xref: /openbmc/linux/sound/soc/soc-ops.c (revision 9e8895f1)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	int platform_max;
181 
182 	if (!mc->platform_max)
183 		mc->platform_max = mc->max;
184 	platform_max = mc->platform_max;
185 
186 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 	else
189 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190 
191 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 	uinfo->value.integer.min = 0;
193 	uinfo->value.integer.max = platform_max - mc->min;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197 
198 /**
199  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200  * @kcontrol: mixer control
201  * @uinfo: control element information
202  *
203  * Callback to provide information about a single mixer control, or a double
204  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205  * have a range that represents both positive and negative values either side
206  * of zero but without a sign bit.
207  *
208  * Returns 0 for success.
209  */
210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 			  struct snd_ctl_elem_info *uinfo)
212 {
213 	struct soc_mixer_control *mc =
214 		(struct soc_mixer_control *)kcontrol->private_value;
215 
216 	snd_soc_info_volsw(kcontrol, uinfo);
217 	/* Max represents the number of levels in an SX control not the
218 	 * maximum value, so add the minimum value back on
219 	 */
220 	uinfo->value.integer.max += mc->min;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225 
226 /**
227  * snd_soc_get_volsw - single mixer get callback
228  * @kcontrol: mixer control
229  * @ucontrol: control element information
230  *
231  * Callback to get the value of a single mixer control, or a double mixer
232  * control that spans 2 registers.
233  *
234  * Returns 0 for success.
235  */
236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 	struct snd_ctl_elem_value *ucontrol)
238 {
239 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 	struct soc_mixer_control *mc =
241 		(struct soc_mixer_control *)kcontrol->private_value;
242 	unsigned int reg = mc->reg;
243 	unsigned int reg2 = mc->rreg;
244 	unsigned int shift = mc->shift;
245 	unsigned int rshift = mc->rshift;
246 	int max = mc->max;
247 	int min = mc->min;
248 	int sign_bit = mc->sign_bit;
249 	unsigned int mask = (1 << fls(max)) - 1;
250 	unsigned int invert = mc->invert;
251 	int val;
252 	int ret;
253 
254 	if (sign_bit)
255 		mask = BIT(sign_bit + 1) - 1;
256 
257 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 	if (ret)
259 		return ret;
260 
261 	ucontrol->value.integer.value[0] = val - min;
262 	if (invert)
263 		ucontrol->value.integer.value[0] =
264 			max - ucontrol->value.integer.value[0];
265 
266 	if (snd_soc_volsw_is_stereo(mc)) {
267 		if (reg == reg2)
268 			ret = snd_soc_read_signed(component, reg, mask, rshift,
269 				sign_bit, &val);
270 		else
271 			ret = snd_soc_read_signed(component, reg2, mask, shift,
272 				sign_bit, &val);
273 		if (ret)
274 			return ret;
275 
276 		ucontrol->value.integer.value[1] = val - min;
277 		if (invert)
278 			ucontrol->value.integer.value[1] =
279 				max - ucontrol->value.integer.value[1];
280 	}
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285 
286 /**
287  * snd_soc_put_volsw - single mixer put callback
288  * @kcontrol: mixer control
289  * @ucontrol: control element information
290  *
291  * Callback to set the value of a single mixer control, or a double mixer
292  * control that spans 2 registers.
293  *
294  * Returns 0 for success.
295  */
296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 	struct soc_mixer_control *mc =
301 		(struct soc_mixer_control *)kcontrol->private_value;
302 	unsigned int reg = mc->reg;
303 	unsigned int reg2 = mc->rreg;
304 	unsigned int shift = mc->shift;
305 	unsigned int rshift = mc->rshift;
306 	int max = mc->max;
307 	int min = mc->min;
308 	unsigned int sign_bit = mc->sign_bit;
309 	unsigned int mask = (1 << fls(max)) - 1;
310 	unsigned int invert = mc->invert;
311 	int err;
312 	bool type_2r = false;
313 	unsigned int val2 = 0;
314 	unsigned int val, val_mask;
315 
316 	if (sign_bit)
317 		mask = BIT(sign_bit + 1) - 1;
318 
319 	val = ucontrol->value.integer.value[0];
320 	if (mc->platform_max && val > mc->platform_max)
321 		return -EINVAL;
322 	if (val > max - min)
323 		return -EINVAL;
324 	if (val < 0)
325 		return -EINVAL;
326 	val = (val + min) & mask;
327 	if (invert)
328 		val = max - val;
329 	val_mask = mask << shift;
330 	val = val << shift;
331 	if (snd_soc_volsw_is_stereo(mc)) {
332 		val2 = ucontrol->value.integer.value[1];
333 		if (mc->platform_max && val2 > mc->platform_max)
334 			return -EINVAL;
335 		if (val2 > max - min)
336 			return -EINVAL;
337 		if (val2 < 0)
338 			return -EINVAL;
339 		val2 = (val2 + min) & mask;
340 		if (invert)
341 			val2 = max - val2;
342 		if (reg == reg2) {
343 			val_mask |= mask << rshift;
344 			val |= val2 << rshift;
345 		} else {
346 			val2 = val2 << shift;
347 			type_2r = true;
348 		}
349 	}
350 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 	if (err < 0)
352 		return err;
353 
354 	if (type_2r)
355 		err = snd_soc_component_update_bits(component, reg2, val_mask,
356 			val2);
357 
358 	return err;
359 }
360 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
361 
362 /**
363  * snd_soc_get_volsw_sx - single mixer get callback
364  * @kcontrol: mixer control
365  * @ucontrol: control element information
366  *
367  * Callback to get the value of a single mixer control, or a double mixer
368  * control that spans 2 registers.
369  *
370  * Returns 0 for success.
371  */
372 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
373 		      struct snd_ctl_elem_value *ucontrol)
374 {
375 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
376 	struct soc_mixer_control *mc =
377 	    (struct soc_mixer_control *)kcontrol->private_value;
378 	unsigned int reg = mc->reg;
379 	unsigned int reg2 = mc->rreg;
380 	unsigned int shift = mc->shift;
381 	unsigned int rshift = mc->rshift;
382 	int max = mc->max;
383 	int min = mc->min;
384 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
385 	unsigned int val;
386 
387 	val = snd_soc_component_read(component, reg);
388 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
389 
390 	if (snd_soc_volsw_is_stereo(mc)) {
391 		val = snd_soc_component_read(component, reg2);
392 		val = ((val >> rshift) - min) & mask;
393 		ucontrol->value.integer.value[1] = val;
394 	}
395 
396 	return 0;
397 }
398 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
399 
400 /**
401  * snd_soc_put_volsw_sx - double mixer set callback
402  * @kcontrol: mixer control
403  * @ucontrol: control element information
404  *
405  * Callback to set the value of a double mixer control that spans 2 registers.
406  *
407  * Returns 0 for success.
408  */
409 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
410 			 struct snd_ctl_elem_value *ucontrol)
411 {
412 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
413 	struct soc_mixer_control *mc =
414 	    (struct soc_mixer_control *)kcontrol->private_value;
415 
416 	unsigned int reg = mc->reg;
417 	unsigned int reg2 = mc->rreg;
418 	unsigned int shift = mc->shift;
419 	unsigned int rshift = mc->rshift;
420 	int max = mc->max;
421 	int min = mc->min;
422 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
423 	int err = 0;
424 	unsigned int val, val_mask;
425 
426 	val_mask = mask << shift;
427 	val = (ucontrol->value.integer.value[0] + min) & mask;
428 	val = val << shift;
429 
430 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
431 	if (err < 0)
432 		return err;
433 
434 	if (snd_soc_volsw_is_stereo(mc)) {
435 		unsigned int val2;
436 
437 		val_mask = mask << rshift;
438 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
439 		val2 = val2 << rshift;
440 
441 		err = snd_soc_component_update_bits(component, reg2, val_mask,
442 			val2);
443 	}
444 	return err;
445 }
446 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
447 
448 /**
449  * snd_soc_info_volsw_range - single mixer info callback with range.
450  * @kcontrol: mixer control
451  * @uinfo: control element information
452  *
453  * Callback to provide information, within a range, about a single
454  * mixer control.
455  *
456  * returns 0 for success.
457  */
458 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
459 	struct snd_ctl_elem_info *uinfo)
460 {
461 	struct soc_mixer_control *mc =
462 		(struct soc_mixer_control *)kcontrol->private_value;
463 	int platform_max;
464 	int min = mc->min;
465 
466 	if (!mc->platform_max)
467 		mc->platform_max = mc->max;
468 	platform_max = mc->platform_max;
469 
470 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
471 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
472 	uinfo->value.integer.min = 0;
473 	uinfo->value.integer.max = platform_max - min;
474 
475 	return 0;
476 }
477 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
478 
479 /**
480  * snd_soc_put_volsw_range - single mixer put value callback with range.
481  * @kcontrol: mixer control
482  * @ucontrol: control element information
483  *
484  * Callback to set the value, within a range, for a single mixer control.
485  *
486  * Returns 0 for success.
487  */
488 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
489 	struct snd_ctl_elem_value *ucontrol)
490 {
491 	struct soc_mixer_control *mc =
492 		(struct soc_mixer_control *)kcontrol->private_value;
493 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
494 	unsigned int reg = mc->reg;
495 	unsigned int rreg = mc->rreg;
496 	unsigned int shift = mc->shift;
497 	int min = mc->min;
498 	int max = mc->max;
499 	unsigned int mask = (1 << fls(max)) - 1;
500 	unsigned int invert = mc->invert;
501 	unsigned int val, val_mask;
502 	int ret;
503 
504 	if (invert)
505 		val = (max - ucontrol->value.integer.value[0]) & mask;
506 	else
507 		val = ((ucontrol->value.integer.value[0] + min) & mask);
508 	val_mask = mask << shift;
509 	val = val << shift;
510 
511 	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
512 	if (ret < 0)
513 		return ret;
514 
515 	if (snd_soc_volsw_is_stereo(mc)) {
516 		if (invert)
517 			val = (max - ucontrol->value.integer.value[1]) & mask;
518 		else
519 			val = ((ucontrol->value.integer.value[1] + min) & mask);
520 		val_mask = mask << shift;
521 		val = val << shift;
522 
523 		ret = snd_soc_component_update_bits(component, rreg, val_mask,
524 			val);
525 	}
526 
527 	return ret;
528 }
529 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
530 
531 /**
532  * snd_soc_get_volsw_range - single mixer get callback with range
533  * @kcontrol: mixer control
534  * @ucontrol: control element information
535  *
536  * Callback to get the value, within a range, of a single mixer control.
537  *
538  * Returns 0 for success.
539  */
540 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
541 	struct snd_ctl_elem_value *ucontrol)
542 {
543 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
544 	struct soc_mixer_control *mc =
545 		(struct soc_mixer_control *)kcontrol->private_value;
546 	unsigned int reg = mc->reg;
547 	unsigned int rreg = mc->rreg;
548 	unsigned int shift = mc->shift;
549 	int min = mc->min;
550 	int max = mc->max;
551 	unsigned int mask = (1 << fls(max)) - 1;
552 	unsigned int invert = mc->invert;
553 	unsigned int val;
554 
555 	val = snd_soc_component_read(component, reg);
556 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
557 	if (invert)
558 		ucontrol->value.integer.value[0] =
559 			max - ucontrol->value.integer.value[0];
560 	else
561 		ucontrol->value.integer.value[0] =
562 			ucontrol->value.integer.value[0] - min;
563 
564 	if (snd_soc_volsw_is_stereo(mc)) {
565 		val = snd_soc_component_read(component, rreg);
566 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
567 		if (invert)
568 			ucontrol->value.integer.value[1] =
569 				max - ucontrol->value.integer.value[1];
570 		else
571 			ucontrol->value.integer.value[1] =
572 				ucontrol->value.integer.value[1] - min;
573 	}
574 
575 	return 0;
576 }
577 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
578 
579 /**
580  * snd_soc_limit_volume - Set new limit to an existing volume control.
581  *
582  * @card: where to look for the control
583  * @name: Name of the control
584  * @max: new maximum limit
585  *
586  * Return 0 for success, else error.
587  */
588 int snd_soc_limit_volume(struct snd_soc_card *card,
589 	const char *name, int max)
590 {
591 	struct snd_kcontrol *kctl;
592 	int ret = -EINVAL;
593 
594 	/* Sanity check for name and max */
595 	if (unlikely(!name || max <= 0))
596 		return -EINVAL;
597 
598 	kctl = snd_soc_card_get_kcontrol(card, name);
599 	if (kctl) {
600 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
601 		if (max <= mc->max) {
602 			mc->platform_max = max;
603 			ret = 0;
604 		}
605 	}
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
609 
610 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
611 		       struct snd_ctl_elem_info *uinfo)
612 {
613 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
614 	struct soc_bytes *params = (void *)kcontrol->private_value;
615 
616 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
617 	uinfo->count = params->num_regs * component->val_bytes;
618 
619 	return 0;
620 }
621 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
622 
623 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
624 		      struct snd_ctl_elem_value *ucontrol)
625 {
626 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
627 	struct soc_bytes *params = (void *)kcontrol->private_value;
628 	int ret;
629 
630 	if (component->regmap)
631 		ret = regmap_raw_read(component->regmap, params->base,
632 				      ucontrol->value.bytes.data,
633 				      params->num_regs * component->val_bytes);
634 	else
635 		ret = -EINVAL;
636 
637 	/* Hide any masked bytes to ensure consistent data reporting */
638 	if (ret == 0 && params->mask) {
639 		switch (component->val_bytes) {
640 		case 1:
641 			ucontrol->value.bytes.data[0] &= ~params->mask;
642 			break;
643 		case 2:
644 			((u16 *)(&ucontrol->value.bytes.data))[0]
645 				&= cpu_to_be16(~params->mask);
646 			break;
647 		case 4:
648 			((u32 *)(&ucontrol->value.bytes.data))[0]
649 				&= cpu_to_be32(~params->mask);
650 			break;
651 		default:
652 			return -EINVAL;
653 		}
654 	}
655 
656 	return ret;
657 }
658 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
659 
660 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
661 		      struct snd_ctl_elem_value *ucontrol)
662 {
663 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
664 	struct soc_bytes *params = (void *)kcontrol->private_value;
665 	int ret, len;
666 	unsigned int val, mask;
667 	void *data;
668 
669 	if (!component->regmap || !params->num_regs)
670 		return -EINVAL;
671 
672 	len = params->num_regs * component->val_bytes;
673 
674 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
675 	if (!data)
676 		return -ENOMEM;
677 
678 	/*
679 	 * If we've got a mask then we need to preserve the register
680 	 * bits.  We shouldn't modify the incoming data so take a
681 	 * copy.
682 	 */
683 	if (params->mask) {
684 		ret = regmap_read(component->regmap, params->base, &val);
685 		if (ret != 0)
686 			goto out;
687 
688 		val &= params->mask;
689 
690 		switch (component->val_bytes) {
691 		case 1:
692 			((u8 *)data)[0] &= ~params->mask;
693 			((u8 *)data)[0] |= val;
694 			break;
695 		case 2:
696 			mask = ~params->mask;
697 			ret = regmap_parse_val(component->regmap,
698 							&mask, &mask);
699 			if (ret != 0)
700 				goto out;
701 
702 			((u16 *)data)[0] &= mask;
703 
704 			ret = regmap_parse_val(component->regmap,
705 							&val, &val);
706 			if (ret != 0)
707 				goto out;
708 
709 			((u16 *)data)[0] |= val;
710 			break;
711 		case 4:
712 			mask = ~params->mask;
713 			ret = regmap_parse_val(component->regmap,
714 							&mask, &mask);
715 			if (ret != 0)
716 				goto out;
717 
718 			((u32 *)data)[0] &= mask;
719 
720 			ret = regmap_parse_val(component->regmap,
721 							&val, &val);
722 			if (ret != 0)
723 				goto out;
724 
725 			((u32 *)data)[0] |= val;
726 			break;
727 		default:
728 			ret = -EINVAL;
729 			goto out;
730 		}
731 	}
732 
733 	ret = regmap_raw_write(component->regmap, params->base,
734 			       data, len);
735 
736 out:
737 	kfree(data);
738 
739 	return ret;
740 }
741 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
742 
743 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
744 			struct snd_ctl_elem_info *ucontrol)
745 {
746 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
747 
748 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
749 	ucontrol->count = params->max;
750 
751 	return 0;
752 }
753 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
754 
755 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
756 				unsigned int size, unsigned int __user *tlv)
757 {
758 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
759 	unsigned int count = size < params->max ? size : params->max;
760 	int ret = -ENXIO;
761 
762 	switch (op_flag) {
763 	case SNDRV_CTL_TLV_OP_READ:
764 		if (params->get)
765 			ret = params->get(kcontrol, tlv, count);
766 		break;
767 	case SNDRV_CTL_TLV_OP_WRITE:
768 		if (params->put)
769 			ret = params->put(kcontrol, tlv, count);
770 		break;
771 	}
772 	return ret;
773 }
774 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
775 
776 /**
777  * snd_soc_info_xr_sx - signed multi register info callback
778  * @kcontrol: mreg control
779  * @uinfo: control element information
780  *
781  * Callback to provide information of a control that can
782  * span multiple codec registers which together
783  * forms a single signed value in a MSB/LSB manner.
784  *
785  * Returns 0 for success.
786  */
787 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
788 	struct snd_ctl_elem_info *uinfo)
789 {
790 	struct soc_mreg_control *mc =
791 		(struct soc_mreg_control *)kcontrol->private_value;
792 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
793 	uinfo->count = 1;
794 	uinfo->value.integer.min = mc->min;
795 	uinfo->value.integer.max = mc->max;
796 
797 	return 0;
798 }
799 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
800 
801 /**
802  * snd_soc_get_xr_sx - signed multi register get callback
803  * @kcontrol: mreg control
804  * @ucontrol: control element information
805  *
806  * Callback to get the value of a control that can span
807  * multiple codec registers which together forms a single
808  * signed value in a MSB/LSB manner. The control supports
809  * specifying total no of bits used to allow for bitfields
810  * across the multiple codec registers.
811  *
812  * Returns 0 for success.
813  */
814 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
815 	struct snd_ctl_elem_value *ucontrol)
816 {
817 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
818 	struct soc_mreg_control *mc =
819 		(struct soc_mreg_control *)kcontrol->private_value;
820 	unsigned int regbase = mc->regbase;
821 	unsigned int regcount = mc->regcount;
822 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
823 	unsigned int regwmask = (1UL<<regwshift)-1;
824 	unsigned int invert = mc->invert;
825 	unsigned long mask = (1UL<<mc->nbits)-1;
826 	long min = mc->min;
827 	long max = mc->max;
828 	long val = 0;
829 	unsigned int i;
830 
831 	for (i = 0; i < regcount; i++) {
832 		unsigned int regval = snd_soc_component_read(component, regbase+i);
833 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
834 	}
835 	val &= mask;
836 	if (min < 0 && val > max)
837 		val |= ~mask;
838 	if (invert)
839 		val = max - val;
840 	ucontrol->value.integer.value[0] = val;
841 
842 	return 0;
843 }
844 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
845 
846 /**
847  * snd_soc_put_xr_sx - signed multi register get callback
848  * @kcontrol: mreg control
849  * @ucontrol: control element information
850  *
851  * Callback to set the value of a control that can span
852  * multiple codec registers which together forms a single
853  * signed value in a MSB/LSB manner. The control supports
854  * specifying total no of bits used to allow for bitfields
855  * across the multiple codec registers.
856  *
857  * Returns 0 for success.
858  */
859 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
860 	struct snd_ctl_elem_value *ucontrol)
861 {
862 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
863 	struct soc_mreg_control *mc =
864 		(struct soc_mreg_control *)kcontrol->private_value;
865 	unsigned int regbase = mc->regbase;
866 	unsigned int regcount = mc->regcount;
867 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
868 	unsigned int regwmask = (1UL<<regwshift)-1;
869 	unsigned int invert = mc->invert;
870 	unsigned long mask = (1UL<<mc->nbits)-1;
871 	long max = mc->max;
872 	long val = ucontrol->value.integer.value[0];
873 	unsigned int i;
874 
875 	if (invert)
876 		val = max - val;
877 	val &= mask;
878 	for (i = 0; i < regcount; i++) {
879 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
880 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
881 		int err = snd_soc_component_update_bits(component, regbase+i,
882 							regmask, regval);
883 		if (err < 0)
884 			return err;
885 	}
886 
887 	return 0;
888 }
889 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
890 
891 /**
892  * snd_soc_get_strobe - strobe get callback
893  * @kcontrol: mixer control
894  * @ucontrol: control element information
895  *
896  * Callback get the value of a strobe mixer control.
897  *
898  * Returns 0 for success.
899  */
900 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
901 	struct snd_ctl_elem_value *ucontrol)
902 {
903 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
904 	struct soc_mixer_control *mc =
905 		(struct soc_mixer_control *)kcontrol->private_value;
906 	unsigned int reg = mc->reg;
907 	unsigned int shift = mc->shift;
908 	unsigned int mask = 1 << shift;
909 	unsigned int invert = mc->invert != 0;
910 	unsigned int val;
911 
912 	val = snd_soc_component_read(component, reg);
913 	val &= mask;
914 
915 	if (shift != 0 && val != 0)
916 		val = val >> shift;
917 	ucontrol->value.enumerated.item[0] = val ^ invert;
918 
919 	return 0;
920 }
921 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
922 
923 /**
924  * snd_soc_put_strobe - strobe put callback
925  * @kcontrol: mixer control
926  * @ucontrol: control element information
927  *
928  * Callback strobe a register bit to high then low (or the inverse)
929  * in one pass of a single mixer enum control.
930  *
931  * Returns 1 for success.
932  */
933 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
934 	struct snd_ctl_elem_value *ucontrol)
935 {
936 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
937 	struct soc_mixer_control *mc =
938 		(struct soc_mixer_control *)kcontrol->private_value;
939 	unsigned int reg = mc->reg;
940 	unsigned int shift = mc->shift;
941 	unsigned int mask = 1 << shift;
942 	unsigned int invert = mc->invert != 0;
943 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
944 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
945 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
946 	int err;
947 
948 	err = snd_soc_component_update_bits(component, reg, mask, val1);
949 	if (err < 0)
950 		return err;
951 
952 	return snd_soc_component_update_bits(component, reg, mask, val2);
953 }
954 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
955