xref: /openbmc/linux/sound/soc/soc-ops.c (revision edb43ae4)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	int platform_max;
181 
182 	if (!mc->platform_max)
183 		mc->platform_max = mc->max;
184 	platform_max = mc->platform_max;
185 
186 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 	else
189 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190 
191 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 	uinfo->value.integer.min = 0;
193 	uinfo->value.integer.max = platform_max - mc->min;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197 
198 /**
199  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200  * @kcontrol: mixer control
201  * @uinfo: control element information
202  *
203  * Callback to provide information about a single mixer control, or a double
204  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205  * have a range that represents both positive and negative values either side
206  * of zero but without a sign bit.
207  *
208  * Returns 0 for success.
209  */
210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 			  struct snd_ctl_elem_info *uinfo)
212 {
213 	struct soc_mixer_control *mc =
214 		(struct soc_mixer_control *)kcontrol->private_value;
215 
216 	snd_soc_info_volsw(kcontrol, uinfo);
217 	/* Max represents the number of levels in an SX control not the
218 	 * maximum value, so add the minimum value back on
219 	 */
220 	uinfo->value.integer.max += mc->min;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225 
226 /**
227  * snd_soc_get_volsw - single mixer get callback
228  * @kcontrol: mixer control
229  * @ucontrol: control element information
230  *
231  * Callback to get the value of a single mixer control, or a double mixer
232  * control that spans 2 registers.
233  *
234  * Returns 0 for success.
235  */
236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 	struct snd_ctl_elem_value *ucontrol)
238 {
239 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 	struct soc_mixer_control *mc =
241 		(struct soc_mixer_control *)kcontrol->private_value;
242 	unsigned int reg = mc->reg;
243 	unsigned int reg2 = mc->rreg;
244 	unsigned int shift = mc->shift;
245 	unsigned int rshift = mc->rshift;
246 	int max = mc->max;
247 	int min = mc->min;
248 	int sign_bit = mc->sign_bit;
249 	unsigned int mask = (1 << fls(max)) - 1;
250 	unsigned int invert = mc->invert;
251 	int val;
252 	int ret;
253 
254 	if (sign_bit)
255 		mask = BIT(sign_bit + 1) - 1;
256 
257 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 	if (ret)
259 		return ret;
260 
261 	ucontrol->value.integer.value[0] = val - min;
262 	if (invert)
263 		ucontrol->value.integer.value[0] =
264 			max - ucontrol->value.integer.value[0];
265 
266 	if (snd_soc_volsw_is_stereo(mc)) {
267 		if (reg == reg2)
268 			ret = snd_soc_read_signed(component, reg, mask, rshift,
269 				sign_bit, &val);
270 		else
271 			ret = snd_soc_read_signed(component, reg2, mask, shift,
272 				sign_bit, &val);
273 		if (ret)
274 			return ret;
275 
276 		ucontrol->value.integer.value[1] = val - min;
277 		if (invert)
278 			ucontrol->value.integer.value[1] =
279 				max - ucontrol->value.integer.value[1];
280 	}
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285 
286 /**
287  * snd_soc_put_volsw - single mixer put callback
288  * @kcontrol: mixer control
289  * @ucontrol: control element information
290  *
291  * Callback to set the value of a single mixer control, or a double mixer
292  * control that spans 2 registers.
293  *
294  * Returns 0 for success.
295  */
296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 	struct soc_mixer_control *mc =
301 		(struct soc_mixer_control *)kcontrol->private_value;
302 	unsigned int reg = mc->reg;
303 	unsigned int reg2 = mc->rreg;
304 	unsigned int shift = mc->shift;
305 	unsigned int rshift = mc->rshift;
306 	int max = mc->max;
307 	int min = mc->min;
308 	unsigned int sign_bit = mc->sign_bit;
309 	unsigned int mask = (1 << fls(max)) - 1;
310 	unsigned int invert = mc->invert;
311 	int err, ret;
312 	bool type_2r = false;
313 	unsigned int val2 = 0;
314 	unsigned int val, val_mask;
315 
316 	if (sign_bit)
317 		mask = BIT(sign_bit + 1) - 1;
318 
319 	val = ucontrol->value.integer.value[0];
320 	if (mc->platform_max && val > mc->platform_max)
321 		return -EINVAL;
322 	if (val > max - min)
323 		return -EINVAL;
324 	if (val < 0)
325 		return -EINVAL;
326 	val = (val + min) & mask;
327 	if (invert)
328 		val = max - val;
329 	val_mask = mask << shift;
330 	val = val << shift;
331 	if (snd_soc_volsw_is_stereo(mc)) {
332 		val2 = ucontrol->value.integer.value[1];
333 		if (mc->platform_max && val2 > mc->platform_max)
334 			return -EINVAL;
335 		if (val2 > max - min)
336 			return -EINVAL;
337 		if (val2 < 0)
338 			return -EINVAL;
339 		val2 = (val2 + min) & mask;
340 		if (invert)
341 			val2 = max - val2;
342 		if (reg == reg2) {
343 			val_mask |= mask << rshift;
344 			val |= val2 << rshift;
345 		} else {
346 			val2 = val2 << shift;
347 			type_2r = true;
348 		}
349 	}
350 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 	if (err < 0)
352 		return err;
353 	ret = err;
354 
355 	if (type_2r) {
356 		err = snd_soc_component_update_bits(component, reg2, val_mask,
357 						    val2);
358 		/* Don't discard any error code or drop change flag */
359 		if (ret == 0 || err < 0) {
360 			ret = err;
361 		}
362 	}
363 
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367 
368 /**
369  * snd_soc_get_volsw_sx - single mixer get callback
370  * @kcontrol: mixer control
371  * @ucontrol: control element information
372  *
373  * Callback to get the value of a single mixer control, or a double mixer
374  * control that spans 2 registers.
375  *
376  * Returns 0 for success.
377  */
378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 		      struct snd_ctl_elem_value *ucontrol)
380 {
381 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 	struct soc_mixer_control *mc =
383 	    (struct soc_mixer_control *)kcontrol->private_value;
384 	unsigned int reg = mc->reg;
385 	unsigned int reg2 = mc->rreg;
386 	unsigned int shift = mc->shift;
387 	unsigned int rshift = mc->rshift;
388 	int max = mc->max;
389 	int min = mc->min;
390 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391 	unsigned int val;
392 
393 	val = snd_soc_component_read(component, reg);
394 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395 
396 	if (snd_soc_volsw_is_stereo(mc)) {
397 		val = snd_soc_component_read(component, reg2);
398 		val = ((val >> rshift) - min) & mask;
399 		ucontrol->value.integer.value[1] = val;
400 	}
401 
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405 
406 /**
407  * snd_soc_put_volsw_sx - double mixer set callback
408  * @kcontrol: mixer control
409  * @ucontrol: control element information
410  *
411  * Callback to set the value of a double mixer control that spans 2 registers.
412  *
413  * Returns 0 for success.
414  */
415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 			 struct snd_ctl_elem_value *ucontrol)
417 {
418 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 	struct soc_mixer_control *mc =
420 	    (struct soc_mixer_control *)kcontrol->private_value;
421 
422 	unsigned int reg = mc->reg;
423 	unsigned int reg2 = mc->rreg;
424 	unsigned int shift = mc->shift;
425 	unsigned int rshift = mc->rshift;
426 	int max = mc->max;
427 	int min = mc->min;
428 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429 	int err = 0;
430 	unsigned int val, val_mask;
431 
432 	val = ucontrol->value.integer.value[0];
433 	if (mc->platform_max && val > mc->platform_max)
434 		return -EINVAL;
435 	if (val > max - min)
436 		return -EINVAL;
437 	if (val < 0)
438 		return -EINVAL;
439 	val_mask = mask << shift;
440 	val = (val + min) & mask;
441 	val = val << shift;
442 
443 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
444 	if (err < 0)
445 		return err;
446 
447 	if (snd_soc_volsw_is_stereo(mc)) {
448 		unsigned int val2;
449 
450 		val_mask = mask << rshift;
451 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
452 		val2 = val2 << rshift;
453 
454 		err = snd_soc_component_update_bits(component, reg2, val_mask,
455 			val2);
456 	}
457 	return err;
458 }
459 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
460 
461 /**
462  * snd_soc_info_volsw_range - single mixer info callback with range.
463  * @kcontrol: mixer control
464  * @uinfo: control element information
465  *
466  * Callback to provide information, within a range, about a single
467  * mixer control.
468  *
469  * returns 0 for success.
470  */
471 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
472 	struct snd_ctl_elem_info *uinfo)
473 {
474 	struct soc_mixer_control *mc =
475 		(struct soc_mixer_control *)kcontrol->private_value;
476 	int platform_max;
477 	int min = mc->min;
478 
479 	if (!mc->platform_max)
480 		mc->platform_max = mc->max;
481 	platform_max = mc->platform_max;
482 
483 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
484 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
485 	uinfo->value.integer.min = 0;
486 	uinfo->value.integer.max = platform_max - min;
487 
488 	return 0;
489 }
490 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
491 
492 /**
493  * snd_soc_put_volsw_range - single mixer put value callback with range.
494  * @kcontrol: mixer control
495  * @ucontrol: control element information
496  *
497  * Callback to set the value, within a range, for a single mixer control.
498  *
499  * Returns 0 for success.
500  */
501 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
502 	struct snd_ctl_elem_value *ucontrol)
503 {
504 	struct soc_mixer_control *mc =
505 		(struct soc_mixer_control *)kcontrol->private_value;
506 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
507 	unsigned int reg = mc->reg;
508 	unsigned int rreg = mc->rreg;
509 	unsigned int shift = mc->shift;
510 	int min = mc->min;
511 	int max = mc->max;
512 	unsigned int mask = (1 << fls(max)) - 1;
513 	unsigned int invert = mc->invert;
514 	unsigned int val, val_mask;
515 	int ret;
516 
517 	if (invert)
518 		val = (max - ucontrol->value.integer.value[0]) & mask;
519 	else
520 		val = ((ucontrol->value.integer.value[0] + min) & mask);
521 	val_mask = mask << shift;
522 	val = val << shift;
523 
524 	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
525 	if (ret < 0)
526 		return ret;
527 
528 	if (snd_soc_volsw_is_stereo(mc)) {
529 		if (invert)
530 			val = (max - ucontrol->value.integer.value[1]) & mask;
531 		else
532 			val = ((ucontrol->value.integer.value[1] + min) & mask);
533 		val_mask = mask << shift;
534 		val = val << shift;
535 
536 		ret = snd_soc_component_update_bits(component, rreg, val_mask,
537 			val);
538 	}
539 
540 	return ret;
541 }
542 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
543 
544 /**
545  * snd_soc_get_volsw_range - single mixer get callback with range
546  * @kcontrol: mixer control
547  * @ucontrol: control element information
548  *
549  * Callback to get the value, within a range, of a single mixer control.
550  *
551  * Returns 0 for success.
552  */
553 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
554 	struct snd_ctl_elem_value *ucontrol)
555 {
556 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
557 	struct soc_mixer_control *mc =
558 		(struct soc_mixer_control *)kcontrol->private_value;
559 	unsigned int reg = mc->reg;
560 	unsigned int rreg = mc->rreg;
561 	unsigned int shift = mc->shift;
562 	int min = mc->min;
563 	int max = mc->max;
564 	unsigned int mask = (1 << fls(max)) - 1;
565 	unsigned int invert = mc->invert;
566 	unsigned int val;
567 
568 	val = snd_soc_component_read(component, reg);
569 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
570 	if (invert)
571 		ucontrol->value.integer.value[0] =
572 			max - ucontrol->value.integer.value[0];
573 	else
574 		ucontrol->value.integer.value[0] =
575 			ucontrol->value.integer.value[0] - min;
576 
577 	if (snd_soc_volsw_is_stereo(mc)) {
578 		val = snd_soc_component_read(component, rreg);
579 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
580 		if (invert)
581 			ucontrol->value.integer.value[1] =
582 				max - ucontrol->value.integer.value[1];
583 		else
584 			ucontrol->value.integer.value[1] =
585 				ucontrol->value.integer.value[1] - min;
586 	}
587 
588 	return 0;
589 }
590 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
591 
592 /**
593  * snd_soc_limit_volume - Set new limit to an existing volume control.
594  *
595  * @card: where to look for the control
596  * @name: Name of the control
597  * @max: new maximum limit
598  *
599  * Return 0 for success, else error.
600  */
601 int snd_soc_limit_volume(struct snd_soc_card *card,
602 	const char *name, int max)
603 {
604 	struct snd_kcontrol *kctl;
605 	int ret = -EINVAL;
606 
607 	/* Sanity check for name and max */
608 	if (unlikely(!name || max <= 0))
609 		return -EINVAL;
610 
611 	kctl = snd_soc_card_get_kcontrol(card, name);
612 	if (kctl) {
613 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
614 		if (max <= mc->max) {
615 			mc->platform_max = max;
616 			ret = 0;
617 		}
618 	}
619 	return ret;
620 }
621 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
622 
623 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
624 		       struct snd_ctl_elem_info *uinfo)
625 {
626 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
627 	struct soc_bytes *params = (void *)kcontrol->private_value;
628 
629 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
630 	uinfo->count = params->num_regs * component->val_bytes;
631 
632 	return 0;
633 }
634 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
635 
636 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
637 		      struct snd_ctl_elem_value *ucontrol)
638 {
639 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
640 	struct soc_bytes *params = (void *)kcontrol->private_value;
641 	int ret;
642 
643 	if (component->regmap)
644 		ret = regmap_raw_read(component->regmap, params->base,
645 				      ucontrol->value.bytes.data,
646 				      params->num_regs * component->val_bytes);
647 	else
648 		ret = -EINVAL;
649 
650 	/* Hide any masked bytes to ensure consistent data reporting */
651 	if (ret == 0 && params->mask) {
652 		switch (component->val_bytes) {
653 		case 1:
654 			ucontrol->value.bytes.data[0] &= ~params->mask;
655 			break;
656 		case 2:
657 			((u16 *)(&ucontrol->value.bytes.data))[0]
658 				&= cpu_to_be16(~params->mask);
659 			break;
660 		case 4:
661 			((u32 *)(&ucontrol->value.bytes.data))[0]
662 				&= cpu_to_be32(~params->mask);
663 			break;
664 		default:
665 			return -EINVAL;
666 		}
667 	}
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
672 
673 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
674 		      struct snd_ctl_elem_value *ucontrol)
675 {
676 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
677 	struct soc_bytes *params = (void *)kcontrol->private_value;
678 	int ret, len;
679 	unsigned int val, mask;
680 	void *data;
681 
682 	if (!component->regmap || !params->num_regs)
683 		return -EINVAL;
684 
685 	len = params->num_regs * component->val_bytes;
686 
687 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
688 	if (!data)
689 		return -ENOMEM;
690 
691 	/*
692 	 * If we've got a mask then we need to preserve the register
693 	 * bits.  We shouldn't modify the incoming data so take a
694 	 * copy.
695 	 */
696 	if (params->mask) {
697 		ret = regmap_read(component->regmap, params->base, &val);
698 		if (ret != 0)
699 			goto out;
700 
701 		val &= params->mask;
702 
703 		switch (component->val_bytes) {
704 		case 1:
705 			((u8 *)data)[0] &= ~params->mask;
706 			((u8 *)data)[0] |= val;
707 			break;
708 		case 2:
709 			mask = ~params->mask;
710 			ret = regmap_parse_val(component->regmap,
711 							&mask, &mask);
712 			if (ret != 0)
713 				goto out;
714 
715 			((u16 *)data)[0] &= mask;
716 
717 			ret = regmap_parse_val(component->regmap,
718 							&val, &val);
719 			if (ret != 0)
720 				goto out;
721 
722 			((u16 *)data)[0] |= val;
723 			break;
724 		case 4:
725 			mask = ~params->mask;
726 			ret = regmap_parse_val(component->regmap,
727 							&mask, &mask);
728 			if (ret != 0)
729 				goto out;
730 
731 			((u32 *)data)[0] &= mask;
732 
733 			ret = regmap_parse_val(component->regmap,
734 							&val, &val);
735 			if (ret != 0)
736 				goto out;
737 
738 			((u32 *)data)[0] |= val;
739 			break;
740 		default:
741 			ret = -EINVAL;
742 			goto out;
743 		}
744 	}
745 
746 	ret = regmap_raw_write(component->regmap, params->base,
747 			       data, len);
748 
749 out:
750 	kfree(data);
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
755 
756 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
757 			struct snd_ctl_elem_info *ucontrol)
758 {
759 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
760 
761 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
762 	ucontrol->count = params->max;
763 
764 	return 0;
765 }
766 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
767 
768 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
769 				unsigned int size, unsigned int __user *tlv)
770 {
771 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
772 	unsigned int count = size < params->max ? size : params->max;
773 	int ret = -ENXIO;
774 
775 	switch (op_flag) {
776 	case SNDRV_CTL_TLV_OP_READ:
777 		if (params->get)
778 			ret = params->get(kcontrol, tlv, count);
779 		break;
780 	case SNDRV_CTL_TLV_OP_WRITE:
781 		if (params->put)
782 			ret = params->put(kcontrol, tlv, count);
783 		break;
784 	}
785 	return ret;
786 }
787 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
788 
789 /**
790  * snd_soc_info_xr_sx - signed multi register info callback
791  * @kcontrol: mreg control
792  * @uinfo: control element information
793  *
794  * Callback to provide information of a control that can
795  * span multiple codec registers which together
796  * forms a single signed value in a MSB/LSB manner.
797  *
798  * Returns 0 for success.
799  */
800 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
801 	struct snd_ctl_elem_info *uinfo)
802 {
803 	struct soc_mreg_control *mc =
804 		(struct soc_mreg_control *)kcontrol->private_value;
805 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
806 	uinfo->count = 1;
807 	uinfo->value.integer.min = mc->min;
808 	uinfo->value.integer.max = mc->max;
809 
810 	return 0;
811 }
812 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
813 
814 /**
815  * snd_soc_get_xr_sx - signed multi register get callback
816  * @kcontrol: mreg control
817  * @ucontrol: control element information
818  *
819  * Callback to get the value of a control that can span
820  * multiple codec registers which together forms a single
821  * signed value in a MSB/LSB manner. The control supports
822  * specifying total no of bits used to allow for bitfields
823  * across the multiple codec registers.
824  *
825  * Returns 0 for success.
826  */
827 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
828 	struct snd_ctl_elem_value *ucontrol)
829 {
830 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
831 	struct soc_mreg_control *mc =
832 		(struct soc_mreg_control *)kcontrol->private_value;
833 	unsigned int regbase = mc->regbase;
834 	unsigned int regcount = mc->regcount;
835 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
836 	unsigned int regwmask = (1UL<<regwshift)-1;
837 	unsigned int invert = mc->invert;
838 	unsigned long mask = (1UL<<mc->nbits)-1;
839 	long min = mc->min;
840 	long max = mc->max;
841 	long val = 0;
842 	unsigned int i;
843 
844 	for (i = 0; i < regcount; i++) {
845 		unsigned int regval = snd_soc_component_read(component, regbase+i);
846 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
847 	}
848 	val &= mask;
849 	if (min < 0 && val > max)
850 		val |= ~mask;
851 	if (invert)
852 		val = max - val;
853 	ucontrol->value.integer.value[0] = val;
854 
855 	return 0;
856 }
857 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
858 
859 /**
860  * snd_soc_put_xr_sx - signed multi register get callback
861  * @kcontrol: mreg control
862  * @ucontrol: control element information
863  *
864  * Callback to set the value of a control that can span
865  * multiple codec registers which together forms a single
866  * signed value in a MSB/LSB manner. The control supports
867  * specifying total no of bits used to allow for bitfields
868  * across the multiple codec registers.
869  *
870  * Returns 0 for success.
871  */
872 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
873 	struct snd_ctl_elem_value *ucontrol)
874 {
875 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
876 	struct soc_mreg_control *mc =
877 		(struct soc_mreg_control *)kcontrol->private_value;
878 	unsigned int regbase = mc->regbase;
879 	unsigned int regcount = mc->regcount;
880 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
881 	unsigned int regwmask = (1UL<<regwshift)-1;
882 	unsigned int invert = mc->invert;
883 	unsigned long mask = (1UL<<mc->nbits)-1;
884 	long max = mc->max;
885 	long val = ucontrol->value.integer.value[0];
886 	unsigned int i;
887 
888 	if (val < mc->min || val > mc->max)
889 		return -EINVAL;
890 	if (invert)
891 		val = max - val;
892 	val &= mask;
893 	for (i = 0; i < regcount; i++) {
894 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
895 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
896 		int err = snd_soc_component_update_bits(component, regbase+i,
897 							regmask, regval);
898 		if (err < 0)
899 			return err;
900 	}
901 
902 	return 0;
903 }
904 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
905 
906 /**
907  * snd_soc_get_strobe - strobe get callback
908  * @kcontrol: mixer control
909  * @ucontrol: control element information
910  *
911  * Callback get the value of a strobe mixer control.
912  *
913  * Returns 0 for success.
914  */
915 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
916 	struct snd_ctl_elem_value *ucontrol)
917 {
918 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
919 	struct soc_mixer_control *mc =
920 		(struct soc_mixer_control *)kcontrol->private_value;
921 	unsigned int reg = mc->reg;
922 	unsigned int shift = mc->shift;
923 	unsigned int mask = 1 << shift;
924 	unsigned int invert = mc->invert != 0;
925 	unsigned int val;
926 
927 	val = snd_soc_component_read(component, reg);
928 	val &= mask;
929 
930 	if (shift != 0 && val != 0)
931 		val = val >> shift;
932 	ucontrol->value.enumerated.item[0] = val ^ invert;
933 
934 	return 0;
935 }
936 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
937 
938 /**
939  * snd_soc_put_strobe - strobe put callback
940  * @kcontrol: mixer control
941  * @ucontrol: control element information
942  *
943  * Callback strobe a register bit to high then low (or the inverse)
944  * in one pass of a single mixer enum control.
945  *
946  * Returns 1 for success.
947  */
948 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
949 	struct snd_ctl_elem_value *ucontrol)
950 {
951 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
952 	struct soc_mixer_control *mc =
953 		(struct soc_mixer_control *)kcontrol->private_value;
954 	unsigned int reg = mc->reg;
955 	unsigned int shift = mc->shift;
956 	unsigned int mask = 1 << shift;
957 	unsigned int invert = mc->invert != 0;
958 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
959 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
960 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
961 	int err;
962 
963 	err = snd_soc_component_update_bits(component, reg, mask, val1);
964 	if (err < 0)
965 		return err;
966 
967 	return snd_soc_component_update_bits(component, reg, mask, val2);
968 }
969 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
970