xref: /openbmc/linux/sound/soc/soc-core.c (revision e8e0929d)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *         with code, comments and ideas from :-
9  *         Richard Purdie <richard@openedhand.com>
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  TODO:
17  *   o Add hw rules to enforce rates, etc.
18  *   o More testing with other codecs/machines.
19  *   o Add more codecs and platforms to ensure good API coverage.
20  *   o Support TDM on PCM and I2S
21  */
22 
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
38 
39 static DEFINE_MUTEX(pcm_mutex);
40 static DEFINE_MUTEX(io_mutex);
41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
42 
43 #ifdef CONFIG_DEBUG_FS
44 static struct dentry *debugfs_root;
45 #endif
46 
47 static DEFINE_MUTEX(client_mutex);
48 static LIST_HEAD(card_list);
49 static LIST_HEAD(dai_list);
50 static LIST_HEAD(platform_list);
51 static LIST_HEAD(codec_list);
52 
53 static int snd_soc_register_card(struct snd_soc_card *card);
54 static int snd_soc_unregister_card(struct snd_soc_card *card);
55 
56 /*
57  * This is a timeout to do a DAPM powerdown after a stream is closed().
58  * It can be used to eliminate pops between different playback streams, e.g.
59  * between two audio tracks.
60  */
61 static int pmdown_time = 5000;
62 module_param(pmdown_time, int, 0);
63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
64 
65 /*
66  * This function forces any delayed work to be queued and run.
67  */
68 static int run_delayed_work(struct delayed_work *dwork)
69 {
70 	int ret;
71 
72 	/* cancel any work waiting to be queued. */
73 	ret = cancel_delayed_work(dwork);
74 
75 	/* if there was any work waiting then we run it now and
76 	 * wait for it's completion */
77 	if (ret) {
78 		schedule_delayed_work(dwork, 0);
79 		flush_scheduled_work();
80 	}
81 	return ret;
82 }
83 
84 #ifdef CONFIG_SND_SOC_AC97_BUS
85 /* unregister ac97 codec */
86 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
87 {
88 	if (codec->ac97->dev.bus)
89 		device_unregister(&codec->ac97->dev);
90 	return 0;
91 }
92 
93 /* stop no dev release warning */
94 static void soc_ac97_device_release(struct device *dev){}
95 
96 /* register ac97 codec to bus */
97 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
98 {
99 	int err;
100 
101 	codec->ac97->dev.bus = &ac97_bus_type;
102 	codec->ac97->dev.parent = codec->card->dev;
103 	codec->ac97->dev.release = soc_ac97_device_release;
104 
105 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
106 		     codec->card->number, 0, codec->name);
107 	err = device_register(&codec->ac97->dev);
108 	if (err < 0) {
109 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
110 		codec->ac97->dev.bus = NULL;
111 		return err;
112 	}
113 	return 0;
114 }
115 #endif
116 
117 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
118 {
119 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
120 	struct snd_soc_device *socdev = rtd->socdev;
121 	struct snd_soc_card *card = socdev->card;
122 	struct snd_soc_dai_link *machine = rtd->dai;
123 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
124 	struct snd_soc_dai *codec_dai = machine->codec_dai;
125 	int ret;
126 
127 	if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
128 	    machine->symmetric_rates) {
129 		dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
130 			machine->rate);
131 
132 		ret = snd_pcm_hw_constraint_minmax(substream->runtime,
133 						   SNDRV_PCM_HW_PARAM_RATE,
134 						   machine->rate,
135 						   machine->rate);
136 		if (ret < 0) {
137 			dev_err(card->dev,
138 				"Unable to apply rate symmetry constraint: %d\n", ret);
139 			return ret;
140 		}
141 	}
142 
143 	return 0;
144 }
145 
146 /*
147  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
148  * then initialized and any private data can be allocated. This also calls
149  * startup for the cpu DAI, platform, machine and codec DAI.
150  */
151 static int soc_pcm_open(struct snd_pcm_substream *substream)
152 {
153 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
154 	struct snd_soc_device *socdev = rtd->socdev;
155 	struct snd_soc_card *card = socdev->card;
156 	struct snd_pcm_runtime *runtime = substream->runtime;
157 	struct snd_soc_dai_link *machine = rtd->dai;
158 	struct snd_soc_platform *platform = card->platform;
159 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
160 	struct snd_soc_dai *codec_dai = machine->codec_dai;
161 	int ret = 0;
162 
163 	mutex_lock(&pcm_mutex);
164 
165 	/* startup the audio subsystem */
166 	if (cpu_dai->ops->startup) {
167 		ret = cpu_dai->ops->startup(substream, cpu_dai);
168 		if (ret < 0) {
169 			printk(KERN_ERR "asoc: can't open interface %s\n",
170 				cpu_dai->name);
171 			goto out;
172 		}
173 	}
174 
175 	if (platform->pcm_ops->open) {
176 		ret = platform->pcm_ops->open(substream);
177 		if (ret < 0) {
178 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
179 			goto platform_err;
180 		}
181 	}
182 
183 	if (codec_dai->ops->startup) {
184 		ret = codec_dai->ops->startup(substream, codec_dai);
185 		if (ret < 0) {
186 			printk(KERN_ERR "asoc: can't open codec %s\n",
187 				codec_dai->name);
188 			goto codec_dai_err;
189 		}
190 	}
191 
192 	if (machine->ops && machine->ops->startup) {
193 		ret = machine->ops->startup(substream);
194 		if (ret < 0) {
195 			printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
196 			goto machine_err;
197 		}
198 	}
199 
200 	/* Check that the codec and cpu DAI's are compatible */
201 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
202 		runtime->hw.rate_min =
203 			max(codec_dai->playback.rate_min,
204 			    cpu_dai->playback.rate_min);
205 		runtime->hw.rate_max =
206 			min(codec_dai->playback.rate_max,
207 			    cpu_dai->playback.rate_max);
208 		runtime->hw.channels_min =
209 			max(codec_dai->playback.channels_min,
210 				cpu_dai->playback.channels_min);
211 		runtime->hw.channels_max =
212 			min(codec_dai->playback.channels_max,
213 				cpu_dai->playback.channels_max);
214 		runtime->hw.formats =
215 			codec_dai->playback.formats & cpu_dai->playback.formats;
216 		runtime->hw.rates =
217 			codec_dai->playback.rates & cpu_dai->playback.rates;
218 	} else {
219 		runtime->hw.rate_min =
220 			max(codec_dai->capture.rate_min,
221 			    cpu_dai->capture.rate_min);
222 		runtime->hw.rate_max =
223 			min(codec_dai->capture.rate_max,
224 			    cpu_dai->capture.rate_max);
225 		runtime->hw.channels_min =
226 			max(codec_dai->capture.channels_min,
227 				cpu_dai->capture.channels_min);
228 		runtime->hw.channels_max =
229 			min(codec_dai->capture.channels_max,
230 				cpu_dai->capture.channels_max);
231 		runtime->hw.formats =
232 			codec_dai->capture.formats & cpu_dai->capture.formats;
233 		runtime->hw.rates =
234 			codec_dai->capture.rates & cpu_dai->capture.rates;
235 	}
236 
237 	snd_pcm_limit_hw_rates(runtime);
238 	if (!runtime->hw.rates) {
239 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
240 			codec_dai->name, cpu_dai->name);
241 		goto machine_err;
242 	}
243 	if (!runtime->hw.formats) {
244 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
245 			codec_dai->name, cpu_dai->name);
246 		goto machine_err;
247 	}
248 	if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
249 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
250 			codec_dai->name, cpu_dai->name);
251 		goto machine_err;
252 	}
253 
254 	/* Symmetry only applies if we've already got an active stream. */
255 	if (cpu_dai->active || codec_dai->active) {
256 		ret = soc_pcm_apply_symmetry(substream);
257 		if (ret != 0)
258 			goto machine_err;
259 	}
260 
261 	pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
262 	pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
263 	pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
264 		 runtime->hw.channels_max);
265 	pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
266 		 runtime->hw.rate_max);
267 
268 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
269 		cpu_dai->playback.active = codec_dai->playback.active = 1;
270 	else
271 		cpu_dai->capture.active = codec_dai->capture.active = 1;
272 	cpu_dai->active = codec_dai->active = 1;
273 	cpu_dai->runtime = runtime;
274 	card->codec->active++;
275 	mutex_unlock(&pcm_mutex);
276 	return 0;
277 
278 machine_err:
279 	if (machine->ops && machine->ops->shutdown)
280 		machine->ops->shutdown(substream);
281 
282 codec_dai_err:
283 	if (platform->pcm_ops->close)
284 		platform->pcm_ops->close(substream);
285 
286 platform_err:
287 	if (cpu_dai->ops->shutdown)
288 		cpu_dai->ops->shutdown(substream, cpu_dai);
289 out:
290 	mutex_unlock(&pcm_mutex);
291 	return ret;
292 }
293 
294 /*
295  * Power down the audio subsystem pmdown_time msecs after close is called.
296  * This is to ensure there are no pops or clicks in between any music tracks
297  * due to DAPM power cycling.
298  */
299 static void close_delayed_work(struct work_struct *work)
300 {
301 	struct snd_soc_card *card = container_of(work, struct snd_soc_card,
302 						 delayed_work.work);
303 	struct snd_soc_codec *codec = card->codec;
304 	struct snd_soc_dai *codec_dai;
305 	int i;
306 
307 	mutex_lock(&pcm_mutex);
308 	for (i = 0; i < codec->num_dai; i++) {
309 		codec_dai = &codec->dai[i];
310 
311 		pr_debug("pop wq checking: %s status: %s waiting: %s\n",
312 			 codec_dai->playback.stream_name,
313 			 codec_dai->playback.active ? "active" : "inactive",
314 			 codec_dai->pop_wait ? "yes" : "no");
315 
316 		/* are we waiting on this codec DAI stream */
317 		if (codec_dai->pop_wait == 1) {
318 			codec_dai->pop_wait = 0;
319 			snd_soc_dapm_stream_event(codec,
320 				codec_dai->playback.stream_name,
321 				SND_SOC_DAPM_STREAM_STOP);
322 		}
323 	}
324 	mutex_unlock(&pcm_mutex);
325 }
326 
327 /*
328  * Called by ALSA when a PCM substream is closed. Private data can be
329  * freed here. The cpu DAI, codec DAI, machine and platform are also
330  * shutdown.
331  */
332 static int soc_codec_close(struct snd_pcm_substream *substream)
333 {
334 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
335 	struct snd_soc_device *socdev = rtd->socdev;
336 	struct snd_soc_card *card = socdev->card;
337 	struct snd_soc_dai_link *machine = rtd->dai;
338 	struct snd_soc_platform *platform = card->platform;
339 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
340 	struct snd_soc_dai *codec_dai = machine->codec_dai;
341 	struct snd_soc_codec *codec = card->codec;
342 
343 	mutex_lock(&pcm_mutex);
344 
345 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
346 		cpu_dai->playback.active = codec_dai->playback.active = 0;
347 	else
348 		cpu_dai->capture.active = codec_dai->capture.active = 0;
349 
350 	if (codec_dai->playback.active == 0 &&
351 		codec_dai->capture.active == 0) {
352 		cpu_dai->active = codec_dai->active = 0;
353 	}
354 	codec->active--;
355 
356 	/* Muting the DAC suppresses artifacts caused during digital
357 	 * shutdown, for example from stopping clocks.
358 	 */
359 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
360 		snd_soc_dai_digital_mute(codec_dai, 1);
361 
362 	if (cpu_dai->ops->shutdown)
363 		cpu_dai->ops->shutdown(substream, cpu_dai);
364 
365 	if (codec_dai->ops->shutdown)
366 		codec_dai->ops->shutdown(substream, codec_dai);
367 
368 	if (machine->ops && machine->ops->shutdown)
369 		machine->ops->shutdown(substream);
370 
371 	if (platform->pcm_ops->close)
372 		platform->pcm_ops->close(substream);
373 	cpu_dai->runtime = NULL;
374 
375 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
376 		/* start delayed pop wq here for playback streams */
377 		codec_dai->pop_wait = 1;
378 		schedule_delayed_work(&card->delayed_work,
379 			msecs_to_jiffies(pmdown_time));
380 	} else {
381 		/* capture streams can be powered down now */
382 		snd_soc_dapm_stream_event(codec,
383 			codec_dai->capture.stream_name,
384 			SND_SOC_DAPM_STREAM_STOP);
385 	}
386 
387 	mutex_unlock(&pcm_mutex);
388 	return 0;
389 }
390 
391 /*
392  * Called by ALSA when the PCM substream is prepared, can set format, sample
393  * rate, etc.  This function is non atomic and can be called multiple times,
394  * it can refer to the runtime info.
395  */
396 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
397 {
398 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
399 	struct snd_soc_device *socdev = rtd->socdev;
400 	struct snd_soc_card *card = socdev->card;
401 	struct snd_soc_dai_link *machine = rtd->dai;
402 	struct snd_soc_platform *platform = card->platform;
403 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
404 	struct snd_soc_dai *codec_dai = machine->codec_dai;
405 	struct snd_soc_codec *codec = card->codec;
406 	int ret = 0;
407 
408 	mutex_lock(&pcm_mutex);
409 
410 	if (machine->ops && machine->ops->prepare) {
411 		ret = machine->ops->prepare(substream);
412 		if (ret < 0) {
413 			printk(KERN_ERR "asoc: machine prepare error\n");
414 			goto out;
415 		}
416 	}
417 
418 	if (platform->pcm_ops->prepare) {
419 		ret = platform->pcm_ops->prepare(substream);
420 		if (ret < 0) {
421 			printk(KERN_ERR "asoc: platform prepare error\n");
422 			goto out;
423 		}
424 	}
425 
426 	if (codec_dai->ops->prepare) {
427 		ret = codec_dai->ops->prepare(substream, codec_dai);
428 		if (ret < 0) {
429 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
430 			goto out;
431 		}
432 	}
433 
434 	if (cpu_dai->ops->prepare) {
435 		ret = cpu_dai->ops->prepare(substream, cpu_dai);
436 		if (ret < 0) {
437 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
438 			goto out;
439 		}
440 	}
441 
442 	/* cancel any delayed stream shutdown that is pending */
443 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
444 	    codec_dai->pop_wait) {
445 		codec_dai->pop_wait = 0;
446 		cancel_delayed_work(&card->delayed_work);
447 	}
448 
449 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
450 		snd_soc_dapm_stream_event(codec,
451 					  codec_dai->playback.stream_name,
452 					  SND_SOC_DAPM_STREAM_START);
453 	else
454 		snd_soc_dapm_stream_event(codec,
455 					  codec_dai->capture.stream_name,
456 					  SND_SOC_DAPM_STREAM_START);
457 
458 	snd_soc_dai_digital_mute(codec_dai, 0);
459 
460 out:
461 	mutex_unlock(&pcm_mutex);
462 	return ret;
463 }
464 
465 /*
466  * Called by ALSA when the hardware params are set by application. This
467  * function can also be called multiple times and can allocate buffers
468  * (using snd_pcm_lib_* ). It's non-atomic.
469  */
470 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
471 				struct snd_pcm_hw_params *params)
472 {
473 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
474 	struct snd_soc_device *socdev = rtd->socdev;
475 	struct snd_soc_dai_link *machine = rtd->dai;
476 	struct snd_soc_card *card = socdev->card;
477 	struct snd_soc_platform *platform = card->platform;
478 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
479 	struct snd_soc_dai *codec_dai = machine->codec_dai;
480 	int ret = 0;
481 
482 	mutex_lock(&pcm_mutex);
483 
484 	if (machine->ops && machine->ops->hw_params) {
485 		ret = machine->ops->hw_params(substream, params);
486 		if (ret < 0) {
487 			printk(KERN_ERR "asoc: machine hw_params failed\n");
488 			goto out;
489 		}
490 	}
491 
492 	if (codec_dai->ops->hw_params) {
493 		ret = codec_dai->ops->hw_params(substream, params, codec_dai);
494 		if (ret < 0) {
495 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
496 				codec_dai->name);
497 			goto codec_err;
498 		}
499 	}
500 
501 	if (cpu_dai->ops->hw_params) {
502 		ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
503 		if (ret < 0) {
504 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
505 				cpu_dai->name);
506 			goto interface_err;
507 		}
508 	}
509 
510 	if (platform->pcm_ops->hw_params) {
511 		ret = platform->pcm_ops->hw_params(substream, params);
512 		if (ret < 0) {
513 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
514 				platform->name);
515 			goto platform_err;
516 		}
517 	}
518 
519 	machine->rate = params_rate(params);
520 
521 out:
522 	mutex_unlock(&pcm_mutex);
523 	return ret;
524 
525 platform_err:
526 	if (cpu_dai->ops->hw_free)
527 		cpu_dai->ops->hw_free(substream, cpu_dai);
528 
529 interface_err:
530 	if (codec_dai->ops->hw_free)
531 		codec_dai->ops->hw_free(substream, codec_dai);
532 
533 codec_err:
534 	if (machine->ops && machine->ops->hw_free)
535 		machine->ops->hw_free(substream);
536 
537 	mutex_unlock(&pcm_mutex);
538 	return ret;
539 }
540 
541 /*
542  * Free's resources allocated by hw_params, can be called multiple times
543  */
544 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
545 {
546 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
547 	struct snd_soc_device *socdev = rtd->socdev;
548 	struct snd_soc_dai_link *machine = rtd->dai;
549 	struct snd_soc_card *card = socdev->card;
550 	struct snd_soc_platform *platform = card->platform;
551 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
552 	struct snd_soc_dai *codec_dai = machine->codec_dai;
553 	struct snd_soc_codec *codec = card->codec;
554 
555 	mutex_lock(&pcm_mutex);
556 
557 	/* apply codec digital mute */
558 	if (!codec->active)
559 		snd_soc_dai_digital_mute(codec_dai, 1);
560 
561 	/* free any machine hw params */
562 	if (machine->ops && machine->ops->hw_free)
563 		machine->ops->hw_free(substream);
564 
565 	/* free any DMA resources */
566 	if (platform->pcm_ops->hw_free)
567 		platform->pcm_ops->hw_free(substream);
568 
569 	/* now free hw params for the DAI's  */
570 	if (codec_dai->ops->hw_free)
571 		codec_dai->ops->hw_free(substream, codec_dai);
572 
573 	if (cpu_dai->ops->hw_free)
574 		cpu_dai->ops->hw_free(substream, cpu_dai);
575 
576 	mutex_unlock(&pcm_mutex);
577 	return 0;
578 }
579 
580 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
581 {
582 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
583 	struct snd_soc_device *socdev = rtd->socdev;
584 	struct snd_soc_card *card= socdev->card;
585 	struct snd_soc_dai_link *machine = rtd->dai;
586 	struct snd_soc_platform *platform = card->platform;
587 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
588 	struct snd_soc_dai *codec_dai = machine->codec_dai;
589 	int ret;
590 
591 	if (codec_dai->ops->trigger) {
592 		ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
593 		if (ret < 0)
594 			return ret;
595 	}
596 
597 	if (platform->pcm_ops->trigger) {
598 		ret = platform->pcm_ops->trigger(substream, cmd);
599 		if (ret < 0)
600 			return ret;
601 	}
602 
603 	if (cpu_dai->ops->trigger) {
604 		ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
605 		if (ret < 0)
606 			return ret;
607 	}
608 	return 0;
609 }
610 
611 /* ASoC PCM operations */
612 static struct snd_pcm_ops soc_pcm_ops = {
613 	.open		= soc_pcm_open,
614 	.close		= soc_codec_close,
615 	.hw_params	= soc_pcm_hw_params,
616 	.hw_free	= soc_pcm_hw_free,
617 	.prepare	= soc_pcm_prepare,
618 	.trigger	= soc_pcm_trigger,
619 };
620 
621 #ifdef CONFIG_PM
622 /* powers down audio subsystem for suspend */
623 static int soc_suspend(struct device *dev)
624 {
625 	struct platform_device *pdev = to_platform_device(dev);
626 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
627 	struct snd_soc_card *card = socdev->card;
628 	struct snd_soc_platform *platform = card->platform;
629 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
630 	struct snd_soc_codec *codec = card->codec;
631 	int i;
632 
633 	/* If the initialization of this soc device failed, there is no codec
634 	 * associated with it. Just bail out in this case.
635 	 */
636 	if (!codec)
637 		return 0;
638 
639 	/* Due to the resume being scheduled into a workqueue we could
640 	* suspend before that's finished - wait for it to complete.
641 	 */
642 	snd_power_lock(codec->card);
643 	snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
644 	snd_power_unlock(codec->card);
645 
646 	/* we're going to block userspace touching us until resume completes */
647 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
648 
649 	/* mute any active DAC's */
650 	for (i = 0; i < card->num_links; i++) {
651 		struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
652 		if (dai->ops->digital_mute && dai->playback.active)
653 			dai->ops->digital_mute(dai, 1);
654 	}
655 
656 	/* suspend all pcms */
657 	for (i = 0; i < card->num_links; i++)
658 		snd_pcm_suspend_all(card->dai_link[i].pcm);
659 
660 	if (card->suspend_pre)
661 		card->suspend_pre(pdev, PMSG_SUSPEND);
662 
663 	for (i = 0; i < card->num_links; i++) {
664 		struct snd_soc_dai  *cpu_dai = card->dai_link[i].cpu_dai;
665 		if (cpu_dai->suspend && !cpu_dai->ac97_control)
666 			cpu_dai->suspend(cpu_dai);
667 		if (platform->suspend)
668 			platform->suspend(cpu_dai);
669 	}
670 
671 	/* close any waiting streams and save state */
672 	run_delayed_work(&card->delayed_work);
673 	codec->suspend_bias_level = codec->bias_level;
674 
675 	for (i = 0; i < codec->num_dai; i++) {
676 		char *stream = codec->dai[i].playback.stream_name;
677 		if (stream != NULL)
678 			snd_soc_dapm_stream_event(codec, stream,
679 				SND_SOC_DAPM_STREAM_SUSPEND);
680 		stream = codec->dai[i].capture.stream_name;
681 		if (stream != NULL)
682 			snd_soc_dapm_stream_event(codec, stream,
683 				SND_SOC_DAPM_STREAM_SUSPEND);
684 	}
685 
686 	if (codec_dev->suspend)
687 		codec_dev->suspend(pdev, PMSG_SUSPEND);
688 
689 	for (i = 0; i < card->num_links; i++) {
690 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
691 		if (cpu_dai->suspend && cpu_dai->ac97_control)
692 			cpu_dai->suspend(cpu_dai);
693 	}
694 
695 	if (card->suspend_post)
696 		card->suspend_post(pdev, PMSG_SUSPEND);
697 
698 	return 0;
699 }
700 
701 /* deferred resume work, so resume can complete before we finished
702  * setting our codec back up, which can be very slow on I2C
703  */
704 static void soc_resume_deferred(struct work_struct *work)
705 {
706 	struct snd_soc_card *card = container_of(work,
707 						 struct snd_soc_card,
708 						 deferred_resume_work);
709 	struct snd_soc_device *socdev = card->socdev;
710 	struct snd_soc_platform *platform = card->platform;
711 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
712 	struct snd_soc_codec *codec = card->codec;
713 	struct platform_device *pdev = to_platform_device(socdev->dev);
714 	int i;
715 
716 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
717 	 * so userspace apps are blocked from touching us
718 	 */
719 
720 	dev_dbg(socdev->dev, "starting resume work\n");
721 
722 	if (card->resume_pre)
723 		card->resume_pre(pdev);
724 
725 	for (i = 0; i < card->num_links; i++) {
726 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
727 		if (cpu_dai->resume && cpu_dai->ac97_control)
728 			cpu_dai->resume(cpu_dai);
729 	}
730 
731 	if (codec_dev->resume)
732 		codec_dev->resume(pdev);
733 
734 	for (i = 0; i < codec->num_dai; i++) {
735 		char *stream = codec->dai[i].playback.stream_name;
736 		if (stream != NULL)
737 			snd_soc_dapm_stream_event(codec, stream,
738 				SND_SOC_DAPM_STREAM_RESUME);
739 		stream = codec->dai[i].capture.stream_name;
740 		if (stream != NULL)
741 			snd_soc_dapm_stream_event(codec, stream,
742 				SND_SOC_DAPM_STREAM_RESUME);
743 	}
744 
745 	/* unmute any active DACs */
746 	for (i = 0; i < card->num_links; i++) {
747 		struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
748 		if (dai->ops->digital_mute && dai->playback.active)
749 			dai->ops->digital_mute(dai, 0);
750 	}
751 
752 	for (i = 0; i < card->num_links; i++) {
753 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
754 		if (cpu_dai->resume && !cpu_dai->ac97_control)
755 			cpu_dai->resume(cpu_dai);
756 		if (platform->resume)
757 			platform->resume(cpu_dai);
758 	}
759 
760 	if (card->resume_post)
761 		card->resume_post(pdev);
762 
763 	dev_dbg(socdev->dev, "resume work completed\n");
764 
765 	/* userspace can access us now we are back as we were before */
766 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
767 }
768 
769 /* powers up audio subsystem after a suspend */
770 static int soc_resume(struct device *dev)
771 {
772 	struct platform_device *pdev = to_platform_device(dev);
773 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
774 	struct snd_soc_card *card = socdev->card;
775 	struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
776 
777 	/* AC97 devices might have other drivers hanging off them so
778 	 * need to resume immediately.  Other drivers don't have that
779 	 * problem and may take a substantial amount of time to resume
780 	 * due to I/O costs and anti-pop so handle them out of line.
781 	 */
782 	if (cpu_dai->ac97_control) {
783 		dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
784 		soc_resume_deferred(&card->deferred_resume_work);
785 	} else {
786 		dev_dbg(socdev->dev, "Scheduling resume work\n");
787 		if (!schedule_work(&card->deferred_resume_work))
788 			dev_err(socdev->dev, "resume work item may be lost\n");
789 	}
790 
791 	return 0;
792 }
793 
794 /**
795  * snd_soc_suspend_device: Notify core of device suspend
796  *
797  * @dev: Device being suspended.
798  *
799  * In order to ensure that the entire audio subsystem is suspended in a
800  * coordinated fashion ASoC devices should suspend themselves when
801  * called by ASoC.  When the standard kernel suspend process asks the
802  * device to suspend it should call this function to initiate a suspend
803  * of the entire ASoC card.
804  *
805  * \note Currently this function is stubbed out.
806  */
807 int snd_soc_suspend_device(struct device *dev)
808 {
809 	return 0;
810 }
811 EXPORT_SYMBOL_GPL(snd_soc_suspend_device);
812 
813 /**
814  * snd_soc_resume_device: Notify core of device resume
815  *
816  * @dev: Device being resumed.
817  *
818  * In order to ensure that the entire audio subsystem is resumed in a
819  * coordinated fashion ASoC devices should resume themselves when called
820  * by ASoC.  When the standard kernel resume process asks the device
821  * to resume it should call this function.  Once all the components of
822  * the card have notified that they are ready to be resumed the card
823  * will be resumed.
824  *
825  * \note Currently this function is stubbed out.
826  */
827 int snd_soc_resume_device(struct device *dev)
828 {
829 	return 0;
830 }
831 EXPORT_SYMBOL_GPL(snd_soc_resume_device);
832 #else
833 #define soc_suspend	NULL
834 #define soc_resume	NULL
835 #endif
836 
837 static void snd_soc_instantiate_card(struct snd_soc_card *card)
838 {
839 	struct platform_device *pdev = container_of(card->dev,
840 						    struct platform_device,
841 						    dev);
842 	struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
843 	struct snd_soc_platform *platform;
844 	struct snd_soc_dai *dai;
845 	int i, found, ret, ac97;
846 
847 	if (card->instantiated)
848 		return;
849 
850 	found = 0;
851 	list_for_each_entry(platform, &platform_list, list)
852 		if (card->platform == platform) {
853 			found = 1;
854 			break;
855 		}
856 	if (!found) {
857 		dev_dbg(card->dev, "Platform %s not registered\n",
858 			card->platform->name);
859 		return;
860 	}
861 
862 	ac97 = 0;
863 	for (i = 0; i < card->num_links; i++) {
864 		found = 0;
865 		list_for_each_entry(dai, &dai_list, list)
866 			if (card->dai_link[i].cpu_dai == dai) {
867 				found = 1;
868 				break;
869 			}
870 		if (!found) {
871 			dev_dbg(card->dev, "DAI %s not registered\n",
872 				card->dai_link[i].cpu_dai->name);
873 			return;
874 		}
875 
876 		if (card->dai_link[i].cpu_dai->ac97_control)
877 			ac97 = 1;
878 	}
879 
880 	/* If we have AC97 in the system then don't wait for the
881 	 * codec.  This will need revisiting if we have to handle
882 	 * systems with mixed AC97 and non-AC97 parts.  Only check for
883 	 * DAIs currently; we can't do this per link since some AC97
884 	 * codecs have non-AC97 DAIs.
885 	 */
886 	if (!ac97)
887 		for (i = 0; i < card->num_links; i++) {
888 			found = 0;
889 			list_for_each_entry(dai, &dai_list, list)
890 				if (card->dai_link[i].codec_dai == dai) {
891 					found = 1;
892 					break;
893 				}
894 			if (!found) {
895 				dev_dbg(card->dev, "DAI %s not registered\n",
896 					card->dai_link[i].codec_dai->name);
897 				return;
898 			}
899 		}
900 
901 	/* Note that we do not current check for codec components */
902 
903 	dev_dbg(card->dev, "All components present, instantiating\n");
904 
905 	/* Found everything, bring it up */
906 	if (card->probe) {
907 		ret = card->probe(pdev);
908 		if (ret < 0)
909 			return;
910 	}
911 
912 	for (i = 0; i < card->num_links; i++) {
913 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
914 		if (cpu_dai->probe) {
915 			ret = cpu_dai->probe(pdev, cpu_dai);
916 			if (ret < 0)
917 				goto cpu_dai_err;
918 		}
919 	}
920 
921 	if (codec_dev->probe) {
922 		ret = codec_dev->probe(pdev);
923 		if (ret < 0)
924 			goto cpu_dai_err;
925 	}
926 
927 	if (platform->probe) {
928 		ret = platform->probe(pdev);
929 		if (ret < 0)
930 			goto platform_err;
931 	}
932 
933 	/* DAPM stream work */
934 	INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
935 #ifdef CONFIG_PM
936 	/* deferred resume work */
937 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
938 #endif
939 
940 	card->instantiated = 1;
941 
942 	return;
943 
944 platform_err:
945 	if (codec_dev->remove)
946 		codec_dev->remove(pdev);
947 
948 cpu_dai_err:
949 	for (i--; i >= 0; i--) {
950 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
951 		if (cpu_dai->remove)
952 			cpu_dai->remove(pdev, cpu_dai);
953 	}
954 
955 	if (card->remove)
956 		card->remove(pdev);
957 }
958 
959 /*
960  * Attempt to initialise any uninitalised cards.  Must be called with
961  * client_mutex.
962  */
963 static void snd_soc_instantiate_cards(void)
964 {
965 	struct snd_soc_card *card;
966 	list_for_each_entry(card, &card_list, list)
967 		snd_soc_instantiate_card(card);
968 }
969 
970 /* probes a new socdev */
971 static int soc_probe(struct platform_device *pdev)
972 {
973 	int ret = 0;
974 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
975 	struct snd_soc_card *card = socdev->card;
976 
977 	/* Bodge while we push things out of socdev */
978 	card->socdev = socdev;
979 
980 	/* Bodge while we unpick instantiation */
981 	card->dev = &pdev->dev;
982 	ret = snd_soc_register_card(card);
983 	if (ret != 0) {
984 		dev_err(&pdev->dev, "Failed to register card\n");
985 		return ret;
986 	}
987 
988 	return 0;
989 }
990 
991 /* removes a socdev */
992 static int soc_remove(struct platform_device *pdev)
993 {
994 	int i;
995 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
996 	struct snd_soc_card *card = socdev->card;
997 	struct snd_soc_platform *platform = card->platform;
998 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
999 
1000 	if (!card->instantiated)
1001 		return 0;
1002 
1003 	run_delayed_work(&card->delayed_work);
1004 
1005 	if (platform->remove)
1006 		platform->remove(pdev);
1007 
1008 	if (codec_dev->remove)
1009 		codec_dev->remove(pdev);
1010 
1011 	for (i = 0; i < card->num_links; i++) {
1012 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1013 		if (cpu_dai->remove)
1014 			cpu_dai->remove(pdev, cpu_dai);
1015 	}
1016 
1017 	if (card->remove)
1018 		card->remove(pdev);
1019 
1020 	snd_soc_unregister_card(card);
1021 
1022 	return 0;
1023 }
1024 
1025 static int soc_poweroff(struct device *dev)
1026 {
1027 	struct platform_device *pdev = to_platform_device(dev);
1028 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1029 	struct snd_soc_card *card = socdev->card;
1030 
1031 	if (!card->instantiated)
1032 		return 0;
1033 
1034 	/* Flush out pmdown_time work - we actually do want to run it
1035 	 * now, we're shutting down so no imminent restart. */
1036 	run_delayed_work(&card->delayed_work);
1037 
1038 	snd_soc_dapm_shutdown(socdev);
1039 
1040 	return 0;
1041 }
1042 
1043 static struct dev_pm_ops soc_pm_ops = {
1044 	.suspend = soc_suspend,
1045 	.resume = soc_resume,
1046 	.poweroff = soc_poweroff,
1047 };
1048 
1049 /* ASoC platform driver */
1050 static struct platform_driver soc_driver = {
1051 	.driver		= {
1052 		.name		= "soc-audio",
1053 		.owner		= THIS_MODULE,
1054 		.pm		= &soc_pm_ops,
1055 	},
1056 	.probe		= soc_probe,
1057 	.remove		= soc_remove,
1058 };
1059 
1060 /* create a new pcm */
1061 static int soc_new_pcm(struct snd_soc_device *socdev,
1062 	struct snd_soc_dai_link *dai_link, int num)
1063 {
1064 	struct snd_soc_card *card = socdev->card;
1065 	struct snd_soc_codec *codec = card->codec;
1066 	struct snd_soc_platform *platform = card->platform;
1067 	struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1068 	struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1069 	struct snd_soc_pcm_runtime *rtd;
1070 	struct snd_pcm *pcm;
1071 	char new_name[64];
1072 	int ret = 0, playback = 0, capture = 0;
1073 
1074 	rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1075 	if (rtd == NULL)
1076 		return -ENOMEM;
1077 
1078 	rtd->dai = dai_link;
1079 	rtd->socdev = socdev;
1080 	codec_dai->codec = card->codec;
1081 
1082 	/* check client and interface hw capabilities */
1083 	sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1084 		num);
1085 
1086 	if (codec_dai->playback.channels_min)
1087 		playback = 1;
1088 	if (codec_dai->capture.channels_min)
1089 		capture = 1;
1090 
1091 	ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1092 		capture, &pcm);
1093 	if (ret < 0) {
1094 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1095 			codec->name);
1096 		kfree(rtd);
1097 		return ret;
1098 	}
1099 
1100 	dai_link->pcm = pcm;
1101 	pcm->private_data = rtd;
1102 	soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1103 	soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1104 	soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1105 	soc_pcm_ops.copy = platform->pcm_ops->copy;
1106 	soc_pcm_ops.silence = platform->pcm_ops->silence;
1107 	soc_pcm_ops.ack = platform->pcm_ops->ack;
1108 	soc_pcm_ops.page = platform->pcm_ops->page;
1109 
1110 	if (playback)
1111 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1112 
1113 	if (capture)
1114 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1115 
1116 	ret = platform->pcm_new(codec->card, codec_dai, pcm);
1117 	if (ret < 0) {
1118 		printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1119 		kfree(rtd);
1120 		return ret;
1121 	}
1122 
1123 	pcm->private_free = platform->pcm_free;
1124 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1125 		cpu_dai->name);
1126 	return ret;
1127 }
1128 
1129 /**
1130  * snd_soc_codec_volatile_register: Report if a register is volatile.
1131  *
1132  * @codec: CODEC to query.
1133  * @reg: Register to query.
1134  *
1135  * Boolean function indiciating if a CODEC register is volatile.
1136  */
1137 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1138 {
1139 	if (codec->volatile_register)
1140 		return codec->volatile_register(reg);
1141 	else
1142 		return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1145 
1146 /* codec register dump */
1147 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1148 {
1149 	int i, step = 1, count = 0;
1150 
1151 	if (!codec->reg_cache_size)
1152 		return 0;
1153 
1154 	if (codec->reg_cache_step)
1155 		step = codec->reg_cache_step;
1156 
1157 	count += sprintf(buf, "%s registers\n", codec->name);
1158 	for (i = 0; i < codec->reg_cache_size; i += step) {
1159 		if (codec->readable_register && !codec->readable_register(i))
1160 			continue;
1161 
1162 		count += sprintf(buf + count, "%2x: ", i);
1163 		if (count >= PAGE_SIZE - 1)
1164 			break;
1165 
1166 		if (codec->display_register)
1167 			count += codec->display_register(codec, buf + count,
1168 							 PAGE_SIZE - count, i);
1169 		else
1170 			count += snprintf(buf + count, PAGE_SIZE - count,
1171 					  "%4x", codec->read(codec, i));
1172 
1173 		if (count >= PAGE_SIZE - 1)
1174 			break;
1175 
1176 		count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1177 		if (count >= PAGE_SIZE - 1)
1178 			break;
1179 	}
1180 
1181 	/* Truncate count; min() would cause a warning */
1182 	if (count >= PAGE_SIZE)
1183 		count = PAGE_SIZE - 1;
1184 
1185 	return count;
1186 }
1187 static ssize_t codec_reg_show(struct device *dev,
1188 	struct device_attribute *attr, char *buf)
1189 {
1190 	struct snd_soc_device *devdata = dev_get_drvdata(dev);
1191 	return soc_codec_reg_show(devdata->card->codec, buf);
1192 }
1193 
1194 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1195 
1196 #ifdef CONFIG_DEBUG_FS
1197 static int codec_reg_open_file(struct inode *inode, struct file *file)
1198 {
1199 	file->private_data = inode->i_private;
1200 	return 0;
1201 }
1202 
1203 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1204 			       size_t count, loff_t *ppos)
1205 {
1206 	ssize_t ret;
1207 	struct snd_soc_codec *codec = file->private_data;
1208 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1209 	if (!buf)
1210 		return -ENOMEM;
1211 	ret = soc_codec_reg_show(codec, buf);
1212 	if (ret >= 0)
1213 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1214 	kfree(buf);
1215 	return ret;
1216 }
1217 
1218 static ssize_t codec_reg_write_file(struct file *file,
1219 		const char __user *user_buf, size_t count, loff_t *ppos)
1220 {
1221 	char buf[32];
1222 	int buf_size;
1223 	char *start = buf;
1224 	unsigned long reg, value;
1225 	int step = 1;
1226 	struct snd_soc_codec *codec = file->private_data;
1227 
1228 	buf_size = min(count, (sizeof(buf)-1));
1229 	if (copy_from_user(buf, user_buf, buf_size))
1230 		return -EFAULT;
1231 	buf[buf_size] = 0;
1232 
1233 	if (codec->reg_cache_step)
1234 		step = codec->reg_cache_step;
1235 
1236 	while (*start == ' ')
1237 		start++;
1238 	reg = simple_strtoul(start, &start, 16);
1239 	if ((reg >= codec->reg_cache_size) || (reg % step))
1240 		return -EINVAL;
1241 	while (*start == ' ')
1242 		start++;
1243 	if (strict_strtoul(start, 16, &value))
1244 		return -EINVAL;
1245 	codec->write(codec, reg, value);
1246 	return buf_size;
1247 }
1248 
1249 static const struct file_operations codec_reg_fops = {
1250 	.open = codec_reg_open_file,
1251 	.read = codec_reg_read_file,
1252 	.write = codec_reg_write_file,
1253 };
1254 
1255 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1256 {
1257 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1258 						 debugfs_root, codec,
1259 						 &codec_reg_fops);
1260 	if (!codec->debugfs_reg)
1261 		printk(KERN_WARNING
1262 		       "ASoC: Failed to create codec register debugfs file\n");
1263 
1264 	codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1265 						     debugfs_root,
1266 						     &codec->pop_time);
1267 	if (!codec->debugfs_pop_time)
1268 		printk(KERN_WARNING
1269 		       "Failed to create pop time debugfs file\n");
1270 
1271 	codec->debugfs_dapm = debugfs_create_dir("dapm", debugfs_root);
1272 	if (!codec->debugfs_dapm)
1273 		printk(KERN_WARNING
1274 		       "Failed to create DAPM debugfs directory\n");
1275 
1276 	snd_soc_dapm_debugfs_init(codec);
1277 }
1278 
1279 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1280 {
1281 	debugfs_remove_recursive(codec->debugfs_dapm);
1282 	debugfs_remove(codec->debugfs_pop_time);
1283 	debugfs_remove(codec->debugfs_reg);
1284 }
1285 
1286 #else
1287 
1288 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1289 {
1290 }
1291 
1292 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1293 {
1294 }
1295 #endif
1296 
1297 /**
1298  * snd_soc_new_ac97_codec - initailise AC97 device
1299  * @codec: audio codec
1300  * @ops: AC97 bus operations
1301  * @num: AC97 codec number
1302  *
1303  * Initialises AC97 codec resources for use by ad-hoc devices only.
1304  */
1305 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1306 	struct snd_ac97_bus_ops *ops, int num)
1307 {
1308 	mutex_lock(&codec->mutex);
1309 
1310 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1311 	if (codec->ac97 == NULL) {
1312 		mutex_unlock(&codec->mutex);
1313 		return -ENOMEM;
1314 	}
1315 
1316 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1317 	if (codec->ac97->bus == NULL) {
1318 		kfree(codec->ac97);
1319 		codec->ac97 = NULL;
1320 		mutex_unlock(&codec->mutex);
1321 		return -ENOMEM;
1322 	}
1323 
1324 	codec->ac97->bus->ops = ops;
1325 	codec->ac97->num = num;
1326 	mutex_unlock(&codec->mutex);
1327 	return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1330 
1331 /**
1332  * snd_soc_free_ac97_codec - free AC97 codec device
1333  * @codec: audio codec
1334  *
1335  * Frees AC97 codec device resources.
1336  */
1337 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1338 {
1339 	mutex_lock(&codec->mutex);
1340 	kfree(codec->ac97->bus);
1341 	kfree(codec->ac97);
1342 	codec->ac97 = NULL;
1343 	mutex_unlock(&codec->mutex);
1344 }
1345 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1346 
1347 /**
1348  * snd_soc_update_bits - update codec register bits
1349  * @codec: audio codec
1350  * @reg: codec register
1351  * @mask: register mask
1352  * @value: new value
1353  *
1354  * Writes new register value.
1355  *
1356  * Returns 1 for change else 0.
1357  */
1358 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1359 				unsigned int mask, unsigned int value)
1360 {
1361 	int change;
1362 	unsigned int old, new;
1363 
1364 	mutex_lock(&io_mutex);
1365 	old = snd_soc_read(codec, reg);
1366 	new = (old & ~mask) | value;
1367 	change = old != new;
1368 	if (change)
1369 		snd_soc_write(codec, reg, new);
1370 
1371 	mutex_unlock(&io_mutex);
1372 	return change;
1373 }
1374 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1375 
1376 /**
1377  * snd_soc_test_bits - test register for change
1378  * @codec: audio codec
1379  * @reg: codec register
1380  * @mask: register mask
1381  * @value: new value
1382  *
1383  * Tests a register with a new value and checks if the new value is
1384  * different from the old value.
1385  *
1386  * Returns 1 for change else 0.
1387  */
1388 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1389 				unsigned int mask, unsigned int value)
1390 {
1391 	int change;
1392 	unsigned int old, new;
1393 
1394 	mutex_lock(&io_mutex);
1395 	old = snd_soc_read(codec, reg);
1396 	new = (old & ~mask) | value;
1397 	change = old != new;
1398 	mutex_unlock(&io_mutex);
1399 
1400 	return change;
1401 }
1402 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1403 
1404 /**
1405  * snd_soc_new_pcms - create new sound card and pcms
1406  * @socdev: the SoC audio device
1407  * @idx: ALSA card index
1408  * @xid: card identification
1409  *
1410  * Create a new sound card based upon the codec and interface pcms.
1411  *
1412  * Returns 0 for success, else error.
1413  */
1414 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1415 {
1416 	struct snd_soc_card *card = socdev->card;
1417 	struct snd_soc_codec *codec = card->codec;
1418 	int ret, i;
1419 
1420 	mutex_lock(&codec->mutex);
1421 
1422 	/* register a sound card */
1423 	ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1424 	if (ret < 0) {
1425 		printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1426 			codec->name);
1427 		mutex_unlock(&codec->mutex);
1428 		return ret;
1429 	}
1430 
1431 	codec->socdev = socdev;
1432 	codec->card->dev = socdev->dev;
1433 	codec->card->private_data = codec;
1434 	strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1435 
1436 	/* create the pcms */
1437 	for (i = 0; i < card->num_links; i++) {
1438 		ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1439 		if (ret < 0) {
1440 			printk(KERN_ERR "asoc: can't create pcm %s\n",
1441 				card->dai_link[i].stream_name);
1442 			mutex_unlock(&codec->mutex);
1443 			return ret;
1444 		}
1445 	}
1446 
1447 	mutex_unlock(&codec->mutex);
1448 	return ret;
1449 }
1450 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1451 
1452 /**
1453  * snd_soc_init_card - register sound card
1454  * @socdev: the SoC audio device
1455  *
1456  * Register a SoC sound card. Also registers an AC97 device if the
1457  * codec is AC97 for ad hoc devices.
1458  *
1459  * Returns 0 for success, else error.
1460  */
1461 int snd_soc_init_card(struct snd_soc_device *socdev)
1462 {
1463 	struct snd_soc_card *card = socdev->card;
1464 	struct snd_soc_codec *codec = card->codec;
1465 	int ret = 0, i, ac97 = 0, err = 0;
1466 
1467 	for (i = 0; i < card->num_links; i++) {
1468 		if (card->dai_link[i].init) {
1469 			err = card->dai_link[i].init(codec);
1470 			if (err < 0) {
1471 				printk(KERN_ERR "asoc: failed to init %s\n",
1472 					card->dai_link[i].stream_name);
1473 				continue;
1474 			}
1475 		}
1476 		if (card->dai_link[i].codec_dai->ac97_control) {
1477 			ac97 = 1;
1478 			snd_ac97_dev_add_pdata(codec->ac97,
1479 				card->dai_link[i].cpu_dai->ac97_pdata);
1480 		}
1481 	}
1482 	snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1483 		 "%s",  card->name);
1484 	snprintf(codec->card->longname, sizeof(codec->card->longname),
1485 		 "%s (%s)", card->name, codec->name);
1486 
1487 	/* Make sure all DAPM widgets are instantiated */
1488 	snd_soc_dapm_new_widgets(codec);
1489 
1490 	ret = snd_card_register(codec->card);
1491 	if (ret < 0) {
1492 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1493 				codec->name);
1494 		goto out;
1495 	}
1496 
1497 	mutex_lock(&codec->mutex);
1498 #ifdef CONFIG_SND_SOC_AC97_BUS
1499 	/* Only instantiate AC97 if not already done by the adaptor
1500 	 * for the generic AC97 subsystem.
1501 	 */
1502 	if (ac97 && strcmp(codec->name, "AC97") != 0) {
1503 		ret = soc_ac97_dev_register(codec);
1504 		if (ret < 0) {
1505 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1506 			snd_card_free(codec->card);
1507 			mutex_unlock(&codec->mutex);
1508 			goto out;
1509 		}
1510 	}
1511 #endif
1512 
1513 	err = snd_soc_dapm_sys_add(socdev->dev);
1514 	if (err < 0)
1515 		printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1516 
1517 	err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1518 	if (err < 0)
1519 		printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1520 
1521 	soc_init_codec_debugfs(codec);
1522 	mutex_unlock(&codec->mutex);
1523 
1524 out:
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1528 
1529 /**
1530  * snd_soc_free_pcms - free sound card and pcms
1531  * @socdev: the SoC audio device
1532  *
1533  * Frees sound card and pcms associated with the socdev.
1534  * Also unregister the codec if it is an AC97 device.
1535  */
1536 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1537 {
1538 	struct snd_soc_codec *codec = socdev->card->codec;
1539 #ifdef CONFIG_SND_SOC_AC97_BUS
1540 	struct snd_soc_dai *codec_dai;
1541 	int i;
1542 #endif
1543 
1544 	mutex_lock(&codec->mutex);
1545 	soc_cleanup_codec_debugfs(codec);
1546 #ifdef CONFIG_SND_SOC_AC97_BUS
1547 	for (i = 0; i < codec->num_dai; i++) {
1548 		codec_dai = &codec->dai[i];
1549 		if (codec_dai->ac97_control && codec->ac97 &&
1550 		    strcmp(codec->name, "AC97") != 0) {
1551 			soc_ac97_dev_unregister(codec);
1552 			goto free_card;
1553 		}
1554 	}
1555 free_card:
1556 #endif
1557 
1558 	if (codec->card)
1559 		snd_card_free(codec->card);
1560 	device_remove_file(socdev->dev, &dev_attr_codec_reg);
1561 	mutex_unlock(&codec->mutex);
1562 }
1563 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1564 
1565 /**
1566  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1567  * @substream: the pcm substream
1568  * @hw: the hardware parameters
1569  *
1570  * Sets the substream runtime hardware parameters.
1571  */
1572 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1573 	const struct snd_pcm_hardware *hw)
1574 {
1575 	struct snd_pcm_runtime *runtime = substream->runtime;
1576 	runtime->hw.info = hw->info;
1577 	runtime->hw.formats = hw->formats;
1578 	runtime->hw.period_bytes_min = hw->period_bytes_min;
1579 	runtime->hw.period_bytes_max = hw->period_bytes_max;
1580 	runtime->hw.periods_min = hw->periods_min;
1581 	runtime->hw.periods_max = hw->periods_max;
1582 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1583 	runtime->hw.fifo_size = hw->fifo_size;
1584 	return 0;
1585 }
1586 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1587 
1588 /**
1589  * snd_soc_cnew - create new control
1590  * @_template: control template
1591  * @data: control private data
1592  * @long_name: control long name
1593  *
1594  * Create a new mixer control from a template control.
1595  *
1596  * Returns 0 for success, else error.
1597  */
1598 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1599 	void *data, char *long_name)
1600 {
1601 	struct snd_kcontrol_new template;
1602 
1603 	memcpy(&template, _template, sizeof(template));
1604 	if (long_name)
1605 		template.name = long_name;
1606 	template.index = 0;
1607 
1608 	return snd_ctl_new1(&template, data);
1609 }
1610 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1611 
1612 /**
1613  * snd_soc_add_controls - add an array of controls to a codec.
1614  * Convienience function to add a list of controls. Many codecs were
1615  * duplicating this code.
1616  *
1617  * @codec: codec to add controls to
1618  * @controls: array of controls to add
1619  * @num_controls: number of elements in the array
1620  *
1621  * Return 0 for success, else error.
1622  */
1623 int snd_soc_add_controls(struct snd_soc_codec *codec,
1624 	const struct snd_kcontrol_new *controls, int num_controls)
1625 {
1626 	struct snd_card *card = codec->card;
1627 	int err, i;
1628 
1629 	for (i = 0; i < num_controls; i++) {
1630 		const struct snd_kcontrol_new *control = &controls[i];
1631 		err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1632 		if (err < 0) {
1633 			dev_err(codec->dev, "%s: Failed to add %s\n",
1634 				codec->name, control->name);
1635 			return err;
1636 		}
1637 	}
1638 
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1642 
1643 /**
1644  * snd_soc_info_enum_double - enumerated double mixer info callback
1645  * @kcontrol: mixer control
1646  * @uinfo: control element information
1647  *
1648  * Callback to provide information about a double enumerated
1649  * mixer control.
1650  *
1651  * Returns 0 for success.
1652  */
1653 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1654 	struct snd_ctl_elem_info *uinfo)
1655 {
1656 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1657 
1658 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1659 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1660 	uinfo->value.enumerated.items = e->max;
1661 
1662 	if (uinfo->value.enumerated.item > e->max - 1)
1663 		uinfo->value.enumerated.item = e->max - 1;
1664 	strcpy(uinfo->value.enumerated.name,
1665 		e->texts[uinfo->value.enumerated.item]);
1666 	return 0;
1667 }
1668 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1669 
1670 /**
1671  * snd_soc_get_enum_double - enumerated double mixer get callback
1672  * @kcontrol: mixer control
1673  * @ucontrol: control element information
1674  *
1675  * Callback to get the value of a double enumerated mixer.
1676  *
1677  * Returns 0 for success.
1678  */
1679 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1680 	struct snd_ctl_elem_value *ucontrol)
1681 {
1682 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1683 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1684 	unsigned int val, bitmask;
1685 
1686 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1687 		;
1688 	val = snd_soc_read(codec, e->reg);
1689 	ucontrol->value.enumerated.item[0]
1690 		= (val >> e->shift_l) & (bitmask - 1);
1691 	if (e->shift_l != e->shift_r)
1692 		ucontrol->value.enumerated.item[1] =
1693 			(val >> e->shift_r) & (bitmask - 1);
1694 
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1698 
1699 /**
1700  * snd_soc_put_enum_double - enumerated double mixer put callback
1701  * @kcontrol: mixer control
1702  * @ucontrol: control element information
1703  *
1704  * Callback to set the value of a double enumerated mixer.
1705  *
1706  * Returns 0 for success.
1707  */
1708 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1709 	struct snd_ctl_elem_value *ucontrol)
1710 {
1711 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1712 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1713 	unsigned int val;
1714 	unsigned int mask, bitmask;
1715 
1716 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1717 		;
1718 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1719 		return -EINVAL;
1720 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
1721 	mask = (bitmask - 1) << e->shift_l;
1722 	if (e->shift_l != e->shift_r) {
1723 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1724 			return -EINVAL;
1725 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1726 		mask |= (bitmask - 1) << e->shift_r;
1727 	}
1728 
1729 	return snd_soc_update_bits(codec, e->reg, mask, val);
1730 }
1731 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1732 
1733 /**
1734  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1735  * @kcontrol: mixer control
1736  * @ucontrol: control element information
1737  *
1738  * Callback to get the value of a double semi enumerated mixer.
1739  *
1740  * Semi enumerated mixer: the enumerated items are referred as values. Can be
1741  * used for handling bitfield coded enumeration for example.
1742  *
1743  * Returns 0 for success.
1744  */
1745 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1746 	struct snd_ctl_elem_value *ucontrol)
1747 {
1748 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1749 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1750 	unsigned int reg_val, val, mux;
1751 
1752 	reg_val = snd_soc_read(codec, e->reg);
1753 	val = (reg_val >> e->shift_l) & e->mask;
1754 	for (mux = 0; mux < e->max; mux++) {
1755 		if (val == e->values[mux])
1756 			break;
1757 	}
1758 	ucontrol->value.enumerated.item[0] = mux;
1759 	if (e->shift_l != e->shift_r) {
1760 		val = (reg_val >> e->shift_r) & e->mask;
1761 		for (mux = 0; mux < e->max; mux++) {
1762 			if (val == e->values[mux])
1763 				break;
1764 		}
1765 		ucontrol->value.enumerated.item[1] = mux;
1766 	}
1767 
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1771 
1772 /**
1773  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1774  * @kcontrol: mixer control
1775  * @ucontrol: control element information
1776  *
1777  * Callback to set the value of a double semi enumerated mixer.
1778  *
1779  * Semi enumerated mixer: the enumerated items are referred as values. Can be
1780  * used for handling bitfield coded enumeration for example.
1781  *
1782  * Returns 0 for success.
1783  */
1784 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1785 	struct snd_ctl_elem_value *ucontrol)
1786 {
1787 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1788 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1789 	unsigned int val;
1790 	unsigned int mask;
1791 
1792 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1793 		return -EINVAL;
1794 	val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1795 	mask = e->mask << e->shift_l;
1796 	if (e->shift_l != e->shift_r) {
1797 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1798 			return -EINVAL;
1799 		val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1800 		mask |= e->mask << e->shift_r;
1801 	}
1802 
1803 	return snd_soc_update_bits(codec, e->reg, mask, val);
1804 }
1805 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1806 
1807 /**
1808  * snd_soc_info_enum_ext - external enumerated single mixer info callback
1809  * @kcontrol: mixer control
1810  * @uinfo: control element information
1811  *
1812  * Callback to provide information about an external enumerated
1813  * single mixer.
1814  *
1815  * Returns 0 for success.
1816  */
1817 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1818 	struct snd_ctl_elem_info *uinfo)
1819 {
1820 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1821 
1822 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1823 	uinfo->count = 1;
1824 	uinfo->value.enumerated.items = e->max;
1825 
1826 	if (uinfo->value.enumerated.item > e->max - 1)
1827 		uinfo->value.enumerated.item = e->max - 1;
1828 	strcpy(uinfo->value.enumerated.name,
1829 		e->texts[uinfo->value.enumerated.item]);
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1833 
1834 /**
1835  * snd_soc_info_volsw_ext - external single mixer info callback
1836  * @kcontrol: mixer control
1837  * @uinfo: control element information
1838  *
1839  * Callback to provide information about a single external mixer control.
1840  *
1841  * Returns 0 for success.
1842  */
1843 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1844 	struct snd_ctl_elem_info *uinfo)
1845 {
1846 	int max = kcontrol->private_value;
1847 
1848 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1849 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1850 	else
1851 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1852 
1853 	uinfo->count = 1;
1854 	uinfo->value.integer.min = 0;
1855 	uinfo->value.integer.max = max;
1856 	return 0;
1857 }
1858 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1859 
1860 /**
1861  * snd_soc_info_volsw - single mixer info callback
1862  * @kcontrol: mixer control
1863  * @uinfo: control element information
1864  *
1865  * Callback to provide information about a single mixer control.
1866  *
1867  * Returns 0 for success.
1868  */
1869 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1870 	struct snd_ctl_elem_info *uinfo)
1871 {
1872 	struct soc_mixer_control *mc =
1873 		(struct soc_mixer_control *)kcontrol->private_value;
1874 	int max = mc->max;
1875 	unsigned int shift = mc->shift;
1876 	unsigned int rshift = mc->rshift;
1877 
1878 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1879 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1880 	else
1881 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1882 
1883 	uinfo->count = shift == rshift ? 1 : 2;
1884 	uinfo->value.integer.min = 0;
1885 	uinfo->value.integer.max = max;
1886 	return 0;
1887 }
1888 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1889 
1890 /**
1891  * snd_soc_get_volsw - single mixer get callback
1892  * @kcontrol: mixer control
1893  * @ucontrol: control element information
1894  *
1895  * Callback to get the value of a single mixer control.
1896  *
1897  * Returns 0 for success.
1898  */
1899 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1900 	struct snd_ctl_elem_value *ucontrol)
1901 {
1902 	struct soc_mixer_control *mc =
1903 		(struct soc_mixer_control *)kcontrol->private_value;
1904 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1905 	unsigned int reg = mc->reg;
1906 	unsigned int shift = mc->shift;
1907 	unsigned int rshift = mc->rshift;
1908 	int max = mc->max;
1909 	unsigned int mask = (1 << fls(max)) - 1;
1910 	unsigned int invert = mc->invert;
1911 
1912 	ucontrol->value.integer.value[0] =
1913 		(snd_soc_read(codec, reg) >> shift) & mask;
1914 	if (shift != rshift)
1915 		ucontrol->value.integer.value[1] =
1916 			(snd_soc_read(codec, reg) >> rshift) & mask;
1917 	if (invert) {
1918 		ucontrol->value.integer.value[0] =
1919 			max - ucontrol->value.integer.value[0];
1920 		if (shift != rshift)
1921 			ucontrol->value.integer.value[1] =
1922 				max - ucontrol->value.integer.value[1];
1923 	}
1924 
1925 	return 0;
1926 }
1927 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1928 
1929 /**
1930  * snd_soc_put_volsw - single mixer put callback
1931  * @kcontrol: mixer control
1932  * @ucontrol: control element information
1933  *
1934  * Callback to set the value of a single mixer control.
1935  *
1936  * Returns 0 for success.
1937  */
1938 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1939 	struct snd_ctl_elem_value *ucontrol)
1940 {
1941 	struct soc_mixer_control *mc =
1942 		(struct soc_mixer_control *)kcontrol->private_value;
1943 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1944 	unsigned int reg = mc->reg;
1945 	unsigned int shift = mc->shift;
1946 	unsigned int rshift = mc->rshift;
1947 	int max = mc->max;
1948 	unsigned int mask = (1 << fls(max)) - 1;
1949 	unsigned int invert = mc->invert;
1950 	unsigned int val, val2, val_mask;
1951 
1952 	val = (ucontrol->value.integer.value[0] & mask);
1953 	if (invert)
1954 		val = max - val;
1955 	val_mask = mask << shift;
1956 	val = val << shift;
1957 	if (shift != rshift) {
1958 		val2 = (ucontrol->value.integer.value[1] & mask);
1959 		if (invert)
1960 			val2 = max - val2;
1961 		val_mask |= mask << rshift;
1962 		val |= val2 << rshift;
1963 	}
1964 	return snd_soc_update_bits(codec, reg, val_mask, val);
1965 }
1966 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1967 
1968 /**
1969  * snd_soc_info_volsw_2r - double mixer info callback
1970  * @kcontrol: mixer control
1971  * @uinfo: control element information
1972  *
1973  * Callback to provide information about a double mixer control that
1974  * spans 2 codec registers.
1975  *
1976  * Returns 0 for success.
1977  */
1978 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1979 	struct snd_ctl_elem_info *uinfo)
1980 {
1981 	struct soc_mixer_control *mc =
1982 		(struct soc_mixer_control *)kcontrol->private_value;
1983 	int max = mc->max;
1984 
1985 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1986 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1987 	else
1988 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1989 
1990 	uinfo->count = 2;
1991 	uinfo->value.integer.min = 0;
1992 	uinfo->value.integer.max = max;
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1996 
1997 /**
1998  * snd_soc_get_volsw_2r - double mixer get callback
1999  * @kcontrol: mixer control
2000  * @ucontrol: control element information
2001  *
2002  * Callback to get the value of a double mixer control that spans 2 registers.
2003  *
2004  * Returns 0 for success.
2005  */
2006 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2007 	struct snd_ctl_elem_value *ucontrol)
2008 {
2009 	struct soc_mixer_control *mc =
2010 		(struct soc_mixer_control *)kcontrol->private_value;
2011 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2012 	unsigned int reg = mc->reg;
2013 	unsigned int reg2 = mc->rreg;
2014 	unsigned int shift = mc->shift;
2015 	int max = mc->max;
2016 	unsigned int mask = (1 << fls(max)) - 1;
2017 	unsigned int invert = mc->invert;
2018 
2019 	ucontrol->value.integer.value[0] =
2020 		(snd_soc_read(codec, reg) >> shift) & mask;
2021 	ucontrol->value.integer.value[1] =
2022 		(snd_soc_read(codec, reg2) >> shift) & mask;
2023 	if (invert) {
2024 		ucontrol->value.integer.value[0] =
2025 			max - ucontrol->value.integer.value[0];
2026 		ucontrol->value.integer.value[1] =
2027 			max - ucontrol->value.integer.value[1];
2028 	}
2029 
2030 	return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2033 
2034 /**
2035  * snd_soc_put_volsw_2r - double mixer set callback
2036  * @kcontrol: mixer control
2037  * @ucontrol: control element information
2038  *
2039  * Callback to set the value of a double mixer control that spans 2 registers.
2040  *
2041  * Returns 0 for success.
2042  */
2043 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2044 	struct snd_ctl_elem_value *ucontrol)
2045 {
2046 	struct soc_mixer_control *mc =
2047 		(struct soc_mixer_control *)kcontrol->private_value;
2048 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2049 	unsigned int reg = mc->reg;
2050 	unsigned int reg2 = mc->rreg;
2051 	unsigned int shift = mc->shift;
2052 	int max = mc->max;
2053 	unsigned int mask = (1 << fls(max)) - 1;
2054 	unsigned int invert = mc->invert;
2055 	int err;
2056 	unsigned int val, val2, val_mask;
2057 
2058 	val_mask = mask << shift;
2059 	val = (ucontrol->value.integer.value[0] & mask);
2060 	val2 = (ucontrol->value.integer.value[1] & mask);
2061 
2062 	if (invert) {
2063 		val = max - val;
2064 		val2 = max - val2;
2065 	}
2066 
2067 	val = val << shift;
2068 	val2 = val2 << shift;
2069 
2070 	err = snd_soc_update_bits(codec, reg, val_mask, val);
2071 	if (err < 0)
2072 		return err;
2073 
2074 	err = snd_soc_update_bits(codec, reg2, val_mask, val2);
2075 	return err;
2076 }
2077 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2078 
2079 /**
2080  * snd_soc_info_volsw_s8 - signed mixer info callback
2081  * @kcontrol: mixer control
2082  * @uinfo: control element information
2083  *
2084  * Callback to provide information about a signed mixer control.
2085  *
2086  * Returns 0 for success.
2087  */
2088 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2089 	struct snd_ctl_elem_info *uinfo)
2090 {
2091 	struct soc_mixer_control *mc =
2092 		(struct soc_mixer_control *)kcontrol->private_value;
2093 	int max = mc->max;
2094 	int min = mc->min;
2095 
2096 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2097 	uinfo->count = 2;
2098 	uinfo->value.integer.min = 0;
2099 	uinfo->value.integer.max = max-min;
2100 	return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2103 
2104 /**
2105  * snd_soc_get_volsw_s8 - signed mixer get callback
2106  * @kcontrol: mixer control
2107  * @ucontrol: control element information
2108  *
2109  * Callback to get the value of a signed mixer control.
2110  *
2111  * Returns 0 for success.
2112  */
2113 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2114 	struct snd_ctl_elem_value *ucontrol)
2115 {
2116 	struct soc_mixer_control *mc =
2117 		(struct soc_mixer_control *)kcontrol->private_value;
2118 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2119 	unsigned int reg = mc->reg;
2120 	int min = mc->min;
2121 	int val = snd_soc_read(codec, reg);
2122 
2123 	ucontrol->value.integer.value[0] =
2124 		((signed char)(val & 0xff))-min;
2125 	ucontrol->value.integer.value[1] =
2126 		((signed char)((val >> 8) & 0xff))-min;
2127 	return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2130 
2131 /**
2132  * snd_soc_put_volsw_sgn - signed mixer put callback
2133  * @kcontrol: mixer control
2134  * @ucontrol: control element information
2135  *
2136  * Callback to set the value of a signed mixer control.
2137  *
2138  * Returns 0 for success.
2139  */
2140 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2141 	struct snd_ctl_elem_value *ucontrol)
2142 {
2143 	struct soc_mixer_control *mc =
2144 		(struct soc_mixer_control *)kcontrol->private_value;
2145 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2146 	unsigned int reg = mc->reg;
2147 	int min = mc->min;
2148 	unsigned int val;
2149 
2150 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
2151 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2152 
2153 	return snd_soc_update_bits(codec, reg, 0xffff, val);
2154 }
2155 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2156 
2157 /**
2158  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2159  * @dai: DAI
2160  * @clk_id: DAI specific clock ID
2161  * @freq: new clock frequency in Hz
2162  * @dir: new clock direction - input/output.
2163  *
2164  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2165  */
2166 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2167 	unsigned int freq, int dir)
2168 {
2169 	if (dai->ops && dai->ops->set_sysclk)
2170 		return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2171 	else
2172 		return -EINVAL;
2173 }
2174 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2175 
2176 /**
2177  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2178  * @dai: DAI
2179  * @div_id: DAI specific clock divider ID
2180  * @div: new clock divisor.
2181  *
2182  * Configures the clock dividers. This is used to derive the best DAI bit and
2183  * frame clocks from the system or master clock. It's best to set the DAI bit
2184  * and frame clocks as low as possible to save system power.
2185  */
2186 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2187 	int div_id, int div)
2188 {
2189 	if (dai->ops && dai->ops->set_clkdiv)
2190 		return dai->ops->set_clkdiv(dai, div_id, div);
2191 	else
2192 		return -EINVAL;
2193 }
2194 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2195 
2196 /**
2197  * snd_soc_dai_set_pll - configure DAI PLL.
2198  * @dai: DAI
2199  * @pll_id: DAI specific PLL ID
2200  * @freq_in: PLL input clock frequency in Hz
2201  * @freq_out: requested PLL output clock frequency in Hz
2202  *
2203  * Configures and enables PLL to generate output clock based on input clock.
2204  */
2205 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2206 	int pll_id, unsigned int freq_in, unsigned int freq_out)
2207 {
2208 	if (dai->ops && dai->ops->set_pll)
2209 		return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
2210 	else
2211 		return -EINVAL;
2212 }
2213 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2214 
2215 /**
2216  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2217  * @dai: DAI
2218  * @fmt: SND_SOC_DAIFMT_ format value.
2219  *
2220  * Configures the DAI hardware format and clocking.
2221  */
2222 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2223 {
2224 	if (dai->ops && dai->ops->set_fmt)
2225 		return dai->ops->set_fmt(dai, fmt);
2226 	else
2227 		return -EINVAL;
2228 }
2229 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2230 
2231 /**
2232  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2233  * @dai: DAI
2234  * @tx_mask: bitmask representing active TX slots.
2235  * @rx_mask: bitmask representing active RX slots.
2236  * @slots: Number of slots in use.
2237  * @slot_width: Width in bits for each slot.
2238  *
2239  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2240  * specific.
2241  */
2242 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2243 	unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2244 {
2245 	if (dai->ops && dai->ops->set_tdm_slot)
2246 		return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2247 				slots, slot_width);
2248 	else
2249 		return -EINVAL;
2250 }
2251 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2252 
2253 /**
2254  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2255  * @dai: DAI
2256  * @tristate: tristate enable
2257  *
2258  * Tristates the DAI so that others can use it.
2259  */
2260 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2261 {
2262 	if (dai->ops && dai->ops->set_tristate)
2263 		return dai->ops->set_tristate(dai, tristate);
2264 	else
2265 		return -EINVAL;
2266 }
2267 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2268 
2269 /**
2270  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2271  * @dai: DAI
2272  * @mute: mute enable
2273  *
2274  * Mutes the DAI DAC.
2275  */
2276 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2277 {
2278 	if (dai->ops && dai->ops->digital_mute)
2279 		return dai->ops->digital_mute(dai, mute);
2280 	else
2281 		return -EINVAL;
2282 }
2283 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2284 
2285 /**
2286  * snd_soc_register_card - Register a card with the ASoC core
2287  *
2288  * @card: Card to register
2289  *
2290  * Note that currently this is an internal only function: it will be
2291  * exposed to machine drivers after further backporting of ASoC v2
2292  * registration APIs.
2293  */
2294 static int snd_soc_register_card(struct snd_soc_card *card)
2295 {
2296 	if (!card->name || !card->dev)
2297 		return -EINVAL;
2298 
2299 	INIT_LIST_HEAD(&card->list);
2300 	card->instantiated = 0;
2301 
2302 	mutex_lock(&client_mutex);
2303 	list_add(&card->list, &card_list);
2304 	snd_soc_instantiate_cards();
2305 	mutex_unlock(&client_mutex);
2306 
2307 	dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2308 
2309 	return 0;
2310 }
2311 
2312 /**
2313  * snd_soc_unregister_card - Unregister a card with the ASoC core
2314  *
2315  * @card: Card to unregister
2316  *
2317  * Note that currently this is an internal only function: it will be
2318  * exposed to machine drivers after further backporting of ASoC v2
2319  * registration APIs.
2320  */
2321 static int snd_soc_unregister_card(struct snd_soc_card *card)
2322 {
2323 	mutex_lock(&client_mutex);
2324 	list_del(&card->list);
2325 	mutex_unlock(&client_mutex);
2326 
2327 	dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2328 
2329 	return 0;
2330 }
2331 
2332 static struct snd_soc_dai_ops null_dai_ops = {
2333 };
2334 
2335 /**
2336  * snd_soc_register_dai - Register a DAI with the ASoC core
2337  *
2338  * @dai: DAI to register
2339  */
2340 int snd_soc_register_dai(struct snd_soc_dai *dai)
2341 {
2342 	if (!dai->name)
2343 		return -EINVAL;
2344 
2345 	/* The device should become mandatory over time */
2346 	if (!dai->dev)
2347 		printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2348 
2349 	if (!dai->ops)
2350 		dai->ops = &null_dai_ops;
2351 
2352 	INIT_LIST_HEAD(&dai->list);
2353 
2354 	mutex_lock(&client_mutex);
2355 	list_add(&dai->list, &dai_list);
2356 	snd_soc_instantiate_cards();
2357 	mutex_unlock(&client_mutex);
2358 
2359 	pr_debug("Registered DAI '%s'\n", dai->name);
2360 
2361 	return 0;
2362 }
2363 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2364 
2365 /**
2366  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2367  *
2368  * @dai: DAI to unregister
2369  */
2370 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2371 {
2372 	mutex_lock(&client_mutex);
2373 	list_del(&dai->list);
2374 	mutex_unlock(&client_mutex);
2375 
2376 	pr_debug("Unregistered DAI '%s'\n", dai->name);
2377 }
2378 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2379 
2380 /**
2381  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2382  *
2383  * @dai: Array of DAIs to register
2384  * @count: Number of DAIs
2385  */
2386 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2387 {
2388 	int i, ret;
2389 
2390 	for (i = 0; i < count; i++) {
2391 		ret = snd_soc_register_dai(&dai[i]);
2392 		if (ret != 0)
2393 			goto err;
2394 	}
2395 
2396 	return 0;
2397 
2398 err:
2399 	for (i--; i >= 0; i--)
2400 		snd_soc_unregister_dai(&dai[i]);
2401 
2402 	return ret;
2403 }
2404 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2405 
2406 /**
2407  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2408  *
2409  * @dai: Array of DAIs to unregister
2410  * @count: Number of DAIs
2411  */
2412 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2413 {
2414 	int i;
2415 
2416 	for (i = 0; i < count; i++)
2417 		snd_soc_unregister_dai(&dai[i]);
2418 }
2419 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2420 
2421 /**
2422  * snd_soc_register_platform - Register a platform with the ASoC core
2423  *
2424  * @platform: platform to register
2425  */
2426 int snd_soc_register_platform(struct snd_soc_platform *platform)
2427 {
2428 	if (!platform->name)
2429 		return -EINVAL;
2430 
2431 	INIT_LIST_HEAD(&platform->list);
2432 
2433 	mutex_lock(&client_mutex);
2434 	list_add(&platform->list, &platform_list);
2435 	snd_soc_instantiate_cards();
2436 	mutex_unlock(&client_mutex);
2437 
2438 	pr_debug("Registered platform '%s'\n", platform->name);
2439 
2440 	return 0;
2441 }
2442 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2443 
2444 /**
2445  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2446  *
2447  * @platform: platform to unregister
2448  */
2449 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2450 {
2451 	mutex_lock(&client_mutex);
2452 	list_del(&platform->list);
2453 	mutex_unlock(&client_mutex);
2454 
2455 	pr_debug("Unregistered platform '%s'\n", platform->name);
2456 }
2457 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2458 
2459 static u64 codec_format_map[] = {
2460 	SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2461 	SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2462 	SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2463 	SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2464 	SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2465 	SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2466 	SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2467 	SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2468 	SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2469 	SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2470 	SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2471 	SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2472 	SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2473 	SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2474 	SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2475 	| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2476 };
2477 
2478 /* Fix up the DAI formats for endianness: codecs don't actually see
2479  * the endianness of the data but we're using the CPU format
2480  * definitions which do need to include endianness so we ensure that
2481  * codec DAIs always have both big and little endian variants set.
2482  */
2483 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2484 {
2485 	int i;
2486 
2487 	for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2488 		if (stream->formats & codec_format_map[i])
2489 			stream->formats |= codec_format_map[i];
2490 }
2491 
2492 /**
2493  * snd_soc_register_codec - Register a codec with the ASoC core
2494  *
2495  * @codec: codec to register
2496  */
2497 int snd_soc_register_codec(struct snd_soc_codec *codec)
2498 {
2499 	int i;
2500 
2501 	if (!codec->name)
2502 		return -EINVAL;
2503 
2504 	/* The device should become mandatory over time */
2505 	if (!codec->dev)
2506 		printk(KERN_WARNING "No device for codec %s\n", codec->name);
2507 
2508 	INIT_LIST_HEAD(&codec->list);
2509 
2510 	for (i = 0; i < codec->num_dai; i++) {
2511 		fixup_codec_formats(&codec->dai[i].playback);
2512 		fixup_codec_formats(&codec->dai[i].capture);
2513 	}
2514 
2515 	mutex_lock(&client_mutex);
2516 	list_add(&codec->list, &codec_list);
2517 	snd_soc_instantiate_cards();
2518 	mutex_unlock(&client_mutex);
2519 
2520 	pr_debug("Registered codec '%s'\n", codec->name);
2521 
2522 	return 0;
2523 }
2524 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2525 
2526 /**
2527  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2528  *
2529  * @codec: codec to unregister
2530  */
2531 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2532 {
2533 	mutex_lock(&client_mutex);
2534 	list_del(&codec->list);
2535 	mutex_unlock(&client_mutex);
2536 
2537 	pr_debug("Unregistered codec '%s'\n", codec->name);
2538 }
2539 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2540 
2541 static int __init snd_soc_init(void)
2542 {
2543 #ifdef CONFIG_DEBUG_FS
2544 	debugfs_root = debugfs_create_dir("asoc", NULL);
2545 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2546 		printk(KERN_WARNING
2547 		       "ASoC: Failed to create debugfs directory\n");
2548 		debugfs_root = NULL;
2549 	}
2550 #endif
2551 
2552 	return platform_driver_register(&soc_driver);
2553 }
2554 
2555 static void __exit snd_soc_exit(void)
2556 {
2557 #ifdef CONFIG_DEBUG_FS
2558 	debugfs_remove_recursive(debugfs_root);
2559 #endif
2560 	platform_driver_unregister(&soc_driver);
2561 }
2562 
2563 module_init(snd_soc_init);
2564 module_exit(snd_soc_exit);
2565 
2566 /* Module information */
2567 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2568 MODULE_DESCRIPTION("ALSA SoC Core");
2569 MODULE_LICENSE("GPL");
2570 MODULE_ALIAS("platform:soc-audio");
2571