xref: /openbmc/linux/sound/soc/soc-ops.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	int platform_max;
181 
182 	if (!mc->platform_max)
183 		mc->platform_max = mc->max;
184 	platform_max = mc->platform_max;
185 
186 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 	else
189 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190 
191 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 	uinfo->value.integer.min = 0;
193 	uinfo->value.integer.max = platform_max - mc->min;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197 
198 /**
199  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200  * @kcontrol: mixer control
201  * @uinfo: control element information
202  *
203  * Callback to provide information about a single mixer control, or a double
204  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205  * have a range that represents both positive and negative values either side
206  * of zero but without a sign bit.
207  *
208  * Returns 0 for success.
209  */
210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 			  struct snd_ctl_elem_info *uinfo)
212 {
213 	struct soc_mixer_control *mc =
214 		(struct soc_mixer_control *)kcontrol->private_value;
215 
216 	snd_soc_info_volsw(kcontrol, uinfo);
217 	/* Max represents the number of levels in an SX control not the
218 	 * maximum value, so add the minimum value back on
219 	 */
220 	uinfo->value.integer.max += mc->min;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225 
226 /**
227  * snd_soc_get_volsw - single mixer get callback
228  * @kcontrol: mixer control
229  * @ucontrol: control element information
230  *
231  * Callback to get the value of a single mixer control, or a double mixer
232  * control that spans 2 registers.
233  *
234  * Returns 0 for success.
235  */
236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 	struct snd_ctl_elem_value *ucontrol)
238 {
239 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 	struct soc_mixer_control *mc =
241 		(struct soc_mixer_control *)kcontrol->private_value;
242 	unsigned int reg = mc->reg;
243 	unsigned int reg2 = mc->rreg;
244 	unsigned int shift = mc->shift;
245 	unsigned int rshift = mc->rshift;
246 	int max = mc->max;
247 	int min = mc->min;
248 	int sign_bit = mc->sign_bit;
249 	unsigned int mask = (1 << fls(max)) - 1;
250 	unsigned int invert = mc->invert;
251 	int val;
252 	int ret;
253 
254 	if (sign_bit)
255 		mask = BIT(sign_bit + 1) - 1;
256 
257 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 	if (ret)
259 		return ret;
260 
261 	ucontrol->value.integer.value[0] = val - min;
262 	if (invert)
263 		ucontrol->value.integer.value[0] =
264 			max - ucontrol->value.integer.value[0];
265 
266 	if (snd_soc_volsw_is_stereo(mc)) {
267 		if (reg == reg2)
268 			ret = snd_soc_read_signed(component, reg, mask, rshift,
269 				sign_bit, &val);
270 		else
271 			ret = snd_soc_read_signed(component, reg2, mask, shift,
272 				sign_bit, &val);
273 		if (ret)
274 			return ret;
275 
276 		ucontrol->value.integer.value[1] = val - min;
277 		if (invert)
278 			ucontrol->value.integer.value[1] =
279 				max - ucontrol->value.integer.value[1];
280 	}
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285 
286 /**
287  * snd_soc_put_volsw - single mixer put callback
288  * @kcontrol: mixer control
289  * @ucontrol: control element information
290  *
291  * Callback to set the value of a single mixer control, or a double mixer
292  * control that spans 2 registers.
293  *
294  * Returns 0 for success.
295  */
296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 	struct soc_mixer_control *mc =
301 		(struct soc_mixer_control *)kcontrol->private_value;
302 	unsigned int reg = mc->reg;
303 	unsigned int reg2 = mc->rreg;
304 	unsigned int shift = mc->shift;
305 	unsigned int rshift = mc->rshift;
306 	int max = mc->max;
307 	int min = mc->min;
308 	unsigned int sign_bit = mc->sign_bit;
309 	unsigned int mask = (1 << fls(max)) - 1;
310 	unsigned int invert = mc->invert;
311 	int err;
312 	bool type_2r = false;
313 	unsigned int val2 = 0;
314 	unsigned int val, val_mask;
315 
316 	if (sign_bit)
317 		mask = BIT(sign_bit + 1) - 1;
318 
319 	val = ((ucontrol->value.integer.value[0] + min) & mask);
320 	if (invert)
321 		val = max - val;
322 	val_mask = mask << shift;
323 	val = val << shift;
324 	if (snd_soc_volsw_is_stereo(mc)) {
325 		val2 = ((ucontrol->value.integer.value[1] + min) & mask);
326 		if (invert)
327 			val2 = max - val2;
328 		if (reg == reg2) {
329 			val_mask |= mask << rshift;
330 			val |= val2 << rshift;
331 		} else {
332 			val2 = val2 << shift;
333 			type_2r = true;
334 		}
335 	}
336 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
337 	if (err < 0)
338 		return err;
339 
340 	if (type_2r)
341 		err = snd_soc_component_update_bits(component, reg2, val_mask,
342 			val2);
343 
344 	return err;
345 }
346 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
347 
348 /**
349  * snd_soc_get_volsw_sx - single mixer get callback
350  * @kcontrol: mixer control
351  * @ucontrol: control element information
352  *
353  * Callback to get the value of a single mixer control, or a double mixer
354  * control that spans 2 registers.
355  *
356  * Returns 0 for success.
357  */
358 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
359 		      struct snd_ctl_elem_value *ucontrol)
360 {
361 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
362 	struct soc_mixer_control *mc =
363 	    (struct soc_mixer_control *)kcontrol->private_value;
364 	unsigned int reg = mc->reg;
365 	unsigned int reg2 = mc->rreg;
366 	unsigned int shift = mc->shift;
367 	unsigned int rshift = mc->rshift;
368 	int max = mc->max;
369 	int min = mc->min;
370 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
371 	unsigned int val;
372 
373 	val = snd_soc_component_read(component, reg);
374 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
375 
376 	if (snd_soc_volsw_is_stereo(mc)) {
377 		val = snd_soc_component_read(component, reg2);
378 		val = ((val >> rshift) - min) & mask;
379 		ucontrol->value.integer.value[1] = val;
380 	}
381 
382 	return 0;
383 }
384 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
385 
386 /**
387  * snd_soc_put_volsw_sx - double mixer set callback
388  * @kcontrol: mixer control
389  * @ucontrol: control element information
390  *
391  * Callback to set the value of a double mixer control that spans 2 registers.
392  *
393  * Returns 0 for success.
394  */
395 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
396 			 struct snd_ctl_elem_value *ucontrol)
397 {
398 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
399 	struct soc_mixer_control *mc =
400 	    (struct soc_mixer_control *)kcontrol->private_value;
401 
402 	unsigned int reg = mc->reg;
403 	unsigned int reg2 = mc->rreg;
404 	unsigned int shift = mc->shift;
405 	unsigned int rshift = mc->rshift;
406 	int max = mc->max;
407 	int min = mc->min;
408 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
409 	int err = 0;
410 	unsigned int val, val_mask, val2;
411 
412 	val_mask = mask << shift;
413 	val = (ucontrol->value.integer.value[0] + min) & mask;
414 	val = val << shift;
415 
416 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
417 	if (err < 0)
418 		return err;
419 
420 	if (snd_soc_volsw_is_stereo(mc)) {
421 		val_mask = mask << rshift;
422 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
423 		val2 = val2 << rshift;
424 
425 		err = snd_soc_component_update_bits(component, reg2, val_mask,
426 			val2);
427 	}
428 	return err;
429 }
430 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
431 
432 /**
433  * snd_soc_info_volsw_range - single mixer info callback with range.
434  * @kcontrol: mixer control
435  * @uinfo: control element information
436  *
437  * Callback to provide information, within a range, about a single
438  * mixer control.
439  *
440  * returns 0 for success.
441  */
442 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
443 	struct snd_ctl_elem_info *uinfo)
444 {
445 	struct soc_mixer_control *mc =
446 		(struct soc_mixer_control *)kcontrol->private_value;
447 	int platform_max;
448 	int min = mc->min;
449 
450 	if (!mc->platform_max)
451 		mc->platform_max = mc->max;
452 	platform_max = mc->platform_max;
453 
454 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
455 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
456 	uinfo->value.integer.min = 0;
457 	uinfo->value.integer.max = platform_max - min;
458 
459 	return 0;
460 }
461 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
462 
463 /**
464  * snd_soc_put_volsw_range - single mixer put value callback with range.
465  * @kcontrol: mixer control
466  * @ucontrol: control element information
467  *
468  * Callback to set the value, within a range, for a single mixer control.
469  *
470  * Returns 0 for success.
471  */
472 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
473 	struct snd_ctl_elem_value *ucontrol)
474 {
475 	struct soc_mixer_control *mc =
476 		(struct soc_mixer_control *)kcontrol->private_value;
477 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
478 	unsigned int reg = mc->reg;
479 	unsigned int rreg = mc->rreg;
480 	unsigned int shift = mc->shift;
481 	int min = mc->min;
482 	int max = mc->max;
483 	unsigned int mask = (1 << fls(max)) - 1;
484 	unsigned int invert = mc->invert;
485 	unsigned int val, val_mask;
486 	int ret;
487 
488 	if (invert)
489 		val = (max - ucontrol->value.integer.value[0]) & mask;
490 	else
491 		val = ((ucontrol->value.integer.value[0] + min) & mask);
492 	val_mask = mask << shift;
493 	val = val << shift;
494 
495 	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
496 	if (ret < 0)
497 		return ret;
498 
499 	if (snd_soc_volsw_is_stereo(mc)) {
500 		if (invert)
501 			val = (max - ucontrol->value.integer.value[1]) & mask;
502 		else
503 			val = ((ucontrol->value.integer.value[1] + min) & mask);
504 		val_mask = mask << shift;
505 		val = val << shift;
506 
507 		ret = snd_soc_component_update_bits(component, rreg, val_mask,
508 			val);
509 	}
510 
511 	return ret;
512 }
513 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
514 
515 /**
516  * snd_soc_get_volsw_range - single mixer get callback with range
517  * @kcontrol: mixer control
518  * @ucontrol: control element information
519  *
520  * Callback to get the value, within a range, of a single mixer control.
521  *
522  * Returns 0 for success.
523  */
524 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
525 	struct snd_ctl_elem_value *ucontrol)
526 {
527 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
528 	struct soc_mixer_control *mc =
529 		(struct soc_mixer_control *)kcontrol->private_value;
530 	unsigned int reg = mc->reg;
531 	unsigned int rreg = mc->rreg;
532 	unsigned int shift = mc->shift;
533 	int min = mc->min;
534 	int max = mc->max;
535 	unsigned int mask = (1 << fls(max)) - 1;
536 	unsigned int invert = mc->invert;
537 	unsigned int val;
538 
539 	val = snd_soc_component_read(component, reg);
540 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
541 	if (invert)
542 		ucontrol->value.integer.value[0] =
543 			max - ucontrol->value.integer.value[0];
544 	else
545 		ucontrol->value.integer.value[0] =
546 			ucontrol->value.integer.value[0] - min;
547 
548 	if (snd_soc_volsw_is_stereo(mc)) {
549 		val = snd_soc_component_read(component, rreg);
550 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
551 		if (invert)
552 			ucontrol->value.integer.value[1] =
553 				max - ucontrol->value.integer.value[1];
554 		else
555 			ucontrol->value.integer.value[1] =
556 				ucontrol->value.integer.value[1] - min;
557 	}
558 
559 	return 0;
560 }
561 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
562 
563 /**
564  * snd_soc_limit_volume - Set new limit to an existing volume control.
565  *
566  * @card: where to look for the control
567  * @name: Name of the control
568  * @max: new maximum limit
569  *
570  * Return 0 for success, else error.
571  */
572 int snd_soc_limit_volume(struct snd_soc_card *card,
573 	const char *name, int max)
574 {
575 	struct snd_kcontrol *kctl;
576 	struct soc_mixer_control *mc;
577 	int ret = -EINVAL;
578 
579 	/* Sanity check for name and max */
580 	if (unlikely(!name || max <= 0))
581 		return -EINVAL;
582 
583 	kctl = snd_soc_card_get_kcontrol(card, name);
584 	if (kctl) {
585 		mc = (struct soc_mixer_control *)kctl->private_value;
586 		if (max <= mc->max) {
587 			mc->platform_max = max;
588 			ret = 0;
589 		}
590 	}
591 	return ret;
592 }
593 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
594 
595 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
596 		       struct snd_ctl_elem_info *uinfo)
597 {
598 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
599 	struct soc_bytes *params = (void *)kcontrol->private_value;
600 
601 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
602 	uinfo->count = params->num_regs * component->val_bytes;
603 
604 	return 0;
605 }
606 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
607 
608 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
609 		      struct snd_ctl_elem_value *ucontrol)
610 {
611 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
612 	struct soc_bytes *params = (void *)kcontrol->private_value;
613 	int ret;
614 
615 	if (component->regmap)
616 		ret = regmap_raw_read(component->regmap, params->base,
617 				      ucontrol->value.bytes.data,
618 				      params->num_regs * component->val_bytes);
619 	else
620 		ret = -EINVAL;
621 
622 	/* Hide any masked bytes to ensure consistent data reporting */
623 	if (ret == 0 && params->mask) {
624 		switch (component->val_bytes) {
625 		case 1:
626 			ucontrol->value.bytes.data[0] &= ~params->mask;
627 			break;
628 		case 2:
629 			((u16 *)(&ucontrol->value.bytes.data))[0]
630 				&= cpu_to_be16(~params->mask);
631 			break;
632 		case 4:
633 			((u32 *)(&ucontrol->value.bytes.data))[0]
634 				&= cpu_to_be32(~params->mask);
635 			break;
636 		default:
637 			return -EINVAL;
638 		}
639 	}
640 
641 	return ret;
642 }
643 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
644 
645 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
646 		      struct snd_ctl_elem_value *ucontrol)
647 {
648 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
649 	struct soc_bytes *params = (void *)kcontrol->private_value;
650 	int ret, len;
651 	unsigned int val, mask;
652 	void *data;
653 
654 	if (!component->regmap || !params->num_regs)
655 		return -EINVAL;
656 
657 	len = params->num_regs * component->val_bytes;
658 
659 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
660 	if (!data)
661 		return -ENOMEM;
662 
663 	/*
664 	 * If we've got a mask then we need to preserve the register
665 	 * bits.  We shouldn't modify the incoming data so take a
666 	 * copy.
667 	 */
668 	if (params->mask) {
669 		ret = regmap_read(component->regmap, params->base, &val);
670 		if (ret != 0)
671 			goto out;
672 
673 		val &= params->mask;
674 
675 		switch (component->val_bytes) {
676 		case 1:
677 			((u8 *)data)[0] &= ~params->mask;
678 			((u8 *)data)[0] |= val;
679 			break;
680 		case 2:
681 			mask = ~params->mask;
682 			ret = regmap_parse_val(component->regmap,
683 							&mask, &mask);
684 			if (ret != 0)
685 				goto out;
686 
687 			((u16 *)data)[0] &= mask;
688 
689 			ret = regmap_parse_val(component->regmap,
690 							&val, &val);
691 			if (ret != 0)
692 				goto out;
693 
694 			((u16 *)data)[0] |= val;
695 			break;
696 		case 4:
697 			mask = ~params->mask;
698 			ret = regmap_parse_val(component->regmap,
699 							&mask, &mask);
700 			if (ret != 0)
701 				goto out;
702 
703 			((u32 *)data)[0] &= mask;
704 
705 			ret = regmap_parse_val(component->regmap,
706 							&val, &val);
707 			if (ret != 0)
708 				goto out;
709 
710 			((u32 *)data)[0] |= val;
711 			break;
712 		default:
713 			ret = -EINVAL;
714 			goto out;
715 		}
716 	}
717 
718 	ret = regmap_raw_write(component->regmap, params->base,
719 			       data, len);
720 
721 out:
722 	kfree(data);
723 
724 	return ret;
725 }
726 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
727 
728 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
729 			struct snd_ctl_elem_info *ucontrol)
730 {
731 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
732 
733 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
734 	ucontrol->count = params->max;
735 
736 	return 0;
737 }
738 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
739 
740 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
741 				unsigned int size, unsigned int __user *tlv)
742 {
743 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
744 	unsigned int count = size < params->max ? size : params->max;
745 	int ret = -ENXIO;
746 
747 	switch (op_flag) {
748 	case SNDRV_CTL_TLV_OP_READ:
749 		if (params->get)
750 			ret = params->get(kcontrol, tlv, count);
751 		break;
752 	case SNDRV_CTL_TLV_OP_WRITE:
753 		if (params->put)
754 			ret = params->put(kcontrol, tlv, count);
755 		break;
756 	}
757 	return ret;
758 }
759 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
760 
761 /**
762  * snd_soc_info_xr_sx - signed multi register info callback
763  * @kcontrol: mreg control
764  * @uinfo: control element information
765  *
766  * Callback to provide information of a control that can
767  * span multiple codec registers which together
768  * forms a single signed value in a MSB/LSB manner.
769  *
770  * Returns 0 for success.
771  */
772 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
773 	struct snd_ctl_elem_info *uinfo)
774 {
775 	struct soc_mreg_control *mc =
776 		(struct soc_mreg_control *)kcontrol->private_value;
777 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
778 	uinfo->count = 1;
779 	uinfo->value.integer.min = mc->min;
780 	uinfo->value.integer.max = mc->max;
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
785 
786 /**
787  * snd_soc_get_xr_sx - signed multi register get callback
788  * @kcontrol: mreg control
789  * @ucontrol: control element information
790  *
791  * Callback to get the value of a control that can span
792  * multiple codec registers which together forms a single
793  * signed value in a MSB/LSB manner. The control supports
794  * specifying total no of bits used to allow for bitfields
795  * across the multiple codec registers.
796  *
797  * Returns 0 for success.
798  */
799 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
800 	struct snd_ctl_elem_value *ucontrol)
801 {
802 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
803 	struct soc_mreg_control *mc =
804 		(struct soc_mreg_control *)kcontrol->private_value;
805 	unsigned int regbase = mc->regbase;
806 	unsigned int regcount = mc->regcount;
807 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
808 	unsigned int regwmask = (1UL<<regwshift)-1;
809 	unsigned int invert = mc->invert;
810 	unsigned long mask = (1UL<<mc->nbits)-1;
811 	long min = mc->min;
812 	long max = mc->max;
813 	long val = 0;
814 	unsigned int regval;
815 	unsigned int i;
816 
817 	for (i = 0; i < regcount; i++) {
818 		regval = snd_soc_component_read(component, regbase+i);
819 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
820 	}
821 	val &= mask;
822 	if (min < 0 && val > max)
823 		val |= ~mask;
824 	if (invert)
825 		val = max - val;
826 	ucontrol->value.integer.value[0] = val;
827 
828 	return 0;
829 }
830 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
831 
832 /**
833  * snd_soc_put_xr_sx - signed multi register get callback
834  * @kcontrol: mreg control
835  * @ucontrol: control element information
836  *
837  * Callback to set the value of a control that can span
838  * multiple codec registers which together forms a single
839  * signed value in a MSB/LSB manner. The control supports
840  * specifying total no of bits used to allow for bitfields
841  * across the multiple codec registers.
842  *
843  * Returns 0 for success.
844  */
845 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
846 	struct snd_ctl_elem_value *ucontrol)
847 {
848 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
849 	struct soc_mreg_control *mc =
850 		(struct soc_mreg_control *)kcontrol->private_value;
851 	unsigned int regbase = mc->regbase;
852 	unsigned int regcount = mc->regcount;
853 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
854 	unsigned int regwmask = (1UL<<regwshift)-1;
855 	unsigned int invert = mc->invert;
856 	unsigned long mask = (1UL<<mc->nbits)-1;
857 	long max = mc->max;
858 	long val = ucontrol->value.integer.value[0];
859 	unsigned int i, regval, regmask;
860 	int err;
861 
862 	if (invert)
863 		val = max - val;
864 	val &= mask;
865 	for (i = 0; i < regcount; i++) {
866 		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
867 		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
868 		err = snd_soc_component_update_bits(component, regbase+i,
869 				regmask, regval);
870 		if (err < 0)
871 			return err;
872 	}
873 
874 	return 0;
875 }
876 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
877 
878 /**
879  * snd_soc_get_strobe - strobe get callback
880  * @kcontrol: mixer control
881  * @ucontrol: control element information
882  *
883  * Callback get the value of a strobe mixer control.
884  *
885  * Returns 0 for success.
886  */
887 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
888 	struct snd_ctl_elem_value *ucontrol)
889 {
890 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
891 	struct soc_mixer_control *mc =
892 		(struct soc_mixer_control *)kcontrol->private_value;
893 	unsigned int reg = mc->reg;
894 	unsigned int shift = mc->shift;
895 	unsigned int mask = 1 << shift;
896 	unsigned int invert = mc->invert != 0;
897 	unsigned int val;
898 
899 	val = snd_soc_component_read(component, reg);
900 	val &= mask;
901 
902 	if (shift != 0 && val != 0)
903 		val = val >> shift;
904 	ucontrol->value.enumerated.item[0] = val ^ invert;
905 
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
909 
910 /**
911  * snd_soc_put_strobe - strobe put callback
912  * @kcontrol: mixer control
913  * @ucontrol: control element information
914  *
915  * Callback strobe a register bit to high then low (or the inverse)
916  * in one pass of a single mixer enum control.
917  *
918  * Returns 1 for success.
919  */
920 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
921 	struct snd_ctl_elem_value *ucontrol)
922 {
923 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
924 	struct soc_mixer_control *mc =
925 		(struct soc_mixer_control *)kcontrol->private_value;
926 	unsigned int reg = mc->reg;
927 	unsigned int shift = mc->shift;
928 	unsigned int mask = 1 << shift;
929 	unsigned int invert = mc->invert != 0;
930 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
931 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
932 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
933 	int err;
934 
935 	err = snd_soc_component_update_bits(component, reg, mask, val1);
936 	if (err < 0)
937 		return err;
938 
939 	return snd_soc_component_update_bits(component, reg, mask, val2);
940 }
941 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
942