xref: /openbmc/linux/sound/soc/soc-ops.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 	int ret;
67 
68 	ret = snd_soc_component_read(component, e->reg, &reg_val);
69 	if (ret)
70 		return ret;
71 	val = (reg_val >> e->shift_l) & e->mask;
72 	item = snd_soc_enum_val_to_item(e, val);
73 	ucontrol->value.enumerated.item[0] = item;
74 	if (e->shift_l != e->shift_r) {
75 		val = (reg_val >> e->shift_r) & e->mask;
76 		item = snd_soc_enum_val_to_item(e, val);
77 		ucontrol->value.enumerated.item[1] = item;
78 	}
79 
80 	return 0;
81 }
82 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
83 
84 /**
85  * snd_soc_put_enum_double - enumerated double mixer put callback
86  * @kcontrol: mixer control
87  * @ucontrol: control element information
88  *
89  * Callback to set the value of a double enumerated mixer.
90  *
91  * Returns 0 for success.
92  */
93 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
94 	struct snd_ctl_elem_value *ucontrol)
95 {
96 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
97 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
98 	unsigned int *item = ucontrol->value.enumerated.item;
99 	unsigned int val;
100 	unsigned int mask;
101 
102 	if (item[0] >= e->items)
103 		return -EINVAL;
104 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
105 	mask = e->mask << e->shift_l;
106 	if (e->shift_l != e->shift_r) {
107 		if (item[1] >= e->items)
108 			return -EINVAL;
109 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
110 		mask |= e->mask << e->shift_r;
111 	}
112 
113 	return snd_soc_component_update_bits(component, e->reg, mask, val);
114 }
115 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
116 
117 /**
118  * snd_soc_read_signed - Read a codec register and interpret as signed value
119  * @component: component
120  * @reg: Register to read
121  * @mask: Mask to use after shifting the register value
122  * @shift: Right shift of register value
123  * @sign_bit: Bit that describes if a number is negative or not.
124  * @signed_val: Pointer to where the read value should be stored
125  *
126  * This functions reads a codec register. The register value is shifted right
127  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
128  * the given registervalue into a signed integer if sign_bit is non-zero.
129  *
130  * Returns 0 on sucess, otherwise an error value
131  */
132 static int snd_soc_read_signed(struct snd_soc_component *component,
133 	unsigned int reg, unsigned int mask, unsigned int shift,
134 	unsigned int sign_bit, int *signed_val)
135 {
136 	int ret;
137 	unsigned int val;
138 
139 	ret = snd_soc_component_read(component, reg, &val);
140 	if (ret < 0)
141 		return ret;
142 
143 	val = (val >> shift) & mask;
144 
145 	if (!sign_bit) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	/* non-negative number */
151 	if (!(val & BIT(sign_bit))) {
152 		*signed_val = val;
153 		return 0;
154 	}
155 
156 	ret = val;
157 
158 	/*
159 	 * The register most probably does not contain a full-sized int.
160 	 * Instead we have an arbitrary number of bits in a signed
161 	 * representation which has to be translated into a full-sized int.
162 	 * This is done by filling up all bits above the sign-bit.
163 	 */
164 	ret |= ~((int)(BIT(sign_bit) - 1));
165 
166 	*signed_val = ret;
167 
168 	return 0;
169 }
170 
171 /**
172  * snd_soc_info_volsw - single mixer info callback
173  * @kcontrol: mixer control
174  * @uinfo: control element information
175  *
176  * Callback to provide information about a single mixer control, or a double
177  * mixer control that spans 2 registers.
178  *
179  * Returns 0 for success.
180  */
181 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
182 	struct snd_ctl_elem_info *uinfo)
183 {
184 	struct soc_mixer_control *mc =
185 		(struct soc_mixer_control *)kcontrol->private_value;
186 	int platform_max;
187 
188 	if (!mc->platform_max)
189 		mc->platform_max = mc->max;
190 	platform_max = mc->platform_max;
191 
192 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
193 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194 	else
195 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
196 
197 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198 	uinfo->value.integer.min = 0;
199 	uinfo->value.integer.max = platform_max - mc->min;
200 	return 0;
201 }
202 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
203 
204 /**
205  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
206  * @kcontrol: mixer control
207  * @uinfo: control element information
208  *
209  * Callback to provide information about a single mixer control, or a double
210  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
211  * have a range that represents both positive and negative values either side
212  * of zero but without a sign bit.
213  *
214  * Returns 0 for success.
215  */
216 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
217 			  struct snd_ctl_elem_info *uinfo)
218 {
219 	struct soc_mixer_control *mc =
220 		(struct soc_mixer_control *)kcontrol->private_value;
221 
222 	snd_soc_info_volsw(kcontrol, uinfo);
223 	/* Max represents the number of levels in an SX control not the
224 	 * maximum value, so add the minimum value back on
225 	 */
226 	uinfo->value.integer.max += mc->min;
227 
228 	return 0;
229 }
230 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
231 
232 /**
233  * snd_soc_get_volsw - single mixer get callback
234  * @kcontrol: mixer control
235  * @ucontrol: control element information
236  *
237  * Callback to get the value of a single mixer control, or a double mixer
238  * control that spans 2 registers.
239  *
240  * Returns 0 for success.
241  */
242 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
243 	struct snd_ctl_elem_value *ucontrol)
244 {
245 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
246 	struct soc_mixer_control *mc =
247 		(struct soc_mixer_control *)kcontrol->private_value;
248 	unsigned int reg = mc->reg;
249 	unsigned int reg2 = mc->rreg;
250 	unsigned int shift = mc->shift;
251 	unsigned int rshift = mc->rshift;
252 	int max = mc->max;
253 	int min = mc->min;
254 	int sign_bit = mc->sign_bit;
255 	unsigned int mask = (1 << fls(max)) - 1;
256 	unsigned int invert = mc->invert;
257 	int val;
258 	int ret;
259 
260 	if (sign_bit)
261 		mask = BIT(sign_bit + 1) - 1;
262 
263 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
264 	if (ret)
265 		return ret;
266 
267 	ucontrol->value.integer.value[0] = val - min;
268 	if (invert)
269 		ucontrol->value.integer.value[0] =
270 			max - ucontrol->value.integer.value[0];
271 
272 	if (snd_soc_volsw_is_stereo(mc)) {
273 		if (reg == reg2)
274 			ret = snd_soc_read_signed(component, reg, mask, rshift,
275 				sign_bit, &val);
276 		else
277 			ret = snd_soc_read_signed(component, reg2, mask, shift,
278 				sign_bit, &val);
279 		if (ret)
280 			return ret;
281 
282 		ucontrol->value.integer.value[1] = val - min;
283 		if (invert)
284 			ucontrol->value.integer.value[1] =
285 				max - ucontrol->value.integer.value[1];
286 	}
287 
288 	return 0;
289 }
290 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
291 
292 /**
293  * snd_soc_put_volsw - single mixer put callback
294  * @kcontrol: mixer control
295  * @ucontrol: control element information
296  *
297  * Callback to set the value of a single mixer control, or a double mixer
298  * control that spans 2 registers.
299  *
300  * Returns 0 for success.
301  */
302 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
303 	struct snd_ctl_elem_value *ucontrol)
304 {
305 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
306 	struct soc_mixer_control *mc =
307 		(struct soc_mixer_control *)kcontrol->private_value;
308 	unsigned int reg = mc->reg;
309 	unsigned int reg2 = mc->rreg;
310 	unsigned int shift = mc->shift;
311 	unsigned int rshift = mc->rshift;
312 	int max = mc->max;
313 	int min = mc->min;
314 	unsigned int sign_bit = mc->sign_bit;
315 	unsigned int mask = (1 << fls(max)) - 1;
316 	unsigned int invert = mc->invert;
317 	int err;
318 	bool type_2r = false;
319 	unsigned int val2 = 0;
320 	unsigned int val, val_mask;
321 
322 	if (sign_bit)
323 		mask = BIT(sign_bit + 1) - 1;
324 
325 	val = ((ucontrol->value.integer.value[0] + min) & mask);
326 	if (invert)
327 		val = max - val;
328 	val_mask = mask << shift;
329 	val = val << shift;
330 	if (snd_soc_volsw_is_stereo(mc)) {
331 		val2 = ((ucontrol->value.integer.value[1] + min) & mask);
332 		if (invert)
333 			val2 = max - val2;
334 		if (reg == reg2) {
335 			val_mask |= mask << rshift;
336 			val |= val2 << rshift;
337 		} else {
338 			val2 = val2 << shift;
339 			type_2r = true;
340 		}
341 	}
342 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
343 	if (err < 0)
344 		return err;
345 
346 	if (type_2r)
347 		err = snd_soc_component_update_bits(component, reg2, val_mask,
348 			val2);
349 
350 	return err;
351 }
352 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
353 
354 /**
355  * snd_soc_get_volsw_sx - single mixer get callback
356  * @kcontrol: mixer control
357  * @ucontrol: control element information
358  *
359  * Callback to get the value of a single mixer control, or a double mixer
360  * control that spans 2 registers.
361  *
362  * Returns 0 for success.
363  */
364 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
365 		      struct snd_ctl_elem_value *ucontrol)
366 {
367 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
368 	struct soc_mixer_control *mc =
369 	    (struct soc_mixer_control *)kcontrol->private_value;
370 	unsigned int reg = mc->reg;
371 	unsigned int reg2 = mc->rreg;
372 	unsigned int shift = mc->shift;
373 	unsigned int rshift = mc->rshift;
374 	int max = mc->max;
375 	int min = mc->min;
376 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
377 	unsigned int val;
378 	int ret;
379 
380 	ret = snd_soc_component_read(component, reg, &val);
381 	if (ret < 0)
382 		return ret;
383 
384 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
385 
386 	if (snd_soc_volsw_is_stereo(mc)) {
387 		ret = snd_soc_component_read(component, reg2, &val);
388 		if (ret < 0)
389 			return ret;
390 
391 		val = ((val >> rshift) - min) & mask;
392 		ucontrol->value.integer.value[1] = val;
393 	}
394 
395 	return 0;
396 }
397 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
398 
399 /**
400  * snd_soc_put_volsw_sx - double mixer set callback
401  * @kcontrol: mixer control
402  * @ucontrol: control element information
403  *
404  * Callback to set the value of a double mixer control that spans 2 registers.
405  *
406  * Returns 0 for success.
407  */
408 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
409 			 struct snd_ctl_elem_value *ucontrol)
410 {
411 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
412 	struct soc_mixer_control *mc =
413 	    (struct soc_mixer_control *)kcontrol->private_value;
414 
415 	unsigned int reg = mc->reg;
416 	unsigned int reg2 = mc->rreg;
417 	unsigned int shift = mc->shift;
418 	unsigned int rshift = mc->rshift;
419 	int max = mc->max;
420 	int min = mc->min;
421 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
422 	int err = 0;
423 	unsigned int val, val_mask, val2 = 0;
424 
425 	val_mask = mask << shift;
426 	val = (ucontrol->value.integer.value[0] + min) & mask;
427 	val = val << shift;
428 
429 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
430 	if (err < 0)
431 		return err;
432 
433 	if (snd_soc_volsw_is_stereo(mc)) {
434 		val_mask = mask << rshift;
435 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
436 		val2 = val2 << rshift;
437 
438 		err = snd_soc_component_update_bits(component, reg2, val_mask,
439 			val2);
440 	}
441 	return err;
442 }
443 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
444 
445 /**
446  * snd_soc_info_volsw_range - single mixer info callback with range.
447  * @kcontrol: mixer control
448  * @uinfo: control element information
449  *
450  * Callback to provide information, within a range, about a single
451  * mixer control.
452  *
453  * returns 0 for success.
454  */
455 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
456 	struct snd_ctl_elem_info *uinfo)
457 {
458 	struct soc_mixer_control *mc =
459 		(struct soc_mixer_control *)kcontrol->private_value;
460 	int platform_max;
461 	int min = mc->min;
462 
463 	if (!mc->platform_max)
464 		mc->platform_max = mc->max;
465 	platform_max = mc->platform_max;
466 
467 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
468 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
469 	uinfo->value.integer.min = 0;
470 	uinfo->value.integer.max = platform_max - min;
471 
472 	return 0;
473 }
474 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
475 
476 /**
477  * snd_soc_put_volsw_range - single mixer put value callback with range.
478  * @kcontrol: mixer control
479  * @ucontrol: control element information
480  *
481  * Callback to set the value, within a range, for a single mixer control.
482  *
483  * Returns 0 for success.
484  */
485 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
486 	struct snd_ctl_elem_value *ucontrol)
487 {
488 	struct soc_mixer_control *mc =
489 		(struct soc_mixer_control *)kcontrol->private_value;
490 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
491 	unsigned int reg = mc->reg;
492 	unsigned int rreg = mc->rreg;
493 	unsigned int shift = mc->shift;
494 	int min = mc->min;
495 	int max = mc->max;
496 	unsigned int mask = (1 << fls(max)) - 1;
497 	unsigned int invert = mc->invert;
498 	unsigned int val, val_mask;
499 	int ret;
500 
501 	if (invert)
502 		val = (max - ucontrol->value.integer.value[0]) & mask;
503 	else
504 		val = ((ucontrol->value.integer.value[0] + min) & mask);
505 	val_mask = mask << shift;
506 	val = val << shift;
507 
508 	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
509 	if (ret < 0)
510 		return ret;
511 
512 	if (snd_soc_volsw_is_stereo(mc)) {
513 		if (invert)
514 			val = (max - ucontrol->value.integer.value[1]) & mask;
515 		else
516 			val = ((ucontrol->value.integer.value[1] + min) & mask);
517 		val_mask = mask << shift;
518 		val = val << shift;
519 
520 		ret = snd_soc_component_update_bits(component, rreg, val_mask,
521 			val);
522 	}
523 
524 	return ret;
525 }
526 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
527 
528 /**
529  * snd_soc_get_volsw_range - single mixer get callback with range
530  * @kcontrol: mixer control
531  * @ucontrol: control element information
532  *
533  * Callback to get the value, within a range, of a single mixer control.
534  *
535  * Returns 0 for success.
536  */
537 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
538 	struct snd_ctl_elem_value *ucontrol)
539 {
540 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
541 	struct soc_mixer_control *mc =
542 		(struct soc_mixer_control *)kcontrol->private_value;
543 	unsigned int reg = mc->reg;
544 	unsigned int rreg = mc->rreg;
545 	unsigned int shift = mc->shift;
546 	int min = mc->min;
547 	int max = mc->max;
548 	unsigned int mask = (1 << fls(max)) - 1;
549 	unsigned int invert = mc->invert;
550 	unsigned int val;
551 	int ret;
552 
553 	ret = snd_soc_component_read(component, reg, &val);
554 	if (ret)
555 		return ret;
556 
557 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
558 	if (invert)
559 		ucontrol->value.integer.value[0] =
560 			max - ucontrol->value.integer.value[0];
561 	else
562 		ucontrol->value.integer.value[0] =
563 			ucontrol->value.integer.value[0] - min;
564 
565 	if (snd_soc_volsw_is_stereo(mc)) {
566 		ret = snd_soc_component_read(component, rreg, &val);
567 		if (ret)
568 			return ret;
569 
570 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
571 		if (invert)
572 			ucontrol->value.integer.value[1] =
573 				max - ucontrol->value.integer.value[1];
574 		else
575 			ucontrol->value.integer.value[1] =
576 				ucontrol->value.integer.value[1] - min;
577 	}
578 
579 	return 0;
580 }
581 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
582 
583 /**
584  * snd_soc_limit_volume - Set new limit to an existing volume control.
585  *
586  * @card: where to look for the control
587  * @name: Name of the control
588  * @max: new maximum limit
589  *
590  * Return 0 for success, else error.
591  */
592 int snd_soc_limit_volume(struct snd_soc_card *card,
593 	const char *name, int max)
594 {
595 	struct snd_kcontrol *kctl;
596 	struct soc_mixer_control *mc;
597 	int ret = -EINVAL;
598 
599 	/* Sanity check for name and max */
600 	if (unlikely(!name || max <= 0))
601 		return -EINVAL;
602 
603 	kctl = snd_soc_card_get_kcontrol(card, name);
604 	if (kctl) {
605 		mc = (struct soc_mixer_control *)kctl->private_value;
606 		if (max <= mc->max) {
607 			mc->platform_max = max;
608 			ret = 0;
609 		}
610 	}
611 	return ret;
612 }
613 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
614 
615 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
616 		       struct snd_ctl_elem_info *uinfo)
617 {
618 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
619 	struct soc_bytes *params = (void *)kcontrol->private_value;
620 
621 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
622 	uinfo->count = params->num_regs * component->val_bytes;
623 
624 	return 0;
625 }
626 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
627 
628 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
629 		      struct snd_ctl_elem_value *ucontrol)
630 {
631 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
632 	struct soc_bytes *params = (void *)kcontrol->private_value;
633 	int ret;
634 
635 	if (component->regmap)
636 		ret = regmap_raw_read(component->regmap, params->base,
637 				      ucontrol->value.bytes.data,
638 				      params->num_regs * component->val_bytes);
639 	else
640 		ret = -EINVAL;
641 
642 	/* Hide any masked bytes to ensure consistent data reporting */
643 	if (ret == 0 && params->mask) {
644 		switch (component->val_bytes) {
645 		case 1:
646 			ucontrol->value.bytes.data[0] &= ~params->mask;
647 			break;
648 		case 2:
649 			((u16 *)(&ucontrol->value.bytes.data))[0]
650 				&= cpu_to_be16(~params->mask);
651 			break;
652 		case 4:
653 			((u32 *)(&ucontrol->value.bytes.data))[0]
654 				&= cpu_to_be32(~params->mask);
655 			break;
656 		default:
657 			return -EINVAL;
658 		}
659 	}
660 
661 	return ret;
662 }
663 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
664 
665 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
666 		      struct snd_ctl_elem_value *ucontrol)
667 {
668 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
669 	struct soc_bytes *params = (void *)kcontrol->private_value;
670 	int ret, len;
671 	unsigned int val, mask;
672 	void *data;
673 
674 	if (!component->regmap || !params->num_regs)
675 		return -EINVAL;
676 
677 	len = params->num_regs * component->val_bytes;
678 
679 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
680 	if (!data)
681 		return -ENOMEM;
682 
683 	/*
684 	 * If we've got a mask then we need to preserve the register
685 	 * bits.  We shouldn't modify the incoming data so take a
686 	 * copy.
687 	 */
688 	if (params->mask) {
689 		ret = regmap_read(component->regmap, params->base, &val);
690 		if (ret != 0)
691 			goto out;
692 
693 		val &= params->mask;
694 
695 		switch (component->val_bytes) {
696 		case 1:
697 			((u8 *)data)[0] &= ~params->mask;
698 			((u8 *)data)[0] |= val;
699 			break;
700 		case 2:
701 			mask = ~params->mask;
702 			ret = regmap_parse_val(component->regmap,
703 							&mask, &mask);
704 			if (ret != 0)
705 				goto out;
706 
707 			((u16 *)data)[0] &= mask;
708 
709 			ret = regmap_parse_val(component->regmap,
710 							&val, &val);
711 			if (ret != 0)
712 				goto out;
713 
714 			((u16 *)data)[0] |= val;
715 			break;
716 		case 4:
717 			mask = ~params->mask;
718 			ret = regmap_parse_val(component->regmap,
719 							&mask, &mask);
720 			if (ret != 0)
721 				goto out;
722 
723 			((u32 *)data)[0] &= mask;
724 
725 			ret = regmap_parse_val(component->regmap,
726 							&val, &val);
727 			if (ret != 0)
728 				goto out;
729 
730 			((u32 *)data)[0] |= val;
731 			break;
732 		default:
733 			ret = -EINVAL;
734 			goto out;
735 		}
736 	}
737 
738 	ret = regmap_raw_write(component->regmap, params->base,
739 			       data, len);
740 
741 out:
742 	kfree(data);
743 
744 	return ret;
745 }
746 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
747 
748 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
749 			struct snd_ctl_elem_info *ucontrol)
750 {
751 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
752 
753 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
754 	ucontrol->count = params->max;
755 
756 	return 0;
757 }
758 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
759 
760 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
761 				unsigned int size, unsigned int __user *tlv)
762 {
763 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
764 	unsigned int count = size < params->max ? size : params->max;
765 	int ret = -ENXIO;
766 
767 	switch (op_flag) {
768 	case SNDRV_CTL_TLV_OP_READ:
769 		if (params->get)
770 			ret = params->get(kcontrol, tlv, count);
771 		break;
772 	case SNDRV_CTL_TLV_OP_WRITE:
773 		if (params->put)
774 			ret = params->put(kcontrol, tlv, count);
775 		break;
776 	}
777 	return ret;
778 }
779 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
780 
781 /**
782  * snd_soc_info_xr_sx - signed multi register info callback
783  * @kcontrol: mreg control
784  * @uinfo: control element information
785  *
786  * Callback to provide information of a control that can
787  * span multiple codec registers which together
788  * forms a single signed value in a MSB/LSB manner.
789  *
790  * Returns 0 for success.
791  */
792 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
793 	struct snd_ctl_elem_info *uinfo)
794 {
795 	struct soc_mreg_control *mc =
796 		(struct soc_mreg_control *)kcontrol->private_value;
797 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
798 	uinfo->count = 1;
799 	uinfo->value.integer.min = mc->min;
800 	uinfo->value.integer.max = mc->max;
801 
802 	return 0;
803 }
804 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
805 
806 /**
807  * snd_soc_get_xr_sx - signed multi register get callback
808  * @kcontrol: mreg control
809  * @ucontrol: control element information
810  *
811  * Callback to get the value of a control that can span
812  * multiple codec registers which together forms a single
813  * signed value in a MSB/LSB manner. The control supports
814  * specifying total no of bits used to allow for bitfields
815  * across the multiple codec registers.
816  *
817  * Returns 0 for success.
818  */
819 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
820 	struct snd_ctl_elem_value *ucontrol)
821 {
822 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
823 	struct soc_mreg_control *mc =
824 		(struct soc_mreg_control *)kcontrol->private_value;
825 	unsigned int regbase = mc->regbase;
826 	unsigned int regcount = mc->regcount;
827 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
828 	unsigned int regwmask = (1UL<<regwshift)-1;
829 	unsigned int invert = mc->invert;
830 	unsigned long mask = (1UL<<mc->nbits)-1;
831 	long min = mc->min;
832 	long max = mc->max;
833 	long val = 0;
834 	unsigned int regval;
835 	unsigned int i;
836 	int ret;
837 
838 	for (i = 0; i < regcount; i++) {
839 		ret = snd_soc_component_read(component, regbase+i, &regval);
840 		if (ret)
841 			return ret;
842 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
843 	}
844 	val &= mask;
845 	if (min < 0 && val > max)
846 		val |= ~mask;
847 	if (invert)
848 		val = max - val;
849 	ucontrol->value.integer.value[0] = val;
850 
851 	return 0;
852 }
853 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
854 
855 /**
856  * snd_soc_put_xr_sx - signed multi register get callback
857  * @kcontrol: mreg control
858  * @ucontrol: control element information
859  *
860  * Callback to set the value of a control that can span
861  * multiple codec registers which together forms a single
862  * signed value in a MSB/LSB manner. The control supports
863  * specifying total no of bits used to allow for bitfields
864  * across the multiple codec registers.
865  *
866  * Returns 0 for success.
867  */
868 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
869 	struct snd_ctl_elem_value *ucontrol)
870 {
871 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
872 	struct soc_mreg_control *mc =
873 		(struct soc_mreg_control *)kcontrol->private_value;
874 	unsigned int regbase = mc->regbase;
875 	unsigned int regcount = mc->regcount;
876 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
877 	unsigned int regwmask = (1UL<<regwshift)-1;
878 	unsigned int invert = mc->invert;
879 	unsigned long mask = (1UL<<mc->nbits)-1;
880 	long max = mc->max;
881 	long val = ucontrol->value.integer.value[0];
882 	unsigned int i, regval, regmask;
883 	int err;
884 
885 	if (invert)
886 		val = max - val;
887 	val &= mask;
888 	for (i = 0; i < regcount; i++) {
889 		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
890 		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
891 		err = snd_soc_component_update_bits(component, regbase+i,
892 				regmask, regval);
893 		if (err < 0)
894 			return err;
895 	}
896 
897 	return 0;
898 }
899 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
900 
901 /**
902  * snd_soc_get_strobe - strobe get callback
903  * @kcontrol: mixer control
904  * @ucontrol: control element information
905  *
906  * Callback get the value of a strobe mixer control.
907  *
908  * Returns 0 for success.
909  */
910 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
911 	struct snd_ctl_elem_value *ucontrol)
912 {
913 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
914 	struct soc_mixer_control *mc =
915 		(struct soc_mixer_control *)kcontrol->private_value;
916 	unsigned int reg = mc->reg;
917 	unsigned int shift = mc->shift;
918 	unsigned int mask = 1 << shift;
919 	unsigned int invert = mc->invert != 0;
920 	unsigned int val;
921 	int ret;
922 
923 	ret = snd_soc_component_read(component, reg, &val);
924 	if (ret)
925 		return ret;
926 
927 	val &= mask;
928 
929 	if (shift != 0 && val != 0)
930 		val = val >> shift;
931 	ucontrol->value.enumerated.item[0] = val ^ invert;
932 
933 	return 0;
934 }
935 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
936 
937 /**
938  * snd_soc_put_strobe - strobe put callback
939  * @kcontrol: mixer control
940  * @ucontrol: control element information
941  *
942  * Callback strobe a register bit to high then low (or the inverse)
943  * in one pass of a single mixer enum control.
944  *
945  * Returns 1 for success.
946  */
947 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
948 	struct snd_ctl_elem_value *ucontrol)
949 {
950 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
951 	struct soc_mixer_control *mc =
952 		(struct soc_mixer_control *)kcontrol->private_value;
953 	unsigned int reg = mc->reg;
954 	unsigned int shift = mc->shift;
955 	unsigned int mask = 1 << shift;
956 	unsigned int invert = mc->invert != 0;
957 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
958 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
959 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
960 	int err;
961 
962 	err = snd_soc_component_update_bits(component, reg, mask, val1);
963 	if (err < 0)
964 		return err;
965 
966 	return snd_soc_component_update_bits(component, reg, mask, val2);
967 }
968 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
969