xref: /openbmc/linux/sound/soc/soc-ops.c (revision 4a0a1436)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	int platform_max;
181 
182 	if (!mc->platform_max)
183 		mc->platform_max = mc->max;
184 	platform_max = mc->platform_max;
185 
186 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 	else
189 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190 
191 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 	uinfo->value.integer.min = 0;
193 	uinfo->value.integer.max = platform_max - mc->min;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197 
198 /**
199  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200  * @kcontrol: mixer control
201  * @uinfo: control element information
202  *
203  * Callback to provide information about a single mixer control, or a double
204  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205  * have a range that represents both positive and negative values either side
206  * of zero but without a sign bit.
207  *
208  * Returns 0 for success.
209  */
210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 			  struct snd_ctl_elem_info *uinfo)
212 {
213 	struct soc_mixer_control *mc =
214 		(struct soc_mixer_control *)kcontrol->private_value;
215 
216 	snd_soc_info_volsw(kcontrol, uinfo);
217 	/* Max represents the number of levels in an SX control not the
218 	 * maximum value, so add the minimum value back on
219 	 */
220 	uinfo->value.integer.max += mc->min;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225 
226 /**
227  * snd_soc_get_volsw - single mixer get callback
228  * @kcontrol: mixer control
229  * @ucontrol: control element information
230  *
231  * Callback to get the value of a single mixer control, or a double mixer
232  * control that spans 2 registers.
233  *
234  * Returns 0 for success.
235  */
236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 	struct snd_ctl_elem_value *ucontrol)
238 {
239 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 	struct soc_mixer_control *mc =
241 		(struct soc_mixer_control *)kcontrol->private_value;
242 	unsigned int reg = mc->reg;
243 	unsigned int reg2 = mc->rreg;
244 	unsigned int shift = mc->shift;
245 	unsigned int rshift = mc->rshift;
246 	int max = mc->max;
247 	int min = mc->min;
248 	int sign_bit = mc->sign_bit;
249 	unsigned int mask = (1 << fls(max)) - 1;
250 	unsigned int invert = mc->invert;
251 	int val;
252 	int ret;
253 
254 	if (sign_bit)
255 		mask = BIT(sign_bit + 1) - 1;
256 
257 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 	if (ret)
259 		return ret;
260 
261 	ucontrol->value.integer.value[0] = val - min;
262 	if (invert)
263 		ucontrol->value.integer.value[0] =
264 			max - ucontrol->value.integer.value[0];
265 
266 	if (snd_soc_volsw_is_stereo(mc)) {
267 		if (reg == reg2)
268 			ret = snd_soc_read_signed(component, reg, mask, rshift,
269 				sign_bit, &val);
270 		else
271 			ret = snd_soc_read_signed(component, reg2, mask, shift,
272 				sign_bit, &val);
273 		if (ret)
274 			return ret;
275 
276 		ucontrol->value.integer.value[1] = val - min;
277 		if (invert)
278 			ucontrol->value.integer.value[1] =
279 				max - ucontrol->value.integer.value[1];
280 	}
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285 
286 /**
287  * snd_soc_put_volsw - single mixer put callback
288  * @kcontrol: mixer control
289  * @ucontrol: control element information
290  *
291  * Callback to set the value of a single mixer control, or a double mixer
292  * control that spans 2 registers.
293  *
294  * Returns 0 for success.
295  */
296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 	struct soc_mixer_control *mc =
301 		(struct soc_mixer_control *)kcontrol->private_value;
302 	unsigned int reg = mc->reg;
303 	unsigned int reg2 = mc->rreg;
304 	unsigned int shift = mc->shift;
305 	unsigned int rshift = mc->rshift;
306 	int max = mc->max;
307 	int min = mc->min;
308 	unsigned int sign_bit = mc->sign_bit;
309 	unsigned int mask = (1 << fls(max)) - 1;
310 	unsigned int invert = mc->invert;
311 	int err;
312 	bool type_2r = false;
313 	unsigned int val2 = 0;
314 	unsigned int val, val_mask;
315 
316 	if (sign_bit)
317 		mask = BIT(sign_bit + 1) - 1;
318 
319 	if (ucontrol->value.integer.value[0] < 0)
320 		return -EINVAL;
321 	val = ucontrol->value.integer.value[0];
322 	if (mc->platform_max && val > mc->platform_max)
323 		return -EINVAL;
324 	if (val > max - min)
325 		return -EINVAL;
326 	val = (val + min) & mask;
327 	if (invert)
328 		val = max - val;
329 	val_mask = mask << shift;
330 	val = val << shift;
331 	if (snd_soc_volsw_is_stereo(mc)) {
332 		if (ucontrol->value.integer.value[1] < 0)
333 			return -EINVAL;
334 		val2 = ucontrol->value.integer.value[1];
335 		if (mc->platform_max && val2 > mc->platform_max)
336 			return -EINVAL;
337 		if (val2 > max - min)
338 			return -EINVAL;
339 		val2 = (val2 + min) & mask;
340 		if (invert)
341 			val2 = max - val2;
342 		if (reg == reg2) {
343 			val_mask |= mask << rshift;
344 			val |= val2 << rshift;
345 		} else {
346 			val2 = val2 << shift;
347 			type_2r = true;
348 		}
349 	}
350 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 	if (err < 0)
352 		return err;
353 
354 	if (type_2r)
355 		err = snd_soc_component_update_bits(component, reg2, val_mask,
356 			val2);
357 
358 	return err;
359 }
360 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
361 
362 /**
363  * snd_soc_get_volsw_sx - single mixer get callback
364  * @kcontrol: mixer control
365  * @ucontrol: control element information
366  *
367  * Callback to get the value of a single mixer control, or a double mixer
368  * control that spans 2 registers.
369  *
370  * Returns 0 for success.
371  */
372 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
373 		      struct snd_ctl_elem_value *ucontrol)
374 {
375 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
376 	struct soc_mixer_control *mc =
377 	    (struct soc_mixer_control *)kcontrol->private_value;
378 	unsigned int reg = mc->reg;
379 	unsigned int reg2 = mc->rreg;
380 	unsigned int shift = mc->shift;
381 	unsigned int rshift = mc->rshift;
382 	int max = mc->max;
383 	int min = mc->min;
384 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
385 	unsigned int val;
386 
387 	val = snd_soc_component_read(component, reg);
388 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
389 
390 	if (snd_soc_volsw_is_stereo(mc)) {
391 		val = snd_soc_component_read(component, reg2);
392 		val = ((val >> rshift) - min) & mask;
393 		ucontrol->value.integer.value[1] = val;
394 	}
395 
396 	return 0;
397 }
398 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
399 
400 /**
401  * snd_soc_put_volsw_sx - double mixer set callback
402  * @kcontrol: mixer control
403  * @ucontrol: control element information
404  *
405  * Callback to set the value of a double mixer control that spans 2 registers.
406  *
407  * Returns 0 for success.
408  */
409 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
410 			 struct snd_ctl_elem_value *ucontrol)
411 {
412 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
413 	struct soc_mixer_control *mc =
414 	    (struct soc_mixer_control *)kcontrol->private_value;
415 
416 	unsigned int reg = mc->reg;
417 	unsigned int reg2 = mc->rreg;
418 	unsigned int shift = mc->shift;
419 	unsigned int rshift = mc->rshift;
420 	int max = mc->max;
421 	int min = mc->min;
422 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
423 	int err = 0;
424 	unsigned int val, val_mask;
425 
426 	if (ucontrol->value.integer.value[0] < 0)
427 		return -EINVAL;
428 	val = ucontrol->value.integer.value[0];
429 	if (mc->platform_max && val > mc->platform_max)
430 		return -EINVAL;
431 	if (val > max - min)
432 		return -EINVAL;
433 	val_mask = mask << shift;
434 	val = (val + min) & mask;
435 	val = val << shift;
436 
437 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
438 	if (err < 0)
439 		return err;
440 
441 	if (snd_soc_volsw_is_stereo(mc)) {
442 		unsigned int val2;
443 
444 		val_mask = mask << rshift;
445 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
446 		val2 = val2 << rshift;
447 
448 		err = snd_soc_component_update_bits(component, reg2, val_mask,
449 			val2);
450 	}
451 	return err;
452 }
453 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
454 
455 /**
456  * snd_soc_info_volsw_range - single mixer info callback with range.
457  * @kcontrol: mixer control
458  * @uinfo: control element information
459  *
460  * Callback to provide information, within a range, about a single
461  * mixer control.
462  *
463  * returns 0 for success.
464  */
465 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
466 	struct snd_ctl_elem_info *uinfo)
467 {
468 	struct soc_mixer_control *mc =
469 		(struct soc_mixer_control *)kcontrol->private_value;
470 	int platform_max;
471 	int min = mc->min;
472 
473 	if (!mc->platform_max)
474 		mc->platform_max = mc->max;
475 	platform_max = mc->platform_max;
476 
477 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
478 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
479 	uinfo->value.integer.min = 0;
480 	uinfo->value.integer.max = platform_max - min;
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
485 
486 /**
487  * snd_soc_put_volsw_range - single mixer put value callback with range.
488  * @kcontrol: mixer control
489  * @ucontrol: control element information
490  *
491  * Callback to set the value, within a range, for a single mixer control.
492  *
493  * Returns 0 for success.
494  */
495 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
496 	struct snd_ctl_elem_value *ucontrol)
497 {
498 	struct soc_mixer_control *mc =
499 		(struct soc_mixer_control *)kcontrol->private_value;
500 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
501 	unsigned int reg = mc->reg;
502 	unsigned int rreg = mc->rreg;
503 	unsigned int shift = mc->shift;
504 	int min = mc->min;
505 	int max = mc->max;
506 	unsigned int mask = (1 << fls(max)) - 1;
507 	unsigned int invert = mc->invert;
508 	unsigned int val, val_mask;
509 	int ret;
510 
511 	if (invert)
512 		val = (max - ucontrol->value.integer.value[0]) & mask;
513 	else
514 		val = ((ucontrol->value.integer.value[0] + min) & mask);
515 	val_mask = mask << shift;
516 	val = val << shift;
517 
518 	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
519 	if (ret < 0)
520 		return ret;
521 
522 	if (snd_soc_volsw_is_stereo(mc)) {
523 		if (invert)
524 			val = (max - ucontrol->value.integer.value[1]) & mask;
525 		else
526 			val = ((ucontrol->value.integer.value[1] + min) & mask);
527 		val_mask = mask << shift;
528 		val = val << shift;
529 
530 		ret = snd_soc_component_update_bits(component, rreg, val_mask,
531 			val);
532 	}
533 
534 	return ret;
535 }
536 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
537 
538 /**
539  * snd_soc_get_volsw_range - single mixer get callback with range
540  * @kcontrol: mixer control
541  * @ucontrol: control element information
542  *
543  * Callback to get the value, within a range, of a single mixer control.
544  *
545  * Returns 0 for success.
546  */
547 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
548 	struct snd_ctl_elem_value *ucontrol)
549 {
550 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
551 	struct soc_mixer_control *mc =
552 		(struct soc_mixer_control *)kcontrol->private_value;
553 	unsigned int reg = mc->reg;
554 	unsigned int rreg = mc->rreg;
555 	unsigned int shift = mc->shift;
556 	int min = mc->min;
557 	int max = mc->max;
558 	unsigned int mask = (1 << fls(max)) - 1;
559 	unsigned int invert = mc->invert;
560 	unsigned int val;
561 
562 	val = snd_soc_component_read(component, reg);
563 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
564 	if (invert)
565 		ucontrol->value.integer.value[0] =
566 			max - ucontrol->value.integer.value[0];
567 	else
568 		ucontrol->value.integer.value[0] =
569 			ucontrol->value.integer.value[0] - min;
570 
571 	if (snd_soc_volsw_is_stereo(mc)) {
572 		val = snd_soc_component_read(component, rreg);
573 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
574 		if (invert)
575 			ucontrol->value.integer.value[1] =
576 				max - ucontrol->value.integer.value[1];
577 		else
578 			ucontrol->value.integer.value[1] =
579 				ucontrol->value.integer.value[1] - min;
580 	}
581 
582 	return 0;
583 }
584 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
585 
586 /**
587  * snd_soc_limit_volume - Set new limit to an existing volume control.
588  *
589  * @card: where to look for the control
590  * @name: Name of the control
591  * @max: new maximum limit
592  *
593  * Return 0 for success, else error.
594  */
595 int snd_soc_limit_volume(struct snd_soc_card *card,
596 	const char *name, int max)
597 {
598 	struct snd_kcontrol *kctl;
599 	int ret = -EINVAL;
600 
601 	/* Sanity check for name and max */
602 	if (unlikely(!name || max <= 0))
603 		return -EINVAL;
604 
605 	kctl = snd_soc_card_get_kcontrol(card, name);
606 	if (kctl) {
607 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
608 		if (max <= mc->max) {
609 			mc->platform_max = max;
610 			ret = 0;
611 		}
612 	}
613 	return ret;
614 }
615 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
616 
617 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
618 		       struct snd_ctl_elem_info *uinfo)
619 {
620 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
621 	struct soc_bytes *params = (void *)kcontrol->private_value;
622 
623 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
624 	uinfo->count = params->num_regs * component->val_bytes;
625 
626 	return 0;
627 }
628 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
629 
630 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
631 		      struct snd_ctl_elem_value *ucontrol)
632 {
633 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
634 	struct soc_bytes *params = (void *)kcontrol->private_value;
635 	int ret;
636 
637 	if (component->regmap)
638 		ret = regmap_raw_read(component->regmap, params->base,
639 				      ucontrol->value.bytes.data,
640 				      params->num_regs * component->val_bytes);
641 	else
642 		ret = -EINVAL;
643 
644 	/* Hide any masked bytes to ensure consistent data reporting */
645 	if (ret == 0 && params->mask) {
646 		switch (component->val_bytes) {
647 		case 1:
648 			ucontrol->value.bytes.data[0] &= ~params->mask;
649 			break;
650 		case 2:
651 			((u16 *)(&ucontrol->value.bytes.data))[0]
652 				&= cpu_to_be16(~params->mask);
653 			break;
654 		case 4:
655 			((u32 *)(&ucontrol->value.bytes.data))[0]
656 				&= cpu_to_be32(~params->mask);
657 			break;
658 		default:
659 			return -EINVAL;
660 		}
661 	}
662 
663 	return ret;
664 }
665 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
666 
667 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
668 		      struct snd_ctl_elem_value *ucontrol)
669 {
670 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
671 	struct soc_bytes *params = (void *)kcontrol->private_value;
672 	int ret, len;
673 	unsigned int val, mask;
674 	void *data;
675 
676 	if (!component->regmap || !params->num_regs)
677 		return -EINVAL;
678 
679 	len = params->num_regs * component->val_bytes;
680 
681 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
682 	if (!data)
683 		return -ENOMEM;
684 
685 	/*
686 	 * If we've got a mask then we need to preserve the register
687 	 * bits.  We shouldn't modify the incoming data so take a
688 	 * copy.
689 	 */
690 	if (params->mask) {
691 		ret = regmap_read(component->regmap, params->base, &val);
692 		if (ret != 0)
693 			goto out;
694 
695 		val &= params->mask;
696 
697 		switch (component->val_bytes) {
698 		case 1:
699 			((u8 *)data)[0] &= ~params->mask;
700 			((u8 *)data)[0] |= val;
701 			break;
702 		case 2:
703 			mask = ~params->mask;
704 			ret = regmap_parse_val(component->regmap,
705 							&mask, &mask);
706 			if (ret != 0)
707 				goto out;
708 
709 			((u16 *)data)[0] &= mask;
710 
711 			ret = regmap_parse_val(component->regmap,
712 							&val, &val);
713 			if (ret != 0)
714 				goto out;
715 
716 			((u16 *)data)[0] |= val;
717 			break;
718 		case 4:
719 			mask = ~params->mask;
720 			ret = regmap_parse_val(component->regmap,
721 							&mask, &mask);
722 			if (ret != 0)
723 				goto out;
724 
725 			((u32 *)data)[0] &= mask;
726 
727 			ret = regmap_parse_val(component->regmap,
728 							&val, &val);
729 			if (ret != 0)
730 				goto out;
731 
732 			((u32 *)data)[0] |= val;
733 			break;
734 		default:
735 			ret = -EINVAL;
736 			goto out;
737 		}
738 	}
739 
740 	ret = regmap_raw_write(component->regmap, params->base,
741 			       data, len);
742 
743 out:
744 	kfree(data);
745 
746 	return ret;
747 }
748 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
749 
750 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
751 			struct snd_ctl_elem_info *ucontrol)
752 {
753 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
754 
755 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
756 	ucontrol->count = params->max;
757 
758 	return 0;
759 }
760 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
761 
762 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
763 				unsigned int size, unsigned int __user *tlv)
764 {
765 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
766 	unsigned int count = size < params->max ? size : params->max;
767 	int ret = -ENXIO;
768 
769 	switch (op_flag) {
770 	case SNDRV_CTL_TLV_OP_READ:
771 		if (params->get)
772 			ret = params->get(kcontrol, tlv, count);
773 		break;
774 	case SNDRV_CTL_TLV_OP_WRITE:
775 		if (params->put)
776 			ret = params->put(kcontrol, tlv, count);
777 		break;
778 	}
779 	return ret;
780 }
781 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
782 
783 /**
784  * snd_soc_info_xr_sx - signed multi register info callback
785  * @kcontrol: mreg control
786  * @uinfo: control element information
787  *
788  * Callback to provide information of a control that can
789  * span multiple codec registers which together
790  * forms a single signed value in a MSB/LSB manner.
791  *
792  * Returns 0 for success.
793  */
794 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
795 	struct snd_ctl_elem_info *uinfo)
796 {
797 	struct soc_mreg_control *mc =
798 		(struct soc_mreg_control *)kcontrol->private_value;
799 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
800 	uinfo->count = 1;
801 	uinfo->value.integer.min = mc->min;
802 	uinfo->value.integer.max = mc->max;
803 
804 	return 0;
805 }
806 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
807 
808 /**
809  * snd_soc_get_xr_sx - signed multi register get callback
810  * @kcontrol: mreg control
811  * @ucontrol: control element information
812  *
813  * Callback to get the value of a control that can span
814  * multiple codec registers which together forms a single
815  * signed value in a MSB/LSB manner. The control supports
816  * specifying total no of bits used to allow for bitfields
817  * across the multiple codec registers.
818  *
819  * Returns 0 for success.
820  */
821 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
822 	struct snd_ctl_elem_value *ucontrol)
823 {
824 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
825 	struct soc_mreg_control *mc =
826 		(struct soc_mreg_control *)kcontrol->private_value;
827 	unsigned int regbase = mc->regbase;
828 	unsigned int regcount = mc->regcount;
829 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
830 	unsigned int regwmask = (1UL<<regwshift)-1;
831 	unsigned int invert = mc->invert;
832 	unsigned long mask = (1UL<<mc->nbits)-1;
833 	long min = mc->min;
834 	long max = mc->max;
835 	long val = 0;
836 	unsigned int i;
837 
838 	for (i = 0; i < regcount; i++) {
839 		unsigned int regval = snd_soc_component_read(component, regbase+i);
840 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
841 	}
842 	val &= mask;
843 	if (min < 0 && val > max)
844 		val |= ~mask;
845 	if (invert)
846 		val = max - val;
847 	ucontrol->value.integer.value[0] = val;
848 
849 	return 0;
850 }
851 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
852 
853 /**
854  * snd_soc_put_xr_sx - signed multi register get callback
855  * @kcontrol: mreg control
856  * @ucontrol: control element information
857  *
858  * Callback to set the value of a control that can span
859  * multiple codec registers which together forms a single
860  * signed value in a MSB/LSB manner. The control supports
861  * specifying total no of bits used to allow for bitfields
862  * across the multiple codec registers.
863  *
864  * Returns 0 for success.
865  */
866 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
867 	struct snd_ctl_elem_value *ucontrol)
868 {
869 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
870 	struct soc_mreg_control *mc =
871 		(struct soc_mreg_control *)kcontrol->private_value;
872 	unsigned int regbase = mc->regbase;
873 	unsigned int regcount = mc->regcount;
874 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
875 	unsigned int regwmask = (1UL<<regwshift)-1;
876 	unsigned int invert = mc->invert;
877 	unsigned long mask = (1UL<<mc->nbits)-1;
878 	long max = mc->max;
879 	long val = ucontrol->value.integer.value[0];
880 	unsigned int i;
881 
882 	if (val < mc->min || val > mc->max)
883 		return -EINVAL;
884 	if (invert)
885 		val = max - val;
886 	val &= mask;
887 	for (i = 0; i < regcount; i++) {
888 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
889 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
890 		int err = snd_soc_component_update_bits(component, regbase+i,
891 							regmask, regval);
892 		if (err < 0)
893 			return err;
894 	}
895 
896 	return 0;
897 }
898 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
899 
900 /**
901  * snd_soc_get_strobe - strobe get callback
902  * @kcontrol: mixer control
903  * @ucontrol: control element information
904  *
905  * Callback get the value of a strobe mixer control.
906  *
907  * Returns 0 for success.
908  */
909 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
910 	struct snd_ctl_elem_value *ucontrol)
911 {
912 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
913 	struct soc_mixer_control *mc =
914 		(struct soc_mixer_control *)kcontrol->private_value;
915 	unsigned int reg = mc->reg;
916 	unsigned int shift = mc->shift;
917 	unsigned int mask = 1 << shift;
918 	unsigned int invert = mc->invert != 0;
919 	unsigned int val;
920 
921 	val = snd_soc_component_read(component, reg);
922 	val &= mask;
923 
924 	if (shift != 0 && val != 0)
925 		val = val >> shift;
926 	ucontrol->value.enumerated.item[0] = val ^ invert;
927 
928 	return 0;
929 }
930 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
931 
932 /**
933  * snd_soc_put_strobe - strobe put callback
934  * @kcontrol: mixer control
935  * @ucontrol: control element information
936  *
937  * Callback strobe a register bit to high then low (or the inverse)
938  * in one pass of a single mixer enum control.
939  *
940  * Returns 1 for success.
941  */
942 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
943 	struct snd_ctl_elem_value *ucontrol)
944 {
945 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
946 	struct soc_mixer_control *mc =
947 		(struct soc_mixer_control *)kcontrol->private_value;
948 	unsigned int reg = mc->reg;
949 	unsigned int shift = mc->shift;
950 	unsigned int mask = 1 << shift;
951 	unsigned int invert = mc->invert != 0;
952 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
953 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
954 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
955 	int err;
956 
957 	err = snd_soc_component_update_bits(component, reg, mask, val1);
958 	if (err < 0)
959 		return err;
960 
961 	return snd_soc_component_update_bits(component, reg, mask, val2);
962 }
963 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
964