xref: /openbmc/linux/sound/soc/soc-ops.c (revision 97eea946)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	int platform_max;
181 
182 	if (!mc->platform_max)
183 		mc->platform_max = mc->max;
184 	platform_max = mc->platform_max;
185 
186 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 	else
189 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190 
191 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 	uinfo->value.integer.min = 0;
193 	uinfo->value.integer.max = platform_max - mc->min;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197 
198 /**
199  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200  * @kcontrol: mixer control
201  * @uinfo: control element information
202  *
203  * Callback to provide information about a single mixer control, or a double
204  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205  * have a range that represents both positive and negative values either side
206  * of zero but without a sign bit.
207  *
208  * Returns 0 for success.
209  */
210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 			  struct snd_ctl_elem_info *uinfo)
212 {
213 	struct soc_mixer_control *mc =
214 		(struct soc_mixer_control *)kcontrol->private_value;
215 
216 	snd_soc_info_volsw(kcontrol, uinfo);
217 	/* Max represents the number of levels in an SX control not the
218 	 * maximum value, so add the minimum value back on
219 	 */
220 	uinfo->value.integer.max += mc->min;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225 
226 /**
227  * snd_soc_get_volsw - single mixer get callback
228  * @kcontrol: mixer control
229  * @ucontrol: control element information
230  *
231  * Callback to get the value of a single mixer control, or a double mixer
232  * control that spans 2 registers.
233  *
234  * Returns 0 for success.
235  */
236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 	struct snd_ctl_elem_value *ucontrol)
238 {
239 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 	struct soc_mixer_control *mc =
241 		(struct soc_mixer_control *)kcontrol->private_value;
242 	unsigned int reg = mc->reg;
243 	unsigned int reg2 = mc->rreg;
244 	unsigned int shift = mc->shift;
245 	unsigned int rshift = mc->rshift;
246 	int max = mc->max;
247 	int min = mc->min;
248 	int sign_bit = mc->sign_bit;
249 	unsigned int mask = (1 << fls(max)) - 1;
250 	unsigned int invert = mc->invert;
251 	int val;
252 	int ret;
253 
254 	if (sign_bit)
255 		mask = BIT(sign_bit + 1) - 1;
256 
257 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 	if (ret)
259 		return ret;
260 
261 	ucontrol->value.integer.value[0] = val - min;
262 	if (invert)
263 		ucontrol->value.integer.value[0] =
264 			max - ucontrol->value.integer.value[0];
265 
266 	if (snd_soc_volsw_is_stereo(mc)) {
267 		if (reg == reg2)
268 			ret = snd_soc_read_signed(component, reg, mask, rshift,
269 				sign_bit, &val);
270 		else
271 			ret = snd_soc_read_signed(component, reg2, mask, shift,
272 				sign_bit, &val);
273 		if (ret)
274 			return ret;
275 
276 		ucontrol->value.integer.value[1] = val - min;
277 		if (invert)
278 			ucontrol->value.integer.value[1] =
279 				max - ucontrol->value.integer.value[1];
280 	}
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285 
286 /**
287  * snd_soc_put_volsw - single mixer put callback
288  * @kcontrol: mixer control
289  * @ucontrol: control element information
290  *
291  * Callback to set the value of a single mixer control, or a double mixer
292  * control that spans 2 registers.
293  *
294  * Returns 0 for success.
295  */
296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 	struct soc_mixer_control *mc =
301 		(struct soc_mixer_control *)kcontrol->private_value;
302 	unsigned int reg = mc->reg;
303 	unsigned int reg2 = mc->rreg;
304 	unsigned int shift = mc->shift;
305 	unsigned int rshift = mc->rshift;
306 	int max = mc->max;
307 	int min = mc->min;
308 	unsigned int sign_bit = mc->sign_bit;
309 	unsigned int mask = (1 << fls(max)) - 1;
310 	unsigned int invert = mc->invert;
311 	int err, ret;
312 	bool type_2r = false;
313 	unsigned int val2 = 0;
314 	unsigned int val, val_mask;
315 
316 	if (sign_bit)
317 		mask = BIT(sign_bit + 1) - 1;
318 
319 	if (ucontrol->value.integer.value[0] < 0)
320 		return -EINVAL;
321 	val = ucontrol->value.integer.value[0];
322 	if (mc->platform_max && ((int)val + min) > mc->platform_max)
323 		return -EINVAL;
324 	if (val > max - min)
325 		return -EINVAL;
326 	val = (val + min) & mask;
327 	if (invert)
328 		val = max - val;
329 	val_mask = mask << shift;
330 	val = val << shift;
331 	if (snd_soc_volsw_is_stereo(mc)) {
332 		if (ucontrol->value.integer.value[1] < 0)
333 			return -EINVAL;
334 		val2 = ucontrol->value.integer.value[1];
335 		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
336 			return -EINVAL;
337 		if (val2 > max - min)
338 			return -EINVAL;
339 		val2 = (val2 + min) & mask;
340 		if (invert)
341 			val2 = max - val2;
342 		if (reg == reg2) {
343 			val_mask |= mask << rshift;
344 			val |= val2 << rshift;
345 		} else {
346 			val2 = val2 << shift;
347 			type_2r = true;
348 		}
349 	}
350 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 	if (err < 0)
352 		return err;
353 	ret = err;
354 
355 	if (type_2r) {
356 		err = snd_soc_component_update_bits(component, reg2, val_mask,
357 						    val2);
358 		/* Don't discard any error code or drop change flag */
359 		if (ret == 0 || err < 0) {
360 			ret = err;
361 		}
362 	}
363 
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367 
368 /**
369  * snd_soc_get_volsw_sx - single mixer get callback
370  * @kcontrol: mixer control
371  * @ucontrol: control element information
372  *
373  * Callback to get the value of a single mixer control, or a double mixer
374  * control that spans 2 registers.
375  *
376  * Returns 0 for success.
377  */
378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 		      struct snd_ctl_elem_value *ucontrol)
380 {
381 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 	struct soc_mixer_control *mc =
383 	    (struct soc_mixer_control *)kcontrol->private_value;
384 	unsigned int reg = mc->reg;
385 	unsigned int reg2 = mc->rreg;
386 	unsigned int shift = mc->shift;
387 	unsigned int rshift = mc->rshift;
388 	int max = mc->max;
389 	int min = mc->min;
390 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391 	unsigned int val;
392 
393 	val = snd_soc_component_read(component, reg);
394 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395 
396 	if (snd_soc_volsw_is_stereo(mc)) {
397 		val = snd_soc_component_read(component, reg2);
398 		val = ((val >> rshift) - min) & mask;
399 		ucontrol->value.integer.value[1] = val;
400 	}
401 
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405 
406 /**
407  * snd_soc_put_volsw_sx - double mixer set callback
408  * @kcontrol: mixer control
409  * @ucontrol: control element information
410  *
411  * Callback to set the value of a double mixer control that spans 2 registers.
412  *
413  * Returns 0 for success.
414  */
415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 			 struct snd_ctl_elem_value *ucontrol)
417 {
418 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 	struct soc_mixer_control *mc =
420 	    (struct soc_mixer_control *)kcontrol->private_value;
421 
422 	unsigned int reg = mc->reg;
423 	unsigned int reg2 = mc->rreg;
424 	unsigned int shift = mc->shift;
425 	unsigned int rshift = mc->rshift;
426 	int max = mc->max;
427 	int min = mc->min;
428 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429 	int err = 0;
430 	int ret;
431 	unsigned int val, val_mask;
432 
433 	if (ucontrol->value.integer.value[0] < 0)
434 		return -EINVAL;
435 	val = ucontrol->value.integer.value[0];
436 	if (mc->platform_max && val > mc->platform_max)
437 		return -EINVAL;
438 	if (val > max)
439 		return -EINVAL;
440 	val_mask = mask << shift;
441 	val = (val + min) & mask;
442 	val = val << shift;
443 
444 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
445 	if (err < 0)
446 		return err;
447 	ret = err;
448 
449 	if (snd_soc_volsw_is_stereo(mc)) {
450 		unsigned int val2;
451 
452 		val_mask = mask << rshift;
453 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
454 
455 		if (mc->platform_max && val2 > mc->platform_max)
456 			return -EINVAL;
457 		if (val2 > max)
458 			return -EINVAL;
459 
460 		val2 = val2 << rshift;
461 
462 		err = snd_soc_component_update_bits(component, reg2, val_mask,
463 			val2);
464 
465 		/* Don't discard any error code or drop change flag */
466 		if (ret == 0 || err < 0) {
467 			ret = err;
468 		}
469 	}
470 	return ret;
471 }
472 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
473 
474 /**
475  * snd_soc_info_volsw_range - single mixer info callback with range.
476  * @kcontrol: mixer control
477  * @uinfo: control element information
478  *
479  * Callback to provide information, within a range, about a single
480  * mixer control.
481  *
482  * returns 0 for success.
483  */
484 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
485 	struct snd_ctl_elem_info *uinfo)
486 {
487 	struct soc_mixer_control *mc =
488 		(struct soc_mixer_control *)kcontrol->private_value;
489 	int platform_max;
490 	int min = mc->min;
491 
492 	if (!mc->platform_max)
493 		mc->platform_max = mc->max;
494 	platform_max = mc->platform_max;
495 
496 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
497 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
498 	uinfo->value.integer.min = 0;
499 	uinfo->value.integer.max = platform_max - min;
500 
501 	return 0;
502 }
503 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
504 
505 /**
506  * snd_soc_put_volsw_range - single mixer put value callback with range.
507  * @kcontrol: mixer control
508  * @ucontrol: control element information
509  *
510  * Callback to set the value, within a range, for a single mixer control.
511  *
512  * Returns 0 for success.
513  */
514 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
515 	struct snd_ctl_elem_value *ucontrol)
516 {
517 	struct soc_mixer_control *mc =
518 		(struct soc_mixer_control *)kcontrol->private_value;
519 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
520 	unsigned int reg = mc->reg;
521 	unsigned int rreg = mc->rreg;
522 	unsigned int shift = mc->shift;
523 	int min = mc->min;
524 	int max = mc->max;
525 	unsigned int mask = (1 << fls(max)) - 1;
526 	unsigned int invert = mc->invert;
527 	unsigned int val, val_mask;
528 	int err, ret, tmp;
529 
530 	tmp = ucontrol->value.integer.value[0];
531 	if (tmp < 0)
532 		return -EINVAL;
533 	if (mc->platform_max && tmp > mc->platform_max)
534 		return -EINVAL;
535 	if (tmp > mc->max - mc->min + 1)
536 		return -EINVAL;
537 
538 	if (invert)
539 		val = (max - ucontrol->value.integer.value[0]) & mask;
540 	else
541 		val = ((ucontrol->value.integer.value[0] + min) & mask);
542 	val_mask = mask << shift;
543 	val = val << shift;
544 
545 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
546 	if (err < 0)
547 		return err;
548 	ret = err;
549 
550 	if (snd_soc_volsw_is_stereo(mc)) {
551 		tmp = ucontrol->value.integer.value[1];
552 		if (tmp < 0)
553 			return -EINVAL;
554 		if (mc->platform_max && tmp > mc->platform_max)
555 			return -EINVAL;
556 		if (tmp > mc->max - mc->min + 1)
557 			return -EINVAL;
558 
559 		if (invert)
560 			val = (max - ucontrol->value.integer.value[1]) & mask;
561 		else
562 			val = ((ucontrol->value.integer.value[1] + min) & mask);
563 		val_mask = mask << shift;
564 		val = val << shift;
565 
566 		err = snd_soc_component_update_bits(component, rreg, val_mask,
567 			val);
568 		/* Don't discard any error code or drop change flag */
569 		if (ret == 0 || err < 0) {
570 			ret = err;
571 		}
572 	}
573 
574 	return ret;
575 }
576 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
577 
578 /**
579  * snd_soc_get_volsw_range - single mixer get callback with range
580  * @kcontrol: mixer control
581  * @ucontrol: control element information
582  *
583  * Callback to get the value, within a range, of a single mixer control.
584  *
585  * Returns 0 for success.
586  */
587 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
588 	struct snd_ctl_elem_value *ucontrol)
589 {
590 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
591 	struct soc_mixer_control *mc =
592 		(struct soc_mixer_control *)kcontrol->private_value;
593 	unsigned int reg = mc->reg;
594 	unsigned int rreg = mc->rreg;
595 	unsigned int shift = mc->shift;
596 	int min = mc->min;
597 	int max = mc->max;
598 	unsigned int mask = (1 << fls(max)) - 1;
599 	unsigned int invert = mc->invert;
600 	unsigned int val;
601 
602 	val = snd_soc_component_read(component, reg);
603 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
604 	if (invert)
605 		ucontrol->value.integer.value[0] =
606 			max - ucontrol->value.integer.value[0];
607 	else
608 		ucontrol->value.integer.value[0] =
609 			ucontrol->value.integer.value[0] - min;
610 
611 	if (snd_soc_volsw_is_stereo(mc)) {
612 		val = snd_soc_component_read(component, rreg);
613 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
614 		if (invert)
615 			ucontrol->value.integer.value[1] =
616 				max - ucontrol->value.integer.value[1];
617 		else
618 			ucontrol->value.integer.value[1] =
619 				ucontrol->value.integer.value[1] - min;
620 	}
621 
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
625 
626 /**
627  * snd_soc_limit_volume - Set new limit to an existing volume control.
628  *
629  * @card: where to look for the control
630  * @name: Name of the control
631  * @max: new maximum limit
632  *
633  * Return 0 for success, else error.
634  */
635 int snd_soc_limit_volume(struct snd_soc_card *card,
636 	const char *name, int max)
637 {
638 	struct snd_kcontrol *kctl;
639 	int ret = -EINVAL;
640 
641 	/* Sanity check for name and max */
642 	if (unlikely(!name || max <= 0))
643 		return -EINVAL;
644 
645 	kctl = snd_soc_card_get_kcontrol(card, name);
646 	if (kctl) {
647 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
648 		if (max <= mc->max) {
649 			mc->platform_max = max;
650 			ret = 0;
651 		}
652 	}
653 	return ret;
654 }
655 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
656 
657 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
658 		       struct snd_ctl_elem_info *uinfo)
659 {
660 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
661 	struct soc_bytes *params = (void *)kcontrol->private_value;
662 
663 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
664 	uinfo->count = params->num_regs * component->val_bytes;
665 
666 	return 0;
667 }
668 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
669 
670 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
671 		      struct snd_ctl_elem_value *ucontrol)
672 {
673 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
674 	struct soc_bytes *params = (void *)kcontrol->private_value;
675 	int ret;
676 
677 	if (component->regmap)
678 		ret = regmap_raw_read(component->regmap, params->base,
679 				      ucontrol->value.bytes.data,
680 				      params->num_regs * component->val_bytes);
681 	else
682 		ret = -EINVAL;
683 
684 	/* Hide any masked bytes to ensure consistent data reporting */
685 	if (ret == 0 && params->mask) {
686 		switch (component->val_bytes) {
687 		case 1:
688 			ucontrol->value.bytes.data[0] &= ~params->mask;
689 			break;
690 		case 2:
691 			((u16 *)(&ucontrol->value.bytes.data))[0]
692 				&= cpu_to_be16(~params->mask);
693 			break;
694 		case 4:
695 			((u32 *)(&ucontrol->value.bytes.data))[0]
696 				&= cpu_to_be32(~params->mask);
697 			break;
698 		default:
699 			return -EINVAL;
700 		}
701 	}
702 
703 	return ret;
704 }
705 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
706 
707 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
708 		      struct snd_ctl_elem_value *ucontrol)
709 {
710 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
711 	struct soc_bytes *params = (void *)kcontrol->private_value;
712 	int ret, len;
713 	unsigned int val, mask;
714 	void *data;
715 
716 	if (!component->regmap || !params->num_regs)
717 		return -EINVAL;
718 
719 	len = params->num_regs * component->val_bytes;
720 
721 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
722 	if (!data)
723 		return -ENOMEM;
724 
725 	/*
726 	 * If we've got a mask then we need to preserve the register
727 	 * bits.  We shouldn't modify the incoming data so take a
728 	 * copy.
729 	 */
730 	if (params->mask) {
731 		ret = regmap_read(component->regmap, params->base, &val);
732 		if (ret != 0)
733 			goto out;
734 
735 		val &= params->mask;
736 
737 		switch (component->val_bytes) {
738 		case 1:
739 			((u8 *)data)[0] &= ~params->mask;
740 			((u8 *)data)[0] |= val;
741 			break;
742 		case 2:
743 			mask = ~params->mask;
744 			ret = regmap_parse_val(component->regmap,
745 							&mask, &mask);
746 			if (ret != 0)
747 				goto out;
748 
749 			((u16 *)data)[0] &= mask;
750 
751 			ret = regmap_parse_val(component->regmap,
752 							&val, &val);
753 			if (ret != 0)
754 				goto out;
755 
756 			((u16 *)data)[0] |= val;
757 			break;
758 		case 4:
759 			mask = ~params->mask;
760 			ret = regmap_parse_val(component->regmap,
761 							&mask, &mask);
762 			if (ret != 0)
763 				goto out;
764 
765 			((u32 *)data)[0] &= mask;
766 
767 			ret = regmap_parse_val(component->regmap,
768 							&val, &val);
769 			if (ret != 0)
770 				goto out;
771 
772 			((u32 *)data)[0] |= val;
773 			break;
774 		default:
775 			ret = -EINVAL;
776 			goto out;
777 		}
778 	}
779 
780 	ret = regmap_raw_write(component->regmap, params->base,
781 			       data, len);
782 
783 out:
784 	kfree(data);
785 
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
789 
790 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
791 			struct snd_ctl_elem_info *ucontrol)
792 {
793 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
794 
795 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
796 	ucontrol->count = params->max;
797 
798 	return 0;
799 }
800 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
801 
802 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
803 				unsigned int size, unsigned int __user *tlv)
804 {
805 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
806 	unsigned int count = size < params->max ? size : params->max;
807 	int ret = -ENXIO;
808 
809 	switch (op_flag) {
810 	case SNDRV_CTL_TLV_OP_READ:
811 		if (params->get)
812 			ret = params->get(kcontrol, tlv, count);
813 		break;
814 	case SNDRV_CTL_TLV_OP_WRITE:
815 		if (params->put)
816 			ret = params->put(kcontrol, tlv, count);
817 		break;
818 	}
819 	return ret;
820 }
821 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
822 
823 /**
824  * snd_soc_info_xr_sx - signed multi register info callback
825  * @kcontrol: mreg control
826  * @uinfo: control element information
827  *
828  * Callback to provide information of a control that can
829  * span multiple codec registers which together
830  * forms a single signed value in a MSB/LSB manner.
831  *
832  * Returns 0 for success.
833  */
834 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
835 	struct snd_ctl_elem_info *uinfo)
836 {
837 	struct soc_mreg_control *mc =
838 		(struct soc_mreg_control *)kcontrol->private_value;
839 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
840 	uinfo->count = 1;
841 	uinfo->value.integer.min = mc->min;
842 	uinfo->value.integer.max = mc->max;
843 
844 	return 0;
845 }
846 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
847 
848 /**
849  * snd_soc_get_xr_sx - signed multi register get callback
850  * @kcontrol: mreg control
851  * @ucontrol: control element information
852  *
853  * Callback to get the value of a control that can span
854  * multiple codec registers which together forms a single
855  * signed value in a MSB/LSB manner. The control supports
856  * specifying total no of bits used to allow for bitfields
857  * across the multiple codec registers.
858  *
859  * Returns 0 for success.
860  */
861 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
862 	struct snd_ctl_elem_value *ucontrol)
863 {
864 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
865 	struct soc_mreg_control *mc =
866 		(struct soc_mreg_control *)kcontrol->private_value;
867 	unsigned int regbase = mc->regbase;
868 	unsigned int regcount = mc->regcount;
869 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
870 	unsigned int regwmask = (1UL<<regwshift)-1;
871 	unsigned int invert = mc->invert;
872 	unsigned long mask = (1UL<<mc->nbits)-1;
873 	long min = mc->min;
874 	long max = mc->max;
875 	long val = 0;
876 	unsigned int i;
877 
878 	for (i = 0; i < regcount; i++) {
879 		unsigned int regval = snd_soc_component_read(component, regbase+i);
880 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
881 	}
882 	val &= mask;
883 	if (min < 0 && val > max)
884 		val |= ~mask;
885 	if (invert)
886 		val = max - val;
887 	ucontrol->value.integer.value[0] = val;
888 
889 	return 0;
890 }
891 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
892 
893 /**
894  * snd_soc_put_xr_sx - signed multi register get callback
895  * @kcontrol: mreg control
896  * @ucontrol: control element information
897  *
898  * Callback to set the value of a control that can span
899  * multiple codec registers which together forms a single
900  * signed value in a MSB/LSB manner. The control supports
901  * specifying total no of bits used to allow for bitfields
902  * across the multiple codec registers.
903  *
904  * Returns 0 for success.
905  */
906 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
907 	struct snd_ctl_elem_value *ucontrol)
908 {
909 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
910 	struct soc_mreg_control *mc =
911 		(struct soc_mreg_control *)kcontrol->private_value;
912 	unsigned int regbase = mc->regbase;
913 	unsigned int regcount = mc->regcount;
914 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
915 	unsigned int regwmask = (1UL<<regwshift)-1;
916 	unsigned int invert = mc->invert;
917 	unsigned long mask = (1UL<<mc->nbits)-1;
918 	long max = mc->max;
919 	long val = ucontrol->value.integer.value[0];
920 	int ret = 0;
921 	unsigned int i;
922 
923 	if (val < mc->min || val > mc->max)
924 		return -EINVAL;
925 	if (invert)
926 		val = max - val;
927 	val &= mask;
928 	for (i = 0; i < regcount; i++) {
929 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
930 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
931 		int err = snd_soc_component_update_bits(component, regbase+i,
932 							regmask, regval);
933 		if (err < 0)
934 			return err;
935 		if (err > 0)
936 			ret = err;
937 	}
938 
939 	return ret;
940 }
941 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
942 
943 /**
944  * snd_soc_get_strobe - strobe get callback
945  * @kcontrol: mixer control
946  * @ucontrol: control element information
947  *
948  * Callback get the value of a strobe mixer control.
949  *
950  * Returns 0 for success.
951  */
952 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
953 	struct snd_ctl_elem_value *ucontrol)
954 {
955 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
956 	struct soc_mixer_control *mc =
957 		(struct soc_mixer_control *)kcontrol->private_value;
958 	unsigned int reg = mc->reg;
959 	unsigned int shift = mc->shift;
960 	unsigned int mask = 1 << shift;
961 	unsigned int invert = mc->invert != 0;
962 	unsigned int val;
963 
964 	val = snd_soc_component_read(component, reg);
965 	val &= mask;
966 
967 	if (shift != 0 && val != 0)
968 		val = val >> shift;
969 	ucontrol->value.enumerated.item[0] = val ^ invert;
970 
971 	return 0;
972 }
973 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
974 
975 /**
976  * snd_soc_put_strobe - strobe put callback
977  * @kcontrol: mixer control
978  * @ucontrol: control element information
979  *
980  * Callback strobe a register bit to high then low (or the inverse)
981  * in one pass of a single mixer enum control.
982  *
983  * Returns 1 for success.
984  */
985 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
986 	struct snd_ctl_elem_value *ucontrol)
987 {
988 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
989 	struct soc_mixer_control *mc =
990 		(struct soc_mixer_control *)kcontrol->private_value;
991 	unsigned int reg = mc->reg;
992 	unsigned int shift = mc->shift;
993 	unsigned int mask = 1 << shift;
994 	unsigned int invert = mc->invert != 0;
995 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
996 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
997 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
998 	int err;
999 
1000 	err = snd_soc_component_update_bits(component, reg, mask, val1);
1001 	if (err < 0)
1002 		return err;
1003 
1004 	return snd_soc_component_update_bits(component, reg, mask, val2);
1005 }
1006 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1007