sdw_alh_base = SDW_ALH_BASE,
470 	.check_sdw_irq	= hda_common_check_sdw_irq,
471 	.check_ipc_irq	= hda_dsp_check_ipc_irq,
472 	.cl_init = cl_dsp_init,
473 	.power_down_dsp = hda_power_down_dsp,
474 	.disable_interrupts = hda_dsp_disable_interrupts,
475 	.hw_ip_version = SOF_INTEL_CAVS_2_0,
476 };
477 EXPORT_SYMBOL_NS(jsl_chip_info, SND_SOC_SOF_INTEL_HDA_COMMON);
478