1 /* 2 * soc-core.c -- ALSA SoC Audio Layer 3 * 4 * Copyright 2005 Wolfson Microelectronics PLC. 5 * Copyright 2005 Openedhand Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * with code, comments and ideas from :- 9 * Richard Purdie <richard@openedhand.com> 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 * 16 * TODO: 17 * o Add hw rules to enforce rates, etc. 18 * o More testing with other codecs/machines. 19 * o Add more codecs and platforms to ensure good API coverage. 20 * o Support TDM on PCM and I2S 21 */ 22 23 #include <linux/module.h> 24 #include <linux/moduleparam.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/pm.h> 28 #include <linux/bitops.h> 29 #include <linux/debugfs.h> 30 #include <linux/platform_device.h> 31 #include <sound/ac97_codec.h> 32 #include <sound/core.h> 33 #include <sound/pcm.h> 34 #include <sound/pcm_params.h> 35 #include <sound/soc.h> 36 #include <sound/soc-dapm.h> 37 #include <sound/initval.h> 38 39 static DEFINE_MUTEX(pcm_mutex); 40 static DEFINE_MUTEX(io_mutex); 41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq); 42 43 #ifdef CONFIG_DEBUG_FS 44 static struct dentry *debugfs_root; 45 #endif 46 47 static DEFINE_MUTEX(client_mutex); 48 static LIST_HEAD(card_list); 49 static LIST_HEAD(dai_list); 50 static LIST_HEAD(platform_list); 51 static LIST_HEAD(codec_list); 52 53 static int snd_soc_register_card(struct snd_soc_card *card); 54 static int snd_soc_unregister_card(struct snd_soc_card *card); 55 56 /* 57 * This is a timeout to do a DAPM powerdown after a stream is closed(). 58 * It can be used to eliminate pops between different playback streams, e.g. 59 * between two audio tracks. 60 */ 61 static int pmdown_time = 5000; 62 module_param(pmdown_time, int, 0); 63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)"); 64 65 /* 66 * This function forces any delayed work to be queued and run. 67 */ 68 static int run_delayed_work(struct delayed_work *dwork) 69 { 70 int ret; 71 72 /* cancel any work waiting to be queued. */ 73 ret = cancel_delayed_work(dwork); 74 75 /* if there was any work waiting then we run it now and 76 * wait for it's completion */ 77 if (ret) { 78 schedule_delayed_work(dwork, 0); 79 flush_scheduled_work(); 80 } 81 return ret; 82 } 83 84 #ifdef CONFIG_SND_SOC_AC97_BUS 85 /* unregister ac97 codec */ 86 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec) 87 { 88 if (codec->ac97->dev.bus) 89 device_unregister(&codec->ac97->dev); 90 return 0; 91 } 92 93 /* stop no dev release warning */ 94 static void soc_ac97_device_release(struct device *dev){} 95 96 /* register ac97 codec to bus */ 97 static int soc_ac97_dev_register(struct snd_soc_codec *codec) 98 { 99 int err; 100 101 codec->ac97->dev.bus = &ac97_bus_type; 102 codec->ac97->dev.parent = codec->card->dev; 103 codec->ac97->dev.release = soc_ac97_device_release; 104 105 dev_set_name(&codec->ac97->dev, "%d-%d:%s", 106 codec->card->number, 0, codec->name); 107 err = device_register(&codec->ac97->dev); 108 if (err < 0) { 109 snd_printk(KERN_ERR "Can't register ac97 bus\n"); 110 codec->ac97->dev.bus = NULL; 111 return err; 112 } 113 return 0; 114 } 115 #endif 116 117 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream) 118 { 119 struct snd_soc_pcm_runtime *rtd = substream->private_data; 120 struct snd_soc_device *socdev = rtd->socdev; 121 struct snd_soc_card *card = socdev->card; 122 struct snd_soc_dai_link *machine = rtd->dai; 123 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 124 struct snd_soc_dai *codec_dai = machine->codec_dai; 125 int ret; 126 127 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates || 128 machine->symmetric_rates) { 129 dev_dbg(card->dev, "Symmetry forces %dHz rate\n", 130 machine->rate); 131 132 ret = snd_pcm_hw_constraint_minmax(substream->runtime, 133 SNDRV_PCM_HW_PARAM_RATE, 134 machine->rate, 135 machine->rate); 136 if (ret < 0) { 137 dev_err(card->dev, 138 "Unable to apply rate symmetry constraint: %d\n", ret); 139 return ret; 140 } 141 } 142 143 return 0; 144 } 145 146 /* 147 * Called by ALSA when a PCM substream is opened, the runtime->hw record is 148 * then initialized and any private data can be allocated. This also calls 149 * startup for the cpu DAI, platform, machine and codec DAI. 150 */ 151 static int soc_pcm_open(struct snd_pcm_substream *substream) 152 { 153 struct snd_soc_pcm_runtime *rtd = substream->private_data; 154 struct snd_soc_device *socdev = rtd->socdev; 155 struct snd_soc_card *card = socdev->card; 156 struct snd_pcm_runtime *runtime = substream->runtime; 157 struct snd_soc_dai_link *machine = rtd->dai; 158 struct snd_soc_platform *platform = card->platform; 159 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 160 struct snd_soc_dai *codec_dai = machine->codec_dai; 161 int ret = 0; 162 163 mutex_lock(&pcm_mutex); 164 165 /* startup the audio subsystem */ 166 if (cpu_dai->ops->startup) { 167 ret = cpu_dai->ops->startup(substream, cpu_dai); 168 if (ret < 0) { 169 printk(KERN_ERR "asoc: can't open interface %s\n", 170 cpu_dai->name); 171 goto out; 172 } 173 } 174 175 if (platform->pcm_ops->open) { 176 ret = platform->pcm_ops->open(substream); 177 if (ret < 0) { 178 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name); 179 goto platform_err; 180 } 181 } 182 183 if (codec_dai->ops->startup) { 184 ret = codec_dai->ops->startup(substream, codec_dai); 185 if (ret < 0) { 186 printk(KERN_ERR "asoc: can't open codec %s\n", 187 codec_dai->name); 188 goto codec_dai_err; 189 } 190 } 191 192 if (machine->ops && machine->ops->startup) { 193 ret = machine->ops->startup(substream); 194 if (ret < 0) { 195 printk(KERN_ERR "asoc: %s startup failed\n", machine->name); 196 goto machine_err; 197 } 198 } 199 200 /* Check that the codec and cpu DAI's are compatible */ 201 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 202 runtime->hw.rate_min = 203 max(codec_dai->playback.rate_min, 204 cpu_dai->playback.rate_min); 205 runtime->hw.rate_max = 206 min(codec_dai->playback.rate_max, 207 cpu_dai->playback.rate_max); 208 runtime->hw.channels_min = 209 max(codec_dai->playback.channels_min, 210 cpu_dai->playback.channels_min); 211 runtime->hw.channels_max = 212 min(codec_dai->playback.channels_max, 213 cpu_dai->playback.channels_max); 214 runtime->hw.formats = 215 codec_dai->playback.formats & cpu_dai->playback.formats; 216 runtime->hw.rates = 217 codec_dai->playback.rates & cpu_dai->playback.rates; 218 } else { 219 runtime->hw.rate_min = 220 max(codec_dai->capture.rate_min, 221 cpu_dai->capture.rate_min); 222 runtime->hw.rate_max = 223 min(codec_dai->capture.rate_max, 224 cpu_dai->capture.rate_max); 225 runtime->hw.channels_min = 226 max(codec_dai->capture.channels_min, 227 cpu_dai->capture.channels_min); 228 runtime->hw.channels_max = 229 min(codec_dai->capture.channels_max, 230 cpu_dai->capture.channels_max); 231 runtime->hw.formats = 232 codec_dai->capture.formats & cpu_dai->capture.formats; 233 runtime->hw.rates = 234 codec_dai->capture.rates & cpu_dai->capture.rates; 235 } 236 237 snd_pcm_limit_hw_rates(runtime); 238 if (!runtime->hw.rates) { 239 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n", 240 codec_dai->name, cpu_dai->name); 241 goto machine_err; 242 } 243 if (!runtime->hw.formats) { 244 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n", 245 codec_dai->name, cpu_dai->name); 246 goto machine_err; 247 } 248 if (!runtime->hw.channels_min || !runtime->hw.channels_max) { 249 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n", 250 codec_dai->name, cpu_dai->name); 251 goto machine_err; 252 } 253 254 /* Symmetry only applies if we've already got an active stream. */ 255 if (cpu_dai->active || codec_dai->active) { 256 ret = soc_pcm_apply_symmetry(substream); 257 if (ret != 0) 258 goto machine_err; 259 } 260 261 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name); 262 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates); 263 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min, 264 runtime->hw.channels_max); 265 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min, 266 runtime->hw.rate_max); 267 268 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 269 cpu_dai->playback.active = codec_dai->playback.active = 1; 270 else 271 cpu_dai->capture.active = codec_dai->capture.active = 1; 272 cpu_dai->active = codec_dai->active = 1; 273 cpu_dai->runtime = runtime; 274 card->codec->active++; 275 mutex_unlock(&pcm_mutex); 276 return 0; 277 278 machine_err: 279 if (machine->ops && machine->ops->shutdown) 280 machine->ops->shutdown(substream); 281 282 codec_dai_err: 283 if (platform->pcm_ops->close) 284 platform->pcm_ops->close(substream); 285 286 platform_err: 287 if (cpu_dai->ops->shutdown) 288 cpu_dai->ops->shutdown(substream, cpu_dai); 289 out: 290 mutex_unlock(&pcm_mutex); 291 return ret; 292 } 293 294 /* 295 * Power down the audio subsystem pmdown_time msecs after close is called. 296 * This is to ensure there are no pops or clicks in between any music tracks 297 * due to DAPM power cycling. 298 */ 299 static void close_delayed_work(struct work_struct *work) 300 { 301 struct snd_soc_card *card = container_of(work, struct snd_soc_card, 302 delayed_work.work); 303 struct snd_soc_codec *codec = card->codec; 304 struct snd_soc_dai *codec_dai; 305 int i; 306 307 mutex_lock(&pcm_mutex); 308 for (i = 0; i < codec->num_dai; i++) { 309 codec_dai = &codec->dai[i]; 310 311 pr_debug("pop wq checking: %s status: %s waiting: %s\n", 312 codec_dai->playback.stream_name, 313 codec_dai->playback.active ? "active" : "inactive", 314 codec_dai->pop_wait ? "yes" : "no"); 315 316 /* are we waiting on this codec DAI stream */ 317 if (codec_dai->pop_wait == 1) { 318 codec_dai->pop_wait = 0; 319 snd_soc_dapm_stream_event(codec, 320 codec_dai->playback.stream_name, 321 SND_SOC_DAPM_STREAM_STOP); 322 } 323 } 324 mutex_unlock(&pcm_mutex); 325 } 326 327 /* 328 * Called by ALSA when a PCM substream is closed. Private data can be 329 * freed here. The cpu DAI, codec DAI, machine and platform are also 330 * shutdown. 331 */ 332 static int soc_codec_close(struct snd_pcm_substream *substream) 333 { 334 struct snd_soc_pcm_runtime *rtd = substream->private_data; 335 struct snd_soc_device *socdev = rtd->socdev; 336 struct snd_soc_card *card = socdev->card; 337 struct snd_soc_dai_link *machine = rtd->dai; 338 struct snd_soc_platform *platform = card->platform; 339 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 340 struct snd_soc_dai *codec_dai = machine->codec_dai; 341 struct snd_soc_codec *codec = card->codec; 342 343 mutex_lock(&pcm_mutex); 344 345 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 346 cpu_dai->playback.active = codec_dai->playback.active = 0; 347 else 348 cpu_dai->capture.active = codec_dai->capture.active = 0; 349 350 if (codec_dai->playback.active == 0 && 351 codec_dai->capture.active == 0) { 352 cpu_dai->active = codec_dai->active = 0; 353 } 354 codec->active--; 355 356 /* Muting the DAC suppresses artifacts caused during digital 357 * shutdown, for example from stopping clocks. 358 */ 359 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 360 snd_soc_dai_digital_mute(codec_dai, 1); 361 362 if (cpu_dai->ops->shutdown) 363 cpu_dai->ops->shutdown(substream, cpu_dai); 364 365 if (codec_dai->ops->shutdown) 366 codec_dai->ops->shutdown(substream, codec_dai); 367 368 if (machine->ops && machine->ops->shutdown) 369 machine->ops->shutdown(substream); 370 371 if (platform->pcm_ops->close) 372 platform->pcm_ops->close(substream); 373 cpu_dai->runtime = NULL; 374 375 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 376 /* start delayed pop wq here for playback streams */ 377 codec_dai->pop_wait = 1; 378 schedule_delayed_work(&card->delayed_work, 379 msecs_to_jiffies(pmdown_time)); 380 } else { 381 /* capture streams can be powered down now */ 382 snd_soc_dapm_stream_event(codec, 383 codec_dai->capture.stream_name, 384 SND_SOC_DAPM_STREAM_STOP); 385 } 386 387 mutex_unlock(&pcm_mutex); 388 return 0; 389 } 390 391 /* 392 * Called by ALSA when the PCM substream is prepared, can set format, sample 393 * rate, etc. This function is non atomic and can be called multiple times, 394 * it can refer to the runtime info. 395 */ 396 static int soc_pcm_prepare(struct snd_pcm_substream *substream) 397 { 398 struct snd_soc_pcm_runtime *rtd = substream->private_data; 399 struct snd_soc_device *socdev = rtd->socdev; 400 struct snd_soc_card *card = socdev->card; 401 struct snd_soc_dai_link *machine = rtd->dai; 402 struct snd_soc_platform *platform = card->platform; 403 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 404 struct snd_soc_dai *codec_dai = machine->codec_dai; 405 struct snd_soc_codec *codec = card->codec; 406 int ret = 0; 407 408 mutex_lock(&pcm_mutex); 409 410 if (machine->ops && machine->ops->prepare) { 411 ret = machine->ops->prepare(substream); 412 if (ret < 0) { 413 printk(KERN_ERR "asoc: machine prepare error\n"); 414 goto out; 415 } 416 } 417 418 if (platform->pcm_ops->prepare) { 419 ret = platform->pcm_ops->prepare(substream); 420 if (ret < 0) { 421 printk(KERN_ERR "asoc: platform prepare error\n"); 422 goto out; 423 } 424 } 425 426 if (codec_dai->ops->prepare) { 427 ret = codec_dai->ops->prepare(substream, codec_dai); 428 if (ret < 0) { 429 printk(KERN_ERR "asoc: codec DAI prepare error\n"); 430 goto out; 431 } 432 } 433 434 if (cpu_dai->ops->prepare) { 435 ret = cpu_dai->ops->prepare(substream, cpu_dai); 436 if (ret < 0) { 437 printk(KERN_ERR "asoc: cpu DAI prepare error\n"); 438 goto out; 439 } 440 } 441 442 /* cancel any delayed stream shutdown that is pending */ 443 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 444 codec_dai->pop_wait) { 445 codec_dai->pop_wait = 0; 446 cancel_delayed_work(&card->delayed_work); 447 } 448 449 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 450 snd_soc_dapm_stream_event(codec, 451 codec_dai->playback.stream_name, 452 SND_SOC_DAPM_STREAM_START); 453 else 454 snd_soc_dapm_stream_event(codec, 455 codec_dai->capture.stream_name, 456 SND_SOC_DAPM_STREAM_START); 457 458 snd_soc_dai_digital_mute(codec_dai, 0); 459 460 out: 461 mutex_unlock(&pcm_mutex); 462 return ret; 463 } 464 465 /* 466 * Called by ALSA when the hardware params are set by application. This 467 * function can also be called multiple times and can allocate buffers 468 * (using snd_pcm_lib_* ). It's non-atomic. 469 */ 470 static int soc_pcm_hw_params(struct snd_pcm_substream *substream, 471 struct snd_pcm_hw_params *params) 472 { 473 struct snd_soc_pcm_runtime *rtd = substream->private_data; 474 struct snd_soc_device *socdev = rtd->socdev; 475 struct snd_soc_dai_link *machine = rtd->dai; 476 struct snd_soc_card *card = socdev->card; 477 struct snd_soc_platform *platform = card->platform; 478 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 479 struct snd_soc_dai *codec_dai = machine->codec_dai; 480 int ret = 0; 481 482 mutex_lock(&pcm_mutex); 483 484 if (machine->ops && machine->ops->hw_params) { 485 ret = machine->ops->hw_params(substream, params); 486 if (ret < 0) { 487 printk(KERN_ERR "asoc: machine hw_params failed\n"); 488 goto out; 489 } 490 } 491 492 if (codec_dai->ops->hw_params) { 493 ret = codec_dai->ops->hw_params(substream, params, codec_dai); 494 if (ret < 0) { 495 printk(KERN_ERR "asoc: can't set codec %s hw params\n", 496 codec_dai->name); 497 goto codec_err; 498 } 499 } 500 501 if (cpu_dai->ops->hw_params) { 502 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai); 503 if (ret < 0) { 504 printk(KERN_ERR "asoc: interface %s hw params failed\n", 505 cpu_dai->name); 506 goto interface_err; 507 } 508 } 509 510 if (platform->pcm_ops->hw_params) { 511 ret = platform->pcm_ops->hw_params(substream, params); 512 if (ret < 0) { 513 printk(KERN_ERR "asoc: platform %s hw params failed\n", 514 platform->name); 515 goto platform_err; 516 } 517 } 518 519 machine->rate = params_rate(params); 520 521 out: 522 mutex_unlock(&pcm_mutex); 523 return ret; 524 525 platform_err: 526 if (cpu_dai->ops->hw_free) 527 cpu_dai->ops->hw_free(substream, cpu_dai); 528 529 interface_err: 530 if (codec_dai->ops->hw_free) 531 codec_dai->ops->hw_free(substream, codec_dai); 532 533 codec_err: 534 if (machine->ops && machine->ops->hw_free) 535 machine->ops->hw_free(substream); 536 537 mutex_unlock(&pcm_mutex); 538 return ret; 539 } 540 541 /* 542 * Free's resources allocated by hw_params, can be called multiple times 543 */ 544 static int soc_pcm_hw_free(struct snd_pcm_substream *substream) 545 { 546 struct snd_soc_pcm_runtime *rtd = substream->private_data; 547 struct snd_soc_device *socdev = rtd->socdev; 548 struct snd_soc_dai_link *machine = rtd->dai; 549 struct snd_soc_card *card = socdev->card; 550 struct snd_soc_platform *platform = card->platform; 551 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 552 struct snd_soc_dai *codec_dai = machine->codec_dai; 553 struct snd_soc_codec *codec = card->codec; 554 555 mutex_lock(&pcm_mutex); 556 557 /* apply codec digital mute */ 558 if (!codec->active) 559 snd_soc_dai_digital_mute(codec_dai, 1); 560 561 /* free any machine hw params */ 562 if (machine->ops && machine->ops->hw_free) 563 machine->ops->hw_free(substream); 564 565 /* free any DMA resources */ 566 if (platform->pcm_ops->hw_free) 567 platform->pcm_ops->hw_free(substream); 568 569 /* now free hw params for the DAI's */ 570 if (codec_dai->ops->hw_free) 571 codec_dai->ops->hw_free(substream, codec_dai); 572 573 if (cpu_dai->ops->hw_free) 574 cpu_dai->ops->hw_free(substream, cpu_dai); 575 576 mutex_unlock(&pcm_mutex); 577 return 0; 578 } 579 580 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 581 { 582 struct snd_soc_pcm_runtime *rtd = substream->private_data; 583 struct snd_soc_device *socdev = rtd->socdev; 584 struct snd_soc_card *card= socdev->card; 585 struct snd_soc_dai_link *machine = rtd->dai; 586 struct snd_soc_platform *platform = card->platform; 587 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 588 struct snd_soc_dai *codec_dai = machine->codec_dai; 589 int ret; 590 591 if (codec_dai->ops->trigger) { 592 ret = codec_dai->ops->trigger(substream, cmd, codec_dai); 593 if (ret < 0) 594 return ret; 595 } 596 597 if (platform->pcm_ops->trigger) { 598 ret = platform->pcm_ops->trigger(substream, cmd); 599 if (ret < 0) 600 return ret; 601 } 602 603 if (cpu_dai->ops->trigger) { 604 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai); 605 if (ret < 0) 606 return ret; 607 } 608 return 0; 609 } 610 611 /* ASoC PCM operations */ 612 static struct snd_pcm_ops soc_pcm_ops = { 613 .open = soc_pcm_open, 614 .close = soc_codec_close, 615 .hw_params = soc_pcm_hw_params, 616 .hw_free = soc_pcm_hw_free, 617 .prepare = soc_pcm_prepare, 618 .trigger = soc_pcm_trigger, 619 }; 620 621 #ifdef CONFIG_PM 622 /* powers down audio subsystem for suspend */ 623 static int soc_suspend(struct device *dev) 624 { 625 struct platform_device *pdev = to_platform_device(dev); 626 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 627 struct snd_soc_card *card = socdev->card; 628 struct snd_soc_platform *platform = card->platform; 629 struct snd_soc_codec_device *codec_dev = socdev->codec_dev; 630 struct snd_soc_codec *codec = card->codec; 631 int i; 632 633 /* If the initialization of this soc device failed, there is no codec 634 * associated with it. Just bail out in this case. 635 */ 636 if (!codec) 637 return 0; 638 639 /* Due to the resume being scheduled into a workqueue we could 640 * suspend before that's finished - wait for it to complete. 641 */ 642 snd_power_lock(codec->card); 643 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0); 644 snd_power_unlock(codec->card); 645 646 /* we're going to block userspace touching us until resume completes */ 647 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot); 648 649 /* mute any active DAC's */ 650 for (i = 0; i < card->num_links; i++) { 651 struct snd_soc_dai *dai = card->dai_link[i].codec_dai; 652 if (dai->ops->digital_mute && dai->playback.active) 653 dai->ops->digital_mute(dai, 1); 654 } 655 656 /* suspend all pcms */ 657 for (i = 0; i < card->num_links; i++) 658 snd_pcm_suspend_all(card->dai_link[i].pcm); 659 660 if (card->suspend_pre) 661 card->suspend_pre(pdev, PMSG_SUSPEND); 662 663 for (i = 0; i < card->num_links; i++) { 664 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 665 if (cpu_dai->suspend && !cpu_dai->ac97_control) 666 cpu_dai->suspend(cpu_dai); 667 if (platform->suspend) 668 platform->suspend(cpu_dai); 669 } 670 671 /* close any waiting streams and save state */ 672 run_delayed_work(&card->delayed_work); 673 codec->suspend_bias_level = codec->bias_level; 674 675 for (i = 0; i < codec->num_dai; i++) { 676 char *stream = codec->dai[i].playback.stream_name; 677 if (stream != NULL) 678 snd_soc_dapm_stream_event(codec, stream, 679 SND_SOC_DAPM_STREAM_SUSPEND); 680 stream = codec->dai[i].capture.stream_name; 681 if (stream != NULL) 682 snd_soc_dapm_stream_event(codec, stream, 683 SND_SOC_DAPM_STREAM_SUSPEND); 684 } 685 686 if (codec_dev->suspend) 687 codec_dev->suspend(pdev, PMSG_SUSPEND); 688 689 for (i = 0; i < card->num_links; i++) { 690 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 691 if (cpu_dai->suspend && cpu_dai->ac97_control) 692 cpu_dai->suspend(cpu_dai); 693 } 694 695 if (card->suspend_post) 696 card->suspend_post(pdev, PMSG_SUSPEND); 697 698 return 0; 699 } 700 701 /* deferred resume work, so resume can complete before we finished 702 * setting our codec back up, which can be very slow on I2C 703 */ 704 static void soc_resume_deferred(struct work_struct *work) 705 { 706 struct snd_soc_card *card = container_of(work, 707 struct snd_soc_card, 708 deferred_resume_work); 709 struct snd_soc_device *socdev = card->socdev; 710 struct snd_soc_platform *platform = card->platform; 711 struct snd_soc_codec_device *codec_dev = socdev->codec_dev; 712 struct snd_soc_codec *codec = card->codec; 713 struct platform_device *pdev = to_platform_device(socdev->dev); 714 int i; 715 716 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time, 717 * so userspace apps are blocked from touching us 718 */ 719 720 dev_dbg(socdev->dev, "starting resume work\n"); 721 722 if (card->resume_pre) 723 card->resume_pre(pdev); 724 725 for (i = 0; i < card->num_links; i++) { 726 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 727 if (cpu_dai->resume && cpu_dai->ac97_control) 728 cpu_dai->resume(cpu_dai); 729 } 730 731 if (codec_dev->resume) 732 codec_dev->resume(pdev); 733 734 for (i = 0; i < codec->num_dai; i++) { 735 char *stream = codec->dai[i].playback.stream_name; 736 if (stream != NULL) 737 snd_soc_dapm_stream_event(codec, stream, 738 SND_SOC_DAPM_STREAM_RESUME); 739 stream = codec->dai[i].capture.stream_name; 740 if (stream != NULL) 741 snd_soc_dapm_stream_event(codec, stream, 742 SND_SOC_DAPM_STREAM_RESUME); 743 } 744 745 /* unmute any active DACs */ 746 for (i = 0; i < card->num_links; i++) { 747 struct snd_soc_dai *dai = card->dai_link[i].codec_dai; 748 if (dai->ops->digital_mute && dai->playback.active) 749 dai->ops->digital_mute(dai, 0); 750 } 751 752 for (i = 0; i < card->num_links; i++) { 753 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 754 if (cpu_dai->resume && !cpu_dai->ac97_control) 755 cpu_dai->resume(cpu_dai); 756 if (platform->resume) 757 platform->resume(cpu_dai); 758 } 759 760 if (card->resume_post) 761 card->resume_post(pdev); 762 763 dev_dbg(socdev->dev, "resume work completed\n"); 764 765 /* userspace can access us now we are back as we were before */ 766 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0); 767 } 768 769 /* powers up audio subsystem after a suspend */ 770 static int soc_resume(struct device *dev) 771 { 772 struct platform_device *pdev = to_platform_device(dev); 773 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 774 struct snd_soc_card *card = socdev->card; 775 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai; 776 777 /* AC97 devices might have other drivers hanging off them so 778 * need to resume immediately. Other drivers don't have that 779 * problem and may take a substantial amount of time to resume 780 * due to I/O costs and anti-pop so handle them out of line. 781 */ 782 if (cpu_dai->ac97_control) { 783 dev_dbg(socdev->dev, "Resuming AC97 immediately\n"); 784 soc_resume_deferred(&card->deferred_resume_work); 785 } else { 786 dev_dbg(socdev->dev, "Scheduling resume work\n"); 787 if (!schedule_work(&card->deferred_resume_work)) 788 dev_err(socdev->dev, "resume work item may be lost\n"); 789 } 790 791 return 0; 792 } 793 794 /** 795 * snd_soc_suspend_device: Notify core of device suspend 796 * 797 * @dev: Device being suspended. 798 * 799 * In order to ensure that the entire audio subsystem is suspended in a 800 * coordinated fashion ASoC devices should suspend themselves when 801 * called by ASoC. When the standard kernel suspend process asks the 802 * device to suspend it should call this function to initiate a suspend 803 * of the entire ASoC card. 804 * 805 * \note Currently this function is stubbed out. 806 */ 807 int snd_soc_suspend_device(struct device *dev) 808 { 809 return 0; 810 } 811 EXPORT_SYMBOL_GPL(snd_soc_suspend_device); 812 813 /** 814 * snd_soc_resume_device: Notify core of device resume 815 * 816 * @dev: Device being resumed. 817 * 818 * In order to ensure that the entire audio subsystem is resumed in a 819 * coordinated fashion ASoC devices should resume themselves when called 820 * by ASoC. When the standard kernel resume process asks the device 821 * to resume it should call this function. Once all the components of 822 * the card have notified that they are ready to be resumed the card 823 * will be resumed. 824 * 825 * \note Currently this function is stubbed out. 826 */ 827 int snd_soc_resume_device(struct device *dev) 828 { 829 return 0; 830 } 831 EXPORT_SYMBOL_GPL(snd_soc_resume_device); 832 #else 833 #define soc_suspend NULL 834 #define soc_resume NULL 835 #endif 836 837 static void snd_soc_instantiate_card(struct snd_soc_card *card) 838 { 839 struct platform_device *pdev = container_of(card->dev, 840 struct platform_device, 841 dev); 842 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev; 843 struct snd_soc_platform *platform; 844 struct snd_soc_dai *dai; 845 int i, found, ret, ac97; 846 847 if (card->instantiated) 848 return; 849 850 found = 0; 851 list_for_each_entry(platform, &platform_list, list) 852 if (card->platform == platform) { 853 found = 1; 854 break; 855 } 856 if (!found) { 857 dev_dbg(card->dev, "Platform %s not registered\n", 858 card->platform->name); 859 return; 860 } 861 862 ac97 = 0; 863 for (i = 0; i < card->num_links; i++) { 864 found = 0; 865 list_for_each_entry(dai, &dai_list, list) 866 if (card->dai_link[i].cpu_dai == dai) { 867 found = 1; 868 break; 869 } 870 if (!found) { 871 dev_dbg(card->dev, "DAI %s not registered\n", 872 card->dai_link[i].cpu_dai->name); 873 return; 874 } 875 876 if (card->dai_link[i].cpu_dai->ac97_control) 877 ac97 = 1; 878 } 879 880 /* If we have AC97 in the system then don't wait for the 881 * codec. This will need revisiting if we have to handle 882 * systems with mixed AC97 and non-AC97 parts. Only check for 883 * DAIs currently; we can't do this per link since some AC97 884 * codecs have non-AC97 DAIs. 885 */ 886 if (!ac97) 887 for (i = 0; i < card->num_links; i++) { 888 found = 0; 889 list_for_each_entry(dai, &dai_list, list) 890 if (card->dai_link[i].codec_dai == dai) { 891 found = 1; 892 break; 893 } 894 if (!found) { 895 dev_dbg(card->dev, "DAI %s not registered\n", 896 card->dai_link[i].codec_dai->name); 897 return; 898 } 899 } 900 901 /* Note that we do not current check for codec components */ 902 903 dev_dbg(card->dev, "All components present, instantiating\n"); 904 905 /* Found everything, bring it up */ 906 if (card->probe) { 907 ret = card->probe(pdev); 908 if (ret < 0) 909 return; 910 } 911 912 for (i = 0; i < card->num_links; i++) { 913 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 914 if (cpu_dai->probe) { 915 ret = cpu_dai->probe(pdev, cpu_dai); 916 if (ret < 0) 917 goto cpu_dai_err; 918 } 919 } 920 921 if (codec_dev->probe) { 922 ret = codec_dev->probe(pdev); 923 if (ret < 0) 924 goto cpu_dai_err; 925 } 926 927 if (platform->probe) { 928 ret = platform->probe(pdev); 929 if (ret < 0) 930 goto platform_err; 931 } 932 933 /* DAPM stream work */ 934 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work); 935 #ifdef CONFIG_PM 936 /* deferred resume work */ 937 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred); 938 #endif 939 940 card->instantiated = 1; 941 942 return; 943 944 platform_err: 945 if (codec_dev->remove) 946 codec_dev->remove(pdev); 947 948 cpu_dai_err: 949 for (i--; i >= 0; i--) { 950 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 951 if (cpu_dai->remove) 952 cpu_dai->remove(pdev, cpu_dai); 953 } 954 955 if (card->remove) 956 card->remove(pdev); 957 } 958 959 /* 960 * Attempt to initialise any uninitalised cards. Must be called with 961 * client_mutex. 962 */ 963 static void snd_soc_instantiate_cards(void) 964 { 965 struct snd_soc_card *card; 966 list_for_each_entry(card, &card_list, list) 967 snd_soc_instantiate_card(card); 968 } 969 970 /* probes a new socdev */ 971 static int soc_probe(struct platform_device *pdev) 972 { 973 int ret = 0; 974 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 975 struct snd_soc_card *card = socdev->card; 976 977 /* Bodge while we push things out of socdev */ 978 card->socdev = socdev; 979 980 /* Bodge while we unpick instantiation */ 981 card->dev = &pdev->dev; 982 ret = snd_soc_register_card(card); 983 if (ret != 0) { 984 dev_err(&pdev->dev, "Failed to register card\n"); 985 return ret; 986 } 987 988 return 0; 989 } 990 991 /* removes a socdev */ 992 static int soc_remove(struct platform_device *pdev) 993 { 994 int i; 995 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 996 struct snd_soc_card *card = socdev->card; 997 struct snd_soc_platform *platform = card->platform; 998 struct snd_soc_codec_device *codec_dev = socdev->codec_dev; 999 1000 if (!card->instantiated) 1001 return 0; 1002 1003 run_delayed_work(&card->delayed_work); 1004 1005 if (platform->remove) 1006 platform->remove(pdev); 1007 1008 if (codec_dev->remove) 1009 codec_dev->remove(pdev); 1010 1011 for (i = 0; i < card->num_links; i++) { 1012 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 1013 if (cpu_dai->remove) 1014 cpu_dai->remove(pdev, cpu_dai); 1015 } 1016 1017 if (card->remove) 1018 card->remove(pdev); 1019 1020 snd_soc_unregister_card(card); 1021 1022 return 0; 1023 } 1024 1025 static int soc_poweroff(struct device *dev) 1026 { 1027 struct platform_device *pdev = to_platform_device(dev); 1028 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 1029 struct snd_soc_card *card = socdev->card; 1030 1031 if (!card->instantiated) 1032 return 0; 1033 1034 /* Flush out pmdown_time work - we actually do want to run it 1035 * now, we're shutting down so no imminent restart. */ 1036 run_delayed_work(&card->delayed_work); 1037 1038 snd_soc_dapm_shutdown(socdev); 1039 1040 return 0; 1041 } 1042 1043 static struct dev_pm_ops soc_pm_ops = { 1044 .suspend = soc_suspend, 1045 .resume = soc_resume, 1046 .poweroff = soc_poweroff, 1047 }; 1048 1049 /* ASoC platform driver */ 1050 static struct platform_driver soc_driver = { 1051 .driver = { 1052 .name = "soc-audio", 1053 .owner = THIS_MODULE, 1054 .pm = &soc_pm_ops, 1055 }, 1056 .probe = soc_probe, 1057 .remove = soc_remove, 1058 }; 1059 1060 /* create a new pcm */ 1061 static int soc_new_pcm(struct snd_soc_device *socdev, 1062 struct snd_soc_dai_link *dai_link, int num) 1063 { 1064 struct snd_soc_card *card = socdev->card; 1065 struct snd_soc_codec *codec = card->codec; 1066 struct snd_soc_platform *platform = card->platform; 1067 struct snd_soc_dai *codec_dai = dai_link->codec_dai; 1068 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai; 1069 struct snd_soc_pcm_runtime *rtd; 1070 struct snd_pcm *pcm; 1071 char new_name[64]; 1072 int ret = 0, playback = 0, capture = 0; 1073 1074 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL); 1075 if (rtd == NULL) 1076 return -ENOMEM; 1077 1078 rtd->dai = dai_link; 1079 rtd->socdev = socdev; 1080 codec_dai->codec = card->codec; 1081 1082 /* check client and interface hw capabilities */ 1083 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name, 1084 num); 1085 1086 if (codec_dai->playback.channels_min) 1087 playback = 1; 1088 if (codec_dai->capture.channels_min) 1089 capture = 1; 1090 1091 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback, 1092 capture, &pcm); 1093 if (ret < 0) { 1094 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", 1095 codec->name); 1096 kfree(rtd); 1097 return ret; 1098 } 1099 1100 dai_link->pcm = pcm; 1101 pcm->private_data = rtd; 1102 soc_pcm_ops.mmap = platform->pcm_ops->mmap; 1103 soc_pcm_ops.pointer = platform->pcm_ops->pointer; 1104 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl; 1105 soc_pcm_ops.copy = platform->pcm_ops->copy; 1106 soc_pcm_ops.silence = platform->pcm_ops->silence; 1107 soc_pcm_ops.ack = platform->pcm_ops->ack; 1108 soc_pcm_ops.page = platform->pcm_ops->page; 1109 1110 if (playback) 1111 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops); 1112 1113 if (capture) 1114 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops); 1115 1116 ret = platform->pcm_new(codec->card, codec_dai, pcm); 1117 if (ret < 0) { 1118 printk(KERN_ERR "asoc: platform pcm constructor failed\n"); 1119 kfree(rtd); 1120 return ret; 1121 } 1122 1123 pcm->private_free = platform->pcm_free; 1124 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name, 1125 cpu_dai->name); 1126 return ret; 1127 } 1128 1129 /** 1130 * snd_soc_codec_volatile_register: Report if a register is volatile. 1131 * 1132 * @codec: CODEC to query. 1133 * @reg: Register to query. 1134 * 1135 * Boolean function indiciating if a CODEC register is volatile. 1136 */ 1137 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg) 1138 { 1139 if (codec->volatile_register) 1140 return codec->volatile_register(reg); 1141 else 1142 return 0; 1143 } 1144 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register); 1145 1146 /* codec register dump */ 1147 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf) 1148 { 1149 int i, step = 1, count = 0; 1150 1151 if (!codec->reg_cache_size) 1152 return 0; 1153 1154 if (codec->reg_cache_step) 1155 step = codec->reg_cache_step; 1156 1157 count += sprintf(buf, "%s registers\n", codec->name); 1158 for (i = 0; i < codec->reg_cache_size; i += step) { 1159 if (codec->readable_register && !codec->readable_register(i)) 1160 continue; 1161 1162 count += sprintf(buf + count, "%2x: ", i); 1163 if (count >= PAGE_SIZE - 1) 1164 break; 1165 1166 if (codec->display_register) 1167 count += codec->display_register(codec, buf + count, 1168 PAGE_SIZE - count, i); 1169 else 1170 count += snprintf(buf + count, PAGE_SIZE - count, 1171 "%4x", codec->read(codec, i)); 1172 1173 if (count >= PAGE_SIZE - 1) 1174 break; 1175 1176 count += snprintf(buf + count, PAGE_SIZE - count, "\n"); 1177 if (count >= PAGE_SIZE - 1) 1178 break; 1179 } 1180 1181 /* Truncate count; min() would cause a warning */ 1182 if (count >= PAGE_SIZE) 1183 count = PAGE_SIZE - 1; 1184 1185 return count; 1186 } 1187 static ssize_t codec_reg_show(struct device *dev, 1188 struct device_attribute *attr, char *buf) 1189 { 1190 struct snd_soc_device *devdata = dev_get_drvdata(dev); 1191 return soc_codec_reg_show(devdata->card->codec, buf); 1192 } 1193 1194 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL); 1195 1196 #ifdef CONFIG_DEBUG_FS 1197 static int codec_reg_open_file(struct inode *inode, struct file *file) 1198 { 1199 file->private_data = inode->i_private; 1200 return 0; 1201 } 1202 1203 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf, 1204 size_t count, loff_t *ppos) 1205 { 1206 ssize_t ret; 1207 struct snd_soc_codec *codec = file->private_data; 1208 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1209 if (!buf) 1210 return -ENOMEM; 1211 ret = soc_codec_reg_show(codec, buf); 1212 if (ret >= 0) 1213 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1214 kfree(buf); 1215 return ret; 1216 } 1217 1218 static ssize_t codec_reg_write_file(struct file *file, 1219 const char __user *user_buf, size_t count, loff_t *ppos) 1220 { 1221 char buf[32]; 1222 int buf_size; 1223 char *start = buf; 1224 unsigned long reg, value; 1225 int step = 1; 1226 struct snd_soc_codec *codec = file->private_data; 1227 1228 buf_size = min(count, (sizeof(buf)-1)); 1229 if (copy_from_user(buf, user_buf, buf_size)) 1230 return -EFAULT; 1231 buf[buf_size] = 0; 1232 1233 if (codec->reg_cache_step) 1234 step = codec->reg_cache_step; 1235 1236 while (*start == ' ') 1237 start++; 1238 reg = simple_strtoul(start, &start, 16); 1239 if ((reg >= codec->reg_cache_size) || (reg % step)) 1240 return -EINVAL; 1241 while (*start == ' ') 1242 start++; 1243 if (strict_strtoul(start, 16, &value)) 1244 return -EINVAL; 1245 codec->write(codec, reg, value); 1246 return buf_size; 1247 } 1248 1249 static const struct file_operations codec_reg_fops = { 1250 .open = codec_reg_open_file, 1251 .read = codec_reg_read_file, 1252 .write = codec_reg_write_file, 1253 }; 1254 1255 static void soc_init_codec_debugfs(struct snd_soc_codec *codec) 1256 { 1257 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644, 1258 debugfs_root, codec, 1259 &codec_reg_fops); 1260 if (!codec->debugfs_reg) 1261 printk(KERN_WARNING 1262 "ASoC: Failed to create codec register debugfs file\n"); 1263 1264 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744, 1265 debugfs_root, 1266 &codec->pop_time); 1267 if (!codec->debugfs_pop_time) 1268 printk(KERN_WARNING 1269 "Failed to create pop time debugfs file\n"); 1270 1271 codec->debugfs_dapm = debugfs_create_dir("dapm", debugfs_root); 1272 if (!codec->debugfs_dapm) 1273 printk(KERN_WARNING 1274 "Failed to create DAPM debugfs directory\n"); 1275 1276 snd_soc_dapm_debugfs_init(codec); 1277 } 1278 1279 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 1280 { 1281 debugfs_remove_recursive(codec->debugfs_dapm); 1282 debugfs_remove(codec->debugfs_pop_time); 1283 debugfs_remove(codec->debugfs_reg); 1284 } 1285 1286 #else 1287 1288 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec) 1289 { 1290 } 1291 1292 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 1293 { 1294 } 1295 #endif 1296 1297 /** 1298 * snd_soc_new_ac97_codec - initailise AC97 device 1299 * @codec: audio codec 1300 * @ops: AC97 bus operations 1301 * @num: AC97 codec number 1302 * 1303 * Initialises AC97 codec resources for use by ad-hoc devices only. 1304 */ 1305 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec, 1306 struct snd_ac97_bus_ops *ops, int num) 1307 { 1308 mutex_lock(&codec->mutex); 1309 1310 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL); 1311 if (codec->ac97 == NULL) { 1312 mutex_unlock(&codec->mutex); 1313 return -ENOMEM; 1314 } 1315 1316 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL); 1317 if (codec->ac97->bus == NULL) { 1318 kfree(codec->ac97); 1319 codec->ac97 = NULL; 1320 mutex_unlock(&codec->mutex); 1321 return -ENOMEM; 1322 } 1323 1324 codec->ac97->bus->ops = ops; 1325 codec->ac97->num = num; 1326 mutex_unlock(&codec->mutex); 1327 return 0; 1328 } 1329 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec); 1330 1331 /** 1332 * snd_soc_free_ac97_codec - free AC97 codec device 1333 * @codec: audio codec 1334 * 1335 * Frees AC97 codec device resources. 1336 */ 1337 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec) 1338 { 1339 mutex_lock(&codec->mutex); 1340 kfree(codec->ac97->bus); 1341 kfree(codec->ac97); 1342 codec->ac97 = NULL; 1343 mutex_unlock(&codec->mutex); 1344 } 1345 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec); 1346 1347 /** 1348 * snd_soc_update_bits - update codec register bits 1349 * @codec: audio codec 1350 * @reg: codec register 1351 * @mask: register mask 1352 * @value: new value 1353 * 1354 * Writes new register value. 1355 * 1356 * Returns 1 for change else 0. 1357 */ 1358 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg, 1359 unsigned int mask, unsigned int value) 1360 { 1361 int change; 1362 unsigned int old, new; 1363 1364 mutex_lock(&io_mutex); 1365 old = snd_soc_read(codec, reg); 1366 new = (old & ~mask) | value; 1367 change = old != new; 1368 if (change) 1369 snd_soc_write(codec, reg, new); 1370 1371 mutex_unlock(&io_mutex); 1372 return change; 1373 } 1374 EXPORT_SYMBOL_GPL(snd_soc_update_bits); 1375 1376 /** 1377 * snd_soc_test_bits - test register for change 1378 * @codec: audio codec 1379 * @reg: codec register 1380 * @mask: register mask 1381 * @value: new value 1382 * 1383 * Tests a register with a new value and checks if the new value is 1384 * different from the old value. 1385 * 1386 * Returns 1 for change else 0. 1387 */ 1388 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg, 1389 unsigned int mask, unsigned int value) 1390 { 1391 int change; 1392 unsigned int old, new; 1393 1394 mutex_lock(&io_mutex); 1395 old = snd_soc_read(codec, reg); 1396 new = (old & ~mask) | value; 1397 change = old != new; 1398 mutex_unlock(&io_mutex); 1399 1400 return change; 1401 } 1402 EXPORT_SYMBOL_GPL(snd_soc_test_bits); 1403 1404 /** 1405 * snd_soc_new_pcms - create new sound card and pcms 1406 * @socdev: the SoC audio device 1407 * @idx: ALSA card index 1408 * @xid: card identification 1409 * 1410 * Create a new sound card based upon the codec and interface pcms. 1411 * 1412 * Returns 0 for success, else error. 1413 */ 1414 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid) 1415 { 1416 struct snd_soc_card *card = socdev->card; 1417 struct snd_soc_codec *codec = card->codec; 1418 int ret, i; 1419 1420 mutex_lock(&codec->mutex); 1421 1422 /* register a sound card */ 1423 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card); 1424 if (ret < 0) { 1425 printk(KERN_ERR "asoc: can't create sound card for codec %s\n", 1426 codec->name); 1427 mutex_unlock(&codec->mutex); 1428 return ret; 1429 } 1430 1431 codec->socdev = socdev; 1432 codec->card->dev = socdev->dev; 1433 codec->card->private_data = codec; 1434 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver)); 1435 1436 /* create the pcms */ 1437 for (i = 0; i < card->num_links; i++) { 1438 ret = soc_new_pcm(socdev, &card->dai_link[i], i); 1439 if (ret < 0) { 1440 printk(KERN_ERR "asoc: can't create pcm %s\n", 1441 card->dai_link[i].stream_name); 1442 mutex_unlock(&codec->mutex); 1443 return ret; 1444 } 1445 } 1446 1447 mutex_unlock(&codec->mutex); 1448 return ret; 1449 } 1450 EXPORT_SYMBOL_GPL(snd_soc_new_pcms); 1451 1452 /** 1453 * snd_soc_init_card - register sound card 1454 * @socdev: the SoC audio device 1455 * 1456 * Register a SoC sound card. Also registers an AC97 device if the 1457 * codec is AC97 for ad hoc devices. 1458 * 1459 * Returns 0 for success, else error. 1460 */ 1461 int snd_soc_init_card(struct snd_soc_device *socdev) 1462 { 1463 struct snd_soc_card *card = socdev->card; 1464 struct snd_soc_codec *codec = card->codec; 1465 int ret = 0, i, ac97 = 0, err = 0; 1466 1467 for (i = 0; i < card->num_links; i++) { 1468 if (card->dai_link[i].init) { 1469 err = card->dai_link[i].init(codec); 1470 if (err < 0) { 1471 printk(KERN_ERR "asoc: failed to init %s\n", 1472 card->dai_link[i].stream_name); 1473 continue; 1474 } 1475 } 1476 if (card->dai_link[i].codec_dai->ac97_control) { 1477 ac97 = 1; 1478 snd_ac97_dev_add_pdata(codec->ac97, 1479 card->dai_link[i].cpu_dai->ac97_pdata); 1480 } 1481 } 1482 snprintf(codec->card->shortname, sizeof(codec->card->shortname), 1483 "%s", card->name); 1484 snprintf(codec->card->longname, sizeof(codec->card->longname), 1485 "%s (%s)", card->name, codec->name); 1486 1487 /* Make sure all DAPM widgets are instantiated */ 1488 snd_soc_dapm_new_widgets(codec); 1489 1490 ret = snd_card_register(codec->card); 1491 if (ret < 0) { 1492 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", 1493 codec->name); 1494 goto out; 1495 } 1496 1497 mutex_lock(&codec->mutex); 1498 #ifdef CONFIG_SND_SOC_AC97_BUS 1499 /* Only instantiate AC97 if not already done by the adaptor 1500 * for the generic AC97 subsystem. 1501 */ 1502 if (ac97 && strcmp(codec->name, "AC97") != 0) { 1503 ret = soc_ac97_dev_register(codec); 1504 if (ret < 0) { 1505 printk(KERN_ERR "asoc: AC97 device register failed\n"); 1506 snd_card_free(codec->card); 1507 mutex_unlock(&codec->mutex); 1508 goto out; 1509 } 1510 } 1511 #endif 1512 1513 err = snd_soc_dapm_sys_add(socdev->dev); 1514 if (err < 0) 1515 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n"); 1516 1517 err = device_create_file(socdev->dev, &dev_attr_codec_reg); 1518 if (err < 0) 1519 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n"); 1520 1521 soc_init_codec_debugfs(codec); 1522 mutex_unlock(&codec->mutex); 1523 1524 out: 1525 return ret; 1526 } 1527 EXPORT_SYMBOL_GPL(snd_soc_init_card); 1528 1529 /** 1530 * snd_soc_free_pcms - free sound card and pcms 1531 * @socdev: the SoC audio device 1532 * 1533 * Frees sound card and pcms associated with the socdev. 1534 * Also unregister the codec if it is an AC97 device. 1535 */ 1536 void snd_soc_free_pcms(struct snd_soc_device *socdev) 1537 { 1538 struct snd_soc_codec *codec = socdev->card->codec; 1539 #ifdef CONFIG_SND_SOC_AC97_BUS 1540 struct snd_soc_dai *codec_dai; 1541 int i; 1542 #endif 1543 1544 mutex_lock(&codec->mutex); 1545 soc_cleanup_codec_debugfs(codec); 1546 #ifdef CONFIG_SND_SOC_AC97_BUS 1547 for (i = 0; i < codec->num_dai; i++) { 1548 codec_dai = &codec->dai[i]; 1549 if (codec_dai->ac97_control && codec->ac97 && 1550 strcmp(codec->name, "AC97") != 0) { 1551 soc_ac97_dev_unregister(codec); 1552 goto free_card; 1553 } 1554 } 1555 free_card: 1556 #endif 1557 1558 if (codec->card) 1559 snd_card_free(codec->card); 1560 device_remove_file(socdev->dev, &dev_attr_codec_reg); 1561 mutex_unlock(&codec->mutex); 1562 } 1563 EXPORT_SYMBOL_GPL(snd_soc_free_pcms); 1564 1565 /** 1566 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters 1567 * @substream: the pcm substream 1568 * @hw: the hardware parameters 1569 * 1570 * Sets the substream runtime hardware parameters. 1571 */ 1572 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream, 1573 const struct snd_pcm_hardware *hw) 1574 { 1575 struct snd_pcm_runtime *runtime = substream->runtime; 1576 runtime->hw.info = hw->info; 1577 runtime->hw.formats = hw->formats; 1578 runtime->hw.period_bytes_min = hw->period_bytes_min; 1579 runtime->hw.period_bytes_max = hw->period_bytes_max; 1580 runtime->hw.periods_min = hw->periods_min; 1581 runtime->hw.periods_max = hw->periods_max; 1582 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max; 1583 runtime->hw.fifo_size = hw->fifo_size; 1584 return 0; 1585 } 1586 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams); 1587 1588 /** 1589 * snd_soc_cnew - create new control 1590 * @_template: control template 1591 * @data: control private data 1592 * @long_name: control long name 1593 * 1594 * Create a new mixer control from a template control. 1595 * 1596 * Returns 0 for success, else error. 1597 */ 1598 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, 1599 void *data, char *long_name) 1600 { 1601 struct snd_kcontrol_new template; 1602 1603 memcpy(&template, _template, sizeof(template)); 1604 if (long_name) 1605 template.name = long_name; 1606 template.index = 0; 1607 1608 return snd_ctl_new1(&template, data); 1609 } 1610 EXPORT_SYMBOL_GPL(snd_soc_cnew); 1611 1612 /** 1613 * snd_soc_add_controls - add an array of controls to a codec. 1614 * Convienience function to add a list of controls. Many codecs were 1615 * duplicating this code. 1616 * 1617 * @codec: codec to add controls to 1618 * @controls: array of controls to add 1619 * @num_controls: number of elements in the array 1620 * 1621 * Return 0 for success, else error. 1622 */ 1623 int snd_soc_add_controls(struct snd_soc_codec *codec, 1624 const struct snd_kcontrol_new *controls, int num_controls) 1625 { 1626 struct snd_card *card = codec->card; 1627 int err, i; 1628 1629 for (i = 0; i < num_controls; i++) { 1630 const struct snd_kcontrol_new *control = &controls[i]; 1631 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL)); 1632 if (err < 0) { 1633 dev_err(codec->dev, "%s: Failed to add %s\n", 1634 codec->name, control->name); 1635 return err; 1636 } 1637 } 1638 1639 return 0; 1640 } 1641 EXPORT_SYMBOL_GPL(snd_soc_add_controls); 1642 1643 /** 1644 * snd_soc_info_enum_double - enumerated double mixer info callback 1645 * @kcontrol: mixer control 1646 * @uinfo: control element information 1647 * 1648 * Callback to provide information about a double enumerated 1649 * mixer control. 1650 * 1651 * Returns 0 for success. 1652 */ 1653 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 1654 struct snd_ctl_elem_info *uinfo) 1655 { 1656 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1657 1658 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1659 uinfo->count = e->shift_l == e->shift_r ? 1 : 2; 1660 uinfo->value.enumerated.items = e->max; 1661 1662 if (uinfo->value.enumerated.item > e->max - 1) 1663 uinfo->value.enumerated.item = e->max - 1; 1664 strcpy(uinfo->value.enumerated.name, 1665 e->texts[uinfo->value.enumerated.item]); 1666 return 0; 1667 } 1668 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); 1669 1670 /** 1671 * snd_soc_get_enum_double - enumerated double mixer get callback 1672 * @kcontrol: mixer control 1673 * @ucontrol: control element information 1674 * 1675 * Callback to get the value of a double enumerated mixer. 1676 * 1677 * Returns 0 for success. 1678 */ 1679 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 1680 struct snd_ctl_elem_value *ucontrol) 1681 { 1682 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1683 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1684 unsigned int val, bitmask; 1685 1686 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 1687 ; 1688 val = snd_soc_read(codec, e->reg); 1689 ucontrol->value.enumerated.item[0] 1690 = (val >> e->shift_l) & (bitmask - 1); 1691 if (e->shift_l != e->shift_r) 1692 ucontrol->value.enumerated.item[1] = 1693 (val >> e->shift_r) & (bitmask - 1); 1694 1695 return 0; 1696 } 1697 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); 1698 1699 /** 1700 * snd_soc_put_enum_double - enumerated double mixer put callback 1701 * @kcontrol: mixer control 1702 * @ucontrol: control element information 1703 * 1704 * Callback to set the value of a double enumerated mixer. 1705 * 1706 * Returns 0 for success. 1707 */ 1708 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 1709 struct snd_ctl_elem_value *ucontrol) 1710 { 1711 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1712 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1713 unsigned int val; 1714 unsigned int mask, bitmask; 1715 1716 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 1717 ; 1718 if (ucontrol->value.enumerated.item[0] > e->max - 1) 1719 return -EINVAL; 1720 val = ucontrol->value.enumerated.item[0] << e->shift_l; 1721 mask = (bitmask - 1) << e->shift_l; 1722 if (e->shift_l != e->shift_r) { 1723 if (ucontrol->value.enumerated.item[1] > e->max - 1) 1724 return -EINVAL; 1725 val |= ucontrol->value.enumerated.item[1] << e->shift_r; 1726 mask |= (bitmask - 1) << e->shift_r; 1727 } 1728 1729 return snd_soc_update_bits(codec, e->reg, mask, val); 1730 } 1731 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); 1732 1733 /** 1734 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback 1735 * @kcontrol: mixer control 1736 * @ucontrol: control element information 1737 * 1738 * Callback to get the value of a double semi enumerated mixer. 1739 * 1740 * Semi enumerated mixer: the enumerated items are referred as values. Can be 1741 * used for handling bitfield coded enumeration for example. 1742 * 1743 * Returns 0 for success. 1744 */ 1745 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol, 1746 struct snd_ctl_elem_value *ucontrol) 1747 { 1748 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1749 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1750 unsigned int reg_val, val, mux; 1751 1752 reg_val = snd_soc_read(codec, e->reg); 1753 val = (reg_val >> e->shift_l) & e->mask; 1754 for (mux = 0; mux < e->max; mux++) { 1755 if (val == e->values[mux]) 1756 break; 1757 } 1758 ucontrol->value.enumerated.item[0] = mux; 1759 if (e->shift_l != e->shift_r) { 1760 val = (reg_val >> e->shift_r) & e->mask; 1761 for (mux = 0; mux < e->max; mux++) { 1762 if (val == e->values[mux]) 1763 break; 1764 } 1765 ucontrol->value.enumerated.item[1] = mux; 1766 } 1767 1768 return 0; 1769 } 1770 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double); 1771 1772 /** 1773 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback 1774 * @kcontrol: mixer control 1775 * @ucontrol: control element information 1776 * 1777 * Callback to set the value of a double semi enumerated mixer. 1778 * 1779 * Semi enumerated mixer: the enumerated items are referred as values. Can be 1780 * used for handling bitfield coded enumeration for example. 1781 * 1782 * Returns 0 for success. 1783 */ 1784 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol, 1785 struct snd_ctl_elem_value *ucontrol) 1786 { 1787 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1788 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1789 unsigned int val; 1790 unsigned int mask; 1791 1792 if (ucontrol->value.enumerated.item[0] > e->max - 1) 1793 return -EINVAL; 1794 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l; 1795 mask = e->mask << e->shift_l; 1796 if (e->shift_l != e->shift_r) { 1797 if (ucontrol->value.enumerated.item[1] > e->max - 1) 1798 return -EINVAL; 1799 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r; 1800 mask |= e->mask << e->shift_r; 1801 } 1802 1803 return snd_soc_update_bits(codec, e->reg, mask, val); 1804 } 1805 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double); 1806 1807 /** 1808 * snd_soc_info_enum_ext - external enumerated single mixer info callback 1809 * @kcontrol: mixer control 1810 * @uinfo: control element information 1811 * 1812 * Callback to provide information about an external enumerated 1813 * single mixer. 1814 * 1815 * Returns 0 for success. 1816 */ 1817 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol, 1818 struct snd_ctl_elem_info *uinfo) 1819 { 1820 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1821 1822 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1823 uinfo->count = 1; 1824 uinfo->value.enumerated.items = e->max; 1825 1826 if (uinfo->value.enumerated.item > e->max - 1) 1827 uinfo->value.enumerated.item = e->max - 1; 1828 strcpy(uinfo->value.enumerated.name, 1829 e->texts[uinfo->value.enumerated.item]); 1830 return 0; 1831 } 1832 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext); 1833 1834 /** 1835 * snd_soc_info_volsw_ext - external single mixer info callback 1836 * @kcontrol: mixer control 1837 * @uinfo: control element information 1838 * 1839 * Callback to provide information about a single external mixer control. 1840 * 1841 * Returns 0 for success. 1842 */ 1843 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol, 1844 struct snd_ctl_elem_info *uinfo) 1845 { 1846 int max = kcontrol->private_value; 1847 1848 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 1849 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1850 else 1851 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1852 1853 uinfo->count = 1; 1854 uinfo->value.integer.min = 0; 1855 uinfo->value.integer.max = max; 1856 return 0; 1857 } 1858 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext); 1859 1860 /** 1861 * snd_soc_info_volsw - single mixer info callback 1862 * @kcontrol: mixer control 1863 * @uinfo: control element information 1864 * 1865 * Callback to provide information about a single mixer control. 1866 * 1867 * Returns 0 for success. 1868 */ 1869 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 1870 struct snd_ctl_elem_info *uinfo) 1871 { 1872 struct soc_mixer_control *mc = 1873 (struct soc_mixer_control *)kcontrol->private_value; 1874 int max = mc->max; 1875 unsigned int shift = mc->shift; 1876 unsigned int rshift = mc->rshift; 1877 1878 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 1879 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1880 else 1881 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1882 1883 uinfo->count = shift == rshift ? 1 : 2; 1884 uinfo->value.integer.min = 0; 1885 uinfo->value.integer.max = max; 1886 return 0; 1887 } 1888 EXPORT_SYMBOL_GPL(snd_soc_info_volsw); 1889 1890 /** 1891 * snd_soc_get_volsw - single mixer get callback 1892 * @kcontrol: mixer control 1893 * @ucontrol: control element information 1894 * 1895 * Callback to get the value of a single mixer control. 1896 * 1897 * Returns 0 for success. 1898 */ 1899 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 1900 struct snd_ctl_elem_value *ucontrol) 1901 { 1902 struct soc_mixer_control *mc = 1903 (struct soc_mixer_control *)kcontrol->private_value; 1904 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1905 unsigned int reg = mc->reg; 1906 unsigned int shift = mc->shift; 1907 unsigned int rshift = mc->rshift; 1908 int max = mc->max; 1909 unsigned int mask = (1 << fls(max)) - 1; 1910 unsigned int invert = mc->invert; 1911 1912 ucontrol->value.integer.value[0] = 1913 (snd_soc_read(codec, reg) >> shift) & mask; 1914 if (shift != rshift) 1915 ucontrol->value.integer.value[1] = 1916 (snd_soc_read(codec, reg) >> rshift) & mask; 1917 if (invert) { 1918 ucontrol->value.integer.value[0] = 1919 max - ucontrol->value.integer.value[0]; 1920 if (shift != rshift) 1921 ucontrol->value.integer.value[1] = 1922 max - ucontrol->value.integer.value[1]; 1923 } 1924 1925 return 0; 1926 } 1927 EXPORT_SYMBOL_GPL(snd_soc_get_volsw); 1928 1929 /** 1930 * snd_soc_put_volsw - single mixer put callback 1931 * @kcontrol: mixer control 1932 * @ucontrol: control element information 1933 * 1934 * Callback to set the value of a single mixer control. 1935 * 1936 * Returns 0 for success. 1937 */ 1938 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 1939 struct snd_ctl_elem_value *ucontrol) 1940 { 1941 struct soc_mixer_control *mc = 1942 (struct soc_mixer_control *)kcontrol->private_value; 1943 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1944 unsigned int reg = mc->reg; 1945 unsigned int shift = mc->shift; 1946 unsigned int rshift = mc->rshift; 1947 int max = mc->max; 1948 unsigned int mask = (1 << fls(max)) - 1; 1949 unsigned int invert = mc->invert; 1950 unsigned int val, val2, val_mask; 1951 1952 val = (ucontrol->value.integer.value[0] & mask); 1953 if (invert) 1954 val = max - val; 1955 val_mask = mask << shift; 1956 val = val << shift; 1957 if (shift != rshift) { 1958 val2 = (ucontrol->value.integer.value[1] & mask); 1959 if (invert) 1960 val2 = max - val2; 1961 val_mask |= mask << rshift; 1962 val |= val2 << rshift; 1963 } 1964 return snd_soc_update_bits(codec, reg, val_mask, val); 1965 } 1966 EXPORT_SYMBOL_GPL(snd_soc_put_volsw); 1967 1968 /** 1969 * snd_soc_info_volsw_2r - double mixer info callback 1970 * @kcontrol: mixer control 1971 * @uinfo: control element information 1972 * 1973 * Callback to provide information about a double mixer control that 1974 * spans 2 codec registers. 1975 * 1976 * Returns 0 for success. 1977 */ 1978 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol, 1979 struct snd_ctl_elem_info *uinfo) 1980 { 1981 struct soc_mixer_control *mc = 1982 (struct soc_mixer_control *)kcontrol->private_value; 1983 int max = mc->max; 1984 1985 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 1986 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1987 else 1988 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1989 1990 uinfo->count = 2; 1991 uinfo->value.integer.min = 0; 1992 uinfo->value.integer.max = max; 1993 return 0; 1994 } 1995 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r); 1996 1997 /** 1998 * snd_soc_get_volsw_2r - double mixer get callback 1999 * @kcontrol: mixer control 2000 * @ucontrol: control element information 2001 * 2002 * Callback to get the value of a double mixer control that spans 2 registers. 2003 * 2004 * Returns 0 for success. 2005 */ 2006 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol, 2007 struct snd_ctl_elem_value *ucontrol) 2008 { 2009 struct soc_mixer_control *mc = 2010 (struct soc_mixer_control *)kcontrol->private_value; 2011 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2012 unsigned int reg = mc->reg; 2013 unsigned int reg2 = mc->rreg; 2014 unsigned int shift = mc->shift; 2015 int max = mc->max; 2016 unsigned int mask = (1 << fls(max)) - 1; 2017 unsigned int invert = mc->invert; 2018 2019 ucontrol->value.integer.value[0] = 2020 (snd_soc_read(codec, reg) >> shift) & mask; 2021 ucontrol->value.integer.value[1] = 2022 (snd_soc_read(codec, reg2) >> shift) & mask; 2023 if (invert) { 2024 ucontrol->value.integer.value[0] = 2025 max - ucontrol->value.integer.value[0]; 2026 ucontrol->value.integer.value[1] = 2027 max - ucontrol->value.integer.value[1]; 2028 } 2029 2030 return 0; 2031 } 2032 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r); 2033 2034 /** 2035 * snd_soc_put_volsw_2r - double mixer set callback 2036 * @kcontrol: mixer control 2037 * @ucontrol: control element information 2038 * 2039 * Callback to set the value of a double mixer control that spans 2 registers. 2040 * 2041 * Returns 0 for success. 2042 */ 2043 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol, 2044 struct snd_ctl_elem_value *ucontrol) 2045 { 2046 struct soc_mixer_control *mc = 2047 (struct soc_mixer_control *)kcontrol->private_value; 2048 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2049 unsigned int reg = mc->reg; 2050 unsigned int reg2 = mc->rreg; 2051 unsigned int shift = mc->shift; 2052 int max = mc->max; 2053 unsigned int mask = (1 << fls(max)) - 1; 2054 unsigned int invert = mc->invert; 2055 int err; 2056 unsigned int val, val2, val_mask; 2057 2058 val_mask = mask << shift; 2059 val = (ucontrol->value.integer.value[0] & mask); 2060 val2 = (ucontrol->value.integer.value[1] & mask); 2061 2062 if (invert) { 2063 val = max - val; 2064 val2 = max - val2; 2065 } 2066 2067 val = val << shift; 2068 val2 = val2 << shift; 2069 2070 err = snd_soc_update_bits(codec, reg, val_mask, val); 2071 if (err < 0) 2072 return err; 2073 2074 err = snd_soc_update_bits(codec, reg2, val_mask, val2); 2075 return err; 2076 } 2077 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r); 2078 2079 /** 2080 * snd_soc_info_volsw_s8 - signed mixer info callback 2081 * @kcontrol: mixer control 2082 * @uinfo: control element information 2083 * 2084 * Callback to provide information about a signed mixer control. 2085 * 2086 * Returns 0 for success. 2087 */ 2088 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol, 2089 struct snd_ctl_elem_info *uinfo) 2090 { 2091 struct soc_mixer_control *mc = 2092 (struct soc_mixer_control *)kcontrol->private_value; 2093 int max = mc->max; 2094 int min = mc->min; 2095 2096 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2097 uinfo->count = 2; 2098 uinfo->value.integer.min = 0; 2099 uinfo->value.integer.max = max-min; 2100 return 0; 2101 } 2102 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8); 2103 2104 /** 2105 * snd_soc_get_volsw_s8 - signed mixer get callback 2106 * @kcontrol: mixer control 2107 * @ucontrol: control element information 2108 * 2109 * Callback to get the value of a signed mixer control. 2110 * 2111 * Returns 0 for success. 2112 */ 2113 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol, 2114 struct snd_ctl_elem_value *ucontrol) 2115 { 2116 struct soc_mixer_control *mc = 2117 (struct soc_mixer_control *)kcontrol->private_value; 2118 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2119 unsigned int reg = mc->reg; 2120 int min = mc->min; 2121 int val = snd_soc_read(codec, reg); 2122 2123 ucontrol->value.integer.value[0] = 2124 ((signed char)(val & 0xff))-min; 2125 ucontrol->value.integer.value[1] = 2126 ((signed char)((val >> 8) & 0xff))-min; 2127 return 0; 2128 } 2129 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8); 2130 2131 /** 2132 * snd_soc_put_volsw_sgn - signed mixer put callback 2133 * @kcontrol: mixer control 2134 * @ucontrol: control element information 2135 * 2136 * Callback to set the value of a signed mixer control. 2137 * 2138 * Returns 0 for success. 2139 */ 2140 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol, 2141 struct snd_ctl_elem_value *ucontrol) 2142 { 2143 struct soc_mixer_control *mc = 2144 (struct soc_mixer_control *)kcontrol->private_value; 2145 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2146 unsigned int reg = mc->reg; 2147 int min = mc->min; 2148 unsigned int val; 2149 2150 val = (ucontrol->value.integer.value[0]+min) & 0xff; 2151 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8; 2152 2153 return snd_soc_update_bits(codec, reg, 0xffff, val); 2154 } 2155 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8); 2156 2157 /** 2158 * snd_soc_dai_set_sysclk - configure DAI system or master clock. 2159 * @dai: DAI 2160 * @clk_id: DAI specific clock ID 2161 * @freq: new clock frequency in Hz 2162 * @dir: new clock direction - input/output. 2163 * 2164 * Configures the DAI master (MCLK) or system (SYSCLK) clocking. 2165 */ 2166 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id, 2167 unsigned int freq, int dir) 2168 { 2169 if (dai->ops && dai->ops->set_sysclk) 2170 return dai->ops->set_sysclk(dai, clk_id, freq, dir); 2171 else 2172 return -EINVAL; 2173 } 2174 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk); 2175 2176 /** 2177 * snd_soc_dai_set_clkdiv - configure DAI clock dividers. 2178 * @dai: DAI 2179 * @div_id: DAI specific clock divider ID 2180 * @div: new clock divisor. 2181 * 2182 * Configures the clock dividers. This is used to derive the best DAI bit and 2183 * frame clocks from the system or master clock. It's best to set the DAI bit 2184 * and frame clocks as low as possible to save system power. 2185 */ 2186 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai, 2187 int div_id, int div) 2188 { 2189 if (dai->ops && dai->ops->set_clkdiv) 2190 return dai->ops->set_clkdiv(dai, div_id, div); 2191 else 2192 return -EINVAL; 2193 } 2194 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv); 2195 2196 /** 2197 * snd_soc_dai_set_pll - configure DAI PLL. 2198 * @dai: DAI 2199 * @pll_id: DAI specific PLL ID 2200 * @freq_in: PLL input clock frequency in Hz 2201 * @freq_out: requested PLL output clock frequency in Hz 2202 * 2203 * Configures and enables PLL to generate output clock based on input clock. 2204 */ 2205 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, 2206 int pll_id, unsigned int freq_in, unsigned int freq_out) 2207 { 2208 if (dai->ops && dai->ops->set_pll) 2209 return dai->ops->set_pll(dai, pll_id, freq_in, freq_out); 2210 else 2211 return -EINVAL; 2212 } 2213 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll); 2214 2215 /** 2216 * snd_soc_dai_set_fmt - configure DAI hardware audio format. 2217 * @dai: DAI 2218 * @fmt: SND_SOC_DAIFMT_ format value. 2219 * 2220 * Configures the DAI hardware format and clocking. 2221 */ 2222 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 2223 { 2224 if (dai->ops && dai->ops->set_fmt) 2225 return dai->ops->set_fmt(dai, fmt); 2226 else 2227 return -EINVAL; 2228 } 2229 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt); 2230 2231 /** 2232 * snd_soc_dai_set_tdm_slot - configure DAI TDM. 2233 * @dai: DAI 2234 * @tx_mask: bitmask representing active TX slots. 2235 * @rx_mask: bitmask representing active RX slots. 2236 * @slots: Number of slots in use. 2237 * @slot_width: Width in bits for each slot. 2238 * 2239 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI 2240 * specific. 2241 */ 2242 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai, 2243 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) 2244 { 2245 if (dai->ops && dai->ops->set_tdm_slot) 2246 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask, 2247 slots, slot_width); 2248 else 2249 return -EINVAL; 2250 } 2251 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot); 2252 2253 /** 2254 * snd_soc_dai_set_tristate - configure DAI system or master clock. 2255 * @dai: DAI 2256 * @tristate: tristate enable 2257 * 2258 * Tristates the DAI so that others can use it. 2259 */ 2260 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate) 2261 { 2262 if (dai->ops && dai->ops->set_tristate) 2263 return dai->ops->set_tristate(dai, tristate); 2264 else 2265 return -EINVAL; 2266 } 2267 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate); 2268 2269 /** 2270 * snd_soc_dai_digital_mute - configure DAI system or master clock. 2271 * @dai: DAI 2272 * @mute: mute enable 2273 * 2274 * Mutes the DAI DAC. 2275 */ 2276 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute) 2277 { 2278 if (dai->ops && dai->ops->digital_mute) 2279 return dai->ops->digital_mute(dai, mute); 2280 else 2281 return -EINVAL; 2282 } 2283 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute); 2284 2285 /** 2286 * snd_soc_register_card - Register a card with the ASoC core 2287 * 2288 * @card: Card to register 2289 * 2290 * Note that currently this is an internal only function: it will be 2291 * exposed to machine drivers after further backporting of ASoC v2 2292 * registration APIs. 2293 */ 2294 static int snd_soc_register_card(struct snd_soc_card *card) 2295 { 2296 if (!card->name || !card->dev) 2297 return -EINVAL; 2298 2299 INIT_LIST_HEAD(&card->list); 2300 card->instantiated = 0; 2301 2302 mutex_lock(&client_mutex); 2303 list_add(&card->list, &card_list); 2304 snd_soc_instantiate_cards(); 2305 mutex_unlock(&client_mutex); 2306 2307 dev_dbg(card->dev, "Registered card '%s'\n", card->name); 2308 2309 return 0; 2310 } 2311 2312 /** 2313 * snd_soc_unregister_card - Unregister a card with the ASoC core 2314 * 2315 * @card: Card to unregister 2316 * 2317 * Note that currently this is an internal only function: it will be 2318 * exposed to machine drivers after further backporting of ASoC v2 2319 * registration APIs. 2320 */ 2321 static int snd_soc_unregister_card(struct snd_soc_card *card) 2322 { 2323 mutex_lock(&client_mutex); 2324 list_del(&card->list); 2325 mutex_unlock(&client_mutex); 2326 2327 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name); 2328 2329 return 0; 2330 } 2331 2332 static struct snd_soc_dai_ops null_dai_ops = { 2333 }; 2334 2335 /** 2336 * snd_soc_register_dai - Register a DAI with the ASoC core 2337 * 2338 * @dai: DAI to register 2339 */ 2340 int snd_soc_register_dai(struct snd_soc_dai *dai) 2341 { 2342 if (!dai->name) 2343 return -EINVAL; 2344 2345 /* The device should become mandatory over time */ 2346 if (!dai->dev) 2347 printk(KERN_WARNING "No device for DAI %s\n", dai->name); 2348 2349 if (!dai->ops) 2350 dai->ops = &null_dai_ops; 2351 2352 INIT_LIST_HEAD(&dai->list); 2353 2354 mutex_lock(&client_mutex); 2355 list_add(&dai->list, &dai_list); 2356 snd_soc_instantiate_cards(); 2357 mutex_unlock(&client_mutex); 2358 2359 pr_debug("Registered DAI '%s'\n", dai->name); 2360 2361 return 0; 2362 } 2363 EXPORT_SYMBOL_GPL(snd_soc_register_dai); 2364 2365 /** 2366 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core 2367 * 2368 * @dai: DAI to unregister 2369 */ 2370 void snd_soc_unregister_dai(struct snd_soc_dai *dai) 2371 { 2372 mutex_lock(&client_mutex); 2373 list_del(&dai->list); 2374 mutex_unlock(&client_mutex); 2375 2376 pr_debug("Unregistered DAI '%s'\n", dai->name); 2377 } 2378 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai); 2379 2380 /** 2381 * snd_soc_register_dais - Register multiple DAIs with the ASoC core 2382 * 2383 * @dai: Array of DAIs to register 2384 * @count: Number of DAIs 2385 */ 2386 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count) 2387 { 2388 int i, ret; 2389 2390 for (i = 0; i < count; i++) { 2391 ret = snd_soc_register_dai(&dai[i]); 2392 if (ret != 0) 2393 goto err; 2394 } 2395 2396 return 0; 2397 2398 err: 2399 for (i--; i >= 0; i--) 2400 snd_soc_unregister_dai(&dai[i]); 2401 2402 return ret; 2403 } 2404 EXPORT_SYMBOL_GPL(snd_soc_register_dais); 2405 2406 /** 2407 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core 2408 * 2409 * @dai: Array of DAIs to unregister 2410 * @count: Number of DAIs 2411 */ 2412 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count) 2413 { 2414 int i; 2415 2416 for (i = 0; i < count; i++) 2417 snd_soc_unregister_dai(&dai[i]); 2418 } 2419 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais); 2420 2421 /** 2422 * snd_soc_register_platform - Register a platform with the ASoC core 2423 * 2424 * @platform: platform to register 2425 */ 2426 int snd_soc_register_platform(struct snd_soc_platform *platform) 2427 { 2428 if (!platform->name) 2429 return -EINVAL; 2430 2431 INIT_LIST_HEAD(&platform->list); 2432 2433 mutex_lock(&client_mutex); 2434 list_add(&platform->list, &platform_list); 2435 snd_soc_instantiate_cards(); 2436 mutex_unlock(&client_mutex); 2437 2438 pr_debug("Registered platform '%s'\n", platform->name); 2439 2440 return 0; 2441 } 2442 EXPORT_SYMBOL_GPL(snd_soc_register_platform); 2443 2444 /** 2445 * snd_soc_unregister_platform - Unregister a platform from the ASoC core 2446 * 2447 * @platform: platform to unregister 2448 */ 2449 void snd_soc_unregister_platform(struct snd_soc_platform *platform) 2450 { 2451 mutex_lock(&client_mutex); 2452 list_del(&platform->list); 2453 mutex_unlock(&client_mutex); 2454 2455 pr_debug("Unregistered platform '%s'\n", platform->name); 2456 } 2457 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform); 2458 2459 static u64 codec_format_map[] = { 2460 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE, 2461 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE, 2462 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE, 2463 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE, 2464 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE, 2465 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE, 2466 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 2467 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 2468 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE, 2469 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE, 2470 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE, 2471 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE, 2472 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE, 2473 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE, 2474 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE 2475 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE, 2476 }; 2477 2478 /* Fix up the DAI formats for endianness: codecs don't actually see 2479 * the endianness of the data but we're using the CPU format 2480 * definitions which do need to include endianness so we ensure that 2481 * codec DAIs always have both big and little endian variants set. 2482 */ 2483 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream) 2484 { 2485 int i; 2486 2487 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++) 2488 if (stream->formats & codec_format_map[i]) 2489 stream->formats |= codec_format_map[i]; 2490 } 2491 2492 /** 2493 * snd_soc_register_codec - Register a codec with the ASoC core 2494 * 2495 * @codec: codec to register 2496 */ 2497 int snd_soc_register_codec(struct snd_soc_codec *codec) 2498 { 2499 int i; 2500 2501 if (!codec->name) 2502 return -EINVAL; 2503 2504 /* The device should become mandatory over time */ 2505 if (!codec->dev) 2506 printk(KERN_WARNING "No device for codec %s\n", codec->name); 2507 2508 INIT_LIST_HEAD(&codec->list); 2509 2510 for (i = 0; i < codec->num_dai; i++) { 2511 fixup_codec_formats(&codec->dai[i].playback); 2512 fixup_codec_formats(&codec->dai[i].capture); 2513 } 2514 2515 mutex_lock(&client_mutex); 2516 list_add(&codec->list, &codec_list); 2517 snd_soc_instantiate_cards(); 2518 mutex_unlock(&client_mutex); 2519 2520 pr_debug("Registered codec '%s'\n", codec->name); 2521 2522 return 0; 2523 } 2524 EXPORT_SYMBOL_GPL(snd_soc_register_codec); 2525 2526 /** 2527 * snd_soc_unregister_codec - Unregister a codec from the ASoC core 2528 * 2529 * @codec: codec to unregister 2530 */ 2531 void snd_soc_unregister_codec(struct snd_soc_codec *codec) 2532 { 2533 mutex_lock(&client_mutex); 2534 list_del(&codec->list); 2535 mutex_unlock(&client_mutex); 2536 2537 pr_debug("Unregistered codec '%s'\n", codec->name); 2538 } 2539 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec); 2540 2541 static int __init snd_soc_init(void) 2542 { 2543 #ifdef CONFIG_DEBUG_FS 2544 debugfs_root = debugfs_create_dir("asoc", NULL); 2545 if (IS_ERR(debugfs_root) || !debugfs_root) { 2546 printk(KERN_WARNING 2547 "ASoC: Failed to create debugfs directory\n"); 2548 debugfs_root = NULL; 2549 } 2550 #endif 2551 2552 return platform_driver_register(&soc_driver); 2553 } 2554 2555 static void __exit snd_soc_exit(void) 2556 { 2557 #ifdef CONFIG_DEBUG_FS 2558 debugfs_remove_recursive(debugfs_root); 2559 #endif 2560 platform_driver_unregister(&soc_driver); 2561 } 2562 2563 module_init(snd_soc_init); 2564 module_exit(snd_soc_exit); 2565 2566 /* Module information */ 2567 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk"); 2568 MODULE_DESCRIPTION("ALSA SoC Core"); 2569 MODULE_LICENSE("GPL"); 2570 MODULE_ALIAS("platform:soc-audio"); 2571