xref: /openbmc/linux/sound/soc/sof/intel/cnl.c (revision 2a598d0b)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 //
3 // This file is provided under a dual BSD/GPLv2 license.  When using or
4 // redistributing this file, you may do so under either license.
5 //
6 // Copyright(c) 2018 Intel Corporation. All rights reserved.
7 //
8 // Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com>
9 //	    Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
10 //	    Rander Wang <rander.wang@intel.com>
11 //          Keyon Jie <yang.jie@linux.intel.com>
12 //
13 
14 /*
15  * Hardware interface for audio DSP on Cannonlake.
16  */
17 
18 #include <sound/sof/ext_manifest4.h>
19 #include <sound/sof/ipc4/header.h>
20 #include <trace/events/sof_intel.h>
21 #include "../ipc4-priv.h"
22 #include "../ops.h"
23 #include "hda.h"
24 #include "hda-ipc.h"
25 #include "../sof-audio.h"
26 
27 static const struct snd_sof_debugfs_map cnl_dsp_debugfs[] = {
28 	{"hda", HDA_DSP_HDA_BAR, 0, 0x4000, SOF_DEBUGFS_ACCESS_ALWAYS},
29 	{"pp", HDA_DSP_PP_BAR,  0, 0x1000, SOF_DEBUGFS_ACCESS_ALWAYS},
30 	{"dsp", HDA_DSP_BAR,  0, 0x10000, SOF_DEBUGFS_ACCESS_ALWAYS},
31 };
32 
33 static void cnl_ipc_host_done(struct snd_sof_dev *sdev);
34 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev);
35 
36 irqreturn_t cnl_ipc4_irq_thread(int irq, void *context)
37 {
38 	struct sof_ipc4_msg notification_data = {{ 0 }};
39 	struct snd_sof_dev *sdev = context;
40 	bool ack_received = false;
41 	bool ipc_irq = false;
42 	u32 hipcida, hipctdr;
43 
44 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
45 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
46 	if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
47 		/* DSP received the message */
48 		snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
49 					CNL_DSP_REG_HIPCCTL,
50 					CNL_DSP_REG_HIPCCTL_DONE, 0);
51 		cnl_ipc_dsp_done(sdev);
52 
53 		ipc_irq = true;
54 		ack_received = true;
55 	}
56 
57 	if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
58 		/* Message from DSP (reply or notification) */
59 		u32 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
60 					       CNL_DSP_REG_HIPCTDD);
61 		u32 primary = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
62 		u32 extension = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
63 
64 		if (primary & SOF_IPC4_MSG_DIR_MASK) {
65 			/* Reply received */
66 			if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
67 				struct sof_ipc4_msg *data = sdev->ipc->msg.reply_data;
68 
69 				data->primary = primary;
70 				data->extension = extension;
71 
72 				spin_lock_irq(&sdev->ipc_lock);
73 
74 				snd_sof_ipc_get_reply(sdev);
75 				cnl_ipc_host_done(sdev);
76 				snd_sof_ipc_reply(sdev, data->primary);
77 
78 				spin_unlock_irq(&sdev->ipc_lock);
79 			} else {
80 				dev_dbg_ratelimited(sdev->dev,
81 						    "IPC reply before FW_READY: %#x|%#x\n",
82 						    primary, extension);
83 			}
84 		} else {
85 			/* Notification received */
86 			notification_data.primary = primary;
87 			notification_data.extension = extension;
88 
89 			sdev->ipc->msg.rx_data = &notification_data;
90 			snd_sof_ipc_msgs_rx(sdev);
91 			sdev->ipc->msg.rx_data = NULL;
92 
93 			/* Let DSP know that we have finished processing the message */
94 			cnl_ipc_host_done(sdev);
95 		}
96 
97 		ipc_irq = true;
98 	}
99 
100 	if (!ipc_irq)
101 		/* This interrupt is not shared so no need to return IRQ_NONE. */
102 		dev_dbg_ratelimited(sdev->dev, "nothing to do in IPC IRQ thread\n");
103 
104 	if (ack_received) {
105 		struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
106 
107 		if (hdev->delayed_ipc_tx_msg)
108 			cnl_ipc4_send_msg(sdev, hdev->delayed_ipc_tx_msg);
109 	}
110 
111 	return IRQ_HANDLED;
112 }
113 
114 irqreturn_t cnl_ipc_irq_thread(int irq, void *context)
115 {
116 	struct snd_sof_dev *sdev = context;
117 	u32 hipci;
118 	u32 hipcida;
119 	u32 hipctdr;
120 	u32 hipctdd;
121 	u32 msg;
122 	u32 msg_ext;
123 	bool ipc_irq = false;
124 
125 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
126 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
127 	hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
128 	hipci = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
129 
130 	/* reply message from DSP */
131 	if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
132 		msg_ext = hipci & CNL_DSP_REG_HIPCIDR_MSG_MASK;
133 		msg = hipcida & CNL_DSP_REG_HIPCIDA_MSG_MASK;
134 
135 		trace_sof_intel_ipc_firmware_response(sdev, msg, msg_ext);
136 
137 		/* mask Done interrupt */
138 		snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
139 					CNL_DSP_REG_HIPCCTL,
140 					CNL_DSP_REG_HIPCCTL_DONE, 0);
141 
142 		if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
143 			spin_lock_irq(&sdev->ipc_lock);
144 
145 			/* handle immediate reply from DSP core */
146 			hda_dsp_ipc_get_reply(sdev);
147 			snd_sof_ipc_reply(sdev, msg);
148 
149 			cnl_ipc_dsp_done(sdev);
150 
151 			spin_unlock_irq(&sdev->ipc_lock);
152 		} else {
153 			dev_dbg_ratelimited(sdev->dev, "IPC reply before FW_READY: %#x\n",
154 					    msg);
155 		}
156 
157 		ipc_irq = true;
158 	}
159 
160 	/* new message from DSP */
161 	if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
162 		msg = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
163 		msg_ext = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
164 
165 		trace_sof_intel_ipc_firmware_initiated(sdev, msg, msg_ext);
166 
167 		/* handle messages from DSP */
168 		if ((hipctdr & SOF_IPC_PANIC_MAGIC_MASK) == SOF_IPC_PANIC_MAGIC) {
169 			struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
170 			bool non_recoverable = true;
171 
172 			/*
173 			 * This is a PANIC message!
174 			 *
175 			 * If it is arriving during firmware boot and it is not
176 			 * the last boot attempt then change the non_recoverable
177 			 * to false as the DSP might be able to boot in the next
178 			 * iteration(s)
179 			 */
180 			if (sdev->fw_state == SOF_FW_BOOT_IN_PROGRESS &&
181 			    hda->boot_iteration < HDA_FW_BOOT_ATTEMPTS)
182 				non_recoverable = false;
183 
184 			snd_sof_dsp_panic(sdev, HDA_DSP_PANIC_OFFSET(msg_ext),
185 					  non_recoverable);
186 		} else {
187 			snd_sof_ipc_msgs_rx(sdev);
188 		}
189 
190 		cnl_ipc_host_done(sdev);
191 
192 		ipc_irq = true;
193 	}
194 
195 	if (!ipc_irq) {
196 		/*
197 		 * This interrupt is not shared so no need to return IRQ_NONE.
198 		 */
199 		dev_dbg_ratelimited(sdev->dev,
200 				    "nothing to do in IPC IRQ thread\n");
201 	}
202 
203 	return IRQ_HANDLED;
204 }
205 
206 static void cnl_ipc_host_done(struct snd_sof_dev *sdev)
207 {
208 	/*
209 	 * clear busy interrupt to tell dsp controller this
210 	 * interrupt has been accepted, not trigger it again
211 	 */
212 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
213 				       CNL_DSP_REG_HIPCTDR,
214 				       CNL_DSP_REG_HIPCTDR_BUSY,
215 				       CNL_DSP_REG_HIPCTDR_BUSY);
216 	/*
217 	 * set done bit to ack dsp the msg has been
218 	 * processed and send reply msg to dsp
219 	 */
220 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
221 				       CNL_DSP_REG_HIPCTDA,
222 				       CNL_DSP_REG_HIPCTDA_DONE,
223 				       CNL_DSP_REG_HIPCTDA_DONE);
224 }
225 
226 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev)
227 {
228 	/*
229 	 * set DONE bit - tell DSP we have received the reply msg
230 	 * from DSP, and processed it, don't send more reply to host
231 	 */
232 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
233 				       CNL_DSP_REG_HIPCIDA,
234 				       CNL_DSP_REG_HIPCIDA_DONE,
235 				       CNL_DSP_REG_HIPCIDA_DONE);
236 
237 	/* unmask Done interrupt */
238 	snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
239 				CNL_DSP_REG_HIPCCTL,
240 				CNL_DSP_REG_HIPCCTL_DONE,
241 				CNL_DSP_REG_HIPCCTL_DONE);
242 }
243 
244 static bool cnl_compact_ipc_compress(struct snd_sof_ipc_msg *msg,
245 				     u32 *dr, u32 *dd)
246 {
247 	struct sof_ipc_pm_gate *pm_gate = msg->msg_data;
248 
249 	if (pm_gate->hdr.cmd == (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_GATE)) {
250 		/* send the compact message via the primary register */
251 		*dr = HDA_IPC_MSG_COMPACT | HDA_IPC_PM_GATE;
252 
253 		/* send payload via the extended data register */
254 		*dd = pm_gate->flags;
255 
256 		return true;
257 	}
258 
259 	return false;
260 }
261 
262 int cnl_ipc4_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
263 {
264 	struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
265 	struct sof_ipc4_msg *msg_data = msg->msg_data;
266 
267 	if (hda_ipc4_tx_is_busy(sdev)) {
268 		hdev->delayed_ipc_tx_msg = msg;
269 		return 0;
270 	}
271 
272 	hdev->delayed_ipc_tx_msg = NULL;
273 
274 	/* send the message via mailbox */
275 	if (msg_data->data_size)
276 		sof_mailbox_write(sdev, sdev->host_box.offset, msg_data->data_ptr,
277 				  msg_data->data_size);
278 
279 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, msg_data->extension);
280 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
281 			  msg_data->primary | CNL_DSP_REG_HIPCIDR_BUSY);
282 
283 	hda_dsp_ipc4_schedule_d0i3_work(hdev, msg);
284 
285 	return 0;
286 }
287 
288 int cnl_ipc_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
289 {
290 	struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
291 	struct sof_ipc_cmd_hdr *hdr;
292 	u32 dr = 0;
293 	u32 dd = 0;
294 
295 	/*
296 	 * Currently the only compact IPC supported is the PM_GATE
297 	 * IPC which is used for transitioning the DSP between the
298 	 * D0I0 and D0I3 states. And these are sent only during the
299 	 * set_power_state() op. Therefore, there will never be a case
300 	 * that a compact IPC results in the DSP exiting D0I3 without
301 	 * the host and FW being in sync.
302 	 */
303 	if (cnl_compact_ipc_compress(msg, &dr, &dd)) {
304 		/* send the message via IPC registers */
305 		snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD,
306 				  dd);
307 		snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
308 				  CNL_DSP_REG_HIPCIDR_BUSY | dr);
309 		return 0;
310 	}
311 
312 	/* send the message via mailbox */
313 	sof_mailbox_write(sdev, sdev->host_box.offset, msg->msg_data,
314 			  msg->msg_size);
315 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
316 			  CNL_DSP_REG_HIPCIDR_BUSY);
317 
318 	hdr = msg->msg_data;
319 
320 	/*
321 	 * Use mod_delayed_work() to schedule the delayed work
322 	 * to avoid scheduling multiple workqueue items when
323 	 * IPCs are sent at a high-rate. mod_delayed_work()
324 	 * modifies the timer if the work is pending.
325 	 * Also, a new delayed work should not be queued after the
326 	 * CTX_SAVE IPC, which is sent before the DSP enters D3.
327 	 */
328 	if (hdr->cmd != (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_CTX_SAVE))
329 		mod_delayed_work(system_wq, &hdev->d0i3_work,
330 				 msecs_to_jiffies(SOF_HDA_D0I3_WORK_DELAY_MS));
331 
332 	return 0;
333 }
334 
335 void cnl_ipc_dump(struct snd_sof_dev *sdev)
336 {
337 	u32 hipcctl;
338 	u32 hipcida;
339 	u32 hipctdr;
340 
341 	hda_ipc_irq_dump(sdev);
342 
343 	/* read IPC status */
344 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
345 	hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
346 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
347 
348 	/* dump the IPC regs */
349 	/* TODO: parse the raw msg */
350 	dev_err(sdev->dev,
351 		"error: host status 0x%8.8x dsp status 0x%8.8x mask 0x%8.8x\n",
352 		hipcida, hipctdr, hipcctl);
353 }
354 
355 void cnl_ipc4_dump(struct snd_sof_dev *sdev)
356 {
357 	u32 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl;
358 
359 	hda_ipc_irq_dump(sdev);
360 
361 	hipcidr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
362 	hipcidd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD);
363 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
364 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
365 	hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
366 	hipctda = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDA);
367 	hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
368 
369 	/* dump the IPC regs */
370 	/* TODO: parse the raw msg */
371 	dev_err(sdev->dev,
372 		"Host IPC initiator: %#x|%#x|%#x, target: %#x|%#x|%#x, ctl: %#x\n",
373 		hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl);
374 }
375 
376 /* cannonlake ops */
377 struct snd_sof_dsp_ops sof_cnl_ops;
378 EXPORT_SYMBOL_NS(sof_cnl_ops, SND_SOC_SOF_INTEL_HDA_COMMON);
379 
380 int sof_cnl_ops_init(struct snd_sof_dev *sdev)
381 {
382 	/* common defaults */
383 	memcpy(&sof_cnl_ops, &sof_hda_common_ops, sizeof(struct snd_sof_dsp_ops));
384 
385 	/* probe/remove/shutdown */
386 	sof_cnl_ops.shutdown	= hda_dsp_shutdown;
387 
388 	/* ipc */
389 	if (sdev->pdata->ipc_type == SOF_IPC) {
390 		/* doorbell */
391 		sof_cnl_ops.irq_thread	= cnl_ipc_irq_thread;
392 
393 		/* ipc */
394 		sof_cnl_ops.send_msg	= cnl_ipc_send_msg;
395 
396 		/* debug */
397 		sof_cnl_ops.ipc_dump	= cnl_ipc_dump;
398 
399 		sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc3;
400 	}
401 
402 	if (sdev->pdata->ipc_type == SOF_INTEL_IPC4) {
403 		struct sof_ipc4_fw_data *ipc4_data;
404 
405 		sdev->private = devm_kzalloc(sdev->dev, sizeof(*ipc4_data), GFP_KERNEL);
406 		if (!sdev->private)
407 			return -ENOMEM;
408 
409 		ipc4_data = sdev->private;
410 		ipc4_data->manifest_fw_hdr_offset = SOF_MAN4_FW_HDR_OFFSET;
411 
412 		ipc4_data->mtrace_type = SOF_IPC4_MTRACE_INTEL_CAVS_1_8;
413 
414 		/* External library loading support */
415 		ipc4_data->load_library = hda_dsp_ipc4_load_library;
416 
417 		/* doorbell */
418 		sof_cnl_ops.irq_thread	= cnl_ipc4_irq_thread;
419 
420 		/* ipc */
421 		sof_cnl_ops.send_msg	= cnl_ipc4_send_msg;
422 
423 		/* debug */
424 		sof_cnl_ops.ipc_dump	= cnl_ipc4_dump;
425 
426 		sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc4;
427 	}
428 
429 	/* set DAI driver ops */
430 	hda_set_dai_drv_ops(sdev, &sof_cnl_ops);
431 
432 	/* debug */
433 	sof_cnl_ops.debug_map	= cnl_dsp_debugfs;
434 	sof_cnl_ops.debug_map_count	= ARRAY_SIZE(cnl_dsp_debugfs);
435 
436 	/* pre/post fw run */
437 	sof_cnl_ops.post_fw_run = hda_dsp_post_fw_run;
438 
439 	/* firmware run */
440 	sof_cnl_ops.run = hda_dsp_cl_boot_firmware;
441 
442 	/* dsp core get/put */
443 	sof_cnl_ops.core_get = hda_dsp_core_get;
444 
445 	return 0;
446 };
447 EXPORT_SYMBOL_NS(sof_cnl_ops_init, SND_SOC_SOF_INTEL_HDA_COMMON);
448 
449 const struct sof_intel_dsp_desc cnl_chip_info = {
450 	/* Cannonlake */
451 	.cores_num = 4,
452 	.init_core_mask = 1,
453 	.host_managed_cores_mask = GENMASK(3, 0),
454 	.ipc_req = CNL_DSP_REG_HIPCIDR,
455 	.ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
456 	.ipc_ack = CNL_DSP_REG_HIPCIDA,
457 	.ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
458 	.ipc_ctl = CNL_DSP_REG_HIPCCTL,
459 	.rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
460 	.rom_init_timeout	= 300,
461 	.ssp_count = CNL_SSP_COUNT,
462 	.ssp_base_offset = CNL_SSP_BASE_OFFSET,
463 	.sdw_shim_base = SDW_SHIM_BASE,
464 	.sdw_alh_base = SDW_ALH_BASE,
465 	.d0i3_offset = SOF_HDA_VS_D0I3C,
466 	.read_sdw_lcount =  hda_sdw_check_lcount_common,
467 	.enable_sdw_irq	= hda_common_enable_sdw_irq,
468 	.check_sdw_irq	= hda_common_check_sdw_irq,
469 	.check_ipc_irq	= hda_dsp_check_ipc_irq,
470 	.cl_init = cl_dsp_init,
471 	.power_down_dsp = hda_power_down_dsp,
472 	.disable_interrupts = hda_dsp_disable_interrupts,
473 	.hw_ip_version = SOF_INTEL_CAVS_1_8,
474 };
475 EXPORT_SYMBOL_NS(cnl_chip_info, SND_SOC_SOF_INTEL_HDA_COMMON);
476 
477 /*
478  * JasperLake is technically derived from IceLake, and should be in
479  * described in icl.c. However since JasperLake was designed with
480  * two cores, it cannot support the IceLake-specific power-up sequences
481  * which rely on core3. To simplify, JasperLake uses the CannonLake ops and
482  * is described in cnl.c
483  */
484 const struct sof_intel_dsp_desc jsl_chip_info = {
485 	/* Jasperlake */
486 	.cores_num = 2,
487 	.init_core_mask = 1,
488 	.host_managed_cores_mask = GENMASK(1, 0),
489 	.ipc_req = CNL_DSP_REG_HIPCIDR,
490 	.ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
491 	.ipc_ack = CNL_DSP_REG_HIPCIDA,
492 	.ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
493 	.ipc_ctl = CNL_DSP_REG_HIPCCTL,
494 	.rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
495 	.rom_init_timeout	= 300,
496 	.ssp_count = ICL_SSP_COUNT,
497 	.ssp_base_offset = CNL_SSP_BASE_OFFSET,
498 	.sdw_shim_base = SDW_SHIM_BASE,
499 	.sdw_alh_base = SDW_ALH_BASE,
500 	.d0i3_offset = SOF_HDA_VS_D0I3C,
501 	.read_sdw_lcount =  hda_sdw_check_lcount_common,
502 	.enable_sdw_irq	= hda_common_enable_sdw_irq,
503 	.check_sdw_irq	= hda_common_check_sdw_irq,
504 	.check_ipc_irq	= hda_dsp_check_ipc_irq,
505 	.cl_init = cl_dsp_init,
506 	.power_down_dsp = hda_power_down_dsp,
507 	.disable_interrupts = hda_dsp_disable_interrupts,
508 	.hw_ip_version = SOF_INTEL_CAVS_2_0,
509 };
510 EXPORT_SYMBOL_NS(jsl_chip_info, SND_SOC_SOF_INTEL_HDA_COMMON);
511