xref: /openbmc/linux/sound/soc/soc-core.c (revision e1f7c9ee)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24 
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/of.h>
37 #include <linux/gpio.h>
38 #include <linux/of_gpio.h>
39 #include <sound/ac97_codec.h>
40 #include <sound/core.h>
41 #include <sound/jack.h>
42 #include <sound/pcm.h>
43 #include <sound/pcm_params.h>
44 #include <sound/soc.h>
45 #include <sound/soc-dpcm.h>
46 #include <sound/initval.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/asoc.h>
50 
51 #define NAME_SIZE	32
52 
53 #ifdef CONFIG_DEBUG_FS
54 struct dentry *snd_soc_debugfs_root;
55 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
56 #endif
57 
58 static DEFINE_MUTEX(client_mutex);
59 static LIST_HEAD(platform_list);
60 static LIST_HEAD(codec_list);
61 static LIST_HEAD(component_list);
62 
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71 
72 struct snd_ac97_reset_cfg {
73 	struct pinctrl *pctl;
74 	struct pinctrl_state *pstate_reset;
75 	struct pinctrl_state *pstate_warm_reset;
76 	struct pinctrl_state *pstate_run;
77 	int gpio_sdata;
78 	int gpio_sync;
79 	int gpio_reset;
80 };
81 
82 /* returns the minimum number of bytes needed to represent
83  * a particular given value */
84 static int min_bytes_needed(unsigned long val)
85 {
86 	int c = 0;
87 	int i;
88 
89 	for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
90 		if (val & (1UL << i))
91 			break;
92 	c = (sizeof val * 8) - c;
93 	if (!c || (c % 8))
94 		c = (c + 8) / 8;
95 	else
96 		c /= 8;
97 	return c;
98 }
99 
100 /* fill buf which is 'len' bytes with a formatted
101  * string of the form 'reg: value\n' */
102 static int format_register_str(struct snd_soc_codec *codec,
103 			       unsigned int reg, char *buf, size_t len)
104 {
105 	int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
106 	int regsize = codec->driver->reg_word_size * 2;
107 	int ret;
108 	char tmpbuf[len + 1];
109 	char regbuf[regsize + 1];
110 
111 	/* since tmpbuf is allocated on the stack, warn the callers if they
112 	 * try to abuse this function */
113 	WARN_ON(len > 63);
114 
115 	/* +2 for ': ' and + 1 for '\n' */
116 	if (wordsize + regsize + 2 + 1 != len)
117 		return -EINVAL;
118 
119 	ret = snd_soc_read(codec, reg);
120 	if (ret < 0) {
121 		memset(regbuf, 'X', regsize);
122 		regbuf[regsize] = '\0';
123 	} else {
124 		snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
125 	}
126 
127 	/* prepare the buffer */
128 	snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
129 	/* copy it back to the caller without the '\0' */
130 	memcpy(buf, tmpbuf, len);
131 
132 	return 0;
133 }
134 
135 /* codec register dump */
136 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
137 				  size_t count, loff_t pos)
138 {
139 	int i, step = 1;
140 	int wordsize, regsize;
141 	int len;
142 	size_t total = 0;
143 	loff_t p = 0;
144 
145 	wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
146 	regsize = codec->driver->reg_word_size * 2;
147 
148 	len = wordsize + regsize + 2 + 1;
149 
150 	if (!codec->driver->reg_cache_size)
151 		return 0;
152 
153 	if (codec->driver->reg_cache_step)
154 		step = codec->driver->reg_cache_step;
155 
156 	for (i = 0; i < codec->driver->reg_cache_size; i += step) {
157 		/* only support larger than PAGE_SIZE bytes debugfs
158 		 * entries for the default case */
159 		if (p >= pos) {
160 			if (total + len >= count - 1)
161 				break;
162 			format_register_str(codec, i, buf + total, len);
163 			total += len;
164 		}
165 		p += len;
166 	}
167 
168 	total = min(total, count - 1);
169 
170 	return total;
171 }
172 
173 static ssize_t codec_reg_show(struct device *dev,
174 	struct device_attribute *attr, char *buf)
175 {
176 	struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
177 
178 	return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
179 }
180 
181 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
182 
183 static ssize_t pmdown_time_show(struct device *dev,
184 				struct device_attribute *attr, char *buf)
185 {
186 	struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
187 
188 	return sprintf(buf, "%ld\n", rtd->pmdown_time);
189 }
190 
191 static ssize_t pmdown_time_set(struct device *dev,
192 			       struct device_attribute *attr,
193 			       const char *buf, size_t count)
194 {
195 	struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
196 	int ret;
197 
198 	ret = kstrtol(buf, 10, &rtd->pmdown_time);
199 	if (ret)
200 		return ret;
201 
202 	return count;
203 }
204 
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206 
207 #ifdef CONFIG_DEBUG_FS
208 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
209 				   size_t count, loff_t *ppos)
210 {
211 	ssize_t ret;
212 	struct snd_soc_codec *codec = file->private_data;
213 	char *buf;
214 
215 	if (*ppos < 0 || !count)
216 		return -EINVAL;
217 
218 	buf = kmalloc(count, GFP_KERNEL);
219 	if (!buf)
220 		return -ENOMEM;
221 
222 	ret = soc_codec_reg_show(codec, buf, count, *ppos);
223 	if (ret >= 0) {
224 		if (copy_to_user(user_buf, buf, ret)) {
225 			kfree(buf);
226 			return -EFAULT;
227 		}
228 		*ppos += ret;
229 	}
230 
231 	kfree(buf);
232 	return ret;
233 }
234 
235 static ssize_t codec_reg_write_file(struct file *file,
236 		const char __user *user_buf, size_t count, loff_t *ppos)
237 {
238 	char buf[32];
239 	size_t buf_size;
240 	char *start = buf;
241 	unsigned long reg, value;
242 	struct snd_soc_codec *codec = file->private_data;
243 	int ret;
244 
245 	buf_size = min(count, (sizeof(buf)-1));
246 	if (copy_from_user(buf, user_buf, buf_size))
247 		return -EFAULT;
248 	buf[buf_size] = 0;
249 
250 	while (*start == ' ')
251 		start++;
252 	reg = simple_strtoul(start, &start, 16);
253 	while (*start == ' ')
254 		start++;
255 	ret = kstrtoul(start, 16, &value);
256 	if (ret)
257 		return ret;
258 
259 	/* Userspace has been fiddling around behind the kernel's back */
260 	add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE);
261 
262 	snd_soc_write(codec, reg, value);
263 	return buf_size;
264 }
265 
266 static const struct file_operations codec_reg_fops = {
267 	.open = simple_open,
268 	.read = codec_reg_read_file,
269 	.write = codec_reg_write_file,
270 	.llseek = default_llseek,
271 };
272 
273 static void soc_init_component_debugfs(struct snd_soc_component *component)
274 {
275 	if (component->debugfs_prefix) {
276 		char *name;
277 
278 		name = kasprintf(GFP_KERNEL, "%s:%s",
279 			component->debugfs_prefix, component->name);
280 		if (name) {
281 			component->debugfs_root = debugfs_create_dir(name,
282 				component->card->debugfs_card_root);
283 			kfree(name);
284 		}
285 	} else {
286 		component->debugfs_root = debugfs_create_dir(component->name,
287 				component->card->debugfs_card_root);
288 	}
289 
290 	if (!component->debugfs_root) {
291 		dev_warn(component->dev,
292 			"ASoC: Failed to create component debugfs directory\n");
293 		return;
294 	}
295 
296 	snd_soc_dapm_debugfs_init(snd_soc_component_get_dapm(component),
297 		component->debugfs_root);
298 
299 	if (component->init_debugfs)
300 		component->init_debugfs(component);
301 }
302 
303 static void soc_cleanup_component_debugfs(struct snd_soc_component *component)
304 {
305 	debugfs_remove_recursive(component->debugfs_root);
306 }
307 
308 static void soc_init_codec_debugfs(struct snd_soc_component *component)
309 {
310 	struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
311 
312 	debugfs_create_bool("cache_sync", 0444, codec->component.debugfs_root,
313 			    &codec->cache_sync);
314 
315 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
316 						 codec->component.debugfs_root,
317 						 codec, &codec_reg_fops);
318 	if (!codec->debugfs_reg)
319 		dev_warn(codec->dev,
320 			"ASoC: Failed to create codec register debugfs file\n");
321 }
322 
323 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
324 				    size_t count, loff_t *ppos)
325 {
326 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
327 	ssize_t len, ret = 0;
328 	struct snd_soc_codec *codec;
329 
330 	if (!buf)
331 		return -ENOMEM;
332 
333 	list_for_each_entry(codec, &codec_list, list) {
334 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
335 			       codec->component.name);
336 		if (len >= 0)
337 			ret += len;
338 		if (ret > PAGE_SIZE) {
339 			ret = PAGE_SIZE;
340 			break;
341 		}
342 	}
343 
344 	if (ret >= 0)
345 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
346 
347 	kfree(buf);
348 
349 	return ret;
350 }
351 
352 static const struct file_operations codec_list_fops = {
353 	.read = codec_list_read_file,
354 	.llseek = default_llseek,/* read accesses f_pos */
355 };
356 
357 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
358 				  size_t count, loff_t *ppos)
359 {
360 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
361 	ssize_t len, ret = 0;
362 	struct snd_soc_component *component;
363 	struct snd_soc_dai *dai;
364 
365 	if (!buf)
366 		return -ENOMEM;
367 
368 	list_for_each_entry(component, &component_list, list) {
369 		list_for_each_entry(dai, &component->dai_list, list) {
370 			len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
371 				dai->name);
372 			if (len >= 0)
373 				ret += len;
374 			if (ret > PAGE_SIZE) {
375 				ret = PAGE_SIZE;
376 				break;
377 			}
378 		}
379 	}
380 
381 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
382 
383 	kfree(buf);
384 
385 	return ret;
386 }
387 
388 static const struct file_operations dai_list_fops = {
389 	.read = dai_list_read_file,
390 	.llseek = default_llseek,/* read accesses f_pos */
391 };
392 
393 static ssize_t platform_list_read_file(struct file *file,
394 				       char __user *user_buf,
395 				       size_t count, loff_t *ppos)
396 {
397 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
398 	ssize_t len, ret = 0;
399 	struct snd_soc_platform *platform;
400 
401 	if (!buf)
402 		return -ENOMEM;
403 
404 	list_for_each_entry(platform, &platform_list, list) {
405 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
406 			       platform->component.name);
407 		if (len >= 0)
408 			ret += len;
409 		if (ret > PAGE_SIZE) {
410 			ret = PAGE_SIZE;
411 			break;
412 		}
413 	}
414 
415 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
416 
417 	kfree(buf);
418 
419 	return ret;
420 }
421 
422 static const struct file_operations platform_list_fops = {
423 	.read = platform_list_read_file,
424 	.llseek = default_llseek,/* read accesses f_pos */
425 };
426 
427 static void soc_init_card_debugfs(struct snd_soc_card *card)
428 {
429 	card->debugfs_card_root = debugfs_create_dir(card->name,
430 						     snd_soc_debugfs_root);
431 	if (!card->debugfs_card_root) {
432 		dev_warn(card->dev,
433 			 "ASoC: Failed to create card debugfs directory\n");
434 		return;
435 	}
436 
437 	card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
438 						    card->debugfs_card_root,
439 						    &card->pop_time);
440 	if (!card->debugfs_pop_time)
441 		dev_warn(card->dev,
442 		       "ASoC: Failed to create pop time debugfs file\n");
443 }
444 
445 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
446 {
447 	debugfs_remove_recursive(card->debugfs_card_root);
448 }
449 
450 #else
451 
452 #define soc_init_codec_debugfs NULL
453 
454 static inline void soc_init_component_debugfs(
455 	struct snd_soc_component *component)
456 {
457 }
458 
459 static inline void soc_cleanup_component_debugfs(
460 	struct snd_soc_component *component)
461 {
462 }
463 
464 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
465 {
466 }
467 
468 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
469 {
470 }
471 #endif
472 
473 struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card,
474 		const char *dai_link, int stream)
475 {
476 	int i;
477 
478 	for (i = 0; i < card->num_links; i++) {
479 		if (card->rtd[i].dai_link->no_pcm &&
480 			!strcmp(card->rtd[i].dai_link->name, dai_link))
481 			return card->rtd[i].pcm->streams[stream].substream;
482 	}
483 	dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link);
484 	return NULL;
485 }
486 EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream);
487 
488 struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card,
489 		const char *dai_link)
490 {
491 	int i;
492 
493 	for (i = 0; i < card->num_links; i++) {
494 		if (!strcmp(card->rtd[i].dai_link->name, dai_link))
495 			return &card->rtd[i];
496 	}
497 	dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link);
498 	return NULL;
499 }
500 EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime);
501 
502 #ifdef CONFIG_SND_SOC_AC97_BUS
503 /* unregister ac97 codec */
504 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
505 {
506 	if (codec->ac97->dev.bus)
507 		device_unregister(&codec->ac97->dev);
508 	return 0;
509 }
510 
511 /* stop no dev release warning */
512 static void soc_ac97_device_release(struct device *dev){}
513 
514 /* register ac97 codec to bus */
515 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
516 {
517 	int err;
518 
519 	codec->ac97->dev.bus = &ac97_bus_type;
520 	codec->ac97->dev.parent = codec->component.card->dev;
521 	codec->ac97->dev.release = soc_ac97_device_release;
522 
523 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
524 		     codec->component.card->snd_card->number, 0,
525 		     codec->component.name);
526 	err = device_register(&codec->ac97->dev);
527 	if (err < 0) {
528 		dev_err(codec->dev, "ASoC: Can't register ac97 bus\n");
529 		codec->ac97->dev.bus = NULL;
530 		return err;
531 	}
532 	return 0;
533 }
534 #endif
535 
536 static void codec2codec_close_delayed_work(struct work_struct *work)
537 {
538 	/* Currently nothing to do for c2c links
539 	 * Since c2c links are internal nodes in the DAPM graph and
540 	 * don't interface with the outside world or application layer
541 	 * we don't have to do any special handling on close.
542 	 */
543 }
544 
545 #ifdef CONFIG_PM_SLEEP
546 /* powers down audio subsystem for suspend */
547 int snd_soc_suspend(struct device *dev)
548 {
549 	struct snd_soc_card *card = dev_get_drvdata(dev);
550 	struct snd_soc_codec *codec;
551 	int i, j;
552 
553 	/* If the card is not initialized yet there is nothing to do */
554 	if (!card->instantiated)
555 		return 0;
556 
557 	/* Due to the resume being scheduled into a workqueue we could
558 	* suspend before that's finished - wait for it to complete.
559 	 */
560 	snd_power_lock(card->snd_card);
561 	snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
562 	snd_power_unlock(card->snd_card);
563 
564 	/* we're going to block userspace touching us until resume completes */
565 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
566 
567 	/* mute any active DACs */
568 	for (i = 0; i < card->num_rtd; i++) {
569 
570 		if (card->rtd[i].dai_link->ignore_suspend)
571 			continue;
572 
573 		for (j = 0; j < card->rtd[i].num_codecs; j++) {
574 			struct snd_soc_dai *dai = card->rtd[i].codec_dais[j];
575 			struct snd_soc_dai_driver *drv = dai->driver;
576 
577 			if (drv->ops->digital_mute && dai->playback_active)
578 				drv->ops->digital_mute(dai, 1);
579 		}
580 	}
581 
582 	/* suspend all pcms */
583 	for (i = 0; i < card->num_rtd; i++) {
584 		if (card->rtd[i].dai_link->ignore_suspend)
585 			continue;
586 
587 		snd_pcm_suspend_all(card->rtd[i].pcm);
588 	}
589 
590 	if (card->suspend_pre)
591 		card->suspend_pre(card);
592 
593 	for (i = 0; i < card->num_rtd; i++) {
594 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
595 		struct snd_soc_platform *platform = card->rtd[i].platform;
596 
597 		if (card->rtd[i].dai_link->ignore_suspend)
598 			continue;
599 
600 		if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
601 			cpu_dai->driver->suspend(cpu_dai);
602 		if (platform->driver->suspend && !platform->suspended) {
603 			platform->driver->suspend(cpu_dai);
604 			platform->suspended = 1;
605 		}
606 	}
607 
608 	/* close any waiting streams and save state */
609 	for (i = 0; i < card->num_rtd; i++) {
610 		struct snd_soc_dai **codec_dais = card->rtd[i].codec_dais;
611 		flush_delayed_work(&card->rtd[i].delayed_work);
612 		for (j = 0; j < card->rtd[i].num_codecs; j++) {
613 			codec_dais[j]->codec->dapm.suspend_bias_level =
614 					codec_dais[j]->codec->dapm.bias_level;
615 		}
616 	}
617 
618 	for (i = 0; i < card->num_rtd; i++) {
619 
620 		if (card->rtd[i].dai_link->ignore_suspend)
621 			continue;
622 
623 		snd_soc_dapm_stream_event(&card->rtd[i],
624 					  SNDRV_PCM_STREAM_PLAYBACK,
625 					  SND_SOC_DAPM_STREAM_SUSPEND);
626 
627 		snd_soc_dapm_stream_event(&card->rtd[i],
628 					  SNDRV_PCM_STREAM_CAPTURE,
629 					  SND_SOC_DAPM_STREAM_SUSPEND);
630 	}
631 
632 	/* Recheck all analogue paths too */
633 	dapm_mark_io_dirty(&card->dapm);
634 	snd_soc_dapm_sync(&card->dapm);
635 
636 	/* suspend all CODECs */
637 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
638 		/* If there are paths active then the CODEC will be held with
639 		 * bias _ON and should not be suspended. */
640 		if (!codec->suspended) {
641 			switch (codec->dapm.bias_level) {
642 			case SND_SOC_BIAS_STANDBY:
643 				/*
644 				 * If the CODEC is capable of idle
645 				 * bias off then being in STANDBY
646 				 * means it's doing something,
647 				 * otherwise fall through.
648 				 */
649 				if (codec->dapm.idle_bias_off) {
650 					dev_dbg(codec->dev,
651 						"ASoC: idle_bias_off CODEC on over suspend\n");
652 					break;
653 				}
654 
655 			case SND_SOC_BIAS_OFF:
656 				if (codec->driver->suspend)
657 					codec->driver->suspend(codec);
658 				codec->suspended = 1;
659 				codec->cache_sync = 1;
660 				if (codec->component.regmap)
661 					regcache_mark_dirty(codec->component.regmap);
662 				/* deactivate pins to sleep state */
663 				pinctrl_pm_select_sleep_state(codec->dev);
664 				break;
665 			default:
666 				dev_dbg(codec->dev,
667 					"ASoC: CODEC is on over suspend\n");
668 				break;
669 			}
670 		}
671 	}
672 
673 	for (i = 0; i < card->num_rtd; i++) {
674 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
675 
676 		if (card->rtd[i].dai_link->ignore_suspend)
677 			continue;
678 
679 		if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
680 			cpu_dai->driver->suspend(cpu_dai);
681 
682 		/* deactivate pins to sleep state */
683 		pinctrl_pm_select_sleep_state(cpu_dai->dev);
684 	}
685 
686 	if (card->suspend_post)
687 		card->suspend_post(card);
688 
689 	return 0;
690 }
691 EXPORT_SYMBOL_GPL(snd_soc_suspend);
692 
693 /* deferred resume work, so resume can complete before we finished
694  * setting our codec back up, which can be very slow on I2C
695  */
696 static void soc_resume_deferred(struct work_struct *work)
697 {
698 	struct snd_soc_card *card =
699 			container_of(work, struct snd_soc_card, deferred_resume_work);
700 	struct snd_soc_codec *codec;
701 	int i, j;
702 
703 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
704 	 * so userspace apps are blocked from touching us
705 	 */
706 
707 	dev_dbg(card->dev, "ASoC: starting resume work\n");
708 
709 	/* Bring us up into D2 so that DAPM starts enabling things */
710 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
711 
712 	if (card->resume_pre)
713 		card->resume_pre(card);
714 
715 	/* resume AC97 DAIs */
716 	for (i = 0; i < card->num_rtd; i++) {
717 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
718 
719 		if (card->rtd[i].dai_link->ignore_suspend)
720 			continue;
721 
722 		if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
723 			cpu_dai->driver->resume(cpu_dai);
724 	}
725 
726 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
727 		/* If the CODEC was idle over suspend then it will have been
728 		 * left with bias OFF or STANDBY and suspended so we must now
729 		 * resume.  Otherwise the suspend was suppressed.
730 		 */
731 		if (codec->suspended) {
732 			switch (codec->dapm.bias_level) {
733 			case SND_SOC_BIAS_STANDBY:
734 			case SND_SOC_BIAS_OFF:
735 				if (codec->driver->resume)
736 					codec->driver->resume(codec);
737 				codec->suspended = 0;
738 				break;
739 			default:
740 				dev_dbg(codec->dev,
741 					"ASoC: CODEC was on over suspend\n");
742 				break;
743 			}
744 		}
745 	}
746 
747 	for (i = 0; i < card->num_rtd; i++) {
748 
749 		if (card->rtd[i].dai_link->ignore_suspend)
750 			continue;
751 
752 		snd_soc_dapm_stream_event(&card->rtd[i],
753 					  SNDRV_PCM_STREAM_PLAYBACK,
754 					  SND_SOC_DAPM_STREAM_RESUME);
755 
756 		snd_soc_dapm_stream_event(&card->rtd[i],
757 					  SNDRV_PCM_STREAM_CAPTURE,
758 					  SND_SOC_DAPM_STREAM_RESUME);
759 	}
760 
761 	/* unmute any active DACs */
762 	for (i = 0; i < card->num_rtd; i++) {
763 
764 		if (card->rtd[i].dai_link->ignore_suspend)
765 			continue;
766 
767 		for (j = 0; j < card->rtd[i].num_codecs; j++) {
768 			struct snd_soc_dai *dai = card->rtd[i].codec_dais[j];
769 			struct snd_soc_dai_driver *drv = dai->driver;
770 
771 			if (drv->ops->digital_mute && dai->playback_active)
772 				drv->ops->digital_mute(dai, 0);
773 		}
774 	}
775 
776 	for (i = 0; i < card->num_rtd; i++) {
777 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
778 		struct snd_soc_platform *platform = card->rtd[i].platform;
779 
780 		if (card->rtd[i].dai_link->ignore_suspend)
781 			continue;
782 
783 		if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
784 			cpu_dai->driver->resume(cpu_dai);
785 		if (platform->driver->resume && platform->suspended) {
786 			platform->driver->resume(cpu_dai);
787 			platform->suspended = 0;
788 		}
789 	}
790 
791 	if (card->resume_post)
792 		card->resume_post(card);
793 
794 	dev_dbg(card->dev, "ASoC: resume work completed\n");
795 
796 	/* userspace can access us now we are back as we were before */
797 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
798 
799 	/* Recheck all analogue paths too */
800 	dapm_mark_io_dirty(&card->dapm);
801 	snd_soc_dapm_sync(&card->dapm);
802 }
803 
804 /* powers up audio subsystem after a suspend */
805 int snd_soc_resume(struct device *dev)
806 {
807 	struct snd_soc_card *card = dev_get_drvdata(dev);
808 	int i, ac97_control = 0;
809 
810 	/* If the card is not initialized yet there is nothing to do */
811 	if (!card->instantiated)
812 		return 0;
813 
814 	/* activate pins from sleep state */
815 	for (i = 0; i < card->num_rtd; i++) {
816 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
817 		struct snd_soc_dai **codec_dais = rtd->codec_dais;
818 		struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
819 		int j;
820 
821 		if (cpu_dai->active)
822 			pinctrl_pm_select_default_state(cpu_dai->dev);
823 
824 		for (j = 0; j < rtd->num_codecs; j++) {
825 			struct snd_soc_dai *codec_dai = codec_dais[j];
826 			if (codec_dai->active)
827 				pinctrl_pm_select_default_state(codec_dai->dev);
828 		}
829 	}
830 
831 	/* AC97 devices might have other drivers hanging off them so
832 	 * need to resume immediately.  Other drivers don't have that
833 	 * problem and may take a substantial amount of time to resume
834 	 * due to I/O costs and anti-pop so handle them out of line.
835 	 */
836 	for (i = 0; i < card->num_rtd; i++) {
837 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
838 		ac97_control |= cpu_dai->driver->ac97_control;
839 	}
840 	if (ac97_control) {
841 		dev_dbg(dev, "ASoC: Resuming AC97 immediately\n");
842 		soc_resume_deferred(&card->deferred_resume_work);
843 	} else {
844 		dev_dbg(dev, "ASoC: Scheduling resume work\n");
845 		if (!schedule_work(&card->deferred_resume_work))
846 			dev_err(dev, "ASoC: resume work item may be lost\n");
847 	}
848 
849 	return 0;
850 }
851 EXPORT_SYMBOL_GPL(snd_soc_resume);
852 #else
853 #define snd_soc_suspend NULL
854 #define snd_soc_resume NULL
855 #endif
856 
857 static const struct snd_soc_dai_ops null_dai_ops = {
858 };
859 
860 static struct snd_soc_component *soc_find_component(
861 	const struct device_node *of_node, const char *name)
862 {
863 	struct snd_soc_component *component;
864 
865 	list_for_each_entry(component, &component_list, list) {
866 		if (of_node) {
867 			if (component->dev->of_node == of_node)
868 				return component;
869 		} else if (strcmp(component->name, name) == 0) {
870 			return component;
871 		}
872 	}
873 
874 	return NULL;
875 }
876 
877 static struct snd_soc_dai *snd_soc_find_dai(
878 	const struct snd_soc_dai_link_component *dlc)
879 {
880 	struct snd_soc_component *component;
881 	struct snd_soc_dai *dai;
882 
883 	/* Find CPU DAI from registered DAIs*/
884 	list_for_each_entry(component, &component_list, list) {
885 		if (dlc->of_node && component->dev->of_node != dlc->of_node)
886 			continue;
887 		if (dlc->name && strcmp(dev_name(component->dev), dlc->name))
888 			continue;
889 		list_for_each_entry(dai, &component->dai_list, list) {
890 			if (dlc->dai_name && strcmp(dai->name, dlc->dai_name))
891 				continue;
892 
893 			return dai;
894 		}
895 	}
896 
897 	return NULL;
898 }
899 
900 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
901 {
902 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
903 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
904 	struct snd_soc_dai_link_component *codecs = dai_link->codecs;
905 	struct snd_soc_dai_link_component cpu_dai_component;
906 	struct snd_soc_dai **codec_dais = rtd->codec_dais;
907 	struct snd_soc_platform *platform;
908 	const char *platform_name;
909 	int i;
910 
911 	dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num);
912 
913 	cpu_dai_component.name = dai_link->cpu_name;
914 	cpu_dai_component.of_node = dai_link->cpu_of_node;
915 	cpu_dai_component.dai_name = dai_link->cpu_dai_name;
916 	rtd->cpu_dai = snd_soc_find_dai(&cpu_dai_component);
917 	if (!rtd->cpu_dai) {
918 		dev_err(card->dev, "ASoC: CPU DAI %s not registered\n",
919 			dai_link->cpu_dai_name);
920 		return -EPROBE_DEFER;
921 	}
922 
923 	rtd->num_codecs = dai_link->num_codecs;
924 
925 	/* Find CODEC from registered CODECs */
926 	for (i = 0; i < rtd->num_codecs; i++) {
927 		codec_dais[i] = snd_soc_find_dai(&codecs[i]);
928 		if (!codec_dais[i]) {
929 			dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n",
930 				codecs[i].dai_name);
931 			return -EPROBE_DEFER;
932 		}
933 	}
934 
935 	/* Single codec links expect codec and codec_dai in runtime data */
936 	rtd->codec_dai = codec_dais[0];
937 	rtd->codec = rtd->codec_dai->codec;
938 
939 	/* if there's no platform we match on the empty platform */
940 	platform_name = dai_link->platform_name;
941 	if (!platform_name && !dai_link->platform_of_node)
942 		platform_name = "snd-soc-dummy";
943 
944 	/* find one from the set of registered platforms */
945 	list_for_each_entry(platform, &platform_list, list) {
946 		if (dai_link->platform_of_node) {
947 			if (platform->dev->of_node !=
948 			    dai_link->platform_of_node)
949 				continue;
950 		} else {
951 			if (strcmp(platform->component.name, platform_name))
952 				continue;
953 		}
954 
955 		rtd->platform = platform;
956 	}
957 	if (!rtd->platform) {
958 		dev_err(card->dev, "ASoC: platform %s not registered\n",
959 			dai_link->platform_name);
960 		return -EPROBE_DEFER;
961 	}
962 
963 	card->num_rtd++;
964 
965 	return 0;
966 }
967 
968 static void soc_remove_component(struct snd_soc_component *component)
969 {
970 	if (!component->probed)
971 		return;
972 
973 	/* This is a HACK and will be removed soon */
974 	if (component->codec)
975 		list_del(&component->codec->card_list);
976 
977 	if (component->remove)
978 		component->remove(component);
979 
980 	snd_soc_dapm_free(snd_soc_component_get_dapm(component));
981 
982 	soc_cleanup_component_debugfs(component);
983 	component->probed = 0;
984 	module_put(component->dev->driver->owner);
985 }
986 
987 static void soc_remove_dai(struct snd_soc_dai *dai, int order)
988 {
989 	int err;
990 
991 	if (dai && dai->probed &&
992 			dai->driver->remove_order == order) {
993 		if (dai->driver->remove) {
994 			err = dai->driver->remove(dai);
995 			if (err < 0)
996 				dev_err(dai->dev,
997 					"ASoC: failed to remove %s: %d\n",
998 					dai->name, err);
999 		}
1000 		dai->probed = 0;
1001 	}
1002 }
1003 
1004 static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order)
1005 {
1006 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1007 	int i;
1008 
1009 	/* unregister the rtd device */
1010 	if (rtd->dev_registered) {
1011 		device_remove_file(rtd->dev, &dev_attr_pmdown_time);
1012 		device_remove_file(rtd->dev, &dev_attr_codec_reg);
1013 		device_unregister(rtd->dev);
1014 		rtd->dev_registered = 0;
1015 	}
1016 
1017 	/* remove the CODEC DAI */
1018 	for (i = 0; i < rtd->num_codecs; i++)
1019 		soc_remove_dai(rtd->codec_dais[i], order);
1020 
1021 	soc_remove_dai(rtd->cpu_dai, order);
1022 }
1023 
1024 static void soc_remove_link_components(struct snd_soc_card *card, int num,
1025 				       int order)
1026 {
1027 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1028 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1029 	struct snd_soc_platform *platform = rtd->platform;
1030 	struct snd_soc_component *component;
1031 	int i;
1032 
1033 	/* remove the platform */
1034 	if (platform && platform->component.driver->remove_order == order)
1035 		soc_remove_component(&platform->component);
1036 
1037 	/* remove the CODEC-side CODEC */
1038 	for (i = 0; i < rtd->num_codecs; i++) {
1039 		component = rtd->codec_dais[i]->component;
1040 		if (component->driver->remove_order == order)
1041 			soc_remove_component(component);
1042 	}
1043 
1044 	/* remove any CPU-side CODEC */
1045 	if (cpu_dai) {
1046 		if (cpu_dai->component->driver->remove_order == order)
1047 			soc_remove_component(cpu_dai->component);
1048 	}
1049 }
1050 
1051 static void soc_remove_dai_links(struct snd_soc_card *card)
1052 {
1053 	int dai, order;
1054 
1055 	for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1056 			order++) {
1057 		for (dai = 0; dai < card->num_rtd; dai++)
1058 			soc_remove_link_dais(card, dai, order);
1059 	}
1060 
1061 	for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1062 			order++) {
1063 		for (dai = 0; dai < card->num_rtd; dai++)
1064 			soc_remove_link_components(card, dai, order);
1065 	}
1066 
1067 	card->num_rtd = 0;
1068 }
1069 
1070 static void soc_set_name_prefix(struct snd_soc_card *card,
1071 				struct snd_soc_component *component)
1072 {
1073 	int i;
1074 
1075 	if (card->codec_conf == NULL)
1076 		return;
1077 
1078 	for (i = 0; i < card->num_configs; i++) {
1079 		struct snd_soc_codec_conf *map = &card->codec_conf[i];
1080 		if (map->of_node && component->dev->of_node != map->of_node)
1081 			continue;
1082 		if (map->dev_name && strcmp(component->name, map->dev_name))
1083 			continue;
1084 		component->name_prefix = map->name_prefix;
1085 		break;
1086 	}
1087 }
1088 
1089 static int soc_probe_component(struct snd_soc_card *card,
1090 	struct snd_soc_component *component)
1091 {
1092 	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
1093 	struct snd_soc_dai *dai;
1094 	int ret;
1095 
1096 	if (component->probed)
1097 		return 0;
1098 
1099 	component->card = card;
1100 	dapm->card = card;
1101 	soc_set_name_prefix(card, component);
1102 
1103 	if (!try_module_get(component->dev->driver->owner))
1104 		return -ENODEV;
1105 
1106 	soc_init_component_debugfs(component);
1107 
1108 	if (component->dapm_widgets) {
1109 		ret = snd_soc_dapm_new_controls(dapm, component->dapm_widgets,
1110 			component->num_dapm_widgets);
1111 
1112 		if (ret != 0) {
1113 			dev_err(component->dev,
1114 				"Failed to create new controls %d\n", ret);
1115 			goto err_probe;
1116 		}
1117 	}
1118 
1119 	list_for_each_entry(dai, &component->dai_list, list) {
1120 		ret = snd_soc_dapm_new_dai_widgets(dapm, dai);
1121 		if (ret != 0) {
1122 			dev_err(component->dev,
1123 				"Failed to create DAI widgets %d\n", ret);
1124 			goto err_probe;
1125 		}
1126 	}
1127 
1128 	if (component->probe) {
1129 		ret = component->probe(component);
1130 		if (ret < 0) {
1131 			dev_err(component->dev,
1132 				"ASoC: failed to probe component %d\n", ret);
1133 			goto err_probe;
1134 		}
1135 
1136 		WARN(dapm->idle_bias_off &&
1137 			dapm->bias_level != SND_SOC_BIAS_OFF,
1138 			"codec %s can not start from non-off bias with idle_bias_off==1\n",
1139 			component->name);
1140 	}
1141 
1142 	if (component->controls)
1143 		snd_soc_add_component_controls(component, component->controls,
1144 				     component->num_controls);
1145 	if (component->dapm_routes)
1146 		snd_soc_dapm_add_routes(dapm, component->dapm_routes,
1147 					component->num_dapm_routes);
1148 
1149 	component->probed = 1;
1150 	list_add(&dapm->list, &card->dapm_list);
1151 
1152 	/* This is a HACK and will be removed soon */
1153 	if (component->codec)
1154 		list_add(&component->codec->card_list, &card->codec_dev_list);
1155 
1156 	return 0;
1157 
1158 err_probe:
1159 	soc_cleanup_component_debugfs(component);
1160 	module_put(component->dev->driver->owner);
1161 
1162 	return ret;
1163 }
1164 
1165 static void rtd_release(struct device *dev)
1166 {
1167 	kfree(dev);
1168 }
1169 
1170 static int soc_post_component_init(struct snd_soc_pcm_runtime *rtd,
1171 	const char *name)
1172 {
1173 	int ret = 0;
1174 
1175 	/* register the rtd device */
1176 	rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
1177 	if (!rtd->dev)
1178 		return -ENOMEM;
1179 	device_initialize(rtd->dev);
1180 	rtd->dev->parent = rtd->card->dev;
1181 	rtd->dev->release = rtd_release;
1182 	dev_set_name(rtd->dev, "%s", name);
1183 	dev_set_drvdata(rtd->dev, rtd);
1184 	mutex_init(&rtd->pcm_mutex);
1185 	INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients);
1186 	INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients);
1187 	INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients);
1188 	INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients);
1189 	ret = device_add(rtd->dev);
1190 	if (ret < 0) {
1191 		/* calling put_device() here to free the rtd->dev */
1192 		put_device(rtd->dev);
1193 		dev_err(rtd->card->dev,
1194 			"ASoC: failed to register runtime device: %d\n", ret);
1195 		return ret;
1196 	}
1197 	rtd->dev_registered = 1;
1198 
1199 	if (rtd->codec) {
1200 		/* add DAPM sysfs entries for this codec */
1201 		ret = snd_soc_dapm_sys_add(rtd->dev);
1202 		if (ret < 0)
1203 			dev_err(rtd->dev,
1204 				"ASoC: failed to add codec dapm sysfs entries: %d\n",
1205 				ret);
1206 
1207 		/* add codec sysfs entries */
1208 		ret = device_create_file(rtd->dev, &dev_attr_codec_reg);
1209 		if (ret < 0)
1210 			dev_err(rtd->dev,
1211 				"ASoC: failed to add codec sysfs files: %d\n",
1212 				ret);
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 static int soc_probe_link_components(struct snd_soc_card *card, int num,
1219 				     int order)
1220 {
1221 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1222 	struct snd_soc_platform *platform = rtd->platform;
1223 	struct snd_soc_component *component;
1224 	int i, ret;
1225 
1226 	/* probe the CPU-side component, if it is a CODEC */
1227 	component = rtd->cpu_dai->component;
1228 	if (component->driver->probe_order == order) {
1229 		ret = soc_probe_component(card, component);
1230 		if (ret < 0)
1231 			return ret;
1232 	}
1233 
1234 	/* probe the CODEC-side components */
1235 	for (i = 0; i < rtd->num_codecs; i++) {
1236 		component = rtd->codec_dais[i]->component;
1237 		if (component->driver->probe_order == order) {
1238 			ret = soc_probe_component(card, component);
1239 			if (ret < 0)
1240 				return ret;
1241 		}
1242 	}
1243 
1244 	/* probe the platform */
1245 	if (platform->component.driver->probe_order == order) {
1246 		ret = soc_probe_component(card, &platform->component);
1247 		if (ret < 0)
1248 			return ret;
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int soc_probe_codec_dai(struct snd_soc_card *card,
1255 			       struct snd_soc_dai *codec_dai,
1256 			       int order)
1257 {
1258 	int ret;
1259 
1260 	if (!codec_dai->probed && codec_dai->driver->probe_order == order) {
1261 		if (codec_dai->driver->probe) {
1262 			ret = codec_dai->driver->probe(codec_dai);
1263 			if (ret < 0) {
1264 				dev_err(codec_dai->dev,
1265 					"ASoC: failed to probe CODEC DAI %s: %d\n",
1266 					codec_dai->name, ret);
1267 				return ret;
1268 			}
1269 		}
1270 
1271 		/* mark codec_dai as probed and add to card dai list */
1272 		codec_dai->probed = 1;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 static int soc_link_dai_widgets(struct snd_soc_card *card,
1279 				struct snd_soc_dai_link *dai_link,
1280 				struct snd_soc_pcm_runtime *rtd)
1281 {
1282 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1283 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
1284 	struct snd_soc_dapm_widget *play_w, *capture_w;
1285 	int ret;
1286 
1287 	if (rtd->num_codecs > 1)
1288 		dev_warn(card->dev, "ASoC: Multiple codecs not supported yet\n");
1289 
1290 	/* link the DAI widgets */
1291 	play_w = codec_dai->playback_widget;
1292 	capture_w = cpu_dai->capture_widget;
1293 	if (play_w && capture_w) {
1294 		ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1295 					   capture_w, play_w);
1296 		if (ret != 0) {
1297 			dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1298 				play_w->name, capture_w->name, ret);
1299 			return ret;
1300 		}
1301 	}
1302 
1303 	play_w = cpu_dai->playback_widget;
1304 	capture_w = codec_dai->capture_widget;
1305 	if (play_w && capture_w) {
1306 		ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1307 					   capture_w, play_w);
1308 		if (ret != 0) {
1309 			dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1310 				play_w->name, capture_w->name, ret);
1311 			return ret;
1312 		}
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order)
1319 {
1320 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1321 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1322 	struct snd_soc_platform *platform = rtd->platform;
1323 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1324 	int i, ret;
1325 
1326 	dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n",
1327 			card->name, num, order);
1328 
1329 	/* config components */
1330 	cpu_dai->platform = platform;
1331 	cpu_dai->card = card;
1332 	for (i = 0; i < rtd->num_codecs; i++)
1333 		rtd->codec_dais[i]->card = card;
1334 
1335 	/* set default power off timeout */
1336 	rtd->pmdown_time = pmdown_time;
1337 
1338 	/* probe the cpu_dai */
1339 	if (!cpu_dai->probed &&
1340 			cpu_dai->driver->probe_order == order) {
1341 		if (cpu_dai->driver->probe) {
1342 			ret = cpu_dai->driver->probe(cpu_dai);
1343 			if (ret < 0) {
1344 				dev_err(cpu_dai->dev,
1345 					"ASoC: failed to probe CPU DAI %s: %d\n",
1346 					cpu_dai->name, ret);
1347 				return ret;
1348 			}
1349 		}
1350 		cpu_dai->probed = 1;
1351 	}
1352 
1353 	/* probe the CODEC DAI */
1354 	for (i = 0; i < rtd->num_codecs; i++) {
1355 		ret = soc_probe_codec_dai(card, rtd->codec_dais[i], order);
1356 		if (ret)
1357 			return ret;
1358 	}
1359 
1360 	/* complete DAI probe during last probe */
1361 	if (order != SND_SOC_COMP_ORDER_LAST)
1362 		return 0;
1363 
1364 	/* do machine specific initialization */
1365 	if (dai_link->init) {
1366 		ret = dai_link->init(rtd);
1367 		if (ret < 0) {
1368 			dev_err(card->dev, "ASoC: failed to init %s: %d\n",
1369 				dai_link->name, ret);
1370 			return ret;
1371 		}
1372 	}
1373 
1374 	ret = soc_post_component_init(rtd, dai_link->name);
1375 	if (ret)
1376 		return ret;
1377 
1378 #ifdef CONFIG_DEBUG_FS
1379 	/* add DPCM sysfs entries */
1380 	if (dai_link->dynamic) {
1381 		ret = soc_dpcm_debugfs_add(rtd);
1382 		if (ret < 0) {
1383 			dev_err(rtd->dev,
1384 				"ASoC: failed to add dpcm sysfs entries: %d\n",
1385 				ret);
1386 			return ret;
1387 		}
1388 	}
1389 #endif
1390 
1391 	ret = device_create_file(rtd->dev, &dev_attr_pmdown_time);
1392 	if (ret < 0)
1393 		dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n",
1394 			ret);
1395 
1396 	if (cpu_dai->driver->compress_dai) {
1397 		/*create compress_device"*/
1398 		ret = soc_new_compress(rtd, num);
1399 		if (ret < 0) {
1400 			dev_err(card->dev, "ASoC: can't create compress %s\n",
1401 					 dai_link->stream_name);
1402 			return ret;
1403 		}
1404 	} else {
1405 
1406 		if (!dai_link->params) {
1407 			/* create the pcm */
1408 			ret = soc_new_pcm(rtd, num);
1409 			if (ret < 0) {
1410 				dev_err(card->dev, "ASoC: can't create pcm %s :%d\n",
1411 				       dai_link->stream_name, ret);
1412 				return ret;
1413 			}
1414 		} else {
1415 			INIT_DELAYED_WORK(&rtd->delayed_work,
1416 						codec2codec_close_delayed_work);
1417 
1418 			/* link the DAI widgets */
1419 			ret = soc_link_dai_widgets(card, dai_link, rtd);
1420 			if (ret)
1421 				return ret;
1422 		}
1423 	}
1424 
1425 	/* add platform data for AC97 devices */
1426 	for (i = 0; i < rtd->num_codecs; i++) {
1427 		if (rtd->codec_dais[i]->driver->ac97_control)
1428 			snd_ac97_dev_add_pdata(rtd->codec_dais[i]->codec->ac97,
1429 					       rtd->cpu_dai->ac97_pdata);
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 #ifdef CONFIG_SND_SOC_AC97_BUS
1436 static int soc_register_ac97_codec(struct snd_soc_codec *codec,
1437 				   struct snd_soc_dai *codec_dai)
1438 {
1439 	int ret;
1440 
1441 	/* Only instantiate AC97 if not already done by the adaptor
1442 	 * for the generic AC97 subsystem.
1443 	 */
1444 	if (codec_dai->driver->ac97_control && !codec->ac97_registered) {
1445 		/*
1446 		 * It is possible that the AC97 device is already registered to
1447 		 * the device subsystem. This happens when the device is created
1448 		 * via snd_ac97_mixer(). Currently only SoC codec that does so
1449 		 * is the generic AC97 glue but others migh emerge.
1450 		 *
1451 		 * In those cases we don't try to register the device again.
1452 		 */
1453 		if (!codec->ac97_created)
1454 			return 0;
1455 
1456 		ret = soc_ac97_dev_register(codec);
1457 		if (ret < 0) {
1458 			dev_err(codec->dev,
1459 				"ASoC: AC97 device register failed: %d\n", ret);
1460 			return ret;
1461 		}
1462 
1463 		codec->ac97_registered = 1;
1464 	}
1465 	return 0;
1466 }
1467 
1468 static void soc_unregister_ac97_codec(struct snd_soc_codec *codec)
1469 {
1470 	if (codec->ac97_registered) {
1471 		soc_ac97_dev_unregister(codec);
1472 		codec->ac97_registered = 0;
1473 	}
1474 }
1475 
1476 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1477 {
1478 	int i, ret;
1479 
1480 	for (i = 0; i < rtd->num_codecs; i++) {
1481 		struct snd_soc_dai *codec_dai = rtd->codec_dais[i];
1482 
1483 		ret = soc_register_ac97_codec(codec_dai->codec, codec_dai);
1484 		if (ret) {
1485 			while (--i >= 0)
1486 				soc_unregister_ac97_codec(codec_dai->codec);
1487 			return ret;
1488 		}
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 static void soc_unregister_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1495 {
1496 	int i;
1497 
1498 	for (i = 0; i < rtd->num_codecs; i++)
1499 		soc_unregister_ac97_codec(rtd->codec_dais[i]->codec);
1500 }
1501 #endif
1502 
1503 static int soc_bind_aux_dev(struct snd_soc_card *card, int num)
1504 {
1505 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1506 	struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1507 	const char *name = aux_dev->codec_name;
1508 
1509 	rtd->component = soc_find_component(aux_dev->codec_of_node, name);
1510 	if (!rtd->component) {
1511 		if (aux_dev->codec_of_node)
1512 			name = of_node_full_name(aux_dev->codec_of_node);
1513 
1514 		dev_err(card->dev, "ASoC: %s not registered\n", name);
1515 		return -EPROBE_DEFER;
1516 	}
1517 
1518 	/*
1519 	 * Some places still reference rtd->codec, so we have to keep that
1520 	 * initialized if the component is a CODEC. Once all those references
1521 	 * have been removed, this code can be removed as well.
1522 	 */
1523 	 rtd->codec = rtd->component->codec;
1524 
1525 	return 0;
1526 }
1527 
1528 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1529 {
1530 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1531 	struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1532 	int ret;
1533 
1534 	ret = soc_probe_component(card, rtd->component);
1535 	if (ret < 0)
1536 		return ret;
1537 
1538 	/* do machine specific initialization */
1539 	if (aux_dev->init) {
1540 		ret = aux_dev->init(rtd->component);
1541 		if (ret < 0) {
1542 			dev_err(card->dev, "ASoC: failed to init %s: %d\n",
1543 				aux_dev->name, ret);
1544 			return ret;
1545 		}
1546 	}
1547 
1548 	return soc_post_component_init(rtd, aux_dev->name);
1549 }
1550 
1551 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1552 {
1553 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1554 	struct snd_soc_component *component = rtd->component;
1555 
1556 	/* unregister the rtd device */
1557 	if (rtd->dev_registered) {
1558 		device_remove_file(rtd->dev, &dev_attr_codec_reg);
1559 		device_unregister(rtd->dev);
1560 		rtd->dev_registered = 0;
1561 	}
1562 
1563 	if (component && component->probed)
1564 		soc_remove_component(component);
1565 }
1566 
1567 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec)
1568 {
1569 	int ret;
1570 
1571 	if (codec->cache_init)
1572 		return 0;
1573 
1574 	ret = snd_soc_cache_init(codec);
1575 	if (ret < 0) {
1576 		dev_err(codec->dev,
1577 			"ASoC: Failed to set cache compression type: %d\n",
1578 			ret);
1579 		return ret;
1580 	}
1581 	codec->cache_init = 1;
1582 	return 0;
1583 }
1584 
1585 static int snd_soc_instantiate_card(struct snd_soc_card *card)
1586 {
1587 	struct snd_soc_codec *codec;
1588 	struct snd_soc_dai_link *dai_link;
1589 	int ret, i, order, dai_fmt;
1590 
1591 	mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT);
1592 
1593 	/* bind DAIs */
1594 	for (i = 0; i < card->num_links; i++) {
1595 		ret = soc_bind_dai_link(card, i);
1596 		if (ret != 0)
1597 			goto base_error;
1598 	}
1599 
1600 	/* bind aux_devs too */
1601 	for (i = 0; i < card->num_aux_devs; i++) {
1602 		ret = soc_bind_aux_dev(card, i);
1603 		if (ret != 0)
1604 			goto base_error;
1605 	}
1606 
1607 	/* initialize the register cache for each available codec */
1608 	list_for_each_entry(codec, &codec_list, list) {
1609 		if (codec->cache_init)
1610 			continue;
1611 		ret = snd_soc_init_codec_cache(codec);
1612 		if (ret < 0)
1613 			goto base_error;
1614 	}
1615 
1616 	/* card bind complete so register a sound card */
1617 	ret = snd_card_new(card->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1618 			card->owner, 0, &card->snd_card);
1619 	if (ret < 0) {
1620 		dev_err(card->dev,
1621 			"ASoC: can't create sound card for card %s: %d\n",
1622 			card->name, ret);
1623 		goto base_error;
1624 	}
1625 
1626 	card->dapm.bias_level = SND_SOC_BIAS_OFF;
1627 	card->dapm.dev = card->dev;
1628 	card->dapm.card = card;
1629 	list_add(&card->dapm.list, &card->dapm_list);
1630 
1631 #ifdef CONFIG_DEBUG_FS
1632 	snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
1633 #endif
1634 
1635 #ifdef CONFIG_PM_SLEEP
1636 	/* deferred resume work */
1637 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1638 #endif
1639 
1640 	if (card->dapm_widgets)
1641 		snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1642 					  card->num_dapm_widgets);
1643 
1644 	/* initialise the sound card only once */
1645 	if (card->probe) {
1646 		ret = card->probe(card);
1647 		if (ret < 0)
1648 			goto card_probe_error;
1649 	}
1650 
1651 	/* probe all components used by DAI links on this card */
1652 	for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1653 			order++) {
1654 		for (i = 0; i < card->num_links; i++) {
1655 			ret = soc_probe_link_components(card, i, order);
1656 			if (ret < 0) {
1657 				dev_err(card->dev,
1658 					"ASoC: failed to instantiate card %d\n",
1659 					ret);
1660 				goto probe_dai_err;
1661 			}
1662 		}
1663 	}
1664 
1665 	/* probe all DAI links on this card */
1666 	for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1667 			order++) {
1668 		for (i = 0; i < card->num_links; i++) {
1669 			ret = soc_probe_link_dais(card, i, order);
1670 			if (ret < 0) {
1671 				dev_err(card->dev,
1672 					"ASoC: failed to instantiate card %d\n",
1673 					ret);
1674 				goto probe_dai_err;
1675 			}
1676 		}
1677 	}
1678 
1679 	for (i = 0; i < card->num_aux_devs; i++) {
1680 		ret = soc_probe_aux_dev(card, i);
1681 		if (ret < 0) {
1682 			dev_err(card->dev,
1683 				"ASoC: failed to add auxiliary devices %d\n",
1684 				ret);
1685 			goto probe_aux_dev_err;
1686 		}
1687 	}
1688 
1689 	snd_soc_dapm_link_dai_widgets(card);
1690 	snd_soc_dapm_connect_dai_link_widgets(card);
1691 
1692 	if (card->controls)
1693 		snd_soc_add_card_controls(card, card->controls, card->num_controls);
1694 
1695 	if (card->dapm_routes)
1696 		snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1697 					card->num_dapm_routes);
1698 
1699 	for (i = 0; i < card->num_links; i++) {
1700 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1701 		dai_link = &card->dai_link[i];
1702 		dai_fmt = dai_link->dai_fmt;
1703 
1704 		if (dai_fmt) {
1705 			struct snd_soc_dai **codec_dais = rtd->codec_dais;
1706 			int j;
1707 
1708 			for (j = 0; j < rtd->num_codecs; j++) {
1709 				struct snd_soc_dai *codec_dai = codec_dais[j];
1710 
1711 				ret = snd_soc_dai_set_fmt(codec_dai, dai_fmt);
1712 				if (ret != 0 && ret != -ENOTSUPP)
1713 					dev_warn(codec_dai->dev,
1714 						 "ASoC: Failed to set DAI format: %d\n",
1715 						 ret);
1716 			}
1717 		}
1718 
1719 		/* If this is a regular CPU link there will be a platform */
1720 		if (dai_fmt &&
1721 		    (dai_link->platform_name || dai_link->platform_of_node)) {
1722 			ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1723 						  dai_fmt);
1724 			if (ret != 0 && ret != -ENOTSUPP)
1725 				dev_warn(card->rtd[i].cpu_dai->dev,
1726 					 "ASoC: Failed to set DAI format: %d\n",
1727 					 ret);
1728 		} else if (dai_fmt) {
1729 			/* Flip the polarity for the "CPU" end */
1730 			dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK;
1731 			switch (dai_link->dai_fmt &
1732 				SND_SOC_DAIFMT_MASTER_MASK) {
1733 			case SND_SOC_DAIFMT_CBM_CFM:
1734 				dai_fmt |= SND_SOC_DAIFMT_CBS_CFS;
1735 				break;
1736 			case SND_SOC_DAIFMT_CBM_CFS:
1737 				dai_fmt |= SND_SOC_DAIFMT_CBS_CFM;
1738 				break;
1739 			case SND_SOC_DAIFMT_CBS_CFM:
1740 				dai_fmt |= SND_SOC_DAIFMT_CBM_CFS;
1741 				break;
1742 			case SND_SOC_DAIFMT_CBS_CFS:
1743 				dai_fmt |= SND_SOC_DAIFMT_CBM_CFM;
1744 				break;
1745 			}
1746 
1747 			ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1748 						  dai_fmt);
1749 			if (ret != 0 && ret != -ENOTSUPP)
1750 				dev_warn(card->rtd[i].cpu_dai->dev,
1751 					 "ASoC: Failed to set DAI format: %d\n",
1752 					 ret);
1753 		}
1754 	}
1755 
1756 	snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1757 		 "%s", card->name);
1758 	snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1759 		 "%s", card->long_name ? card->long_name : card->name);
1760 	snprintf(card->snd_card->driver, sizeof(card->snd_card->driver),
1761 		 "%s", card->driver_name ? card->driver_name : card->name);
1762 	for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) {
1763 		switch (card->snd_card->driver[i]) {
1764 		case '_':
1765 		case '-':
1766 		case '\0':
1767 			break;
1768 		default:
1769 			if (!isalnum(card->snd_card->driver[i]))
1770 				card->snd_card->driver[i] = '_';
1771 			break;
1772 		}
1773 	}
1774 
1775 	if (card->late_probe) {
1776 		ret = card->late_probe(card);
1777 		if (ret < 0) {
1778 			dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n",
1779 				card->name, ret);
1780 			goto probe_aux_dev_err;
1781 		}
1782 	}
1783 
1784 	if (card->fully_routed)
1785 		snd_soc_dapm_auto_nc_pins(card);
1786 
1787 	snd_soc_dapm_new_widgets(card);
1788 
1789 	ret = snd_card_register(card->snd_card);
1790 	if (ret < 0) {
1791 		dev_err(card->dev, "ASoC: failed to register soundcard %d\n",
1792 				ret);
1793 		goto probe_aux_dev_err;
1794 	}
1795 
1796 #ifdef CONFIG_SND_SOC_AC97_BUS
1797 	/* register any AC97 codecs */
1798 	for (i = 0; i < card->num_rtd; i++) {
1799 		ret = soc_register_ac97_dai_link(&card->rtd[i]);
1800 		if (ret < 0) {
1801 			dev_err(card->dev,
1802 				"ASoC: failed to register AC97: %d\n", ret);
1803 			while (--i >= 0)
1804 				soc_unregister_ac97_dai_link(&card->rtd[i]);
1805 			goto probe_aux_dev_err;
1806 		}
1807 	}
1808 #endif
1809 
1810 	card->instantiated = 1;
1811 	snd_soc_dapm_sync(&card->dapm);
1812 	mutex_unlock(&card->mutex);
1813 
1814 	return 0;
1815 
1816 probe_aux_dev_err:
1817 	for (i = 0; i < card->num_aux_devs; i++)
1818 		soc_remove_aux_dev(card, i);
1819 
1820 probe_dai_err:
1821 	soc_remove_dai_links(card);
1822 
1823 card_probe_error:
1824 	if (card->remove)
1825 		card->remove(card);
1826 
1827 	snd_card_free(card->snd_card);
1828 
1829 base_error:
1830 	mutex_unlock(&card->mutex);
1831 
1832 	return ret;
1833 }
1834 
1835 /* probes a new socdev */
1836 static int soc_probe(struct platform_device *pdev)
1837 {
1838 	struct snd_soc_card *card = platform_get_drvdata(pdev);
1839 
1840 	/*
1841 	 * no card, so machine driver should be registering card
1842 	 * we should not be here in that case so ret error
1843 	 */
1844 	if (!card)
1845 		return -EINVAL;
1846 
1847 	dev_warn(&pdev->dev,
1848 		 "ASoC: machine %s should use snd_soc_register_card()\n",
1849 		 card->name);
1850 
1851 	/* Bodge while we unpick instantiation */
1852 	card->dev = &pdev->dev;
1853 
1854 	return snd_soc_register_card(card);
1855 }
1856 
1857 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1858 {
1859 	int i;
1860 
1861 	/* make sure any delayed work runs */
1862 	for (i = 0; i < card->num_rtd; i++) {
1863 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1864 		flush_delayed_work(&rtd->delayed_work);
1865 	}
1866 
1867 	/* remove auxiliary devices */
1868 	for (i = 0; i < card->num_aux_devs; i++)
1869 		soc_remove_aux_dev(card, i);
1870 
1871 	/* remove and free each DAI */
1872 	soc_remove_dai_links(card);
1873 
1874 	soc_cleanup_card_debugfs(card);
1875 
1876 	/* remove the card */
1877 	if (card->remove)
1878 		card->remove(card);
1879 
1880 	snd_soc_dapm_free(&card->dapm);
1881 
1882 	snd_card_free(card->snd_card);
1883 	return 0;
1884 
1885 }
1886 
1887 /* removes a socdev */
1888 static int soc_remove(struct platform_device *pdev)
1889 {
1890 	struct snd_soc_card *card = platform_get_drvdata(pdev);
1891 
1892 	snd_soc_unregister_card(card);
1893 	return 0;
1894 }
1895 
1896 int snd_soc_poweroff(struct device *dev)
1897 {
1898 	struct snd_soc_card *card = dev_get_drvdata(dev);
1899 	int i;
1900 
1901 	if (!card->instantiated)
1902 		return 0;
1903 
1904 	/* Flush out pmdown_time work - we actually do want to run it
1905 	 * now, we're shutting down so no imminent restart. */
1906 	for (i = 0; i < card->num_rtd; i++) {
1907 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1908 		flush_delayed_work(&rtd->delayed_work);
1909 	}
1910 
1911 	snd_soc_dapm_shutdown(card);
1912 
1913 	/* deactivate pins to sleep state */
1914 	for (i = 0; i < card->num_rtd; i++) {
1915 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1916 		struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1917 		int j;
1918 
1919 		pinctrl_pm_select_sleep_state(cpu_dai->dev);
1920 		for (j = 0; j < rtd->num_codecs; j++) {
1921 			struct snd_soc_dai *codec_dai = rtd->codec_dais[j];
1922 			pinctrl_pm_select_sleep_state(codec_dai->dev);
1923 		}
1924 	}
1925 
1926 	return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
1929 
1930 const struct dev_pm_ops snd_soc_pm_ops = {
1931 	.suspend = snd_soc_suspend,
1932 	.resume = snd_soc_resume,
1933 	.freeze = snd_soc_suspend,
1934 	.thaw = snd_soc_resume,
1935 	.poweroff = snd_soc_poweroff,
1936 	.restore = snd_soc_resume,
1937 };
1938 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
1939 
1940 /* ASoC platform driver */
1941 static struct platform_driver soc_driver = {
1942 	.driver		= {
1943 		.name		= "soc-audio",
1944 		.owner		= THIS_MODULE,
1945 		.pm		= &snd_soc_pm_ops,
1946 	},
1947 	.probe		= soc_probe,
1948 	.remove		= soc_remove,
1949 };
1950 
1951 /**
1952  * snd_soc_new_ac97_codec - initailise AC97 device
1953  * @codec: audio codec
1954  * @ops: AC97 bus operations
1955  * @num: AC97 codec number
1956  *
1957  * Initialises AC97 codec resources for use by ad-hoc devices only.
1958  */
1959 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1960 	struct snd_ac97_bus_ops *ops, int num)
1961 {
1962 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1963 	if (codec->ac97 == NULL)
1964 		return -ENOMEM;
1965 
1966 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1967 	if (codec->ac97->bus == NULL) {
1968 		kfree(codec->ac97);
1969 		codec->ac97 = NULL;
1970 		return -ENOMEM;
1971 	}
1972 
1973 	codec->ac97->bus->ops = ops;
1974 	codec->ac97->num = num;
1975 
1976 	/*
1977 	 * Mark the AC97 device to be created by us. This way we ensure that the
1978 	 * device will be registered with the device subsystem later on.
1979 	 */
1980 	codec->ac97_created = 1;
1981 
1982 	return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1985 
1986 static struct snd_ac97_reset_cfg snd_ac97_rst_cfg;
1987 
1988 static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97)
1989 {
1990 	struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
1991 
1992 	pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset);
1993 
1994 	gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1);
1995 
1996 	udelay(10);
1997 
1998 	gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
1999 
2000 	pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2001 	msleep(2);
2002 }
2003 
2004 static void snd_soc_ac97_reset(struct snd_ac97 *ac97)
2005 {
2006 	struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2007 
2008 	pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset);
2009 
2010 	gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2011 	gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0);
2012 	gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0);
2013 
2014 	udelay(10);
2015 
2016 	gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1);
2017 
2018 	pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2019 	msleep(2);
2020 }
2021 
2022 static int snd_soc_ac97_parse_pinctl(struct device *dev,
2023 		struct snd_ac97_reset_cfg *cfg)
2024 {
2025 	struct pinctrl *p;
2026 	struct pinctrl_state *state;
2027 	int gpio;
2028 	int ret;
2029 
2030 	p = devm_pinctrl_get(dev);
2031 	if (IS_ERR(p)) {
2032 		dev_err(dev, "Failed to get pinctrl\n");
2033 		return PTR_ERR(p);
2034 	}
2035 	cfg->pctl = p;
2036 
2037 	state = pinctrl_lookup_state(p, "ac97-reset");
2038 	if (IS_ERR(state)) {
2039 		dev_err(dev, "Can't find pinctrl state ac97-reset\n");
2040 		return PTR_ERR(state);
2041 	}
2042 	cfg->pstate_reset = state;
2043 
2044 	state = pinctrl_lookup_state(p, "ac97-warm-reset");
2045 	if (IS_ERR(state)) {
2046 		dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n");
2047 		return PTR_ERR(state);
2048 	}
2049 	cfg->pstate_warm_reset = state;
2050 
2051 	state = pinctrl_lookup_state(p, "ac97-running");
2052 	if (IS_ERR(state)) {
2053 		dev_err(dev, "Can't find pinctrl state ac97-running\n");
2054 		return PTR_ERR(state);
2055 	}
2056 	cfg->pstate_run = state;
2057 
2058 	gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0);
2059 	if (gpio < 0) {
2060 		dev_err(dev, "Can't find ac97-sync gpio\n");
2061 		return gpio;
2062 	}
2063 	ret = devm_gpio_request(dev, gpio, "AC97 link sync");
2064 	if (ret) {
2065 		dev_err(dev, "Failed requesting ac97-sync gpio\n");
2066 		return ret;
2067 	}
2068 	cfg->gpio_sync = gpio;
2069 
2070 	gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1);
2071 	if (gpio < 0) {
2072 		dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio);
2073 		return gpio;
2074 	}
2075 	ret = devm_gpio_request(dev, gpio, "AC97 link sdata");
2076 	if (ret) {
2077 		dev_err(dev, "Failed requesting ac97-sdata gpio\n");
2078 		return ret;
2079 	}
2080 	cfg->gpio_sdata = gpio;
2081 
2082 	gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2);
2083 	if (gpio < 0) {
2084 		dev_err(dev, "Can't find ac97-reset gpio\n");
2085 		return gpio;
2086 	}
2087 	ret = devm_gpio_request(dev, gpio, "AC97 link reset");
2088 	if (ret) {
2089 		dev_err(dev, "Failed requesting ac97-reset gpio\n");
2090 		return ret;
2091 	}
2092 	cfg->gpio_reset = gpio;
2093 
2094 	return 0;
2095 }
2096 
2097 struct snd_ac97_bus_ops *soc_ac97_ops;
2098 EXPORT_SYMBOL_GPL(soc_ac97_ops);
2099 
2100 int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops)
2101 {
2102 	if (ops == soc_ac97_ops)
2103 		return 0;
2104 
2105 	if (soc_ac97_ops && ops)
2106 		return -EBUSY;
2107 
2108 	soc_ac97_ops = ops;
2109 
2110 	return 0;
2111 }
2112 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops);
2113 
2114 /**
2115  * snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions
2116  *
2117  * This function sets the reset and warm_reset properties of ops and parses
2118  * the device node of pdev to get pinctrl states and gpio numbers to use.
2119  */
2120 int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops,
2121 		struct platform_device *pdev)
2122 {
2123 	struct device *dev = &pdev->dev;
2124 	struct snd_ac97_reset_cfg cfg;
2125 	int ret;
2126 
2127 	ret = snd_soc_ac97_parse_pinctl(dev, &cfg);
2128 	if (ret)
2129 		return ret;
2130 
2131 	ret = snd_soc_set_ac97_ops(ops);
2132 	if (ret)
2133 		return ret;
2134 
2135 	ops->warm_reset = snd_soc_ac97_warm_reset;
2136 	ops->reset = snd_soc_ac97_reset;
2137 
2138 	snd_ac97_rst_cfg = cfg;
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset);
2142 
2143 /**
2144  * snd_soc_free_ac97_codec - free AC97 codec device
2145  * @codec: audio codec
2146  *
2147  * Frees AC97 codec device resources.
2148  */
2149 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2150 {
2151 #ifdef CONFIG_SND_SOC_AC97_BUS
2152 	soc_unregister_ac97_codec(codec);
2153 #endif
2154 	kfree(codec->ac97->bus);
2155 	kfree(codec->ac97);
2156 	codec->ac97 = NULL;
2157 	codec->ac97_created = 0;
2158 }
2159 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2160 
2161 /**
2162  * snd_soc_cnew - create new control
2163  * @_template: control template
2164  * @data: control private data
2165  * @long_name: control long name
2166  * @prefix: control name prefix
2167  *
2168  * Create a new mixer control from a template control.
2169  *
2170  * Returns 0 for success, else error.
2171  */
2172 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2173 				  void *data, const char *long_name,
2174 				  const char *prefix)
2175 {
2176 	struct snd_kcontrol_new template;
2177 	struct snd_kcontrol *kcontrol;
2178 	char *name = NULL;
2179 
2180 	memcpy(&template, _template, sizeof(template));
2181 	template.index = 0;
2182 
2183 	if (!long_name)
2184 		long_name = template.name;
2185 
2186 	if (prefix) {
2187 		name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name);
2188 		if (!name)
2189 			return NULL;
2190 
2191 		template.name = name;
2192 	} else {
2193 		template.name = long_name;
2194 	}
2195 
2196 	kcontrol = snd_ctl_new1(&template, data);
2197 
2198 	kfree(name);
2199 
2200 	return kcontrol;
2201 }
2202 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2203 
2204 static int snd_soc_add_controls(struct snd_card *card, struct device *dev,
2205 	const struct snd_kcontrol_new *controls, int num_controls,
2206 	const char *prefix, void *data)
2207 {
2208 	int err, i;
2209 
2210 	for (i = 0; i < num_controls; i++) {
2211 		const struct snd_kcontrol_new *control = &controls[i];
2212 		err = snd_ctl_add(card, snd_soc_cnew(control, data,
2213 						     control->name, prefix));
2214 		if (err < 0) {
2215 			dev_err(dev, "ASoC: Failed to add %s: %d\n",
2216 				control->name, err);
2217 			return err;
2218 		}
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card,
2225 					       const char *name)
2226 {
2227 	struct snd_card *card = soc_card->snd_card;
2228 	struct snd_kcontrol *kctl;
2229 
2230 	if (unlikely(!name))
2231 		return NULL;
2232 
2233 	list_for_each_entry(kctl, &card->controls, list)
2234 		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name)))
2235 			return kctl;
2236 	return NULL;
2237 }
2238 EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol);
2239 
2240 /**
2241  * snd_soc_add_component_controls - Add an array of controls to a component.
2242  *
2243  * @component: Component to add controls to
2244  * @controls: Array of controls to add
2245  * @num_controls: Number of elements in the array
2246  *
2247  * Return: 0 for success, else error.
2248  */
2249 int snd_soc_add_component_controls(struct snd_soc_component *component,
2250 	const struct snd_kcontrol_new *controls, unsigned int num_controls)
2251 {
2252 	struct snd_card *card = component->card->snd_card;
2253 
2254 	return snd_soc_add_controls(card, component->dev, controls,
2255 			num_controls, component->name_prefix, component);
2256 }
2257 EXPORT_SYMBOL_GPL(snd_soc_add_component_controls);
2258 
2259 /**
2260  * snd_soc_add_codec_controls - add an array of controls to a codec.
2261  * Convenience function to add a list of controls. Many codecs were
2262  * duplicating this code.
2263  *
2264  * @codec: codec to add controls to
2265  * @controls: array of controls to add
2266  * @num_controls: number of elements in the array
2267  *
2268  * Return 0 for success, else error.
2269  */
2270 int snd_soc_add_codec_controls(struct snd_soc_codec *codec,
2271 	const struct snd_kcontrol_new *controls, unsigned int num_controls)
2272 {
2273 	return snd_soc_add_component_controls(&codec->component, controls,
2274 		num_controls);
2275 }
2276 EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls);
2277 
2278 /**
2279  * snd_soc_add_platform_controls - add an array of controls to a platform.
2280  * Convenience function to add a list of controls.
2281  *
2282  * @platform: platform to add controls to
2283  * @controls: array of controls to add
2284  * @num_controls: number of elements in the array
2285  *
2286  * Return 0 for success, else error.
2287  */
2288 int snd_soc_add_platform_controls(struct snd_soc_platform *platform,
2289 	const struct snd_kcontrol_new *controls, unsigned int num_controls)
2290 {
2291 	return snd_soc_add_component_controls(&platform->component, controls,
2292 		num_controls);
2293 }
2294 EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls);
2295 
2296 /**
2297  * snd_soc_add_card_controls - add an array of controls to a SoC card.
2298  * Convenience function to add a list of controls.
2299  *
2300  * @soc_card: SoC card to add controls to
2301  * @controls: array of controls to add
2302  * @num_controls: number of elements in the array
2303  *
2304  * Return 0 for success, else error.
2305  */
2306 int snd_soc_add_card_controls(struct snd_soc_card *soc_card,
2307 	const struct snd_kcontrol_new *controls, int num_controls)
2308 {
2309 	struct snd_card *card = soc_card->snd_card;
2310 
2311 	return snd_soc_add_controls(card, soc_card->dev, controls, num_controls,
2312 			NULL, soc_card);
2313 }
2314 EXPORT_SYMBOL_GPL(snd_soc_add_card_controls);
2315 
2316 /**
2317  * snd_soc_add_dai_controls - add an array of controls to a DAI.
2318  * Convienience function to add a list of controls.
2319  *
2320  * @dai: DAI to add controls to
2321  * @controls: array of controls to add
2322  * @num_controls: number of elements in the array
2323  *
2324  * Return 0 for success, else error.
2325  */
2326 int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
2327 	const struct snd_kcontrol_new *controls, int num_controls)
2328 {
2329 	struct snd_card *card = dai->card->snd_card;
2330 
2331 	return snd_soc_add_controls(card, dai->dev, controls, num_controls,
2332 			NULL, dai);
2333 }
2334 EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
2335 
2336 /**
2337  * snd_soc_info_enum_double - enumerated double mixer info callback
2338  * @kcontrol: mixer control
2339  * @uinfo: control element information
2340  *
2341  * Callback to provide information about a double enumerated
2342  * mixer control.
2343  *
2344  * Returns 0 for success.
2345  */
2346 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2347 	struct snd_ctl_elem_info *uinfo)
2348 {
2349 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2350 
2351 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2352 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2353 	uinfo->value.enumerated.items = e->items;
2354 
2355 	if (uinfo->value.enumerated.item >= e->items)
2356 		uinfo->value.enumerated.item = e->items - 1;
2357 	strlcpy(uinfo->value.enumerated.name,
2358 		e->texts[uinfo->value.enumerated.item],
2359 		sizeof(uinfo->value.enumerated.name));
2360 	return 0;
2361 }
2362 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2363 
2364 /**
2365  * snd_soc_get_enum_double - enumerated double mixer get callback
2366  * @kcontrol: mixer control
2367  * @ucontrol: control element information
2368  *
2369  * Callback to get the value of a double enumerated mixer.
2370  *
2371  * Returns 0 for success.
2372  */
2373 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2374 	struct snd_ctl_elem_value *ucontrol)
2375 {
2376 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2377 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2378 	unsigned int val, item;
2379 	unsigned int reg_val;
2380 	int ret;
2381 
2382 	ret = snd_soc_component_read(component, e->reg, &reg_val);
2383 	if (ret)
2384 		return ret;
2385 	val = (reg_val >> e->shift_l) & e->mask;
2386 	item = snd_soc_enum_val_to_item(e, val);
2387 	ucontrol->value.enumerated.item[0] = item;
2388 	if (e->shift_l != e->shift_r) {
2389 		val = (reg_val >> e->shift_l) & e->mask;
2390 		item = snd_soc_enum_val_to_item(e, val);
2391 		ucontrol->value.enumerated.item[1] = item;
2392 	}
2393 
2394 	return 0;
2395 }
2396 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2397 
2398 /**
2399  * snd_soc_put_enum_double - enumerated double mixer put callback
2400  * @kcontrol: mixer control
2401  * @ucontrol: control element information
2402  *
2403  * Callback to set the value of a double enumerated mixer.
2404  *
2405  * Returns 0 for success.
2406  */
2407 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2408 	struct snd_ctl_elem_value *ucontrol)
2409 {
2410 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2411 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2412 	unsigned int *item = ucontrol->value.enumerated.item;
2413 	unsigned int val;
2414 	unsigned int mask;
2415 
2416 	if (item[0] >= e->items)
2417 		return -EINVAL;
2418 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
2419 	mask = e->mask << e->shift_l;
2420 	if (e->shift_l != e->shift_r) {
2421 		if (item[1] >= e->items)
2422 			return -EINVAL;
2423 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
2424 		mask |= e->mask << e->shift_r;
2425 	}
2426 
2427 	return snd_soc_component_update_bits(component, e->reg, mask, val);
2428 }
2429 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2430 
2431 /**
2432  * snd_soc_read_signed - Read a codec register and interprete as signed value
2433  * @component: component
2434  * @reg: Register to read
2435  * @mask: Mask to use after shifting the register value
2436  * @shift: Right shift of register value
2437  * @sign_bit: Bit that describes if a number is negative or not.
2438  * @signed_val: Pointer to where the read value should be stored
2439  *
2440  * This functions reads a codec register. The register value is shifted right
2441  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
2442  * the given registervalue into a signed integer if sign_bit is non-zero.
2443  *
2444  * Returns 0 on sucess, otherwise an error value
2445  */
2446 static int snd_soc_read_signed(struct snd_soc_component *component,
2447 	unsigned int reg, unsigned int mask, unsigned int shift,
2448 	unsigned int sign_bit, int *signed_val)
2449 {
2450 	int ret;
2451 	unsigned int val;
2452 
2453 	ret = snd_soc_component_read(component, reg, &val);
2454 	if (ret < 0)
2455 		return ret;
2456 
2457 	val = (val >> shift) & mask;
2458 
2459 	if (!sign_bit) {
2460 		*signed_val = val;
2461 		return 0;
2462 	}
2463 
2464 	/* non-negative number */
2465 	if (!(val & BIT(sign_bit))) {
2466 		*signed_val = val;
2467 		return 0;
2468 	}
2469 
2470 	ret = val;
2471 
2472 	/*
2473 	 * The register most probably does not contain a full-sized int.
2474 	 * Instead we have an arbitrary number of bits in a signed
2475 	 * representation which has to be translated into a full-sized int.
2476 	 * This is done by filling up all bits above the sign-bit.
2477 	 */
2478 	ret |= ~((int)(BIT(sign_bit) - 1));
2479 
2480 	*signed_val = ret;
2481 
2482 	return 0;
2483 }
2484 
2485 /**
2486  * snd_soc_info_volsw - single mixer info callback
2487  * @kcontrol: mixer control
2488  * @uinfo: control element information
2489  *
2490  * Callback to provide information about a single mixer control, or a double
2491  * mixer control that spans 2 registers.
2492  *
2493  * Returns 0 for success.
2494  */
2495 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2496 	struct snd_ctl_elem_info *uinfo)
2497 {
2498 	struct soc_mixer_control *mc =
2499 		(struct soc_mixer_control *)kcontrol->private_value;
2500 	int platform_max;
2501 
2502 	if (!mc->platform_max)
2503 		mc->platform_max = mc->max;
2504 	platform_max = mc->platform_max;
2505 
2506 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2507 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2508 	else
2509 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2510 
2511 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2512 	uinfo->value.integer.min = 0;
2513 	uinfo->value.integer.max = platform_max - mc->min;
2514 	return 0;
2515 }
2516 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2517 
2518 /**
2519  * snd_soc_get_volsw - single mixer get callback
2520  * @kcontrol: mixer control
2521  * @ucontrol: control element information
2522  *
2523  * Callback to get the value of a single mixer control, or a double mixer
2524  * control that spans 2 registers.
2525  *
2526  * Returns 0 for success.
2527  */
2528 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2529 	struct snd_ctl_elem_value *ucontrol)
2530 {
2531 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2532 	struct soc_mixer_control *mc =
2533 		(struct soc_mixer_control *)kcontrol->private_value;
2534 	unsigned int reg = mc->reg;
2535 	unsigned int reg2 = mc->rreg;
2536 	unsigned int shift = mc->shift;
2537 	unsigned int rshift = mc->rshift;
2538 	int max = mc->max;
2539 	int min = mc->min;
2540 	int sign_bit = mc->sign_bit;
2541 	unsigned int mask = (1 << fls(max)) - 1;
2542 	unsigned int invert = mc->invert;
2543 	int val;
2544 	int ret;
2545 
2546 	if (sign_bit)
2547 		mask = BIT(sign_bit + 1) - 1;
2548 
2549 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
2550 	if (ret)
2551 		return ret;
2552 
2553 	ucontrol->value.integer.value[0] = val - min;
2554 	if (invert)
2555 		ucontrol->value.integer.value[0] =
2556 			max - ucontrol->value.integer.value[0];
2557 
2558 	if (snd_soc_volsw_is_stereo(mc)) {
2559 		if (reg == reg2)
2560 			ret = snd_soc_read_signed(component, reg, mask, rshift,
2561 				sign_bit, &val);
2562 		else
2563 			ret = snd_soc_read_signed(component, reg2, mask, shift,
2564 				sign_bit, &val);
2565 		if (ret)
2566 			return ret;
2567 
2568 		ucontrol->value.integer.value[1] = val - min;
2569 		if (invert)
2570 			ucontrol->value.integer.value[1] =
2571 				max - ucontrol->value.integer.value[1];
2572 	}
2573 
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2577 
2578 /**
2579  * snd_soc_put_volsw - single mixer put callback
2580  * @kcontrol: mixer control
2581  * @ucontrol: control element information
2582  *
2583  * Callback to set the value of a single mixer control, or a double mixer
2584  * control that spans 2 registers.
2585  *
2586  * Returns 0 for success.
2587  */
2588 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2589 	struct snd_ctl_elem_value *ucontrol)
2590 {
2591 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2592 	struct soc_mixer_control *mc =
2593 		(struct soc_mixer_control *)kcontrol->private_value;
2594 	unsigned int reg = mc->reg;
2595 	unsigned int reg2 = mc->rreg;
2596 	unsigned int shift = mc->shift;
2597 	unsigned int rshift = mc->rshift;
2598 	int max = mc->max;
2599 	int min = mc->min;
2600 	unsigned int sign_bit = mc->sign_bit;
2601 	unsigned int mask = (1 << fls(max)) - 1;
2602 	unsigned int invert = mc->invert;
2603 	int err;
2604 	bool type_2r = false;
2605 	unsigned int val2 = 0;
2606 	unsigned int val, val_mask;
2607 
2608 	if (sign_bit)
2609 		mask = BIT(sign_bit + 1) - 1;
2610 
2611 	val = ((ucontrol->value.integer.value[0] + min) & mask);
2612 	if (invert)
2613 		val = max - val;
2614 	val_mask = mask << shift;
2615 	val = val << shift;
2616 	if (snd_soc_volsw_is_stereo(mc)) {
2617 		val2 = ((ucontrol->value.integer.value[1] + min) & mask);
2618 		if (invert)
2619 			val2 = max - val2;
2620 		if (reg == reg2) {
2621 			val_mask |= mask << rshift;
2622 			val |= val2 << rshift;
2623 		} else {
2624 			val2 = val2 << shift;
2625 			type_2r = true;
2626 		}
2627 	}
2628 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
2629 	if (err < 0)
2630 		return err;
2631 
2632 	if (type_2r)
2633 		err = snd_soc_component_update_bits(component, reg2, val_mask,
2634 			val2);
2635 
2636 	return err;
2637 }
2638 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2639 
2640 /**
2641  * snd_soc_get_volsw_sx - single mixer get callback
2642  * @kcontrol: mixer control
2643  * @ucontrol: control element information
2644  *
2645  * Callback to get the value of a single mixer control, or a double mixer
2646  * control that spans 2 registers.
2647  *
2648  * Returns 0 for success.
2649  */
2650 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
2651 		      struct snd_ctl_elem_value *ucontrol)
2652 {
2653 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2654 	struct soc_mixer_control *mc =
2655 	    (struct soc_mixer_control *)kcontrol->private_value;
2656 	unsigned int reg = mc->reg;
2657 	unsigned int reg2 = mc->rreg;
2658 	unsigned int shift = mc->shift;
2659 	unsigned int rshift = mc->rshift;
2660 	int max = mc->max;
2661 	int min = mc->min;
2662 	int mask = (1 << (fls(min + max) - 1)) - 1;
2663 	unsigned int val;
2664 	int ret;
2665 
2666 	ret = snd_soc_component_read(component, reg, &val);
2667 	if (ret < 0)
2668 		return ret;
2669 
2670 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
2671 
2672 	if (snd_soc_volsw_is_stereo(mc)) {
2673 		ret = snd_soc_component_read(component, reg2, &val);
2674 		if (ret < 0)
2675 			return ret;
2676 
2677 		val = ((val >> rshift) - min) & mask;
2678 		ucontrol->value.integer.value[1] = val;
2679 	}
2680 
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
2684 
2685 /**
2686  * snd_soc_put_volsw_sx - double mixer set callback
2687  * @kcontrol: mixer control
2688  * @uinfo: control element information
2689  *
2690  * Callback to set the value of a double mixer control that spans 2 registers.
2691  *
2692  * Returns 0 for success.
2693  */
2694 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
2695 			 struct snd_ctl_elem_value *ucontrol)
2696 {
2697 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2698 	struct soc_mixer_control *mc =
2699 	    (struct soc_mixer_control *)kcontrol->private_value;
2700 
2701 	unsigned int reg = mc->reg;
2702 	unsigned int reg2 = mc->rreg;
2703 	unsigned int shift = mc->shift;
2704 	unsigned int rshift = mc->rshift;
2705 	int max = mc->max;
2706 	int min = mc->min;
2707 	int mask = (1 << (fls(min + max) - 1)) - 1;
2708 	int err = 0;
2709 	unsigned int val, val_mask, val2 = 0;
2710 
2711 	val_mask = mask << shift;
2712 	val = (ucontrol->value.integer.value[0] + min) & mask;
2713 	val = val << shift;
2714 
2715 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
2716 	if (err < 0)
2717 		return err;
2718 
2719 	if (snd_soc_volsw_is_stereo(mc)) {
2720 		val_mask = mask << rshift;
2721 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
2722 		val2 = val2 << rshift;
2723 
2724 		err = snd_soc_component_update_bits(component, reg2, val_mask,
2725 			val2);
2726 	}
2727 	return err;
2728 }
2729 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
2730 
2731 /**
2732  * snd_soc_info_volsw_s8 - signed mixer info callback
2733  * @kcontrol: mixer control
2734  * @uinfo: control element information
2735  *
2736  * Callback to provide information about a signed mixer control.
2737  *
2738  * Returns 0 for success.
2739  */
2740 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2741 	struct snd_ctl_elem_info *uinfo)
2742 {
2743 	struct soc_mixer_control *mc =
2744 		(struct soc_mixer_control *)kcontrol->private_value;
2745 	int platform_max;
2746 	int min = mc->min;
2747 
2748 	if (!mc->platform_max)
2749 		mc->platform_max = mc->max;
2750 	platform_max = mc->platform_max;
2751 
2752 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2753 	uinfo->count = 2;
2754 	uinfo->value.integer.min = 0;
2755 	uinfo->value.integer.max = platform_max - min;
2756 	return 0;
2757 }
2758 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2759 
2760 /**
2761  * snd_soc_get_volsw_s8 - signed mixer get callback
2762  * @kcontrol: mixer control
2763  * @ucontrol: control element information
2764  *
2765  * Callback to get the value of a signed mixer control.
2766  *
2767  * Returns 0 for success.
2768  */
2769 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2770 	struct snd_ctl_elem_value *ucontrol)
2771 {
2772 	struct soc_mixer_control *mc =
2773 		(struct soc_mixer_control *)kcontrol->private_value;
2774 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2775 	unsigned int reg = mc->reg;
2776 	unsigned int val;
2777 	int min = mc->min;
2778 	int ret;
2779 
2780 	ret = snd_soc_component_read(component, reg, &val);
2781 	if (ret)
2782 		return ret;
2783 
2784 	ucontrol->value.integer.value[0] =
2785 		((signed char)(val & 0xff))-min;
2786 	ucontrol->value.integer.value[1] =
2787 		((signed char)((val >> 8) & 0xff))-min;
2788 	return 0;
2789 }
2790 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2791 
2792 /**
2793  * snd_soc_put_volsw_sgn - signed mixer put callback
2794  * @kcontrol: mixer control
2795  * @ucontrol: control element information
2796  *
2797  * Callback to set the value of a signed mixer control.
2798  *
2799  * Returns 0 for success.
2800  */
2801 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2802 	struct snd_ctl_elem_value *ucontrol)
2803 {
2804 	struct soc_mixer_control *mc =
2805 		(struct soc_mixer_control *)kcontrol->private_value;
2806 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2807 	unsigned int reg = mc->reg;
2808 	int min = mc->min;
2809 	unsigned int val;
2810 
2811 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
2812 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2813 
2814 	return snd_soc_component_update_bits(component, reg, 0xffff, val);
2815 }
2816 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2817 
2818 /**
2819  * snd_soc_info_volsw_range - single mixer info callback with range.
2820  * @kcontrol: mixer control
2821  * @uinfo: control element information
2822  *
2823  * Callback to provide information, within a range, about a single
2824  * mixer control.
2825  *
2826  * returns 0 for success.
2827  */
2828 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
2829 	struct snd_ctl_elem_info *uinfo)
2830 {
2831 	struct soc_mixer_control *mc =
2832 		(struct soc_mixer_control *)kcontrol->private_value;
2833 	int platform_max;
2834 	int min = mc->min;
2835 
2836 	if (!mc->platform_max)
2837 		mc->platform_max = mc->max;
2838 	platform_max = mc->platform_max;
2839 
2840 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2841 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2842 	uinfo->value.integer.min = 0;
2843 	uinfo->value.integer.max = platform_max - min;
2844 
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
2848 
2849 /**
2850  * snd_soc_put_volsw_range - single mixer put value callback with range.
2851  * @kcontrol: mixer control
2852  * @ucontrol: control element information
2853  *
2854  * Callback to set the value, within a range, for a single mixer control.
2855  *
2856  * Returns 0 for success.
2857  */
2858 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
2859 	struct snd_ctl_elem_value *ucontrol)
2860 {
2861 	struct soc_mixer_control *mc =
2862 		(struct soc_mixer_control *)kcontrol->private_value;
2863 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2864 	unsigned int reg = mc->reg;
2865 	unsigned int rreg = mc->rreg;
2866 	unsigned int shift = mc->shift;
2867 	int min = mc->min;
2868 	int max = mc->max;
2869 	unsigned int mask = (1 << fls(max)) - 1;
2870 	unsigned int invert = mc->invert;
2871 	unsigned int val, val_mask;
2872 	int ret;
2873 
2874 	if (invert)
2875 		val = (max - ucontrol->value.integer.value[0]) & mask;
2876 	else
2877 		val = ((ucontrol->value.integer.value[0] + min) & mask);
2878 	val_mask = mask << shift;
2879 	val = val << shift;
2880 
2881 	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
2882 	if (ret < 0)
2883 		return ret;
2884 
2885 	if (snd_soc_volsw_is_stereo(mc)) {
2886 		if (invert)
2887 			val = (max - ucontrol->value.integer.value[1]) & mask;
2888 		else
2889 			val = ((ucontrol->value.integer.value[1] + min) & mask);
2890 		val_mask = mask << shift;
2891 		val = val << shift;
2892 
2893 		ret = snd_soc_component_update_bits(component, rreg, val_mask,
2894 			val);
2895 	}
2896 
2897 	return ret;
2898 }
2899 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
2900 
2901 /**
2902  * snd_soc_get_volsw_range - single mixer get callback with range
2903  * @kcontrol: mixer control
2904  * @ucontrol: control element information
2905  *
2906  * Callback to get the value, within a range, of a single mixer control.
2907  *
2908  * Returns 0 for success.
2909  */
2910 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
2911 	struct snd_ctl_elem_value *ucontrol)
2912 {
2913 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2914 	struct soc_mixer_control *mc =
2915 		(struct soc_mixer_control *)kcontrol->private_value;
2916 	unsigned int reg = mc->reg;
2917 	unsigned int rreg = mc->rreg;
2918 	unsigned int shift = mc->shift;
2919 	int min = mc->min;
2920 	int max = mc->max;
2921 	unsigned int mask = (1 << fls(max)) - 1;
2922 	unsigned int invert = mc->invert;
2923 	unsigned int val;
2924 	int ret;
2925 
2926 	ret = snd_soc_component_read(component, reg, &val);
2927 	if (ret)
2928 		return ret;
2929 
2930 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
2931 	if (invert)
2932 		ucontrol->value.integer.value[0] =
2933 			max - ucontrol->value.integer.value[0];
2934 	else
2935 		ucontrol->value.integer.value[0] =
2936 			ucontrol->value.integer.value[0] - min;
2937 
2938 	if (snd_soc_volsw_is_stereo(mc)) {
2939 		ret = snd_soc_component_read(component, rreg, &val);
2940 		if (ret)
2941 			return ret;
2942 
2943 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
2944 		if (invert)
2945 			ucontrol->value.integer.value[1] =
2946 				max - ucontrol->value.integer.value[1];
2947 		else
2948 			ucontrol->value.integer.value[1] =
2949 				ucontrol->value.integer.value[1] - min;
2950 	}
2951 
2952 	return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
2955 
2956 /**
2957  * snd_soc_limit_volume - Set new limit to an existing volume control.
2958  *
2959  * @codec: where to look for the control
2960  * @name: Name of the control
2961  * @max: new maximum limit
2962  *
2963  * Return 0 for success, else error.
2964  */
2965 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2966 	const char *name, int max)
2967 {
2968 	struct snd_card *card = codec->component.card->snd_card;
2969 	struct snd_kcontrol *kctl;
2970 	struct soc_mixer_control *mc;
2971 	int found = 0;
2972 	int ret = -EINVAL;
2973 
2974 	/* Sanity check for name and max */
2975 	if (unlikely(!name || max <= 0))
2976 		return -EINVAL;
2977 
2978 	list_for_each_entry(kctl, &card->controls, list) {
2979 		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2980 			found = 1;
2981 			break;
2982 		}
2983 	}
2984 	if (found) {
2985 		mc = (struct soc_mixer_control *)kctl->private_value;
2986 		if (max <= mc->max) {
2987 			mc->platform_max = max;
2988 			ret = 0;
2989 		}
2990 	}
2991 	return ret;
2992 }
2993 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2994 
2995 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
2996 		       struct snd_ctl_elem_info *uinfo)
2997 {
2998 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2999 	struct soc_bytes *params = (void *)kcontrol->private_value;
3000 
3001 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3002 	uinfo->count = params->num_regs * component->val_bytes;
3003 
3004 	return 0;
3005 }
3006 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
3007 
3008 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
3009 		      struct snd_ctl_elem_value *ucontrol)
3010 {
3011 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3012 	struct soc_bytes *params = (void *)kcontrol->private_value;
3013 	int ret;
3014 
3015 	if (component->regmap)
3016 		ret = regmap_raw_read(component->regmap, params->base,
3017 				      ucontrol->value.bytes.data,
3018 				      params->num_regs * component->val_bytes);
3019 	else
3020 		ret = -EINVAL;
3021 
3022 	/* Hide any masked bytes to ensure consistent data reporting */
3023 	if (ret == 0 && params->mask) {
3024 		switch (component->val_bytes) {
3025 		case 1:
3026 			ucontrol->value.bytes.data[0] &= ~params->mask;
3027 			break;
3028 		case 2:
3029 			((u16 *)(&ucontrol->value.bytes.data))[0]
3030 				&= cpu_to_be16(~params->mask);
3031 			break;
3032 		case 4:
3033 			((u32 *)(&ucontrol->value.bytes.data))[0]
3034 				&= cpu_to_be32(~params->mask);
3035 			break;
3036 		default:
3037 			return -EINVAL;
3038 		}
3039 	}
3040 
3041 	return ret;
3042 }
3043 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
3044 
3045 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
3046 		      struct snd_ctl_elem_value *ucontrol)
3047 {
3048 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3049 	struct soc_bytes *params = (void *)kcontrol->private_value;
3050 	int ret, len;
3051 	unsigned int val, mask;
3052 	void *data;
3053 
3054 	if (!component->regmap || !params->num_regs)
3055 		return -EINVAL;
3056 
3057 	len = params->num_regs * component->val_bytes;
3058 
3059 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
3060 	if (!data)
3061 		return -ENOMEM;
3062 
3063 	/*
3064 	 * If we've got a mask then we need to preserve the register
3065 	 * bits.  We shouldn't modify the incoming data so take a
3066 	 * copy.
3067 	 */
3068 	if (params->mask) {
3069 		ret = regmap_read(component->regmap, params->base, &val);
3070 		if (ret != 0)
3071 			goto out;
3072 
3073 		val &= params->mask;
3074 
3075 		switch (component->val_bytes) {
3076 		case 1:
3077 			((u8 *)data)[0] &= ~params->mask;
3078 			((u8 *)data)[0] |= val;
3079 			break;
3080 		case 2:
3081 			mask = ~params->mask;
3082 			ret = regmap_parse_val(component->regmap,
3083 							&mask, &mask);
3084 			if (ret != 0)
3085 				goto out;
3086 
3087 			((u16 *)data)[0] &= mask;
3088 
3089 			ret = regmap_parse_val(component->regmap,
3090 							&val, &val);
3091 			if (ret != 0)
3092 				goto out;
3093 
3094 			((u16 *)data)[0] |= val;
3095 			break;
3096 		case 4:
3097 			mask = ~params->mask;
3098 			ret = regmap_parse_val(component->regmap,
3099 							&mask, &mask);
3100 			if (ret != 0)
3101 				goto out;
3102 
3103 			((u32 *)data)[0] &= mask;
3104 
3105 			ret = regmap_parse_val(component->regmap,
3106 							&val, &val);
3107 			if (ret != 0)
3108 				goto out;
3109 
3110 			((u32 *)data)[0] |= val;
3111 			break;
3112 		default:
3113 			ret = -EINVAL;
3114 			goto out;
3115 		}
3116 	}
3117 
3118 	ret = regmap_raw_write(component->regmap, params->base,
3119 			       data, len);
3120 
3121 out:
3122 	kfree(data);
3123 
3124 	return ret;
3125 }
3126 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
3127 
3128 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
3129 			struct snd_ctl_elem_info *ucontrol)
3130 {
3131 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3132 
3133 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3134 	ucontrol->count = params->max;
3135 
3136 	return 0;
3137 }
3138 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
3139 
3140 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
3141 				unsigned int size, unsigned int __user *tlv)
3142 {
3143 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3144 	unsigned int count = size < params->max ? size : params->max;
3145 	int ret = -ENXIO;
3146 
3147 	switch (op_flag) {
3148 	case SNDRV_CTL_TLV_OP_READ:
3149 		if (params->get)
3150 			ret = params->get(tlv, count);
3151 		break;
3152 	case SNDRV_CTL_TLV_OP_WRITE:
3153 		if (params->put)
3154 			ret = params->put(tlv, count);
3155 		break;
3156 	}
3157 	return ret;
3158 }
3159 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
3160 
3161 /**
3162  * snd_soc_info_xr_sx - signed multi register info callback
3163  * @kcontrol: mreg control
3164  * @uinfo: control element information
3165  *
3166  * Callback to provide information of a control that can
3167  * span multiple codec registers which together
3168  * forms a single signed value in a MSB/LSB manner.
3169  *
3170  * Returns 0 for success.
3171  */
3172 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
3173 	struct snd_ctl_elem_info *uinfo)
3174 {
3175 	struct soc_mreg_control *mc =
3176 		(struct soc_mreg_control *)kcontrol->private_value;
3177 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3178 	uinfo->count = 1;
3179 	uinfo->value.integer.min = mc->min;
3180 	uinfo->value.integer.max = mc->max;
3181 
3182 	return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
3185 
3186 /**
3187  * snd_soc_get_xr_sx - signed multi register get callback
3188  * @kcontrol: mreg control
3189  * @ucontrol: control element information
3190  *
3191  * Callback to get the value of a control that can span
3192  * multiple codec registers which together forms a single
3193  * signed value in a MSB/LSB manner. The control supports
3194  * specifying total no of bits used to allow for bitfields
3195  * across the multiple codec registers.
3196  *
3197  * Returns 0 for success.
3198  */
3199 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
3200 	struct snd_ctl_elem_value *ucontrol)
3201 {
3202 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3203 	struct soc_mreg_control *mc =
3204 		(struct soc_mreg_control *)kcontrol->private_value;
3205 	unsigned int regbase = mc->regbase;
3206 	unsigned int regcount = mc->regcount;
3207 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3208 	unsigned int regwmask = (1<<regwshift)-1;
3209 	unsigned int invert = mc->invert;
3210 	unsigned long mask = (1UL<<mc->nbits)-1;
3211 	long min = mc->min;
3212 	long max = mc->max;
3213 	long val = 0;
3214 	unsigned int regval;
3215 	unsigned int i;
3216 	int ret;
3217 
3218 	for (i = 0; i < regcount; i++) {
3219 		ret = snd_soc_component_read(component, regbase+i, &regval);
3220 		if (ret)
3221 			return ret;
3222 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
3223 	}
3224 	val &= mask;
3225 	if (min < 0 && val > max)
3226 		val |= ~mask;
3227 	if (invert)
3228 		val = max - val;
3229 	ucontrol->value.integer.value[0] = val;
3230 
3231 	return 0;
3232 }
3233 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
3234 
3235 /**
3236  * snd_soc_put_xr_sx - signed multi register get callback
3237  * @kcontrol: mreg control
3238  * @ucontrol: control element information
3239  *
3240  * Callback to set the value of a control that can span
3241  * multiple codec registers which together forms a single
3242  * signed value in a MSB/LSB manner. The control supports
3243  * specifying total no of bits used to allow for bitfields
3244  * across the multiple codec registers.
3245  *
3246  * Returns 0 for success.
3247  */
3248 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
3249 	struct snd_ctl_elem_value *ucontrol)
3250 {
3251 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3252 	struct soc_mreg_control *mc =
3253 		(struct soc_mreg_control *)kcontrol->private_value;
3254 	unsigned int regbase = mc->regbase;
3255 	unsigned int regcount = mc->regcount;
3256 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3257 	unsigned int regwmask = (1<<regwshift)-1;
3258 	unsigned int invert = mc->invert;
3259 	unsigned long mask = (1UL<<mc->nbits)-1;
3260 	long max = mc->max;
3261 	long val = ucontrol->value.integer.value[0];
3262 	unsigned int i, regval, regmask;
3263 	int err;
3264 
3265 	if (invert)
3266 		val = max - val;
3267 	val &= mask;
3268 	for (i = 0; i < regcount; i++) {
3269 		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
3270 		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
3271 		err = snd_soc_component_update_bits(component, regbase+i,
3272 				regmask, regval);
3273 		if (err < 0)
3274 			return err;
3275 	}
3276 
3277 	return 0;
3278 }
3279 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
3280 
3281 /**
3282  * snd_soc_get_strobe - strobe get callback
3283  * @kcontrol: mixer control
3284  * @ucontrol: control element information
3285  *
3286  * Callback get the value of a strobe mixer control.
3287  *
3288  * Returns 0 for success.
3289  */
3290 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
3291 	struct snd_ctl_elem_value *ucontrol)
3292 {
3293 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3294 	struct soc_mixer_control *mc =
3295 		(struct soc_mixer_control *)kcontrol->private_value;
3296 	unsigned int reg = mc->reg;
3297 	unsigned int shift = mc->shift;
3298 	unsigned int mask = 1 << shift;
3299 	unsigned int invert = mc->invert != 0;
3300 	unsigned int val;
3301 	int ret;
3302 
3303 	ret = snd_soc_component_read(component, reg, &val);
3304 	if (ret)
3305 		return ret;
3306 
3307 	val &= mask;
3308 
3309 	if (shift != 0 && val != 0)
3310 		val = val >> shift;
3311 	ucontrol->value.enumerated.item[0] = val ^ invert;
3312 
3313 	return 0;
3314 }
3315 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
3316 
3317 /**
3318  * snd_soc_put_strobe - strobe put callback
3319  * @kcontrol: mixer control
3320  * @ucontrol: control element information
3321  *
3322  * Callback strobe a register bit to high then low (or the inverse)
3323  * in one pass of a single mixer enum control.
3324  *
3325  * Returns 1 for success.
3326  */
3327 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
3328 	struct snd_ctl_elem_value *ucontrol)
3329 {
3330 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3331 	struct soc_mixer_control *mc =
3332 		(struct soc_mixer_control *)kcontrol->private_value;
3333 	unsigned int reg = mc->reg;
3334 	unsigned int shift = mc->shift;
3335 	unsigned int mask = 1 << shift;
3336 	unsigned int invert = mc->invert != 0;
3337 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
3338 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
3339 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
3340 	int err;
3341 
3342 	err = snd_soc_component_update_bits(component, reg, mask, val1);
3343 	if (err < 0)
3344 		return err;
3345 
3346 	return snd_soc_component_update_bits(component, reg, mask, val2);
3347 }
3348 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
3349 
3350 /**
3351  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3352  * @dai: DAI
3353  * @clk_id: DAI specific clock ID
3354  * @freq: new clock frequency in Hz
3355  * @dir: new clock direction - input/output.
3356  *
3357  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3358  */
3359 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3360 	unsigned int freq, int dir)
3361 {
3362 	if (dai->driver && dai->driver->ops->set_sysclk)
3363 		return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3364 	else if (dai->codec && dai->codec->driver->set_sysclk)
3365 		return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0,
3366 						      freq, dir);
3367 	else
3368 		return -ENOTSUPP;
3369 }
3370 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3371 
3372 /**
3373  * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3374  * @codec: CODEC
3375  * @clk_id: DAI specific clock ID
3376  * @source: Source for the clock
3377  * @freq: new clock frequency in Hz
3378  * @dir: new clock direction - input/output.
3379  *
3380  * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3381  */
3382 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3383 			     int source, unsigned int freq, int dir)
3384 {
3385 	if (codec->driver->set_sysclk)
3386 		return codec->driver->set_sysclk(codec, clk_id, source,
3387 						 freq, dir);
3388 	else
3389 		return -ENOTSUPP;
3390 }
3391 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3392 
3393 /**
3394  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3395  * @dai: DAI
3396  * @div_id: DAI specific clock divider ID
3397  * @div: new clock divisor.
3398  *
3399  * Configures the clock dividers. This is used to derive the best DAI bit and
3400  * frame clocks from the system or master clock. It's best to set the DAI bit
3401  * and frame clocks as low as possible to save system power.
3402  */
3403 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3404 	int div_id, int div)
3405 {
3406 	if (dai->driver && dai->driver->ops->set_clkdiv)
3407 		return dai->driver->ops->set_clkdiv(dai, div_id, div);
3408 	else
3409 		return -EINVAL;
3410 }
3411 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3412 
3413 /**
3414  * snd_soc_dai_set_pll - configure DAI PLL.
3415  * @dai: DAI
3416  * @pll_id: DAI specific PLL ID
3417  * @source: DAI specific source for the PLL
3418  * @freq_in: PLL input clock frequency in Hz
3419  * @freq_out: requested PLL output clock frequency in Hz
3420  *
3421  * Configures and enables PLL to generate output clock based on input clock.
3422  */
3423 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3424 	unsigned int freq_in, unsigned int freq_out)
3425 {
3426 	if (dai->driver && dai->driver->ops->set_pll)
3427 		return dai->driver->ops->set_pll(dai, pll_id, source,
3428 					 freq_in, freq_out);
3429 	else if (dai->codec && dai->codec->driver->set_pll)
3430 		return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3431 						   freq_in, freq_out);
3432 	else
3433 		return -EINVAL;
3434 }
3435 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3436 
3437 /*
3438  * snd_soc_codec_set_pll - configure codec PLL.
3439  * @codec: CODEC
3440  * @pll_id: DAI specific PLL ID
3441  * @source: DAI specific source for the PLL
3442  * @freq_in: PLL input clock frequency in Hz
3443  * @freq_out: requested PLL output clock frequency in Hz
3444  *
3445  * Configures and enables PLL to generate output clock based on input clock.
3446  */
3447 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3448 			  unsigned int freq_in, unsigned int freq_out)
3449 {
3450 	if (codec->driver->set_pll)
3451 		return codec->driver->set_pll(codec, pll_id, source,
3452 					      freq_in, freq_out);
3453 	else
3454 		return -EINVAL;
3455 }
3456 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3457 
3458 /**
3459  * snd_soc_dai_set_bclk_ratio - configure BCLK to sample rate ratio.
3460  * @dai: DAI
3461  * @ratio Ratio of BCLK to Sample rate.
3462  *
3463  * Configures the DAI for a preset BCLK to sample rate ratio.
3464  */
3465 int snd_soc_dai_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio)
3466 {
3467 	if (dai->driver && dai->driver->ops->set_bclk_ratio)
3468 		return dai->driver->ops->set_bclk_ratio(dai, ratio);
3469 	else
3470 		return -EINVAL;
3471 }
3472 EXPORT_SYMBOL_GPL(snd_soc_dai_set_bclk_ratio);
3473 
3474 /**
3475  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3476  * @dai: DAI
3477  * @fmt: SND_SOC_DAIFMT_ format value.
3478  *
3479  * Configures the DAI hardware format and clocking.
3480  */
3481 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3482 {
3483 	if (dai->driver == NULL)
3484 		return -EINVAL;
3485 	if (dai->driver->ops->set_fmt == NULL)
3486 		return -ENOTSUPP;
3487 	return dai->driver->ops->set_fmt(dai, fmt);
3488 }
3489 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3490 
3491 /**
3492  * snd_soc_xlate_tdm_slot - generate tx/rx slot mask.
3493  * @slots: Number of slots in use.
3494  * @tx_mask: bitmask representing active TX slots.
3495  * @rx_mask: bitmask representing active RX slots.
3496  *
3497  * Generates the TDM tx and rx slot default masks for DAI.
3498  */
3499 static int snd_soc_xlate_tdm_slot_mask(unsigned int slots,
3500 					  unsigned int *tx_mask,
3501 					  unsigned int *rx_mask)
3502 {
3503 	if (*tx_mask || *rx_mask)
3504 		return 0;
3505 
3506 	if (!slots)
3507 		return -EINVAL;
3508 
3509 	*tx_mask = (1 << slots) - 1;
3510 	*rx_mask = (1 << slots) - 1;
3511 
3512 	return 0;
3513 }
3514 
3515 /**
3516  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3517  * @dai: DAI
3518  * @tx_mask: bitmask representing active TX slots.
3519  * @rx_mask: bitmask representing active RX slots.
3520  * @slots: Number of slots in use.
3521  * @slot_width: Width in bits for each slot.
3522  *
3523  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3524  * specific.
3525  */
3526 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3527 	unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3528 {
3529 	if (dai->driver && dai->driver->ops->xlate_tdm_slot_mask)
3530 		dai->driver->ops->xlate_tdm_slot_mask(slots,
3531 						&tx_mask, &rx_mask);
3532 	else
3533 		snd_soc_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask);
3534 
3535 	dai->tx_mask = tx_mask;
3536 	dai->rx_mask = rx_mask;
3537 
3538 	if (dai->driver && dai->driver->ops->set_tdm_slot)
3539 		return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3540 				slots, slot_width);
3541 	else
3542 		return -ENOTSUPP;
3543 }
3544 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3545 
3546 /**
3547  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3548  * @dai: DAI
3549  * @tx_num: how many TX channels
3550  * @tx_slot: pointer to an array which imply the TX slot number channel
3551  *           0~num-1 uses
3552  * @rx_num: how many RX channels
3553  * @rx_slot: pointer to an array which imply the RX slot number channel
3554  *           0~num-1 uses
3555  *
3556  * configure the relationship between channel number and TDM slot number.
3557  */
3558 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3559 	unsigned int tx_num, unsigned int *tx_slot,
3560 	unsigned int rx_num, unsigned int *rx_slot)
3561 {
3562 	if (dai->driver && dai->driver->ops->set_channel_map)
3563 		return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3564 			rx_num, rx_slot);
3565 	else
3566 		return -EINVAL;
3567 }
3568 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3569 
3570 /**
3571  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3572  * @dai: DAI
3573  * @tristate: tristate enable
3574  *
3575  * Tristates the DAI so that others can use it.
3576  */
3577 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3578 {
3579 	if (dai->driver && dai->driver->ops->set_tristate)
3580 		return dai->driver->ops->set_tristate(dai, tristate);
3581 	else
3582 		return -EINVAL;
3583 }
3584 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3585 
3586 /**
3587  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3588  * @dai: DAI
3589  * @mute: mute enable
3590  * @direction: stream to mute
3591  *
3592  * Mutes the DAI DAC.
3593  */
3594 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute,
3595 			     int direction)
3596 {
3597 	if (!dai->driver)
3598 		return -ENOTSUPP;
3599 
3600 	if (dai->driver->ops->mute_stream)
3601 		return dai->driver->ops->mute_stream(dai, mute, direction);
3602 	else if (direction == SNDRV_PCM_STREAM_PLAYBACK &&
3603 		 dai->driver->ops->digital_mute)
3604 		return dai->driver->ops->digital_mute(dai, mute);
3605 	else
3606 		return -ENOTSUPP;
3607 }
3608 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3609 
3610 static int snd_soc_init_multicodec(struct snd_soc_card *card,
3611 				   struct snd_soc_dai_link *dai_link)
3612 {
3613 	/* Legacy codec/codec_dai link is a single entry in multicodec */
3614 	if (dai_link->codec_name || dai_link->codec_of_node ||
3615 	    dai_link->codec_dai_name) {
3616 		dai_link->num_codecs = 1;
3617 
3618 		dai_link->codecs = devm_kzalloc(card->dev,
3619 				sizeof(struct snd_soc_dai_link_component),
3620 				GFP_KERNEL);
3621 		if (!dai_link->codecs)
3622 			return -ENOMEM;
3623 
3624 		dai_link->codecs[0].name = dai_link->codec_name;
3625 		dai_link->codecs[0].of_node = dai_link->codec_of_node;
3626 		dai_link->codecs[0].dai_name = dai_link->codec_dai_name;
3627 	}
3628 
3629 	if (!dai_link->codecs) {
3630 		dev_err(card->dev, "ASoC: DAI link has no CODECs\n");
3631 		return -EINVAL;
3632 	}
3633 
3634 	return 0;
3635 }
3636 
3637 /**
3638  * snd_soc_register_card - Register a card with the ASoC core
3639  *
3640  * @card: Card to register
3641  *
3642  */
3643 int snd_soc_register_card(struct snd_soc_card *card)
3644 {
3645 	int i, j, ret;
3646 
3647 	if (!card->name || !card->dev)
3648 		return -EINVAL;
3649 
3650 	for (i = 0; i < card->num_links; i++) {
3651 		struct snd_soc_dai_link *link = &card->dai_link[i];
3652 
3653 		ret = snd_soc_init_multicodec(card, link);
3654 		if (ret) {
3655 			dev_err(card->dev, "ASoC: failed to init multicodec\n");
3656 			return ret;
3657 		}
3658 
3659 		for (j = 0; j < link->num_codecs; j++) {
3660 			/*
3661 			 * Codec must be specified by 1 of name or OF node,
3662 			 * not both or neither.
3663 			 */
3664 			if (!!link->codecs[j].name ==
3665 			    !!link->codecs[j].of_node) {
3666 				dev_err(card->dev, "ASoC: Neither/both codec name/of_node are set for %s\n",
3667 					link->name);
3668 				return -EINVAL;
3669 			}
3670 			/* Codec DAI name must be specified */
3671 			if (!link->codecs[j].dai_name) {
3672 				dev_err(card->dev, "ASoC: codec_dai_name not set for %s\n",
3673 					link->name);
3674 				return -EINVAL;
3675 			}
3676 		}
3677 
3678 		/*
3679 		 * Platform may be specified by either name or OF node, but
3680 		 * can be left unspecified, and a dummy platform will be used.
3681 		 */
3682 		if (link->platform_name && link->platform_of_node) {
3683 			dev_err(card->dev,
3684 				"ASoC: Both platform name/of_node are set for %s\n",
3685 				link->name);
3686 			return -EINVAL;
3687 		}
3688 
3689 		/*
3690 		 * CPU device may be specified by either name or OF node, but
3691 		 * can be left unspecified, and will be matched based on DAI
3692 		 * name alone..
3693 		 */
3694 		if (link->cpu_name && link->cpu_of_node) {
3695 			dev_err(card->dev,
3696 				"ASoC: Neither/both cpu name/of_node are set for %s\n",
3697 				link->name);
3698 			return -EINVAL;
3699 		}
3700 		/*
3701 		 * At least one of CPU DAI name or CPU device name/node must be
3702 		 * specified
3703 		 */
3704 		if (!link->cpu_dai_name &&
3705 		    !(link->cpu_name || link->cpu_of_node)) {
3706 			dev_err(card->dev,
3707 				"ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n",
3708 				link->name);
3709 			return -EINVAL;
3710 		}
3711 	}
3712 
3713 	dev_set_drvdata(card->dev, card);
3714 
3715 	snd_soc_initialize_card_lists(card);
3716 
3717 	soc_init_card_debugfs(card);
3718 
3719 	card->rtd = devm_kzalloc(card->dev,
3720 				 sizeof(struct snd_soc_pcm_runtime) *
3721 				 (card->num_links + card->num_aux_devs),
3722 				 GFP_KERNEL);
3723 	if (card->rtd == NULL)
3724 		return -ENOMEM;
3725 	card->num_rtd = 0;
3726 	card->rtd_aux = &card->rtd[card->num_links];
3727 
3728 	for (i = 0; i < card->num_links; i++) {
3729 		card->rtd[i].card = card;
3730 		card->rtd[i].dai_link = &card->dai_link[i];
3731 		card->rtd[i].codec_dais = devm_kzalloc(card->dev,
3732 					sizeof(struct snd_soc_dai *) *
3733 					(card->rtd[i].dai_link->num_codecs),
3734 					GFP_KERNEL);
3735 		if (card->rtd[i].codec_dais == NULL)
3736 			return -ENOMEM;
3737 	}
3738 
3739 	for (i = 0; i < card->num_aux_devs; i++)
3740 		card->rtd_aux[i].card = card;
3741 
3742 	INIT_LIST_HEAD(&card->dapm_dirty);
3743 	card->instantiated = 0;
3744 	mutex_init(&card->mutex);
3745 	mutex_init(&card->dapm_mutex);
3746 
3747 	ret = snd_soc_instantiate_card(card);
3748 	if (ret != 0)
3749 		soc_cleanup_card_debugfs(card);
3750 
3751 	/* deactivate pins to sleep state */
3752 	for (i = 0; i < card->num_rtd; i++) {
3753 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
3754 		struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
3755 		int j;
3756 
3757 		for (j = 0; j < rtd->num_codecs; j++) {
3758 			struct snd_soc_dai *codec_dai = rtd->codec_dais[j];
3759 			if (!codec_dai->active)
3760 				pinctrl_pm_select_sleep_state(codec_dai->dev);
3761 		}
3762 
3763 		if (!cpu_dai->active)
3764 			pinctrl_pm_select_sleep_state(cpu_dai->dev);
3765 	}
3766 
3767 	return ret;
3768 }
3769 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3770 
3771 /**
3772  * snd_soc_unregister_card - Unregister a card with the ASoC core
3773  *
3774  * @card: Card to unregister
3775  *
3776  */
3777 int snd_soc_unregister_card(struct snd_soc_card *card)
3778 {
3779 	if (card->instantiated) {
3780 		card->instantiated = false;
3781 		snd_soc_dapm_shutdown(card);
3782 		soc_cleanup_card_resources(card);
3783 	}
3784 	dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name);
3785 
3786 	return 0;
3787 }
3788 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3789 
3790 /*
3791  * Simplify DAI link configuration by removing ".-1" from device names
3792  * and sanitizing names.
3793  */
3794 static char *fmt_single_name(struct device *dev, int *id)
3795 {
3796 	char *found, name[NAME_SIZE];
3797 	int id1, id2;
3798 
3799 	if (dev_name(dev) == NULL)
3800 		return NULL;
3801 
3802 	strlcpy(name, dev_name(dev), NAME_SIZE);
3803 
3804 	/* are we a "%s.%d" name (platform and SPI components) */
3805 	found = strstr(name, dev->driver->name);
3806 	if (found) {
3807 		/* get ID */
3808 		if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3809 
3810 			/* discard ID from name if ID == -1 */
3811 			if (*id == -1)
3812 				found[strlen(dev->driver->name)] = '\0';
3813 		}
3814 
3815 	} else {
3816 		/* I2C component devices are named "bus-addr"  */
3817 		if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3818 			char tmp[NAME_SIZE];
3819 
3820 			/* create unique ID number from I2C addr and bus */
3821 			*id = ((id1 & 0xffff) << 16) + id2;
3822 
3823 			/* sanitize component name for DAI link creation */
3824 			snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3825 			strlcpy(name, tmp, NAME_SIZE);
3826 		} else
3827 			*id = 0;
3828 	}
3829 
3830 	return kstrdup(name, GFP_KERNEL);
3831 }
3832 
3833 /*
3834  * Simplify DAI link naming for single devices with multiple DAIs by removing
3835  * any ".-1" and using the DAI name (instead of device name).
3836  */
3837 static inline char *fmt_multiple_name(struct device *dev,
3838 		struct snd_soc_dai_driver *dai_drv)
3839 {
3840 	if (dai_drv->name == NULL) {
3841 		dev_err(dev,
3842 			"ASoC: error - multiple DAI %s registered with no name\n",
3843 			dev_name(dev));
3844 		return NULL;
3845 	}
3846 
3847 	return kstrdup(dai_drv->name, GFP_KERNEL);
3848 }
3849 
3850 /**
3851  * snd_soc_unregister_dai - Unregister DAIs from the ASoC core
3852  *
3853  * @component: The component for which the DAIs should be unregistered
3854  */
3855 static void snd_soc_unregister_dais(struct snd_soc_component *component)
3856 {
3857 	struct snd_soc_dai *dai, *_dai;
3858 
3859 	list_for_each_entry_safe(dai, _dai, &component->dai_list, list) {
3860 		dev_dbg(component->dev, "ASoC: Unregistered DAI '%s'\n",
3861 			dai->name);
3862 		list_del(&dai->list);
3863 		kfree(dai->name);
3864 		kfree(dai);
3865 	}
3866 }
3867 
3868 /**
3869  * snd_soc_register_dais - Register a DAI with the ASoC core
3870  *
3871  * @component: The component the DAIs are registered for
3872  * @dai_drv: DAI driver to use for the DAIs
3873  * @count: Number of DAIs
3874  * @legacy_dai_naming: Use the legacy naming scheme and let the DAI inherit the
3875  *                     parent's name.
3876  */
3877 static int snd_soc_register_dais(struct snd_soc_component *component,
3878 	struct snd_soc_dai_driver *dai_drv, size_t count,
3879 	bool legacy_dai_naming)
3880 {
3881 	struct device *dev = component->dev;
3882 	struct snd_soc_dai *dai;
3883 	unsigned int i;
3884 	int ret;
3885 
3886 	dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count);
3887 
3888 	component->dai_drv = dai_drv;
3889 	component->num_dai = count;
3890 
3891 	for (i = 0; i < count; i++) {
3892 
3893 		dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3894 		if (dai == NULL) {
3895 			ret = -ENOMEM;
3896 			goto err;
3897 		}
3898 
3899 		/*
3900 		 * Back in the old days when we still had component-less DAIs,
3901 		 * instead of having a static name, component-less DAIs would
3902 		 * inherit the name of the parent device so it is possible to
3903 		 * register multiple instances of the DAI. We still need to keep
3904 		 * the same naming style even though those DAIs are not
3905 		 * component-less anymore.
3906 		 */
3907 		if (count == 1 && legacy_dai_naming) {
3908 			dai->name = fmt_single_name(dev, &dai->id);
3909 		} else {
3910 			dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3911 			if (dai_drv[i].id)
3912 				dai->id = dai_drv[i].id;
3913 			else
3914 				dai->id = i;
3915 		}
3916 		if (dai->name == NULL) {
3917 			kfree(dai);
3918 			ret = -ENOMEM;
3919 			goto err;
3920 		}
3921 
3922 		dai->component = component;
3923 		dai->dev = dev;
3924 		dai->driver = &dai_drv[i];
3925 		if (!dai->driver->ops)
3926 			dai->driver->ops = &null_dai_ops;
3927 
3928 		list_add(&dai->list, &component->dai_list);
3929 
3930 		dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name);
3931 	}
3932 
3933 	return 0;
3934 
3935 err:
3936 	snd_soc_unregister_dais(component);
3937 
3938 	return ret;
3939 }
3940 
3941 static void snd_soc_component_seq_notifier(struct snd_soc_dapm_context *dapm,
3942 	enum snd_soc_dapm_type type, int subseq)
3943 {
3944 	struct snd_soc_component *component = dapm->component;
3945 
3946 	component->driver->seq_notifier(component, type, subseq);
3947 }
3948 
3949 static int snd_soc_component_stream_event(struct snd_soc_dapm_context *dapm,
3950 	int event)
3951 {
3952 	struct snd_soc_component *component = dapm->component;
3953 
3954 	return component->driver->stream_event(component, event);
3955 }
3956 
3957 static int snd_soc_component_initialize(struct snd_soc_component *component,
3958 	const struct snd_soc_component_driver *driver, struct device *dev)
3959 {
3960 	struct snd_soc_dapm_context *dapm;
3961 
3962 	component->name = fmt_single_name(dev, &component->id);
3963 	if (!component->name) {
3964 		dev_err(dev, "ASoC: Failed to allocate name\n");
3965 		return -ENOMEM;
3966 	}
3967 
3968 	component->dev = dev;
3969 	component->driver = driver;
3970 	component->probe = component->driver->probe;
3971 	component->remove = component->driver->remove;
3972 
3973 	if (!component->dapm_ptr)
3974 		component->dapm_ptr = &component->dapm;
3975 
3976 	dapm = component->dapm_ptr;
3977 	dapm->dev = dev;
3978 	dapm->component = component;
3979 	dapm->bias_level = SND_SOC_BIAS_OFF;
3980 	dapm->idle_bias_off = true;
3981 	if (driver->seq_notifier)
3982 		dapm->seq_notifier = snd_soc_component_seq_notifier;
3983 	if (driver->stream_event)
3984 		dapm->stream_event = snd_soc_component_stream_event;
3985 
3986 	component->controls = driver->controls;
3987 	component->num_controls = driver->num_controls;
3988 	component->dapm_widgets = driver->dapm_widgets;
3989 	component->num_dapm_widgets = driver->num_dapm_widgets;
3990 	component->dapm_routes = driver->dapm_routes;
3991 	component->num_dapm_routes = driver->num_dapm_routes;
3992 
3993 	INIT_LIST_HEAD(&component->dai_list);
3994 	mutex_init(&component->io_mutex);
3995 
3996 	return 0;
3997 }
3998 
3999 static void snd_soc_component_init_regmap(struct snd_soc_component *component)
4000 {
4001 	if (!component->regmap)
4002 		component->regmap = dev_get_regmap(component->dev, NULL);
4003 	if (component->regmap) {
4004 		int val_bytes = regmap_get_val_bytes(component->regmap);
4005 		/* Errors are legitimate for non-integer byte multiples */
4006 		if (val_bytes > 0)
4007 			component->val_bytes = val_bytes;
4008 	}
4009 }
4010 
4011 static void snd_soc_component_add_unlocked(struct snd_soc_component *component)
4012 {
4013 	if (!component->write && !component->read)
4014 		snd_soc_component_init_regmap(component);
4015 
4016 	list_add(&component->list, &component_list);
4017 }
4018 
4019 static void snd_soc_component_add(struct snd_soc_component *component)
4020 {
4021 	mutex_lock(&client_mutex);
4022 	snd_soc_component_add_unlocked(component);
4023 	mutex_unlock(&client_mutex);
4024 }
4025 
4026 static void snd_soc_component_cleanup(struct snd_soc_component *component)
4027 {
4028 	snd_soc_unregister_dais(component);
4029 	kfree(component->name);
4030 }
4031 
4032 static void snd_soc_component_del_unlocked(struct snd_soc_component *component)
4033 {
4034 	list_del(&component->list);
4035 }
4036 
4037 static void snd_soc_component_del(struct snd_soc_component *component)
4038 {
4039 	mutex_lock(&client_mutex);
4040 	snd_soc_component_del_unlocked(component);
4041 	mutex_unlock(&client_mutex);
4042 }
4043 
4044 int snd_soc_register_component(struct device *dev,
4045 			       const struct snd_soc_component_driver *cmpnt_drv,
4046 			       struct snd_soc_dai_driver *dai_drv,
4047 			       int num_dai)
4048 {
4049 	struct snd_soc_component *cmpnt;
4050 	int ret;
4051 
4052 	cmpnt = kzalloc(sizeof(*cmpnt), GFP_KERNEL);
4053 	if (!cmpnt) {
4054 		dev_err(dev, "ASoC: Failed to allocate memory\n");
4055 		return -ENOMEM;
4056 	}
4057 
4058 	ret = snd_soc_component_initialize(cmpnt, cmpnt_drv, dev);
4059 	if (ret)
4060 		goto err_free;
4061 
4062 	cmpnt->ignore_pmdown_time = true;
4063 	cmpnt->registered_as_component = true;
4064 
4065 	ret = snd_soc_register_dais(cmpnt, dai_drv, num_dai, true);
4066 	if (ret < 0) {
4067 		dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4068 		goto err_cleanup;
4069 	}
4070 
4071 	snd_soc_component_add(cmpnt);
4072 
4073 	return 0;
4074 
4075 err_cleanup:
4076 	snd_soc_component_cleanup(cmpnt);
4077 err_free:
4078 	kfree(cmpnt);
4079 	return ret;
4080 }
4081 EXPORT_SYMBOL_GPL(snd_soc_register_component);
4082 
4083 /**
4084  * snd_soc_unregister_component - Unregister a component from the ASoC core
4085  *
4086  */
4087 void snd_soc_unregister_component(struct device *dev)
4088 {
4089 	struct snd_soc_component *cmpnt;
4090 
4091 	list_for_each_entry(cmpnt, &component_list, list) {
4092 		if (dev == cmpnt->dev && cmpnt->registered_as_component)
4093 			goto found;
4094 	}
4095 	return;
4096 
4097 found:
4098 	snd_soc_component_del(cmpnt);
4099 	snd_soc_component_cleanup(cmpnt);
4100 	kfree(cmpnt);
4101 }
4102 EXPORT_SYMBOL_GPL(snd_soc_unregister_component);
4103 
4104 static int snd_soc_platform_drv_probe(struct snd_soc_component *component)
4105 {
4106 	struct snd_soc_platform *platform = snd_soc_component_to_platform(component);
4107 
4108 	return platform->driver->probe(platform);
4109 }
4110 
4111 static void snd_soc_platform_drv_remove(struct snd_soc_component *component)
4112 {
4113 	struct snd_soc_platform *platform = snd_soc_component_to_platform(component);
4114 
4115 	platform->driver->remove(platform);
4116 }
4117 
4118 /**
4119  * snd_soc_add_platform - Add a platform to the ASoC core
4120  * @dev: The parent device for the platform
4121  * @platform: The platform to add
4122  * @platform_driver: The driver for the platform
4123  */
4124 int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform,
4125 		const struct snd_soc_platform_driver *platform_drv)
4126 {
4127 	int ret;
4128 
4129 	ret = snd_soc_component_initialize(&platform->component,
4130 			&platform_drv->component_driver, dev);
4131 	if (ret)
4132 		return ret;
4133 
4134 	platform->dev = dev;
4135 	platform->driver = platform_drv;
4136 
4137 	if (platform_drv->probe)
4138 		platform->component.probe = snd_soc_platform_drv_probe;
4139 	if (platform_drv->remove)
4140 		platform->component.remove = snd_soc_platform_drv_remove;
4141 
4142 #ifdef CONFIG_DEBUG_FS
4143 	platform->component.debugfs_prefix = "platform";
4144 #endif
4145 
4146 	mutex_lock(&client_mutex);
4147 	snd_soc_component_add_unlocked(&platform->component);
4148 	list_add(&platform->list, &platform_list);
4149 	mutex_unlock(&client_mutex);
4150 
4151 	dev_dbg(dev, "ASoC: Registered platform '%s'\n",
4152 		platform->component.name);
4153 
4154 	return 0;
4155 }
4156 EXPORT_SYMBOL_GPL(snd_soc_add_platform);
4157 
4158 /**
4159  * snd_soc_register_platform - Register a platform with the ASoC core
4160  *
4161  * @platform: platform to register
4162  */
4163 int snd_soc_register_platform(struct device *dev,
4164 		const struct snd_soc_platform_driver *platform_drv)
4165 {
4166 	struct snd_soc_platform *platform;
4167 	int ret;
4168 
4169 	dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev));
4170 
4171 	platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
4172 	if (platform == NULL)
4173 		return -ENOMEM;
4174 
4175 	ret = snd_soc_add_platform(dev, platform, platform_drv);
4176 	if (ret)
4177 		kfree(platform);
4178 
4179 	return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
4182 
4183 /**
4184  * snd_soc_remove_platform - Remove a platform from the ASoC core
4185  * @platform: the platform to remove
4186  */
4187 void snd_soc_remove_platform(struct snd_soc_platform *platform)
4188 {
4189 
4190 	mutex_lock(&client_mutex);
4191 	list_del(&platform->list);
4192 	snd_soc_component_del_unlocked(&platform->component);
4193 	mutex_unlock(&client_mutex);
4194 
4195 	dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n",
4196 		platform->component.name);
4197 
4198 	snd_soc_component_cleanup(&platform->component);
4199 }
4200 EXPORT_SYMBOL_GPL(snd_soc_remove_platform);
4201 
4202 struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev)
4203 {
4204 	struct snd_soc_platform *platform;
4205 
4206 	list_for_each_entry(platform, &platform_list, list) {
4207 		if (dev == platform->dev)
4208 			return platform;
4209 	}
4210 
4211 	return NULL;
4212 }
4213 EXPORT_SYMBOL_GPL(snd_soc_lookup_platform);
4214 
4215 /**
4216  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
4217  *
4218  * @platform: platform to unregister
4219  */
4220 void snd_soc_unregister_platform(struct device *dev)
4221 {
4222 	struct snd_soc_platform *platform;
4223 
4224 	platform = snd_soc_lookup_platform(dev);
4225 	if (!platform)
4226 		return;
4227 
4228 	snd_soc_remove_platform(platform);
4229 	kfree(platform);
4230 }
4231 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
4232 
4233 static u64 codec_format_map[] = {
4234 	SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
4235 	SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
4236 	SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
4237 	SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
4238 	SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
4239 	SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
4240 	SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4241 	SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4242 	SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
4243 	SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
4244 	SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
4245 	SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
4246 	SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
4247 	SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
4248 	SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
4249 	| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
4250 };
4251 
4252 /* Fix up the DAI formats for endianness: codecs don't actually see
4253  * the endianness of the data but we're using the CPU format
4254  * definitions which do need to include endianness so we ensure that
4255  * codec DAIs always have both big and little endian variants set.
4256  */
4257 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
4258 {
4259 	int i;
4260 
4261 	for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
4262 		if (stream->formats & codec_format_map[i])
4263 			stream->formats |= codec_format_map[i];
4264 }
4265 
4266 static int snd_soc_codec_drv_probe(struct snd_soc_component *component)
4267 {
4268 	struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4269 
4270 	return codec->driver->probe(codec);
4271 }
4272 
4273 static void snd_soc_codec_drv_remove(struct snd_soc_component *component)
4274 {
4275 	struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4276 
4277 	codec->driver->remove(codec);
4278 }
4279 
4280 static int snd_soc_codec_drv_write(struct snd_soc_component *component,
4281 	unsigned int reg, unsigned int val)
4282 {
4283 	struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4284 
4285 	return codec->driver->write(codec, reg, val);
4286 }
4287 
4288 static int snd_soc_codec_drv_read(struct snd_soc_component *component,
4289 	unsigned int reg, unsigned int *val)
4290 {
4291 	struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4292 
4293 	*val = codec->driver->read(codec, reg);
4294 
4295 	return 0;
4296 }
4297 
4298 static int snd_soc_codec_set_bias_level(struct snd_soc_dapm_context *dapm,
4299 	enum snd_soc_bias_level level)
4300 {
4301 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(dapm);
4302 
4303 	return codec->driver->set_bias_level(codec, level);
4304 }
4305 
4306 /**
4307  * snd_soc_register_codec - Register a codec with the ASoC core
4308  *
4309  * @codec: codec to register
4310  */
4311 int snd_soc_register_codec(struct device *dev,
4312 			   const struct snd_soc_codec_driver *codec_drv,
4313 			   struct snd_soc_dai_driver *dai_drv,
4314 			   int num_dai)
4315 {
4316 	struct snd_soc_codec *codec;
4317 	struct snd_soc_dai *dai;
4318 	int ret, i;
4319 
4320 	dev_dbg(dev, "codec register %s\n", dev_name(dev));
4321 
4322 	codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
4323 	if (codec == NULL)
4324 		return -ENOMEM;
4325 
4326 	codec->component.dapm_ptr = &codec->dapm;
4327 	codec->component.codec = codec;
4328 
4329 	ret = snd_soc_component_initialize(&codec->component,
4330 			&codec_drv->component_driver, dev);
4331 	if (ret)
4332 		goto err_free;
4333 
4334 	if (codec_drv->controls) {
4335 		codec->component.controls = codec_drv->controls;
4336 		codec->component.num_controls = codec_drv->num_controls;
4337 	}
4338 	if (codec_drv->dapm_widgets) {
4339 		codec->component.dapm_widgets = codec_drv->dapm_widgets;
4340 		codec->component.num_dapm_widgets = codec_drv->num_dapm_widgets;
4341 	}
4342 	if (codec_drv->dapm_routes) {
4343 		codec->component.dapm_routes = codec_drv->dapm_routes;
4344 		codec->component.num_dapm_routes = codec_drv->num_dapm_routes;
4345 	}
4346 
4347 	if (codec_drv->probe)
4348 		codec->component.probe = snd_soc_codec_drv_probe;
4349 	if (codec_drv->remove)
4350 		codec->component.remove = snd_soc_codec_drv_remove;
4351 	if (codec_drv->write)
4352 		codec->component.write = snd_soc_codec_drv_write;
4353 	if (codec_drv->read)
4354 		codec->component.read = snd_soc_codec_drv_read;
4355 	codec->component.ignore_pmdown_time = codec_drv->ignore_pmdown_time;
4356 	codec->dapm.idle_bias_off = codec_drv->idle_bias_off;
4357 	codec->dapm.suspend_bias_off = codec_drv->suspend_bias_off;
4358 	if (codec_drv->seq_notifier)
4359 		codec->dapm.seq_notifier = codec_drv->seq_notifier;
4360 	if (codec_drv->set_bias_level)
4361 		codec->dapm.set_bias_level = snd_soc_codec_set_bias_level;
4362 	codec->dev = dev;
4363 	codec->driver = codec_drv;
4364 	codec->component.val_bytes = codec_drv->reg_word_size;
4365 	mutex_init(&codec->mutex);
4366 
4367 #ifdef CONFIG_DEBUG_FS
4368 	codec->component.init_debugfs = soc_init_codec_debugfs;
4369 	codec->component.debugfs_prefix = "codec";
4370 #endif
4371 
4372 	if (codec_drv->get_regmap)
4373 		codec->component.regmap = codec_drv->get_regmap(dev);
4374 
4375 	for (i = 0; i < num_dai; i++) {
4376 		fixup_codec_formats(&dai_drv[i].playback);
4377 		fixup_codec_formats(&dai_drv[i].capture);
4378 	}
4379 
4380 	ret = snd_soc_register_dais(&codec->component, dai_drv, num_dai, false);
4381 	if (ret < 0) {
4382 		dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4383 		goto err_cleanup;
4384 	}
4385 
4386 	list_for_each_entry(dai, &codec->component.dai_list, list)
4387 		dai->codec = codec;
4388 
4389 	mutex_lock(&client_mutex);
4390 	snd_soc_component_add_unlocked(&codec->component);
4391 	list_add(&codec->list, &codec_list);
4392 	mutex_unlock(&client_mutex);
4393 
4394 	dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n",
4395 		codec->component.name);
4396 	return 0;
4397 
4398 err_cleanup:
4399 	snd_soc_component_cleanup(&codec->component);
4400 err_free:
4401 	kfree(codec);
4402 	return ret;
4403 }
4404 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
4405 
4406 /**
4407  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
4408  *
4409  * @codec: codec to unregister
4410  */
4411 void snd_soc_unregister_codec(struct device *dev)
4412 {
4413 	struct snd_soc_codec *codec;
4414 
4415 	list_for_each_entry(codec, &codec_list, list) {
4416 		if (dev == codec->dev)
4417 			goto found;
4418 	}
4419 	return;
4420 
4421 found:
4422 
4423 	mutex_lock(&client_mutex);
4424 	list_del(&codec->list);
4425 	snd_soc_component_del_unlocked(&codec->component);
4426 	mutex_unlock(&client_mutex);
4427 
4428 	dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n",
4429 			codec->component.name);
4430 
4431 	snd_soc_component_cleanup(&codec->component);
4432 	snd_soc_cache_exit(codec);
4433 	kfree(codec);
4434 }
4435 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
4436 
4437 /* Retrieve a card's name from device tree */
4438 int snd_soc_of_parse_card_name(struct snd_soc_card *card,
4439 			       const char *propname)
4440 {
4441 	struct device_node *np;
4442 	int ret;
4443 
4444 	if (!card->dev) {
4445 		pr_err("card->dev is not set before calling %s\n", __func__);
4446 		return -EINVAL;
4447 	}
4448 
4449 	np = card->dev->of_node;
4450 
4451 	ret = of_property_read_string_index(np, propname, 0, &card->name);
4452 	/*
4453 	 * EINVAL means the property does not exist. This is fine providing
4454 	 * card->name was previously set, which is checked later in
4455 	 * snd_soc_register_card.
4456 	 */
4457 	if (ret < 0 && ret != -EINVAL) {
4458 		dev_err(card->dev,
4459 			"ASoC: Property '%s' could not be read: %d\n",
4460 			propname, ret);
4461 		return ret;
4462 	}
4463 
4464 	return 0;
4465 }
4466 EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name);
4467 
4468 static const struct snd_soc_dapm_widget simple_widgets[] = {
4469 	SND_SOC_DAPM_MIC("Microphone", NULL),
4470 	SND_SOC_DAPM_LINE("Line", NULL),
4471 	SND_SOC_DAPM_HP("Headphone", NULL),
4472 	SND_SOC_DAPM_SPK("Speaker", NULL),
4473 };
4474 
4475 int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card,
4476 					  const char *propname)
4477 {
4478 	struct device_node *np = card->dev->of_node;
4479 	struct snd_soc_dapm_widget *widgets;
4480 	const char *template, *wname;
4481 	int i, j, num_widgets, ret;
4482 
4483 	num_widgets = of_property_count_strings(np, propname);
4484 	if (num_widgets < 0) {
4485 		dev_err(card->dev,
4486 			"ASoC: Property '%s' does not exist\n",	propname);
4487 		return -EINVAL;
4488 	}
4489 	if (num_widgets & 1) {
4490 		dev_err(card->dev,
4491 			"ASoC: Property '%s' length is not even\n", propname);
4492 		return -EINVAL;
4493 	}
4494 
4495 	num_widgets /= 2;
4496 	if (!num_widgets) {
4497 		dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4498 			propname);
4499 		return -EINVAL;
4500 	}
4501 
4502 	widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets),
4503 			       GFP_KERNEL);
4504 	if (!widgets) {
4505 		dev_err(card->dev,
4506 			"ASoC: Could not allocate memory for widgets\n");
4507 		return -ENOMEM;
4508 	}
4509 
4510 	for (i = 0; i < num_widgets; i++) {
4511 		ret = of_property_read_string_index(np, propname,
4512 			2 * i, &template);
4513 		if (ret) {
4514 			dev_err(card->dev,
4515 				"ASoC: Property '%s' index %d read error:%d\n",
4516 				propname, 2 * i, ret);
4517 			return -EINVAL;
4518 		}
4519 
4520 		for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) {
4521 			if (!strncmp(template, simple_widgets[j].name,
4522 				     strlen(simple_widgets[j].name))) {
4523 				widgets[i] = simple_widgets[j];
4524 				break;
4525 			}
4526 		}
4527 
4528 		if (j >= ARRAY_SIZE(simple_widgets)) {
4529 			dev_err(card->dev,
4530 				"ASoC: DAPM widget '%s' is not supported\n",
4531 				template);
4532 			return -EINVAL;
4533 		}
4534 
4535 		ret = of_property_read_string_index(np, propname,
4536 						    (2 * i) + 1,
4537 						    &wname);
4538 		if (ret) {
4539 			dev_err(card->dev,
4540 				"ASoC: Property '%s' index %d read error:%d\n",
4541 				propname, (2 * i) + 1, ret);
4542 			return -EINVAL;
4543 		}
4544 
4545 		widgets[i].name = wname;
4546 	}
4547 
4548 	card->dapm_widgets = widgets;
4549 	card->num_dapm_widgets = num_widgets;
4550 
4551 	return 0;
4552 }
4553 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets);
4554 
4555 int snd_soc_of_parse_tdm_slot(struct device_node *np,
4556 			      unsigned int *slots,
4557 			      unsigned int *slot_width)
4558 {
4559 	u32 val;
4560 	int ret;
4561 
4562 	if (of_property_read_bool(np, "dai-tdm-slot-num")) {
4563 		ret = of_property_read_u32(np, "dai-tdm-slot-num", &val);
4564 		if (ret)
4565 			return ret;
4566 
4567 		if (slots)
4568 			*slots = val;
4569 	}
4570 
4571 	if (of_property_read_bool(np, "dai-tdm-slot-width")) {
4572 		ret = of_property_read_u32(np, "dai-tdm-slot-width", &val);
4573 		if (ret)
4574 			return ret;
4575 
4576 		if (slot_width)
4577 			*slot_width = val;
4578 	}
4579 
4580 	return 0;
4581 }
4582 EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot);
4583 
4584 int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
4585 				   const char *propname)
4586 {
4587 	struct device_node *np = card->dev->of_node;
4588 	int num_routes;
4589 	struct snd_soc_dapm_route *routes;
4590 	int i, ret;
4591 
4592 	num_routes = of_property_count_strings(np, propname);
4593 	if (num_routes < 0 || num_routes & 1) {
4594 		dev_err(card->dev,
4595 			"ASoC: Property '%s' does not exist or its length is not even\n",
4596 			propname);
4597 		return -EINVAL;
4598 	}
4599 	num_routes /= 2;
4600 	if (!num_routes) {
4601 		dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4602 			propname);
4603 		return -EINVAL;
4604 	}
4605 
4606 	routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes),
4607 			      GFP_KERNEL);
4608 	if (!routes) {
4609 		dev_err(card->dev,
4610 			"ASoC: Could not allocate DAPM route table\n");
4611 		return -EINVAL;
4612 	}
4613 
4614 	for (i = 0; i < num_routes; i++) {
4615 		ret = of_property_read_string_index(np, propname,
4616 			2 * i, &routes[i].sink);
4617 		if (ret) {
4618 			dev_err(card->dev,
4619 				"ASoC: Property '%s' index %d could not be read: %d\n",
4620 				propname, 2 * i, ret);
4621 			return -EINVAL;
4622 		}
4623 		ret = of_property_read_string_index(np, propname,
4624 			(2 * i) + 1, &routes[i].source);
4625 		if (ret) {
4626 			dev_err(card->dev,
4627 				"ASoC: Property '%s' index %d could not be read: %d\n",
4628 				propname, (2 * i) + 1, ret);
4629 			return -EINVAL;
4630 		}
4631 	}
4632 
4633 	card->num_dapm_routes = num_routes;
4634 	card->dapm_routes = routes;
4635 
4636 	return 0;
4637 }
4638 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing);
4639 
4640 unsigned int snd_soc_of_parse_daifmt(struct device_node *np,
4641 				     const char *prefix,
4642 				     struct device_node **bitclkmaster,
4643 				     struct device_node **framemaster)
4644 {
4645 	int ret, i;
4646 	char prop[128];
4647 	unsigned int format = 0;
4648 	int bit, frame;
4649 	const char *str;
4650 	struct {
4651 		char *name;
4652 		unsigned int val;
4653 	} of_fmt_table[] = {
4654 		{ "i2s",	SND_SOC_DAIFMT_I2S },
4655 		{ "right_j",	SND_SOC_DAIFMT_RIGHT_J },
4656 		{ "left_j",	SND_SOC_DAIFMT_LEFT_J },
4657 		{ "dsp_a",	SND_SOC_DAIFMT_DSP_A },
4658 		{ "dsp_b",	SND_SOC_DAIFMT_DSP_B },
4659 		{ "ac97",	SND_SOC_DAIFMT_AC97 },
4660 		{ "pdm",	SND_SOC_DAIFMT_PDM},
4661 		{ "msb",	SND_SOC_DAIFMT_MSB },
4662 		{ "lsb",	SND_SOC_DAIFMT_LSB },
4663 	};
4664 
4665 	if (!prefix)
4666 		prefix = "";
4667 
4668 	/*
4669 	 * check "[prefix]format = xxx"
4670 	 * SND_SOC_DAIFMT_FORMAT_MASK area
4671 	 */
4672 	snprintf(prop, sizeof(prop), "%sformat", prefix);
4673 	ret = of_property_read_string(np, prop, &str);
4674 	if (ret == 0) {
4675 		for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) {
4676 			if (strcmp(str, of_fmt_table[i].name) == 0) {
4677 				format |= of_fmt_table[i].val;
4678 				break;
4679 			}
4680 		}
4681 	}
4682 
4683 	/*
4684 	 * check "[prefix]continuous-clock"
4685 	 * SND_SOC_DAIFMT_CLOCK_MASK area
4686 	 */
4687 	snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix);
4688 	if (of_get_property(np, prop, NULL))
4689 		format |= SND_SOC_DAIFMT_CONT;
4690 	else
4691 		format |= SND_SOC_DAIFMT_GATED;
4692 
4693 	/*
4694 	 * check "[prefix]bitclock-inversion"
4695 	 * check "[prefix]frame-inversion"
4696 	 * SND_SOC_DAIFMT_INV_MASK area
4697 	 */
4698 	snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix);
4699 	bit = !!of_get_property(np, prop, NULL);
4700 
4701 	snprintf(prop, sizeof(prop), "%sframe-inversion", prefix);
4702 	frame = !!of_get_property(np, prop, NULL);
4703 
4704 	switch ((bit << 4) + frame) {
4705 	case 0x11:
4706 		format |= SND_SOC_DAIFMT_IB_IF;
4707 		break;
4708 	case 0x10:
4709 		format |= SND_SOC_DAIFMT_IB_NF;
4710 		break;
4711 	case 0x01:
4712 		format |= SND_SOC_DAIFMT_NB_IF;
4713 		break;
4714 	default:
4715 		/* SND_SOC_DAIFMT_NB_NF is default */
4716 		break;
4717 	}
4718 
4719 	/*
4720 	 * check "[prefix]bitclock-master"
4721 	 * check "[prefix]frame-master"
4722 	 * SND_SOC_DAIFMT_MASTER_MASK area
4723 	 */
4724 	snprintf(prop, sizeof(prop), "%sbitclock-master", prefix);
4725 	bit = !!of_get_property(np, prop, NULL);
4726 	if (bit && bitclkmaster)
4727 		*bitclkmaster = of_parse_phandle(np, prop, 0);
4728 
4729 	snprintf(prop, sizeof(prop), "%sframe-master", prefix);
4730 	frame = !!of_get_property(np, prop, NULL);
4731 	if (frame && framemaster)
4732 		*framemaster = of_parse_phandle(np, prop, 0);
4733 
4734 	switch ((bit << 4) + frame) {
4735 	case 0x11:
4736 		format |= SND_SOC_DAIFMT_CBM_CFM;
4737 		break;
4738 	case 0x10:
4739 		format |= SND_SOC_DAIFMT_CBM_CFS;
4740 		break;
4741 	case 0x01:
4742 		format |= SND_SOC_DAIFMT_CBS_CFM;
4743 		break;
4744 	default:
4745 		format |= SND_SOC_DAIFMT_CBS_CFS;
4746 		break;
4747 	}
4748 
4749 	return format;
4750 }
4751 EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt);
4752 
4753 int snd_soc_of_get_dai_name(struct device_node *of_node,
4754 			    const char **dai_name)
4755 {
4756 	struct snd_soc_component *pos;
4757 	struct of_phandle_args args;
4758 	int ret;
4759 
4760 	ret = of_parse_phandle_with_args(of_node, "sound-dai",
4761 					 "#sound-dai-cells", 0, &args);
4762 	if (ret)
4763 		return ret;
4764 
4765 	ret = -EPROBE_DEFER;
4766 
4767 	mutex_lock(&client_mutex);
4768 	list_for_each_entry(pos, &component_list, list) {
4769 		if (pos->dev->of_node != args.np)
4770 			continue;
4771 
4772 		if (pos->driver->of_xlate_dai_name) {
4773 			ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name);
4774 		} else {
4775 			int id = -1;
4776 
4777 			switch (args.args_count) {
4778 			case 0:
4779 				id = 0; /* same as dai_drv[0] */
4780 				break;
4781 			case 1:
4782 				id = args.args[0];
4783 				break;
4784 			default:
4785 				/* not supported */
4786 				break;
4787 			}
4788 
4789 			if (id < 0 || id >= pos->num_dai) {
4790 				ret = -EINVAL;
4791 				continue;
4792 			}
4793 
4794 			ret = 0;
4795 
4796 			*dai_name = pos->dai_drv[id].name;
4797 			if (!*dai_name)
4798 				*dai_name = pos->name;
4799 		}
4800 
4801 		break;
4802 	}
4803 	mutex_unlock(&client_mutex);
4804 
4805 	of_node_put(args.np);
4806 
4807 	return ret;
4808 }
4809 EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name);
4810 
4811 static int __init snd_soc_init(void)
4812 {
4813 #ifdef CONFIG_DEBUG_FS
4814 	snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
4815 	if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
4816 		pr_warn("ASoC: Failed to create debugfs directory\n");
4817 		snd_soc_debugfs_root = NULL;
4818 	}
4819 
4820 	if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
4821 				 &codec_list_fops))
4822 		pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
4823 
4824 	if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
4825 				 &dai_list_fops))
4826 		pr_warn("ASoC: Failed to create DAI list debugfs file\n");
4827 
4828 	if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
4829 				 &platform_list_fops))
4830 		pr_warn("ASoC: Failed to create platform list debugfs file\n");
4831 #endif
4832 
4833 	snd_soc_util_init();
4834 
4835 	return platform_driver_register(&soc_driver);
4836 }
4837 module_init(snd_soc_init);
4838 
4839 static void __exit snd_soc_exit(void)
4840 {
4841 	snd_soc_util_exit();
4842 
4843 #ifdef CONFIG_DEBUG_FS
4844 	debugfs_remove_recursive(snd_soc_debugfs_root);
4845 #endif
4846 	platform_driver_unregister(&soc_driver);
4847 }
4848 module_exit(snd_soc_exit);
4849 
4850 /* Module information */
4851 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
4852 MODULE_DESCRIPTION("ALSA SoC Core");
4853 MODULE_LICENSE("GPL");
4854 MODULE_ALIAS("platform:soc-audio");
4855