1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // soc-ops.c -- Generic ASoC operations 4 // 5 // Copyright 2005 Wolfson Microelectronics PLC. 6 // Copyright 2005 Openedhand Ltd. 7 // Copyright (C) 2010 Slimlogic Ltd. 8 // Copyright (C) 2010 Texas Instruments Inc. 9 // 10 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 11 // with code, comments and ideas from :- 12 // Richard Purdie <richard@openedhand.com> 13 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/init.h> 17 #include <linux/delay.h> 18 #include <linux/pm.h> 19 #include <linux/bitops.h> 20 #include <linux/ctype.h> 21 #include <linux/slab.h> 22 #include <sound/core.h> 23 #include <sound/jack.h> 24 #include <sound/pcm.h> 25 #include <sound/pcm_params.h> 26 #include <sound/soc.h> 27 #include <sound/soc-dpcm.h> 28 #include <sound/initval.h> 29 30 /** 31 * snd_soc_info_enum_double - enumerated double mixer info callback 32 * @kcontrol: mixer control 33 * @uinfo: control element information 34 * 35 * Callback to provide information about a double enumerated 36 * mixer control. 37 * 38 * Returns 0 for success. 39 */ 40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 41 struct snd_ctl_elem_info *uinfo) 42 { 43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 44 45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2, 46 e->items, e->texts); 47 } 48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); 49 50 /** 51 * snd_soc_get_enum_double - enumerated double mixer get callback 52 * @kcontrol: mixer control 53 * @ucontrol: control element information 54 * 55 * Callback to get the value of a double enumerated mixer. 56 * 57 * Returns 0 for success. 58 */ 59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 60 struct snd_ctl_elem_value *ucontrol) 61 { 62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 64 unsigned int val, item; 65 unsigned int reg_val; 66 67 reg_val = snd_soc_component_read(component, e->reg); 68 val = (reg_val >> e->shift_l) & e->mask; 69 item = snd_soc_enum_val_to_item(e, val); 70 ucontrol->value.enumerated.item[0] = item; 71 if (e->shift_l != e->shift_r) { 72 val = (reg_val >> e->shift_r) & e->mask; 73 item = snd_soc_enum_val_to_item(e, val); 74 ucontrol->value.enumerated.item[1] = item; 75 } 76 77 return 0; 78 } 79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); 80 81 /** 82 * snd_soc_put_enum_double - enumerated double mixer put callback 83 * @kcontrol: mixer control 84 * @ucontrol: control element information 85 * 86 * Callback to set the value of a double enumerated mixer. 87 * 88 * Returns 0 for success. 89 */ 90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 91 struct snd_ctl_elem_value *ucontrol) 92 { 93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 95 unsigned int *item = ucontrol->value.enumerated.item; 96 unsigned int val; 97 unsigned int mask; 98 99 if (item[0] >= e->items) 100 return -EINVAL; 101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l; 102 mask = e->mask << e->shift_l; 103 if (e->shift_l != e->shift_r) { 104 if (item[1] >= e->items) 105 return -EINVAL; 106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r; 107 mask |= e->mask << e->shift_r; 108 } 109 110 return snd_soc_component_update_bits(component, e->reg, mask, val); 111 } 112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); 113 114 /** 115 * snd_soc_read_signed - Read a codec register and interpret as signed value 116 * @component: component 117 * @reg: Register to read 118 * @mask: Mask to use after shifting the register value 119 * @shift: Right shift of register value 120 * @sign_bit: Bit that describes if a number is negative or not. 121 * @signed_val: Pointer to where the read value should be stored 122 * 123 * This functions reads a codec register. The register value is shifted right 124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates 125 * the given registervalue into a signed integer if sign_bit is non-zero. 126 * 127 * Returns 0 on sucess, otherwise an error value 128 */ 129 static int snd_soc_read_signed(struct snd_soc_component *component, 130 unsigned int reg, unsigned int mask, unsigned int shift, 131 unsigned int sign_bit, int *signed_val) 132 { 133 int ret; 134 unsigned int val; 135 136 val = snd_soc_component_read(component, reg); 137 val = (val >> shift) & mask; 138 139 if (!sign_bit) { 140 *signed_val = val; 141 return 0; 142 } 143 144 /* non-negative number */ 145 if (!(val & BIT(sign_bit))) { 146 *signed_val = val; 147 return 0; 148 } 149 150 ret = val; 151 152 /* 153 * The register most probably does not contain a full-sized int. 154 * Instead we have an arbitrary number of bits in a signed 155 * representation which has to be translated into a full-sized int. 156 * This is done by filling up all bits above the sign-bit. 157 */ 158 ret |= ~((int)(BIT(sign_bit) - 1)); 159 160 *signed_val = ret; 161 162 return 0; 163 } 164 165 /** 166 * snd_soc_info_volsw - single mixer info callback 167 * @kcontrol: mixer control 168 * @uinfo: control element information 169 * 170 * Callback to provide information about a single mixer control, or a double 171 * mixer control that spans 2 registers. 172 * 173 * Returns 0 for success. 174 */ 175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 176 struct snd_ctl_elem_info *uinfo) 177 { 178 struct soc_mixer_control *mc = 179 (struct soc_mixer_control *)kcontrol->private_value; 180 int platform_max; 181 182 if (!mc->platform_max) 183 mc->platform_max = mc->max; 184 platform_max = mc->platform_max; 185 186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 188 else 189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 190 191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; 192 uinfo->value.integer.min = 0; 193 uinfo->value.integer.max = platform_max - mc->min; 194 return 0; 195 } 196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw); 197 198 /** 199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls 200 * @kcontrol: mixer control 201 * @uinfo: control element information 202 * 203 * Callback to provide information about a single mixer control, or a double 204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls 205 * have a range that represents both positive and negative values either side 206 * of zero but without a sign bit. 207 * 208 * Returns 0 for success. 209 */ 210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol, 211 struct snd_ctl_elem_info *uinfo) 212 { 213 struct soc_mixer_control *mc = 214 (struct soc_mixer_control *)kcontrol->private_value; 215 216 snd_soc_info_volsw(kcontrol, uinfo); 217 /* Max represents the number of levels in an SX control not the 218 * maximum value, so add the minimum value back on 219 */ 220 uinfo->value.integer.max += mc->min; 221 222 return 0; 223 } 224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx); 225 226 /** 227 * snd_soc_get_volsw - single mixer get callback 228 * @kcontrol: mixer control 229 * @ucontrol: control element information 230 * 231 * Callback to get the value of a single mixer control, or a double mixer 232 * control that spans 2 registers. 233 * 234 * Returns 0 for success. 235 */ 236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 237 struct snd_ctl_elem_value *ucontrol) 238 { 239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 240 struct soc_mixer_control *mc = 241 (struct soc_mixer_control *)kcontrol->private_value; 242 unsigned int reg = mc->reg; 243 unsigned int reg2 = mc->rreg; 244 unsigned int shift = mc->shift; 245 unsigned int rshift = mc->rshift; 246 int max = mc->max; 247 int min = mc->min; 248 int sign_bit = mc->sign_bit; 249 unsigned int mask = (1 << fls(max)) - 1; 250 unsigned int invert = mc->invert; 251 int val; 252 int ret; 253 254 if (sign_bit) 255 mask = BIT(sign_bit + 1) - 1; 256 257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val); 258 if (ret) 259 return ret; 260 261 ucontrol->value.integer.value[0] = val - min; 262 if (invert) 263 ucontrol->value.integer.value[0] = 264 max - ucontrol->value.integer.value[0]; 265 266 if (snd_soc_volsw_is_stereo(mc)) { 267 if (reg == reg2) 268 ret = snd_soc_read_signed(component, reg, mask, rshift, 269 sign_bit, &val); 270 else 271 ret = snd_soc_read_signed(component, reg2, mask, shift, 272 sign_bit, &val); 273 if (ret) 274 return ret; 275 276 ucontrol->value.integer.value[1] = val - min; 277 if (invert) 278 ucontrol->value.integer.value[1] = 279 max - ucontrol->value.integer.value[1]; 280 } 281 282 return 0; 283 } 284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw); 285 286 /** 287 * snd_soc_put_volsw - single mixer put callback 288 * @kcontrol: mixer control 289 * @ucontrol: control element information 290 * 291 * Callback to set the value of a single mixer control, or a double mixer 292 * control that spans 2 registers. 293 * 294 * Returns 0 for success. 295 */ 296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 297 struct snd_ctl_elem_value *ucontrol) 298 { 299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 300 struct soc_mixer_control *mc = 301 (struct soc_mixer_control *)kcontrol->private_value; 302 unsigned int reg = mc->reg; 303 unsigned int reg2 = mc->rreg; 304 unsigned int shift = mc->shift; 305 unsigned int rshift = mc->rshift; 306 int max = mc->max; 307 int min = mc->min; 308 unsigned int sign_bit = mc->sign_bit; 309 unsigned int mask = (1 << fls(max)) - 1; 310 unsigned int invert = mc->invert; 311 int err; 312 bool type_2r = false; 313 unsigned int val2 = 0; 314 unsigned int val, val_mask; 315 316 if (sign_bit) 317 mask = BIT(sign_bit + 1) - 1; 318 319 val = ((ucontrol->value.integer.value[0] + min) & mask); 320 if (invert) 321 val = max - val; 322 val_mask = mask << shift; 323 val = val << shift; 324 if (snd_soc_volsw_is_stereo(mc)) { 325 val2 = ((ucontrol->value.integer.value[1] + min) & mask); 326 if (invert) 327 val2 = max - val2; 328 if (reg == reg2) { 329 val_mask |= mask << rshift; 330 val |= val2 << rshift; 331 } else { 332 val2 = val2 << shift; 333 type_2r = true; 334 } 335 } 336 err = snd_soc_component_update_bits(component, reg, val_mask, val); 337 if (err < 0) 338 return err; 339 340 if (type_2r) 341 err = snd_soc_component_update_bits(component, reg2, val_mask, 342 val2); 343 344 return err; 345 } 346 EXPORT_SYMBOL_GPL(snd_soc_put_volsw); 347 348 /** 349 * snd_soc_get_volsw_sx - single mixer get callback 350 * @kcontrol: mixer control 351 * @ucontrol: control element information 352 * 353 * Callback to get the value of a single mixer control, or a double mixer 354 * control that spans 2 registers. 355 * 356 * Returns 0 for success. 357 */ 358 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol, 359 struct snd_ctl_elem_value *ucontrol) 360 { 361 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 362 struct soc_mixer_control *mc = 363 (struct soc_mixer_control *)kcontrol->private_value; 364 unsigned int reg = mc->reg; 365 unsigned int reg2 = mc->rreg; 366 unsigned int shift = mc->shift; 367 unsigned int rshift = mc->rshift; 368 int max = mc->max; 369 int min = mc->min; 370 unsigned int mask = (1U << (fls(min + max) - 1)) - 1; 371 unsigned int val; 372 373 val = snd_soc_component_read(component, reg); 374 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask; 375 376 if (snd_soc_volsw_is_stereo(mc)) { 377 val = snd_soc_component_read(component, reg2); 378 val = ((val >> rshift) - min) & mask; 379 ucontrol->value.integer.value[1] = val; 380 } 381 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx); 385 386 /** 387 * snd_soc_put_volsw_sx - double mixer set callback 388 * @kcontrol: mixer control 389 * @ucontrol: control element information 390 * 391 * Callback to set the value of a double mixer control that spans 2 registers. 392 * 393 * Returns 0 for success. 394 */ 395 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol, 396 struct snd_ctl_elem_value *ucontrol) 397 { 398 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 399 struct soc_mixer_control *mc = 400 (struct soc_mixer_control *)kcontrol->private_value; 401 402 unsigned int reg = mc->reg; 403 unsigned int reg2 = mc->rreg; 404 unsigned int shift = mc->shift; 405 unsigned int rshift = mc->rshift; 406 int max = mc->max; 407 int min = mc->min; 408 unsigned int mask = (1U << (fls(min + max) - 1)) - 1; 409 int err = 0; 410 unsigned int val, val_mask; 411 412 val_mask = mask << shift; 413 val = (ucontrol->value.integer.value[0] + min) & mask; 414 val = val << shift; 415 416 err = snd_soc_component_update_bits(component, reg, val_mask, val); 417 if (err < 0) 418 return err; 419 420 if (snd_soc_volsw_is_stereo(mc)) { 421 unsigned int val2; 422 423 val_mask = mask << rshift; 424 val2 = (ucontrol->value.integer.value[1] + min) & mask; 425 val2 = val2 << rshift; 426 427 err = snd_soc_component_update_bits(component, reg2, val_mask, 428 val2); 429 } 430 return err; 431 } 432 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx); 433 434 /** 435 * snd_soc_info_volsw_range - single mixer info callback with range. 436 * @kcontrol: mixer control 437 * @uinfo: control element information 438 * 439 * Callback to provide information, within a range, about a single 440 * mixer control. 441 * 442 * returns 0 for success. 443 */ 444 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol, 445 struct snd_ctl_elem_info *uinfo) 446 { 447 struct soc_mixer_control *mc = 448 (struct soc_mixer_control *)kcontrol->private_value; 449 int platform_max; 450 int min = mc->min; 451 452 if (!mc->platform_max) 453 mc->platform_max = mc->max; 454 platform_max = mc->platform_max; 455 456 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 457 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; 458 uinfo->value.integer.min = 0; 459 uinfo->value.integer.max = platform_max - min; 460 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range); 464 465 /** 466 * snd_soc_put_volsw_range - single mixer put value callback with range. 467 * @kcontrol: mixer control 468 * @ucontrol: control element information 469 * 470 * Callback to set the value, within a range, for a single mixer control. 471 * 472 * Returns 0 for success. 473 */ 474 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol, 475 struct snd_ctl_elem_value *ucontrol) 476 { 477 struct soc_mixer_control *mc = 478 (struct soc_mixer_control *)kcontrol->private_value; 479 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 480 unsigned int reg = mc->reg; 481 unsigned int rreg = mc->rreg; 482 unsigned int shift = mc->shift; 483 int min = mc->min; 484 int max = mc->max; 485 unsigned int mask = (1 << fls(max)) - 1; 486 unsigned int invert = mc->invert; 487 unsigned int val, val_mask; 488 int ret; 489 490 if (invert) 491 val = (max - ucontrol->value.integer.value[0]) & mask; 492 else 493 val = ((ucontrol->value.integer.value[0] + min) & mask); 494 val_mask = mask << shift; 495 val = val << shift; 496 497 ret = snd_soc_component_update_bits(component, reg, val_mask, val); 498 if (ret < 0) 499 return ret; 500 501 if (snd_soc_volsw_is_stereo(mc)) { 502 if (invert) 503 val = (max - ucontrol->value.integer.value[1]) & mask; 504 else 505 val = ((ucontrol->value.integer.value[1] + min) & mask); 506 val_mask = mask << shift; 507 val = val << shift; 508 509 ret = snd_soc_component_update_bits(component, rreg, val_mask, 510 val); 511 } 512 513 return ret; 514 } 515 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range); 516 517 /** 518 * snd_soc_get_volsw_range - single mixer get callback with range 519 * @kcontrol: mixer control 520 * @ucontrol: control element information 521 * 522 * Callback to get the value, within a range, of a single mixer control. 523 * 524 * Returns 0 for success. 525 */ 526 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol, 527 struct snd_ctl_elem_value *ucontrol) 528 { 529 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 530 struct soc_mixer_control *mc = 531 (struct soc_mixer_control *)kcontrol->private_value; 532 unsigned int reg = mc->reg; 533 unsigned int rreg = mc->rreg; 534 unsigned int shift = mc->shift; 535 int min = mc->min; 536 int max = mc->max; 537 unsigned int mask = (1 << fls(max)) - 1; 538 unsigned int invert = mc->invert; 539 unsigned int val; 540 541 val = snd_soc_component_read(component, reg); 542 ucontrol->value.integer.value[0] = (val >> shift) & mask; 543 if (invert) 544 ucontrol->value.integer.value[0] = 545 max - ucontrol->value.integer.value[0]; 546 else 547 ucontrol->value.integer.value[0] = 548 ucontrol->value.integer.value[0] - min; 549 550 if (snd_soc_volsw_is_stereo(mc)) { 551 val = snd_soc_component_read(component, rreg); 552 ucontrol->value.integer.value[1] = (val >> shift) & mask; 553 if (invert) 554 ucontrol->value.integer.value[1] = 555 max - ucontrol->value.integer.value[1]; 556 else 557 ucontrol->value.integer.value[1] = 558 ucontrol->value.integer.value[1] - min; 559 } 560 561 return 0; 562 } 563 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range); 564 565 /** 566 * snd_soc_limit_volume - Set new limit to an existing volume control. 567 * 568 * @card: where to look for the control 569 * @name: Name of the control 570 * @max: new maximum limit 571 * 572 * Return 0 for success, else error. 573 */ 574 int snd_soc_limit_volume(struct snd_soc_card *card, 575 const char *name, int max) 576 { 577 struct snd_kcontrol *kctl; 578 int ret = -EINVAL; 579 580 /* Sanity check for name and max */ 581 if (unlikely(!name || max <= 0)) 582 return -EINVAL; 583 584 kctl = snd_soc_card_get_kcontrol(card, name); 585 if (kctl) { 586 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value; 587 if (max <= mc->max) { 588 mc->platform_max = max; 589 ret = 0; 590 } 591 } 592 return ret; 593 } 594 EXPORT_SYMBOL_GPL(snd_soc_limit_volume); 595 596 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol, 597 struct snd_ctl_elem_info *uinfo) 598 { 599 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 600 struct soc_bytes *params = (void *)kcontrol->private_value; 601 602 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 603 uinfo->count = params->num_regs * component->val_bytes; 604 605 return 0; 606 } 607 EXPORT_SYMBOL_GPL(snd_soc_bytes_info); 608 609 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol, 610 struct snd_ctl_elem_value *ucontrol) 611 { 612 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 613 struct soc_bytes *params = (void *)kcontrol->private_value; 614 int ret; 615 616 if (component->regmap) 617 ret = regmap_raw_read(component->regmap, params->base, 618 ucontrol->value.bytes.data, 619 params->num_regs * component->val_bytes); 620 else 621 ret = -EINVAL; 622 623 /* Hide any masked bytes to ensure consistent data reporting */ 624 if (ret == 0 && params->mask) { 625 switch (component->val_bytes) { 626 case 1: 627 ucontrol->value.bytes.data[0] &= ~params->mask; 628 break; 629 case 2: 630 ((u16 *)(&ucontrol->value.bytes.data))[0] 631 &= cpu_to_be16(~params->mask); 632 break; 633 case 4: 634 ((u32 *)(&ucontrol->value.bytes.data))[0] 635 &= cpu_to_be32(~params->mask); 636 break; 637 default: 638 return -EINVAL; 639 } 640 } 641 642 return ret; 643 } 644 EXPORT_SYMBOL_GPL(snd_soc_bytes_get); 645 646 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol, 647 struct snd_ctl_elem_value *ucontrol) 648 { 649 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 650 struct soc_bytes *params = (void *)kcontrol->private_value; 651 int ret, len; 652 unsigned int val, mask; 653 void *data; 654 655 if (!component->regmap || !params->num_regs) 656 return -EINVAL; 657 658 len = params->num_regs * component->val_bytes; 659 660 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA); 661 if (!data) 662 return -ENOMEM; 663 664 /* 665 * If we've got a mask then we need to preserve the register 666 * bits. We shouldn't modify the incoming data so take a 667 * copy. 668 */ 669 if (params->mask) { 670 ret = regmap_read(component->regmap, params->base, &val); 671 if (ret != 0) 672 goto out; 673 674 val &= params->mask; 675 676 switch (component->val_bytes) { 677 case 1: 678 ((u8 *)data)[0] &= ~params->mask; 679 ((u8 *)data)[0] |= val; 680 break; 681 case 2: 682 mask = ~params->mask; 683 ret = regmap_parse_val(component->regmap, 684 &mask, &mask); 685 if (ret != 0) 686 goto out; 687 688 ((u16 *)data)[0] &= mask; 689 690 ret = regmap_parse_val(component->regmap, 691 &val, &val); 692 if (ret != 0) 693 goto out; 694 695 ((u16 *)data)[0] |= val; 696 break; 697 case 4: 698 mask = ~params->mask; 699 ret = regmap_parse_val(component->regmap, 700 &mask, &mask); 701 if (ret != 0) 702 goto out; 703 704 ((u32 *)data)[0] &= mask; 705 706 ret = regmap_parse_val(component->regmap, 707 &val, &val); 708 if (ret != 0) 709 goto out; 710 711 ((u32 *)data)[0] |= val; 712 break; 713 default: 714 ret = -EINVAL; 715 goto out; 716 } 717 } 718 719 ret = regmap_raw_write(component->regmap, params->base, 720 data, len); 721 722 out: 723 kfree(data); 724 725 return ret; 726 } 727 EXPORT_SYMBOL_GPL(snd_soc_bytes_put); 728 729 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol, 730 struct snd_ctl_elem_info *ucontrol) 731 { 732 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 733 734 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES; 735 ucontrol->count = params->max; 736 737 return 0; 738 } 739 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext); 740 741 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag, 742 unsigned int size, unsigned int __user *tlv) 743 { 744 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 745 unsigned int count = size < params->max ? size : params->max; 746 int ret = -ENXIO; 747 748 switch (op_flag) { 749 case SNDRV_CTL_TLV_OP_READ: 750 if (params->get) 751 ret = params->get(kcontrol, tlv, count); 752 break; 753 case SNDRV_CTL_TLV_OP_WRITE: 754 if (params->put) 755 ret = params->put(kcontrol, tlv, count); 756 break; 757 } 758 return ret; 759 } 760 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback); 761 762 /** 763 * snd_soc_info_xr_sx - signed multi register info callback 764 * @kcontrol: mreg control 765 * @uinfo: control element information 766 * 767 * Callback to provide information of a control that can 768 * span multiple codec registers which together 769 * forms a single signed value in a MSB/LSB manner. 770 * 771 * Returns 0 for success. 772 */ 773 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol, 774 struct snd_ctl_elem_info *uinfo) 775 { 776 struct soc_mreg_control *mc = 777 (struct soc_mreg_control *)kcontrol->private_value; 778 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 779 uinfo->count = 1; 780 uinfo->value.integer.min = mc->min; 781 uinfo->value.integer.max = mc->max; 782 783 return 0; 784 } 785 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx); 786 787 /** 788 * snd_soc_get_xr_sx - signed multi register get callback 789 * @kcontrol: mreg control 790 * @ucontrol: control element information 791 * 792 * Callback to get the value of a control that can span 793 * multiple codec registers which together forms a single 794 * signed value in a MSB/LSB manner. The control supports 795 * specifying total no of bits used to allow for bitfields 796 * across the multiple codec registers. 797 * 798 * Returns 0 for success. 799 */ 800 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol, 801 struct snd_ctl_elem_value *ucontrol) 802 { 803 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 804 struct soc_mreg_control *mc = 805 (struct soc_mreg_control *)kcontrol->private_value; 806 unsigned int regbase = mc->regbase; 807 unsigned int regcount = mc->regcount; 808 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; 809 unsigned int regwmask = (1UL<<regwshift)-1; 810 unsigned int invert = mc->invert; 811 unsigned long mask = (1UL<<mc->nbits)-1; 812 long min = mc->min; 813 long max = mc->max; 814 long val = 0; 815 unsigned int i; 816 817 for (i = 0; i < regcount; i++) { 818 unsigned int regval = snd_soc_component_read(component, regbase+i); 819 val |= (regval & regwmask) << (regwshift*(regcount-i-1)); 820 } 821 val &= mask; 822 if (min < 0 && val > max) 823 val |= ~mask; 824 if (invert) 825 val = max - val; 826 ucontrol->value.integer.value[0] = val; 827 828 return 0; 829 } 830 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx); 831 832 /** 833 * snd_soc_put_xr_sx - signed multi register get callback 834 * @kcontrol: mreg control 835 * @ucontrol: control element information 836 * 837 * Callback to set the value of a control that can span 838 * multiple codec registers which together forms a single 839 * signed value in a MSB/LSB manner. The control supports 840 * specifying total no of bits used to allow for bitfields 841 * across the multiple codec registers. 842 * 843 * Returns 0 for success. 844 */ 845 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol, 846 struct snd_ctl_elem_value *ucontrol) 847 { 848 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 849 struct soc_mreg_control *mc = 850 (struct soc_mreg_control *)kcontrol->private_value; 851 unsigned int regbase = mc->regbase; 852 unsigned int regcount = mc->regcount; 853 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; 854 unsigned int regwmask = (1UL<<regwshift)-1; 855 unsigned int invert = mc->invert; 856 unsigned long mask = (1UL<<mc->nbits)-1; 857 long max = mc->max; 858 long val = ucontrol->value.integer.value[0]; 859 unsigned int i; 860 861 if (invert) 862 val = max - val; 863 val &= mask; 864 for (i = 0; i < regcount; i++) { 865 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask; 866 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask; 867 int err = snd_soc_component_update_bits(component, regbase+i, 868 regmask, regval); 869 if (err < 0) 870 return err; 871 } 872 873 return 0; 874 } 875 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx); 876 877 /** 878 * snd_soc_get_strobe - strobe get callback 879 * @kcontrol: mixer control 880 * @ucontrol: control element information 881 * 882 * Callback get the value of a strobe mixer control. 883 * 884 * Returns 0 for success. 885 */ 886 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol, 887 struct snd_ctl_elem_value *ucontrol) 888 { 889 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 890 struct soc_mixer_control *mc = 891 (struct soc_mixer_control *)kcontrol->private_value; 892 unsigned int reg = mc->reg; 893 unsigned int shift = mc->shift; 894 unsigned int mask = 1 << shift; 895 unsigned int invert = mc->invert != 0; 896 unsigned int val; 897 898 val = snd_soc_component_read(component, reg); 899 val &= mask; 900 901 if (shift != 0 && val != 0) 902 val = val >> shift; 903 ucontrol->value.enumerated.item[0] = val ^ invert; 904 905 return 0; 906 } 907 EXPORT_SYMBOL_GPL(snd_soc_get_strobe); 908 909 /** 910 * snd_soc_put_strobe - strobe put callback 911 * @kcontrol: mixer control 912 * @ucontrol: control element information 913 * 914 * Callback strobe a register bit to high then low (or the inverse) 915 * in one pass of a single mixer enum control. 916 * 917 * Returns 1 for success. 918 */ 919 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol, 920 struct snd_ctl_elem_value *ucontrol) 921 { 922 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 923 struct soc_mixer_control *mc = 924 (struct soc_mixer_control *)kcontrol->private_value; 925 unsigned int reg = mc->reg; 926 unsigned int shift = mc->shift; 927 unsigned int mask = 1 << shift; 928 unsigned int invert = mc->invert != 0; 929 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0; 930 unsigned int val1 = (strobe ^ invert) ? mask : 0; 931 unsigned int val2 = (strobe ^ invert) ? 0 : mask; 932 int err; 933 934 err = snd_soc_component_update_bits(component, reg, mask, val1); 935 if (err < 0) 936 return err; 937 938 return snd_soc_component_update_bits(component, reg, mask, val2); 939 } 940 EXPORT_SYMBOL_GPL(snd_soc_put_strobe); 941